Multi-Agent Verification & Control with Probabilistic Model Checking

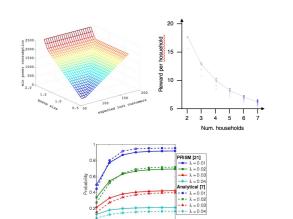
Dave Parker

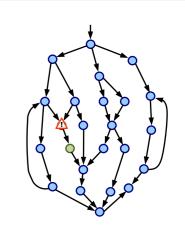
University of Oxford

QEST @ CONFEST, Antwerp, Sep 2023

Probabilistic model checking

- Models & logics for automatic verification of stochastic systems
- Builds on an (increasingly) wide range of disciplines
 - logic, automata, Markov models, optimisation, SMT, simulation, control, AI, ...
- Key strengths: exhaustive + numeric analysis
 - often subtle interplay between probability + nondeterminism
 - numerical results & trends can help identify flaws
 - enabled by advances in scalability, e.g., symbolic (BDD-based) methods
- Exploits flexibility of formal modelling languages & logics
 - consistency across wide range of models & properties

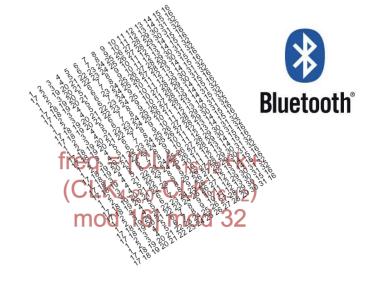


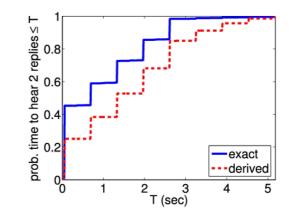


 $P_{>0.999}$ [\Box (trigger $\rightarrow \diamondsuit^{\leq 20}$ deploy)]

Example: Bluetooth

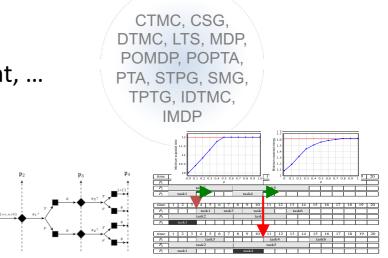
- Device discovery between a pair of Bluetooth devices
 - performance essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
- Probabilistic model checking
 - worst-case expected time and probability for successful discovery
 - 17,179,869,184 initial configurations
 - exhaustive numerical analysis via symbolic model checking
 - highlights flaws in a simpler, analytic analysis

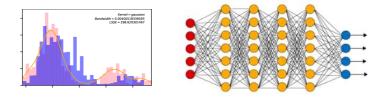




Trends in probabilistic model checking

- Increasingly expressive/powerful classes of model
 - real-time, partial observability, epistemic uncertainty, multi-agent, ...
 - leading to ever widening range of application domains
- From verification problems to control/synthesis
 - "correct-by-construction" from temporal logic specifications
- Increasing use/integration of learning
 - either to support modelling/verification
 - or deployed within the systems being verified





Stochastic multi-agent systems

- How do we verify/control stochastic systems with...
 - multiple agents acting autonomous and concurrently
 - competitive or collaborative behaviour between agents, possibly with differing goals
 - learnt components for e.g. control/perception

- Applications:
 - distributed protocols for consensus/security
 - multi-robot systems
 - autonomous vehicles

- This talk:
 - probabilistic model checking with stochastic multi-player games
 - models, logics, algorithms, tools, examples

Overview

- Stochastic multi-player games
- Concurrent stochastic games
- Equilibria for stochastic games
- Neuro-symbolic games
- Challenges & directions

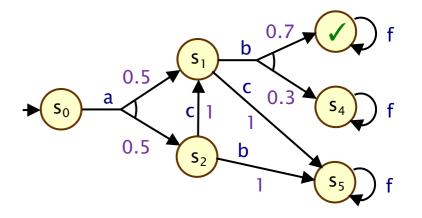
Stochastic games

Starting point: MDPs

- Markov decision processes (MDPs)
 - strategies (or policies) σ resolve actions based on history
 - e.g.: $P_{max=?}[F\checkmark] = sup_{\sigma} Pr_{s}^{\sigma}(F\checkmark)$
 - what is the <u>maximum</u> probability of reaching ✓ achievable by any strategy o?
- Key solution method: value iteration
 - values p(s) are the least fixed point of:

 $\mathbf{p(s)} = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \Sigma_{s'} \delta(s,a)(s') \cdot \mathbf{p(s')} & \text{otherwise} \end{cases}$

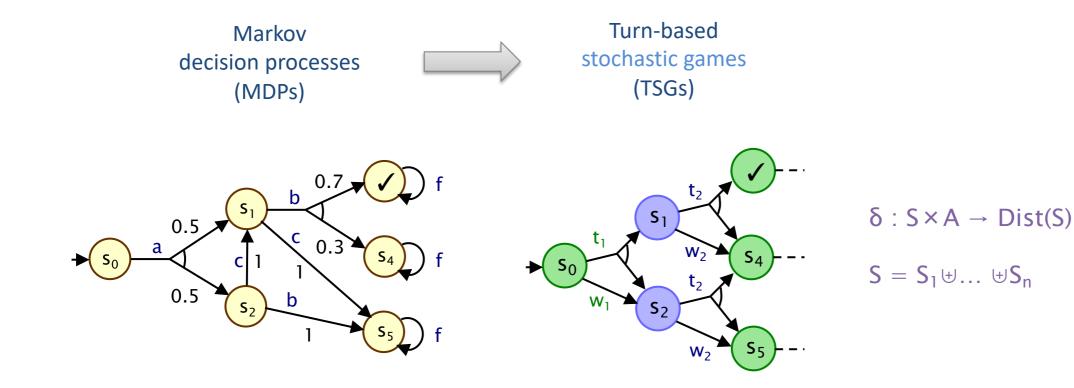
also amenable to symbolic (BDD-based) implementation



 $\delta:S\times A\to Dist(S)$

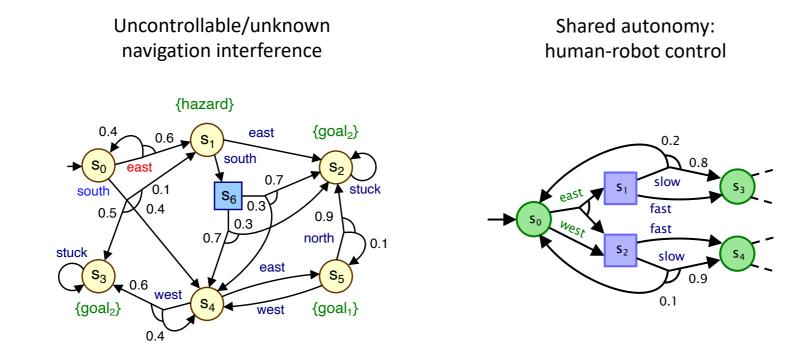
Stochastic multi-player games

- (Turn-based) stochastic multi-player games
 - strategies + probability + multiple players
 - player i controls subset of states S_i



Modelling with turn-based games

• Turn-based stochastic games well suited to some (but not all) scenarios



Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - zero-sum, branching-time temporal logic for stochastic games
 - coalition operator ((C)) of ATL
 + probabilistic (P) and reward (R) operators
- Example:
 - (({robot₁,robot₃})) P_{max=?} [F (goal₁V goal₃)]
 - "what strategies for robots 1 and 3 <u>maximise</u> the probability of reaching their goal locations, <u>regardless</u> of the strategies of other players"

Can be seen as a mixture of control <u>and</u> verification

- Other additions:
 - (co-safe) linear temporal logic
 ¬zone₃ U (room₁ Λ (F room₄ Λ F room₅)

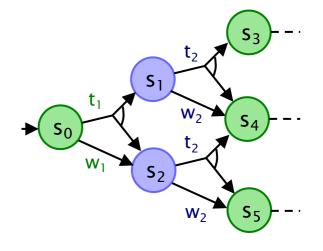
while ensuring base reliably reached"

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1, \sigma_2}(F \checkmark)$
 - complexity: NP ∩ coNP (if we omit some reward operators)
- We again use value iteration
 - values p(s) are the least fixed point of:

$$\mathsf{p}(\mathsf{s}) = \begin{cases} 1 & \text{if } \mathsf{s} \models \checkmark \\ \max_a \Sigma_{\mathsf{s}'} \,\delta(\mathsf{s}, \mathsf{a})(\mathsf{s}') \cdot \mathsf{p}(\mathsf{s}') & \text{if } \mathsf{s} \nvDash \checkmark \text{ and } \mathsf{s} \in \mathsf{S}_1 \\ \min_a \Sigma_{\mathsf{s}'} \,\delta(\mathsf{s}, \mathsf{a})(\mathsf{s}') \cdot \mathsf{p}(\mathsf{s}') & \text{if } \mathsf{s} \nvDash \checkmark \text{ and } \mathsf{s} \in \mathsf{S}_2 \end{cases}$$

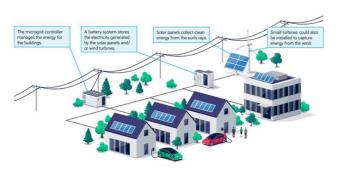
and more: graph-algorithms, sequences of fixed points, ...

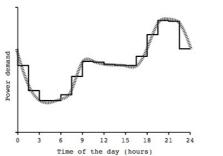


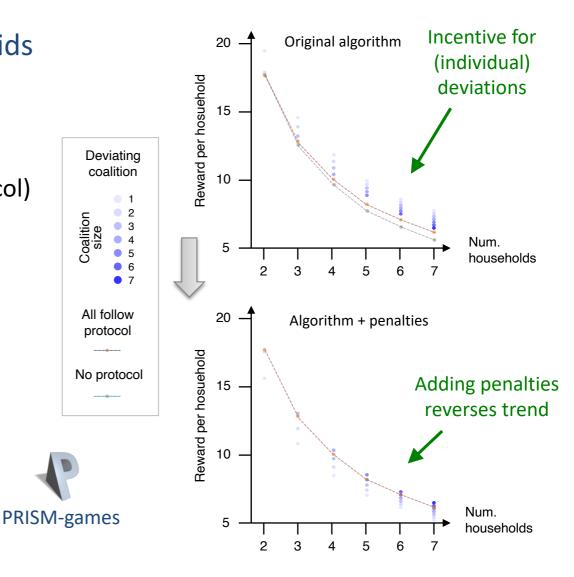
- Implementation
 - symbolic (BDD-based) version also developed
 - big gains on some models
 - also benefits for strategy compactness

Example: Energy protocols

- Demand management protocol for microgrids
 - randomised back-off to minimise peaks
- Stochastic game model + rPATL
 - allow users to collaboratively cheat (ignore protocol)
 - TSGs of up to ~6 million states
 - exposes protocol weakness (incentive for clients to act selfishly)
 - propose/verify simple fix using penalties



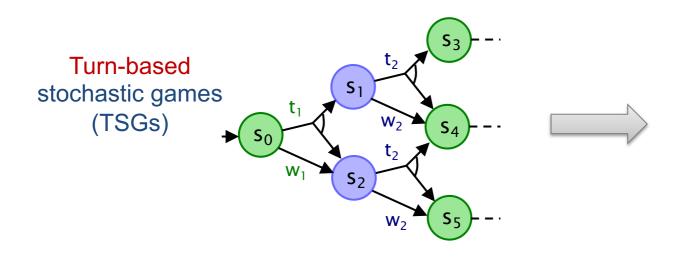


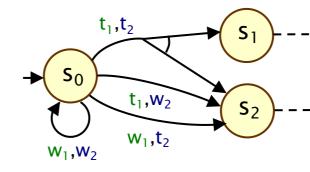


Concurrent stochastic games

Concurrent stochastic games

- Need a more realistic model of components operating concurrently
- Concurrent stochastic games (CSGs)
 - (also known as Markov games, multi-agent MDPs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state





Concurrent stochastic games (CSGs)

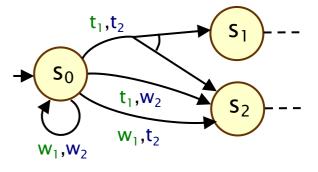
 $\delta: S \times (A_1 \cup \{\bot\}) \times \ldots \times (A_n \cup \{\bot\}) \rightarrow \text{Dist}(S)$

rPATL model checking for CSGs

- Same overall rPATL model checking algorithm
 - key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
 - note that optimal strategies are now randomised
- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$ for all states s
 - values p(s) are the least fixed point of:

$$\mathbf{p(s)} = \begin{cases} 1 & \text{if } s \models \checkmark \\ \text{val}(\mathsf{Z}) & \text{if } s \not\models \checkmark \end{cases}$$

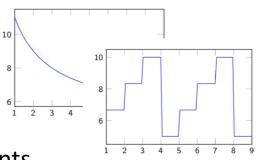
 where Z is the matrix game with z_{ij} = Σ_{s'} δ(s,(a_i,b_j))(s')·p(s')

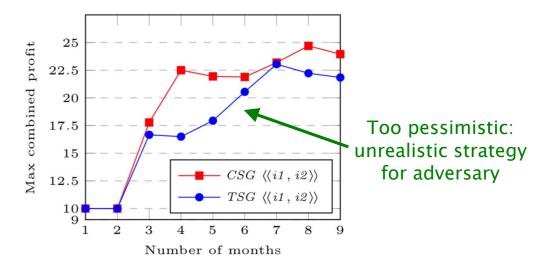


- Implementation
 - matrix games solved as linear programs
 - (LP problem of size |A|)
 - required for every iteration/state
 - which is the main bottleneck
 - but we solve CSGs of ~3 million states

Example: Future markets investor

- 3-player CSG modelling interactions between:
 - stock market, evolves stochastically
 - two investors i₁, i₂ decide when to invest
 - market decides whether to bar investors
 - various profit models; reduced for simultaneous investments
- Investor strategy synthesis via rPATL model checking
 - ((investor₁, investor₂)) R^{profit_{1,2}}_{max=?} [F finished_{1,2}]
 - non-trivial optimal (randomised) investment strategies
 - concurrent game (CSG) yields more realistic results (market has less observational power over investors)





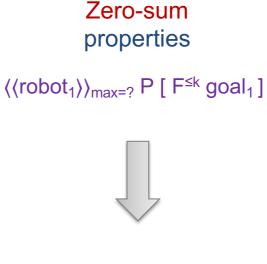
Equilibria for stochastic games

Equilibria-based properties

- Beyond zero-sum games:
 - players/components may have distinct objectives but which are not directly opposing (zero-sum)
- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ε-NE, which always exist for CSGs

$$\begin{split} &\sigma = (\sigma_{1,...}, \sigma_n) \text{ is an } \epsilon \text{-NE for objectives } X_1, ..., X_n \text{ iff:} \\ &\text{for all } i : E_s^{\sigma}(X_i) \geq \sup \{ E_s^{\sigma'}(X_i) \mid \sigma' = \sigma_{-i}[\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} - \epsilon \end{split}$$

- We extend rPATL model checking for CSGs
 - with social-welfare Nash equilibria (SWNE)
 - i.e., NE which also maximise the joint sum $E_s^{\sigma}(X_1) + ... E_s^{\sigma}(X_n)$

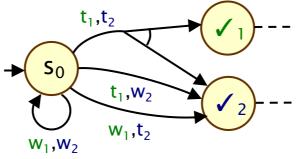


 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{≤k} goal₁]+P [F ^{≤k} goal₂])

```
Equilibria-based
properties
(SWNE)
```

Model checking for Nash equilibria

- Model checking for CSGs with equilibria
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - strategies need history and randomisation



• We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \models \checkmark_1 \land \checkmark_2 \\ (1,p_{\max}(s,\checkmark_2)) & \text{if } s \models \checkmark_1 \land \neg \checkmark_2 \\ (p_{\max}(s,\checkmark_1),1) & \text{if } s \models \neg \checkmark_1 \land \checkmark_2 \\ \text{val}(Z_1,Z_2) & \text{if } s \models \neg \checkmark_1 \land \neg \checkmark_2 \end{cases} \text{ bimatrix game}$$

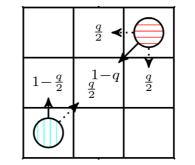
where Z₁ and Z₂ encode matrix games similar to before

• Implementation

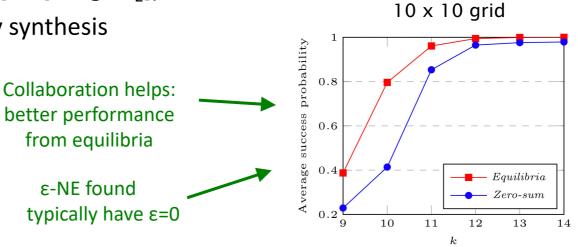
- we adapt a known approach using labelled polytopes, and implement via SMT
- optimisations: filtering of dominated strategies
- solve CSGs of ~2 million states

Example: multi-robot coordination

- 2 robots navigating an m x m gridworld
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically



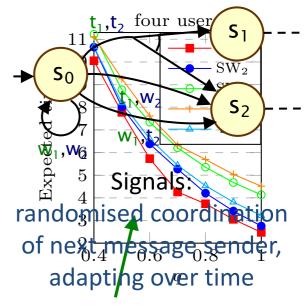
- We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k
 - $\langle (robot1:robot2) \rangle_{max=?}$ (P [$F^{\leq k} goal_1$]+P [$F^{\leq k} goal_2$])
 - and compare to sequential strategy synthesis



Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:
 - 1. can be computationally expensive, especially for >2 players
 - 2. social welfare optimality is <u>not</u> always equally beneficial to players
- Correlated equilibria
 - correlation: shared (probabilistic) signal + map to local strategies
 - synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
 - experiments: much faster to synthesise (4-20x faster)
- Social fairness
 - alternative optimality criterion: minimise difference in objectives
 - applies to both Nash/correlated: slight changes to optimisation

Example: Aloha communication protocol



social fairness (SF) more equitable than social welfare (WF_i)

Tool support: PRISM-games

- PRISM-games
 - supports turn-based/concurrent SGs, zero-sum/equilibria
 - and more (co-safe LTL, multi-objective, real-time extensions, ...)
 - explicit-state and symbolic implementations
 - custom modelling language extending PRISM
- Growing interest: other (TSG) tools becoming available
 - Tempest, EPMC, PET, PRISM-games extensions
- Many other example application domains
 - attack-defence trees, self-adaptive software architectures, human-in-the-loop UAV mission planning, trust models, collective decision making, intrusion detection policies

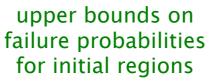
cso	
pia	yer pluserl endplayer
pla	iyer p2 user2 endplayer
//	Users (senders)
mc	dule user1
	s1 : [01] init 0; // has player 1 sent?
	e1 : [0emax] init emax; // energy level of player 1
	[w1] true -> (s1'=0); // wait
	[t1] e1>0 -> (s1'=c'?0:1) & (e1'=e1-1); // transmit
ene	dmodule
mc	dule user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
11	Channel: used to compute joint probability distribution for transmission failur
mo	odule channel
	c : bool init false; // is there a collision?
	[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
	[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
	$[t_1,t_2]$ true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
on	dmodule

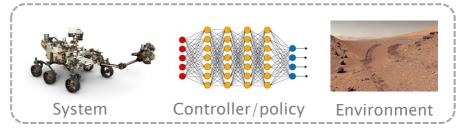
prismmodelchecker.org/games/

Neuro-symbolic games

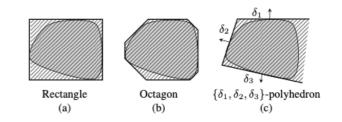
Deep reinforcement learning

- Tackling more realistic problems
 - continuous state spaces & more complex dynamics
- Verification of learning-based systems
 - e.g., deep reinforcement learning
 - neural network (NN) learnt for strategy actions/values
- First steps: single-agent verification, fixed policy
 - deterministic dynamical system + control faults
 - combine polyhedral abstractions with probabilistic model checking
 - conservative abstraction of NN-controlled dynamics over a finite horizon, via MILP

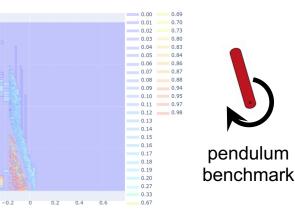




deep reinforcement learning

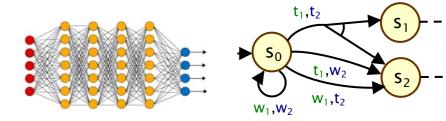


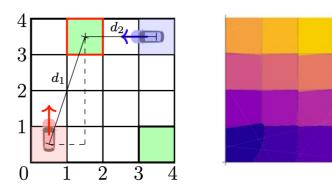
-0.4



Neuro-symbolic games

- Mixture of neural components + symbolic/logical components
 - simpler than end-to-end neural control problem; aids explainability
 - here: neural networks (or similar) for perception tasks
 - plus: local strategies for control decisions
- Neuro-symbolic CSGs
 - finite-state agents + continuous-state environment E
 - $S = (Loc_1 \times Per_1) \times (Loc_2 \times Per_2) \times S_E$
 - agents use a (learnt) perception function to observe E
 - $obs_i : (Loc_1 \times Loc_2) \times S_E \rightarrow Per_i$
 - CSG-like joint actions update state probabilistically
- Example: dynamic vehicle parking
 - NN maps exact vehicle position to perceived grid cell

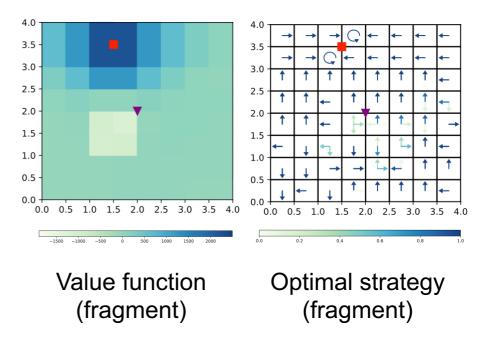




Model checking neuro-symbolic CSGs

- Strategy synthesis for zero-sum (discounted) expected reward
 - for now, we assume full observability
- Value iteration (VI) approach
 - continuous state-space decomposed into regions
 - further subdivision at each iteration
 - we define a class of piecewise-continuous value functions, preserved by NNs and VI
- Implementation
 - pre-image computations of NNs
 - polytope representations of regions
 - LPs to solve zero-sum games at each step

Dynamic vehicle parking with larger (8x8) grid and simpler (regression) perception



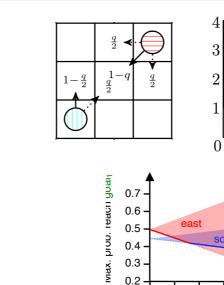
Wrapping up

Challenges & directions

- Partial information/observability
 - e.g., leveraging (
- Managing robu
 - quantifying mod
 - stability of rando
- Modelling lange
 - e.g., more flexib

0.4 (bacard) (cstresp)south $0.5 \pm e$ 0.9 (bacard) (cstresp) (bacard) (cstresp) (bacard) (bacard) (cstresp) (c

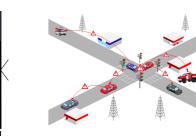
{goal₂}

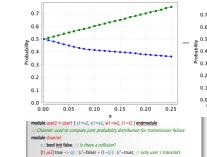


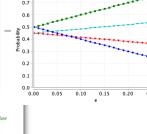
east min east max south min south max 0.1

0.2

0





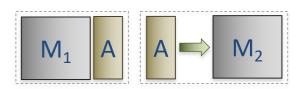


- Further classes
 - e.g. Stackelberg equilibria for automotive/security applications

0.2

0.1

- Improving scalability & efficiency
 - e.g. symbolic methods for CSGs, compositional solution approaches



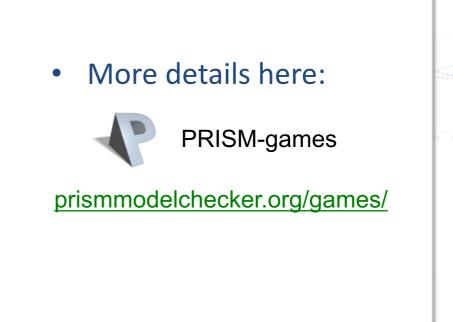
Challenges & directions

• Partial information/observability

• Joint work with:

 Edoardo Bacci, Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, Gabriel Santos, Aistis Simaitis, Rui Yan

Funded by: FUN2MODEL



e.g. symbolic methods for CSGs, compositional solution approaches