
Probabilistic model Probabilistic model Probabilistic model Probabilistic model cccchecking with PRISMhecking with PRISMhecking with PRISMhecking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

4th SSFT, Menlo College, May 2014

2

What is probabilistic model checking?

• Probabilistic model checking…

− is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

3

Why formal verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps
(2010)

Patients die because
of incorrect dosage.

Cause: software
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

4

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

5

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

6

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

7

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

8

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

9

Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements:

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy?

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?

10

Probabilistic models

DiscreteDiscreteDiscreteDiscrete
timetimetimetime

ContinuousContinuousContinuousContinuous
timetimetimetime

NondeterministicNondeterministicNondeterministicNondeterministicFully probabilisticFully probabilisticFully probabilisticFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

11

Probabilistic models

DiscreteDiscreteDiscreteDiscrete
timetimetimetime

ContinuousContinuousContinuousContinuous
timetimetimetime

NondeterministicNondeterministicNondeterministicNondeterministicFully probabilisticFully probabilisticFully probabilisticFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

12

Course material

• 4th SSFT slides and lab session

− http://www.prismmodelchecker.org/courses/ssft14/

• Reading

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

• See also

− 20 lecture course taught at Oxford

− http://www.prismmodelchecker.org/lectures/pmc/

• PRISM website www.prismmodelchecker.org

Discrete-time Markov chains

Part 1

14

Overview (Part 1)

• Introduction

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case studies: Bluetooth, DNA programming

• Summary

15

Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

16

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,PPPP,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

where Σs’∈S PPPP(s,s’) = 1 for all s ∈ S

− L : S → 2AP is function labelling states with atomic
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− can add self loops to represent

final/terminating states

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

17

Paths and probabilities

• A (finite or infinite) path through a DTMC

− is a sequence of states s0s1s2s3… such that PPPP(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s

19

Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all
finite paths ω starting in s

• Probability measure Prs

− define probability PPPPs(ω) for finite path ω = ss1…sn as:

• PPPPs(ω) = 1 if ω has length one (i.e. ω = s)

• PPPPs(ω) = PPPP(s,s1) · … · PPPP(sn-1,sn) otherwise

• define Prs(C(ω)) = PPPPs(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details

20

Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− PPPPs0(ω) = PPPP(s0,s1) · PPPP(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = PPPPs0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

= PPPPs0(s0s1s3) + PPPPs0(s0s1s1s3) + PPPPs0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898…

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

21

PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

22

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

23

PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC (S,sinit,PPPP,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples

− s3 ⊨ succ

− s1 ⊨ try ∧ ¬fail
s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

24

PCTL semantics for DTMCs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the DTMC:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

25

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

− example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

− formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

28

Quantitative properties

• Consider a PCTL formula P~p [ψ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ψ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [F err/total>0.1]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

29

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs: DTMC D=(S,sinit,PPPP,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [F error]

− e.g. compute result of P=? [F≤k error] for 0≤k≤100

30

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

31

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])

− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve linear equation system for remaining states

• We refer to the first phase as “precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

− gives exact results for the states in Syes and Sno (no round-off)

− for P~p[·] where p is 0 or 1, no further computation required

32

PCTL until - Linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations:

− can be reduced to a system in |S?| unknowns instead of |S|
where S? = S \ (Syes ∪ Sno)

• This can be solved with (a variety of) standard techniques

− direct methods, e.g. Gaussian elimination

− iterative methods, e.g. Jacobi, Gauss-Seidel, …
(preferred in practice due to scalability)

Prob(s, φ1 U φ2) =

1

0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑

if s ∈ Syes

if s ∈ Sno

otherwise

33

PCTL until - Example

• Example: P>0.8 [¬a U b]

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5

34

PCTL until - Example

• Example: P>0.8 [¬a U b]
Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

35

PCTL until - Example

• Example: P>0.8 [¬a U b]

• Let xs = Prob(s, ¬a U b)

• Solve:

x4 = x5 = 1

x1 = x3 = 0

x0 = 0.1x1+0.9x2 = 0.8

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

36

PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity:

− linear in |Φ| and polynomial in |S|

37

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

− supported by PRISM

− (not covered in this lecture)

• Another direction: extend DTMCs with costs and rewards…

38

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we will consistently use the terminology “rewards” regardless

39

Reward-based properties

• Properties of DTMCs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

40

DTMC reward structures

• For a DTMC (S,sinit,PPPP,L), a reward structure is a pair (ρ,ιιιι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ιιιι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of
jobs in the queue in that state, ιιιι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ιιιι is zero

(equivalently, ρ is zero and ιιιι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ιιιι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ιιιι as the energy cost of

each transition

41

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

43

Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r

− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r

− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs

45

Model checking reward properties

• Instantaneous: R~r [I=k]

• Cumulative: R~r [C≤k]

− variant of the method for computing bounded until
probabilities

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL

46

PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…

− discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, …

• Simple but flexible high-level modelling language

− based on guarded commands; see later…

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

47

PRISM…

• Model checking for various temporal logics…

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

− quantitative extensions, costs/rewards, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …

48

PRISM modelling language

• Simple, textual, state-based modelling language

− used for all probabilistic models supported by PRISM

− based on Reactive Modules [AH99]

• Language basics

− system built as parallel composition of interacting modules

− state of each module given by finite-ranging variables

− behaviour of each module specified by guarded commands

• annotated with probabilities/rates and (optional) action label

− transitions are associated with state-dependent probabilities

− interactions between modules through synchronisation

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

49

Simple example

dtmc

module M1

x : [0..3] init 0;

[a] x=0 -> (x’=1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’=3);

endmodule

module M2

y : [0..3] init 0;

[a] y=0 -> (y’=1);

[b] y=1 -> 0.4 : (y’=2) + 0.6 : (y’=3);

endmodule

50

Costs and rewards

• We augment models with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we consistently use the terminology “rewards” regardless

• Properties (see later)

− reason about expected cumulative/instantaneous reward

51

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

rewardsrewardsrewardsrewards “total_queue_size”
truetruetruetrue : queue1+queue2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “time”
truetruetruetrue : 1;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “power”
sleep=truetruetruetrue : 0.25;
sleep=falsefalsefalsefalse : 1.2 * up;
[wake] true : 3.2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards "dropped"
[receive] q=q_max : 1;

endrewardsendrewardsendrewardsendrewards

52

PRISM – Property specification

• Temporal logic-based property specification language

− subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”

− S>0.999 [“up”] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [F “crash”]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary

53

PRISM – Property specification

• Properties can combine numerical + exhaustive aspects

− Pmax=? [F≤10 “fail”] – “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators

− e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

54

PRISM GUI: Editing a model

55

PRISM GUI: The Simulator

56

PRISM GUI: Model checking and graphs

57

PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies

58

Case study: Bluetooth

• Device discovery between pair of Bluetooth devices

− performance essential for this phase

• Complex discovery process

− two asynchronous 28-bit clocks

− pseudo-random hopping between 32 frequencies

− random waiting scheme to avoid collisions

− 17,179,869,184 initial configurations
(too many to sample effectively)

• Probabilistic model checking

− e.g. “worst-case expected discovery time
is at most 5.17s”

− e.g. “probability discovery time exceeds
6s is always < 0.001”

− shows weaknesses in simplistic analysis

freq = [CLK16-12+k+

(CLK4-2,0-CLK16-12)

mod 16] mod 32

59

DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− probability essential!

60

Case study: DNA programming

• DNA: easily accessible, cheap to synthesise information
processing material

• DNA Strand Displacement language, induces CTMC models

− for designing DNA circuits [Cardelli, Phillips, et al.]

− accompanying software tool for analysis/simulation

− now extended to include auto-generation of PRISM models

• Transducer: converts input <t^ x> into output <y t^>

• Formalising correctness: does it finish successfully?…

− A [G "deadlock" => "all_done"]

− E [F "all_done"] (CTL, but probabilistic also…)

61

Transducer flaw

• PRISM identifies a 5-step trace to the
“bad” deadlock state

− problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:Counterexample:Counterexample:Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

62

Summary

• Discrete-time Markov chains (DTMCs)

− state transition systems + discrete probabilistic choice

− probability space over paths through a DTMC

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL, LTL

− also: expected value of costs/rewards

• Model checking algorithms

− combination of graph-based algorithms, numerical
computation, automata constructions

− also applicable to continuous-time Markov chains via
discretisation

• Next: Markov decision processes (MDPs)

