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Part III

Case Studies



PRISM case studies

• Communication and multimedia protocols

− Bluetooth device discovery [DKNP06]

− IEEE 1394 FireWire root contention [KNS03]

− IPv4 Zeroconf protocol [KNPS06]

− IEEE 802.3 CSMA/CD protocol [DFH+04]

− IEEE 802.11 WiFi wireless LANs [KNS02]

− Zigbee (IEEE 802.15.4) protocol [Fru06]

www.cs.bham.ac.uk/~dxp/prism/casestudies



PRISM case studies

• Security systems/protocols

− Probabilistic Contract Signing [NS06]

− Crowds Protocol (anonymity) [Shm04]

− Probabilistic Fair Exchange [NS06]

− PIN Cracking Schemes [Ste06]

− Negotation frameworks [BFW06]

− Quantum cryptography [NPBG05] 

www.cs.bham.ac.uk/~dxp/prism/casestudies



PRISM case studies

• Randomised distributed algorithms for:

− Byzantine Agreement [KN02]

− Consensus [KNS01]

− Self-stabilisation

− Leader election

− Mutual exclusion

− Two Process Wait-Free Test-and-Set

www.cs.bham.ac.uk/~dxp/prism/casestudies



PRISM case studies

• Analysis of behaviour/performance/reliability of:

− Biological processes – signalling/cell cycle pathways [HKN+06]

− Dynamic power management systems [NPK+05]

− Dynamic voltage scaling algorithms [KNP05]

− Manufacturing/control systems [KNP06,GF06]

− Nanotechnology - NAND multiplexing [NPKS05]

− Groupware protocols (“thinkteam”) [BML05]

www.cs.bham.ac.uk/~dxp/prism/casestudies



Bluetooth device discovery

• Bluetooth: short-range low-power wireless protocol

− widely available in phones, PDAs, laptops, ...

− personal area networks (PANs)

− open standard, specification freely available

• Uses frequency hopping scheme

− to avoid interference (uses unregulated 2.4GHz band)

− pseudo-random selection over 32 of 79 frequencies

• Network formation

− piconets (1 master, up to 7 slaves)

− self-configuring: devices discover themselves



Bluetooth device discovery

• States of a Bluetooth device:

− Standby: default operational state

− Inquiry: device discovery

• master looks for devices, slaves listens for master

− Page: establish connection - synchronise clocks, etc.

− Connected: device ready to communicate in a piconet

• Device discovery

− manadatory first step before any communication possible

− “page” reuses information from “inquiry” so is much faster

− power consumption much higher for “page”

− performance crucial



Master (sender) behaviour

• 28 bit free-running clock CLK, ticks every 312.5µs

• Frequency hopping sequence determined by clock:

− freq = [CLK16-12+k+ (CLK4-2,0-
CLK16-12) mod 16] mod 32

− 2 trains of 16 frequencies
(determined by offset k),
128 times each, swap between
every 2.56s

• Broadcasts inquiry packets on
two consecutive frequencies,
then listens on the same two



Slave (receiver) behaviour

• Listens (scans) on frequencies for inquiry packets

− must listen on right frequency at right time

− cycles through frequency sequence at much slower speed 
(every 1.28s)

• On hearing packet, pause, send reply and then wait for a 
random delay before listening for subsequent packets

− avoid repeated collisions with other slaves



Bluetooth – PRISM model

• Modelling in PRISM [DKNP06]

− model one sender and one receiver

− synchronous (clock speed defined by Bluetooth spec) 

− randomised behaviour – use DTMC

− model at lowest-level (one clock-tick = one transition)

− use real values for delays, etc. from Bluetooth spec

• Modelling challenges

− complex interaction between sender/receiver

− combination of short/long time-scales – cannot scale down

− sender/receiver not initially synchronised, huge number of 
possible initial configurations (17,179,869,184)



Bluetooth - Results

• Huge DTMC – initially, model checking infeasible

− partition into 32 scenarios, i.e. 32 separate DTMCs

− on average, approx. 3.4 x 109 states, 536,870,912 initial

− can be built/analysed with PRISM's MTBDD engine

• Compute:

− R=? [ F replies=K {“init”}{max} ]

− “worst-case expected time to hear K replies over all possible 
initial configurations”

− also look at:

• how many initial states for each possible expected time

• cumulative distribution function assuming equal probability for 
each initial state



Bluetooth - Time to hear 1 reply

• worst-case expected time = 2.5716 sec

• in 921,600 possible initial states

• best-case = 635 µs



Bluetooth - Time to hear 2 replies

• worst-case expected time = 5.177 sec 

• in 444 possible initial states

• compare actual CDF with derived version which assumes times 

to reply to first/second messages are independent



Bluetooth - Results

• Other results: (see [DKNP06])

− compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower

− power consumption analysis (using costs + rewards)

• Conclusions:

− successful analysis of complex real-life model, actual parameters

− exhaustive analysis: best-/worst-case values

• can pinpoint scenarios which give rise to them

• not possible with simulation approaches

− model still relatively simple

• consider multiple receivers?

• combine with simulation?



IEEE 1394 (FireWire)
root contention

• Serial bus for networking multimedia devices

− "hot-pluggable" - add/remove devices (nodes) at any time

• Root contention protocol

− leader election algorithm, when nodes join/leave

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry

• Properties of interest

− time taken for leader election

− effect of using biased coin - conjecture [Stoelinga]



FireWire - PRISM model

• Based on probabilistic timed automata (PTA) model

− by Stoelinga et al. [SV99], [SS01]

− infinite state (real-time)

− digital clocks approach [KNS03] reduces to…

• PRISM model: finite-state MDP

− concurrency: messages between nodes and wires

− underspecification of delays (upper/lower bounds)

− probability: coin toss

− max. model size: 170 million states

− analysed using PRISM's MTBDD engine



FireWire - Properties

• "minimum probability that a leader is elected by time T"

− add variable t to count elapsed time

− Pmin=? [ t≤T U “elected” ]

− vary: T, coin bias: probability of choosing "fast"

• "maximum expected time to elect a leader"

− add timing costs

− Rmax=? [ F “elected” ]

− vary: coin bias



FireWire - Results

“minimum probability
of electing leader

by time T”



FireWire - Results

“maximum expected
time to elect a leader”



FireWire - Results

“maximum expected
time to elect a leader”

Biased coin is
beneficial



Contract signing

• Two parties want to agree on a contract

− each will sign if the other will sign, but do not trust each other

− there may be a trusted third party (judge)

but it should only be used if something goes wrong

• In real life: contract signing with pen and paper

− sit down and write signatures simultaneously

• On the Internet…

− how to exchange commitments on an asynchronous network? 

− “partial secret exchange protocol” due to

Even, Goldreich and Lempel [EGL85]



Contract signing – EGL protocol

• Partial secret exchange protocol for 2 parties (A and B)

• A (B) holds 2N secrets a1,…,a2N (b1,…,b2N) 

− a secret is a binary string of length L

− secrets partitioned into pairs: e.g. {(ai, aN+i) | i=1,…,N}

− A (B) committed if B (A) knows one of A’s (B’s) pairs

• Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y)

− S sends x and y to R

− R receives x with probability ½ otherwise receives y

− S does not know which one R receives

− if S cheats then R can detect this with probability ½



Contract signing – EGL protocol

(step 1)

for (i=1,…,N)

OT(A,B,ai,aN+i) 

OT(B,A,bi,bN+i)

(step 2)

for (i=1,…,L) (where L is the bit length of the secrets)

for (j=1,…,2N)

A transmits bit i of secret aj to B

for (j=1,…,2N)

B transmits bit i of secret bj to A



Contract signing - Results

• Modelled in PRISM as a DTMC (no concurrency) [NS06]

• Discovered a weakness in the protocol:

− party B can act maliciously by quitting the protocol early

− this behaviour not considered in the original analysis

• More details:

− if B stops participating in the protocol as soon as he/she has obtained 
at least one of A pairs, then, with probability 1, at this point:

• B possesses a pair of A’s secrets

• A does not have complete knowledge of any pair of B’s secrets

− Protocol is therefore not fair under this attack: 

• B has a distinct advantage over A



• The protocol is unfair because in step 2: A sends a bit for each of 
its secret before B does.

• Can we make this protocol fair by changing the message 
sequence scheme? 

• Since the protocol is asynchronous the best we can hope for is 
with probability ½ B (or A) gains this advantage

• We consider 3 possible alternate message sequence schemes…

Contract signing - Results



Contract signing: EGL2

(step 1)

…

(step 2)

for (i=1,…,L)

for (j=1,…,N) A transmits bit i of secret aj to B

for (j=1,…,N) B transmits bit i of secret bj to A

for (j=N+1,…,2N) A transmits bit i of secret aj to B

for (j=N+1,…,2N) B transmits bit i of secret bj to A



Contract signing: EGL3

(step 1)

…

(step 2)

for (i=1,…,L) for (j=1,…,N)

A transmits bit i of secret aj to B

B transmits bit i of secret bj to A

for (i=1,…,L) for (j=N+1,…,2N)

A transmits bit i of secret aj to B

B transmits bit i of secret bj to A



Contract signing: EGL4

(step 1)

…

(step 2)

for (i=1,…,L)

A transmits bit i of secret a1 to B

for (j=1,…,N) B transmits bit i of secret bj to A

for (j=2,…,N) A transmits bit i of secret aj to B

for (i=1,…,L)

A transmits bit i of secret aN+1 to B

for (j=N+1,…,2N) B transmits bit i of secret bj to A

for (j=N+2,…,2N) A transmits bit i of secret aj to B



Contract signing - Results

• Probability that the other party gains knowledge first     
(the chance that the protocol is unfair)



Contract signing - Results

• Expected bits a party requires to know a pair once the other 
knows a pair (quantifies how unfair the protocol is)



Contract signing - Results

• Expected messages a party must receive to know a pair once the 
other knows a pair (measures the influence the other party has 
on the fairness, since it can try and delay these messages)



Contract signing - Results

• Expected messages that need to be sent for a party to know a 
pair once the other party knows a pair (measures the duration of 
unfairness)



Contract signing - Results

• Results show EGL4 is the ‘fairest’ protocol

• Except for duration of fairness measure:

Expected messages that need to be sent for a party to know a 
pair once the other party knows a pair

− this value is larger for B than for A

− in fact, as N increases, it increases for B, decreases for A

• Solution: if a party sends a sequence of bits in a row (without the 
other party sending messages in between), require that the party
send these bits as as a single message



Contract signing - Results

• Expected messages that need to be sent for a party to know a 
pair once the other party knows a pair (measures the duration of 
unfairness)



IPv4 Zeroconf protocol

• IPv4 ZeroConf protocol

− New IETF standard for dynamic network self-configuration

− Link-local (no routers within the interface)

− No need for an active DHCP server

− Aimed at home networks, wireless ad-hoc networks, hand-held 
devices

− “Plug and play”

• Self-configuration

− Performs assignment of IP addresses 

− Symmetric, distributed protocol

− Uses random choice and timing delays



IPv4 Zeroconf Standard 

• Select an IP address out of 65024 at random

• Send a probe querying if address in use, and listen for 2 seconds

− If positive reply received, restart

− Otherwise, continue sending probes and listening (2 seconds)

• If K probes sent with no reply, start using the IP number

− Send 2 packets, at 2 second intervals, asserting IP address is being used

− If a conflicting assertion received, either:

• defend (send another asserting packet)

• defer (stop using the IP address and restart)

The Internet

57064?57064?



Will it work?

• Possible problem…

− IP number chosen may be already in use, but:

• Probes or replies may get lost or delayed (host too busy)

• Issues:

− Self-configuration delays may become unacceptable

• Would you wait 8 seconds to self-configure your PDA?

− No justification for parameters

• for example K=4 in the standard

• Case studies:

− DTMC and Markov reward models, analytical [BvdSHV03,AK03]

− TA model using UPPAAL [ZV02]

− PTA model with digital clocks using PRISM [KNPS06]



The IPv4 Zeroconf protocol model

• Modelled using Probabilistic Timed Automata (with digital clocks)

• Parallel composition of two PTAs:

− one (joining) host, modelled in detail

− environment (communication medium + other hosts)

• Variables:

− K (number of probes sent before the IP address is used)

− the probability of message loss

− the number of other hosts already in the network



Modelling the host



Modelling the environment



Expected costs

• Compute minimum/maximum expected cost accumulated 
before obtaining a valid IP address?

• Costs:

− Time should be costly: the host should obtain a valid IP 
address as soon as possible

− Using an IP address that is already in use should be very 
costly: minimise probability of error

• Cost pair: (r,e)

− r=1 (t time units elapsing corresponds to a cost of t)

− e=1012 for the event corresponding to using an address which 
is already in use 

− e=0 for all other events



Results for IPv4 Zeroconf

• Sending a high number of probes increases the cost

− increases delay before a fresh IP address can be used

• Sending a low number of probes increases the cost

− increases probability of using an IP address already in use

• Similar results to the simpler model of [BvdSHV03]

Prob. of
message 
loss 
= 0.001

Prob. of
message 
loss 
= 0.01
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