
STATISTICAL APPROACHES
FOR PROBABILISTIC MODEL CHECKING

Vincent NIMAL
Worcester College

vincent.nimal@comlab.ox.ac.uk

Oxford University
Computing Laboratory

SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

September 2010

Abstract

In this dissertation, we survey the different techniques used to perform statistical
probabilistic model checking, prove their respective validity and compare them in
terms of (statistical) reliability. We then propose some extensions of these methods
for computation of rewards, which to our knowledge has not been done before.
All these strategies are added to the code of the probabilistic model checking tool
PRISM, and we experiment them on several large biological model examples. We
conclude by some recommendations for the practical use of these methods, based
on the experiments observation and the methods comparisons.

Key words:

statistical model checking, approximative model checking, probabilistic model
checking, confidence interval, sequential probability ratio test, Wald’s test, re-
wards, Hoeffding bound, truncation method, Bartlett’s test

1

Acknowledgements

I would like to thank Dr David Parker for the supervision of this thesis. He pro-
posed me an interesting and challenging subject, introduced the PRISM code to me,
proofread this dissertation and was always present to advise me in the direction to
give to my researches.

During this project, I studied a part of the method that APMC implements, and
I really appreciated the explanations of Dr Sylvain Peyronnet about this and the
choices he and his team made when they wrote this software.

I am grateful to Mr Bernard Sufrin for the supervision of my Master in general
and for his advice and discussions all along the year.

I would also like to thank my French engineering school, the École Nationale
Supérieure pour l’Industrie et l’Entreprise (ENSIIE), for offering me the opportu-
nity to follow this Master of Science in the University of Oxford.

Finally, many thanks to my family, my friends and all the people in the Com-
puting Laboratory for their smiles, their kindness and their support.

2

Contents

1 Introduction 9

2 Background 11
2.1 Model: DTMCs and CTMCs . 12
2.2 Properties: subset of bounded PCTL/CSL 14
2.3 Probabilistic Model Checking: overview 16
2.4 Statistical approaches: generation and analysis 18

3 Statistical Model Checking: P=?[φ] problem 21
3.1 Confidence interval methods . 21

3.1.1 Confidence interval (CI) 22
3.1.2 Asymptotic confidence interval (ACI) 24
3.1.3 Computation optimization 25

3.2 How many steps to get a confidence interval? 25
3.3 Another approach: Approximate Model Checking (AMC) 27
3.4 Decisions and display . 29
3.5 Experiments and comparisons 30

3.5.1 How to read the graphs? 30
3.5.2 AMC vs. CI . 31
3.5.3 CI vs. ACI . 34
3.5.4 Tests and comparisons 37
3.5.5 Analysis . 39

3.6 Other related problems . 40
3.6.1 How to compute the missing parameters? 41
3.6.2 Implementation . 42

3.7 Summary . 44

4 Statistical Model Checking: R=?[φ] problem 45
4.1 Confidence interval methods . 45
4.2 Decisions . 46

3

CONTENTS

4.3 Confidence interval experiments 47
4.3.1 Limit test . 49

4.4 Bounded extension of AMC . 51
4.4.1 What happens if the bound is exceeded? 52
4.4.2 Implementation . 52
4.4.3 Limit test . 53

4.5 Unbounded extension of AMC 54
4.5.1 Unbounded problem . 54
4.5.2 Unbounded problem with bounded expectation 56

4.6 AMCs experiments . 58
4.7 Bounded vs. unbounded AMC extensions 59
4.8 Summary . 61

5 Statistical Model Checking: P��θ[φ] problem 62
5.1 Using confidence interval methods 62
5.2 Confidence interval experiments 64
5.3 Using statistical test . 66
5.4 SPRT experiments . 67
5.5 Relations between CI methods and SPRT 68
5.6 Summary . 69

6 Statistical Model Checking: R��θ[φ] problem 71
6.1 Using confidence interval methods 71
6.2 Confidence interval experiments 72
6.3 Using statistical test . 73
6.4 SPRT experiments . 75
6.5 Summary . 76

7 Conclusion 77

Bibliography 83

A User guide for Statistical Model Checking with enhanced PRISM 87
A.1 Graphic mode . 87
A.2 Console mode . 89

B Strategies of automation for simulations 92

4

List of Figures

2.1 General model checking process 11
2.2 Table of the properties - and their meanings - tested over the models 15
2.3 Table of the rewards - and their meanings - computed through the

models . 16
2.4 Global mechanism of probabilistic model checking 18
2.5 Global mechanism of statistical model checking 20

3.1 Some estimated CIs, containing the real probability. The blue CIs
are among the 100×α% which do not contain it. 22

3.2 Table summing up the AMC and CI correspondences 27
3.3 Distribution of the estimations. 28
3.4 Distribution of means with AMC method for α = 5%, ε = 10−2

(which induces exactly N = 18455 samples for each run of PRISM),
100 runs of textscPrism for poll.sm. All the estimations in the black
segment have E[χp] in their CI, e.g. the black CI. The red estima-
tion does not have E[χp] in its CI. 31

3.5 Distribution of means with CI method for α= 5%, ε= 10−2 (which
induces less than N = 9200 samples for each run of PRISM), 100
runs of PRISM for poll.sm. The computed α” ≈ α. 32

3.6 Comparison of the AMC and CI bound (Scilab simulation). X =

ε2, Y = S2, Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
− ln(2

α)
2ε2 , with (X ,Y) ∈

[0.01 : 0.5]2 . 33
3.7 Comparison of the AMC and CI bound (Scilab simulation). X =

ε2, Y = S2, Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
/

ln(2
α)

2ε2 , with (X ,Y) ∈
[0.01 : 0.5]2 . 34

3.8 Distribution of means with ACI method for α = 5%, ε = 10−2

(which induces less than N = 9200 samples for each run of PRISM),
100 runs of PRISM for poll.sm. The computed α” ≈ α. 35

5

LIST OF FIGURES

3.9 Distribution of the number of samples required for CI method (on
the left) and ACI method (on the right) for α = 5%, ε = 10−2, 100
runs of PRISM for poll.sm. 36

3.10 Distribution of means with CI method on the left, ACI method on
the right for α = 5%, ε = 10−2 (which induces around N = 9200
samples for each run of PRISM), 1000 runs of PRISM for poll.sm. . 36

3.11 Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM
(test configuration: Core2duo @ 2.1Ghz, 4GB ram, Linux Fedora
10). 37

3.12 Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of
PRISM. 38

3.13 Comparisons of distributions of number of samples required for
α = 5%, ε = 10−2, 100 runs of PRISM. 39

3.14 Different algorithms to use in terms of given data. 40
3.15 UML diagram of the implementation 43

4.1 Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of
PRISM. 47

4.2 Comparisons of distributions of number of samples required for
α = 5%, ε = 10−2, 100 runs of PRISM. 48

4.3 Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM. . 49
4.4 Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of

PRISM with normal AMC method. 49
4.5 Modified Markov chain of the die 50
4.6 Comparison of distributions of dice.pm rewards for α = 5%, ε =

10−2, 100 runs of PRISM, with extended AMC method. The max-
imum reward for the left graph is 1.0, the right graph’s one is 4.0
(real reward is 3.666). 52

4.7 Decision tree to find which additional parameter to use. 53
4.8 Number of iterations (and time on the testing configuration) to ap-

proximate R=? [F s = 8] . 54
4.9 n = (L+γ)2

2ε2 ln
�

2L
δL−γ

�
, with δ = 5%, ε = 10−2, γ (Y) from 0.5 to 40,

L (X) from 10 to 1000, n (Z). The function is not defined on the
left part, where L ≤ γ

δ . The peaks in the middle represent actually
an asymptote for L → γ

δ . We can see on the admissible part a local
minimum. 57

4.10 Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of
PRISM (for the extended AMC, we took 1.0 for cluster.sm and 4.0
for dice.pm as maximum reward). 58

6

LIST OF FIGURES

4.11 Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM
(for the extended AMC, we took 1.0 for cluster.sm and 4.0 for
dice.pm as maximum reward). 59

4.12 (E[χP,Σ] + Lmin)

�����

������

ln
�

δ−
E[χP,Σ]

Lmin

�

ln(2
δ)

������
≥ maxi{Xi}, with E[χP,Σ] as ab-

scissa and maxi{Xi} as ordinate. 60

5.1 Accepting regions for AMC test 63
5.2 Comparisons of the probabilities of accepting H0 hypothesis (ordi-

nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ
(abscissa), without indifference region. 65

5.3 Example of probabilities of accepting H0 hypothesis (ordinates),
for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ (ab-
scissa), with indifference region. 66

5.4 Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates) with SPRT, for αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs
of PRISM per value of θ (abscissa). 67

5.5 Average number of iterations required by SPRT in terms of θ.
SPRT is run with αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs are
used to compute each point of the graph. 68

6.1 Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ
(abscissa). 72

6.2 Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ
(abscissa). 73

6.3 Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates) with Bartlett’s SPRT, for αe = 0.1, βe = 0.1, δ� = 10−2, and
10 runs of PRISM per value of θ (abscissa). 75

6.4 Average number of iterations required by SPRT in terms of θ.
SPRT is run with αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs are
used to compute each point of the graph. 76

A.1 Dialogue box of method selection in graphic mode 88
A.2 Dialogue box of simulation options in graphic mode 89

7

List of Equations

3.2 Confidence interval definition . 23
3.3 Iterations bound for CIs . 23
3.4 Iterations bound with ACI . 24
3.5 Iterations bound for AMC . 27
3.6 Decision made in case of probabilities 29
3.7 Asymptotic confidence interval definition 34
3.8 ε expression in AMC . 41
3.9 δ expression in AMC . 41
3.10 w expression in CI . 41
3.11 α expression in CI . 41
3.12 w expression in ACI . 41
3.13 α expression in ACI . 41
4.1 Decision made in case of rewards 46
4.2 δ expression in bounded extended AMC 51
4.3 Iterations bound expression in bounded extended AMC 51
4.4 ε expression in bounded extended AMC 51
4.5 Precondition to bounded extended AMC 51
4.6 General expression for unbounded extended AMC 55
4.7 δ expression in unbounded extended AMC 56
4.8 Iterations bound expression in unbounded extended AMC 56
4.9 ε expression in unbounded extended AMC 56
4.10 Precondition to unbounded extended AMC 58
5.1 P��θ[φ] negative test with CI . 64
5.2 P��θ[φ] positive test with CI . 64
5.3 Wald’s test . 66
5.4 Wald’s SPRT likelihoods ratio . 66
6.1 R��θ[φ] negative test with CI . 71
6.2 R��θ[φ] positive test with CI . 71
6.3 Statistical test for R��θ[φ] . 73
6.4 SPRT likelihoods ratio for R��θ[φ] 74

8

Chapter 1

Introduction

Probabilistic model checking is a quantitative automatic formal verification tech-
nique, which analyses the validity of properties over mathematical models of stochas-
tic systems. These systems can be randomized communication protocols, like
Bluetooth or FireWire, some consensus algorithms or biological mechanisms. Most
of the probabilistic model checking algorithms are polynomial, e.g. linear equa-
tions systems resolution.

It is easy to think that, once we have translated a problem - such as a linear
equations system - into a linear problem with matrices, we only have to compute
numerically the matrices resolution to get the results. Unfortunately, even some
polynomial algorithms can take centuries to end - especially if we are talking about
1010 ×1010 (a priori non sparse) matrices.

This is the kind of problem modellers can face when they try to model check
some complicated models with millions of states on a numerical probabilistic model
checker. Several ways to deal with this: the model can be abstracted, leading to
fewer states but possibly representing a too much generalized problem. Another
possibility is to use the power of statistics to approach at lower cost the probabili-
ties to compute.

It is indeed possible to apply Monte Carlo method to this context, after having
clearly defined the random space (here, the paths in the model). We do not have to
work on the full model and heavily test properties on it, we just pick some paths,
test them linearly and compute an average.

Having an estimation of the result is useful, but how far can we trust this value?
Was the estimator converging after the N = 10542nd loop, or can we assume it is
reliable to accept it at the 34th one? These questions call for a discussion about the
estimation and its reliability in statistical model checking.

9

CHAPTER 1. INTRODUCTION

In this dissertation, we propose to answer this reliability question by confidence
intervals and statistical tests. These statistics objects provide their own parameters
of reliability, and can be computed in the context of probabilistic model checking.
Several methods can be found in the literature, and we will prove, implement and
compare them practically on real-size examples issued from biology.

Probabilities offer an interesting information about a property over a model,
but we can sometimes want to get a different result - like the time the system takes
to do something, the number of states it goes across... The cost/reward structure
can be adapted to this problem. But it works in a different way, and all the previous
methods are not compatible with it. This dissertation proposes some extensions to
these methods to compute statistically rewards.

In the next chapter, the probabilistic model checking basics will be introduced
to get an overview of how this mechanism works in classic problems, and which
problems we are going to consider here. These problems can be classified into 4
groups:

• the estimation of a probability P=?[φ] (chapter 3), which answers questions
like "What is probability that this state is reached within 12 time units?";

• the estimation of a reward R=?[φ] (chapter 4), which solves problems like
"How many times must I expect to toss a coin to simulate a 6-sided die?";

• the test of property with bounded probability P��θ[φ] (chapter 5), which claims
whether a property like "Every run goes through that state with a probability
lower than 0.3" is true or not;

• the test of property with bounded reward R��θ[φ] (chapter 6), which states the
validity of a property like "The expected number of servers to repair within
the first 10 hours is lower than 3".

The dissertation concludes with a table which summarizes the different problems,
the methods to use (or not to use) in terms of the conditions and their observed
efficiency.

10

Chapter 2

Background

Model checking can be presented as a technique which can extract from models
some unexpected behaviour. This method is in particular used to find bugs in very
complicated and critical software. The technique requires

• a model M , generally a graph G of possible states V , linked by transitions
defined by δ ⊆ V ×V ;

• some logic expressions with atoms in A labelling certain states of the graph:
L : V → 2A;

• a property P , expressed in a temporal logic;

• a model checker, which will check whether the property holds or not on this
labelled model: M L |= P .

Figure 2.1: General model checking process

Figure 2.1 shows graphically the model checking process. For a comprehen-
sive introduction to this general method, we can read for example [1].

11

CHAPTER 2. BACKGROUND

In this study, we focus on probabilistic model checking. This is a particular
instance of model checking, in which models can represent some stochastic be-
haviour. As presented in section 2.1 of this chapter, we add probability measure
to the model and get a Markov chain. This is specifically convenient for random
communication protocols (for example, Bluetooth [6]), randomized consensus [24]
or bioinformatics problems expression [14, 5, 26].

The labels we add to the model follow a classic boolean logic, and the atoms
represent some specific states or events linked to the problem the Markov chain
modelled.

The temporal logic has to be adapted to the probability measure. Generally, we
use extensions of classical temporal logics CTL1, LTL2 and CTL*3: PCTL, PLTL,
PCTL* and CSL4 (for a comprehensive presentation of the different grammars,
read [1, 17]). The formulae can also be bounded (in terms of transitions in general
model checking, or in time, in continuous time Markov chains, for instance), and
we can define sub-logics from these. In this study, we restrict the formulae to a
subset of bounded PCTL/CSL, which is defined in section 2.2. We will see that it
can be extended anyway.

The model checking methods to compute the probability of having M |= P
need also to be adapted to the probabilistic logics. Section 2.3 describes the head-
lines of the numerical techniques used for instance in PRISM [17, 23], which is a
numerical probabilistic model checker.

The described numerical techniques to compute probabilities are unfortunately
not scaling well with the number of states of the Markov chain [33, 11]. An alter-
native is to approach statistically these measures with Monte Carlo simulations -
this is the object of section 2.4.

Note that we only consider the frequentist statistics here. There are also some
interesting results using Bayesian approaches, which are out of the scope of this
thesis - read for instance [14, 35].

2.1 Model: DTMCs and CTMCs

A labelled model (called generally Kripke structure) in model checking is com-
pletely defined by the tuple

�
V ,Vinitial,δ,L

�
. The transition between two states

is non deterministic by nature. [17] replaces the non-deterministic transitions by
transitions with a probability: P : V ×V → [0,1]. The graph G =

�
V ,Vinitial,P,L

�

1Computation Tree Logic.
2Linear Temporal Logic.
3An upper set of CTL and LTL.
4Continuous Stochastic Logic.

12

CHAPTER 2. BACKGROUND

becomes a labelled discrete time Markov chain (DTMC).
A finite path is an execution of the Markov chain. [17] provides a probability

measure for these paths: ∀ non null finite path ω = s0 . . .sn, with the si ∈ V ,

P(ω) =

�
1 if n = 0
P(s1)× . . .×P(sn) otherwise.

The probability that a (bounded) property φ holds in a model
�
V ,Vinitial,P,L

�
,

starting from a state in Vinitial , can be then quantified by the number of paths start-
ing in Vinitial and satisfying φ. Note that even though this study only requires finite
paths in the graph, this can be extended to infinite paths with the notion of cylinders
[17].

In the next chapters, we will illustrate the DTMC operations with the Knuth
and Yao algorithm [15] (abbreviated to dice.pm), which simulates a fair six-sided
die with a (supposed) fair coin.

DTMCs use discrete transitions relating some states. Continuous time Markov
chains (CTMCs) suppose there is a continuous time t, and relate each pair of states
with exponential distributions. The real parameter of these distributions are given
by R : V ×V → R+. The probability of going from a state x to a state y within t
(time units) is 1− e−R(x,y)×t .

A CTMC is then defined by
�
V ,Vinitial,R,L

�
. The notion of path is extended to

this graph. The probabilistic measure associated to it is the cylinder, and depends
on the different states the path go through and the time it stays in each of them. For
the formal definition, read [17, 23].

A state is likely to be related to several states - this is a race condition [17].
Given the exponential distributions of the different possible incoming states, we
can compute the probability to go from one state to another one. This defines the
embedded DTMC of the CMTC. More formally, its relation P is built with:

∀x ∈ V ,∀y ∈ V ,P(x,y) =






1 if ∑
s�∈V

R(s,s�) = 0 and x = y

R(x,y)

∑
s�∈V

R(s,s�)
if ∑

s�∈V
R(s,s�) �= 0

0 otherwise.

This relates the CTMCs to DTMCs.
In the next chapters, model checking on CTMCs is illustrated by biological

examples, the same ones that [14] used in its benchmark:

13

CHAPTER 2. BACKGROUND

• the circadian rhythm (denoted by circadian.sm in the following - read [2, 31]
for details);

• the Cell cycle control (denoted by cyclin.pm - see [20] for details);

• the Fibroblast Growth Factor Signalling Model (denoted by fgf.sm - read
[9, 10] for details).

Getting a probability of a formula is useful, but sometimes we need to get an
expectation (over the paths) of a parameter of the model - a power consumption, a
number of lost packets, a number of steps required to end... The reward structure
is a pair �ρ, ι�, where ρ ∈ V �−→R+ defines the value of this parameter we have in
every state of V , and ι ∈ V ×V �−→R+ defines the value of the parameter during
a transition between two states of the graph. We can compute some expectations
with these functions using summations (see [17]).

For the rewards, we use a model of a dependable cluster of workstations (de-
noted by cluster.sm), due to [8].

2.2 Properties: subset of bounded PCTL/CSL

The examples we study allow us to restrict the properties to a very small subset
of bounded PCTL for DTMCs and bounded CSL for CTMCs. We will indeed
consider the properties recognized by the grammar

property ::=P=?[F≤t proposition]

|P��θ[F≤t proposition]
proposition ::=label|proposition∧ label.

F≤tφ on a path ω means φ is eventually true within t, with t an integer for DTMCs
with PCTL or a real for CTMCs with CSL. More formally,

ω |= F≤tφ ≡ ∃t0 ≤ t.ω(t0) |= φ,

where ω(t) is the state in ω occupied at time (or step) t.
P=?[φ] represents the probability that φ holds in the model, and P��θ[φ] is the prop-
erty stating that the probability that φ holds in the model is �� θ, with θ a probability
and ��∈ {<,≤,>,≥}.

Note that it is certainly acceptable to have the temporal operators bounded in
the context of simulation, because these models are simulating some behaviours

14

CHAPTER 2. BACKGROUND

with approximations and it is not relevant to try to obtain answers above a certain
limit of time.

The probability operators are not nested, because the meaning (and the reli-
ability) of having a certain approximated probability of getting an approximated
probability is not very clear - and the biological examples we consider do not use
this feature.

Table 2.2 describes the respective properties we test over the models.

Model: Formula: Meaning:
circadian.sm P=?[F≤0.25ma > 5] "probability that the number of

activated messenger RNAs ex-
ceeds 5 units within 0.25 time
units"

cyclin.pm P=?[F≤0.5cyclin_bound > 3] "probability that the number of
bond Cyclin molecules exceeds
3units within 0.5 time units"

fgf.sm P=?[F≤20FRS2_GRB > 0
∧relocFRS2 = 0∧degFRS2 = 0] "probability that Grb2 binds to

FRS2 within 20 time units"

Figure 2.2: Table of the properties - and their meanings - tested over the models

There are two types of rewards5 we compute in our examples:

• the cumulated one until t (R=?[C≤t]), which is the expectation of the structure
after t time units;

• the cumulated one until φ (R=?[Fφ]), which is the expectation before a state
satisfies φ.

The formulae we use are following a subset of PCTL/CSL extended with re-
wards ([17, 23]):

expectation ::=R=?[Flabel]|R��θ[Flabel]

|R=?[C≤t]|R��θ[C≤t].

Table 2.3 describes the respective formulae we test over the models.
5There is also the immediate reward at time t, but we do not consider it here.

15

CHAPTER 2. BACKGROUND

Model: Formula: Reward structure: Meaning:

dice.pm R=?[Fs = 7]
ρ(x) = 0,∀x ∈ V

ι(x,y) =

�
1 if P(x,y) �= 0
0 otherwise

"expected number of steps re-
quired to get the die value"

cluster.sm Rnum_repairs=?[C≤10]

ρ(x) = 0,∀x ∈ V

ι(x,y) =






1 if P(x,y) �= 0
∧x.r = true
∧y.r = f alse

0 otherwise

"expected number of servers to
repair within 10 hours"

Figure 2.3: Table of the rewards - and their meanings - computed through the
models

2.3 Probabilistic Model Checking: overview

Probabilistic model checking is performed using different graphs and numerical
algorithms, depending on the property it has to check. Here, we only consider
properties of form P[F≤tφ].

For DTMCs, recall that the probability we want to compute is defined by the
number of satisfying paths in the model. Let Sat(φ) denote the set of states from
V which respects φ. Computing the probability of having F≤nφ is the same as
computing the probability of having a path going in Sat(φ) within the n first steps.
This reaching probability can be found by solving the following recursive equation
([23], instance of bounded Until model checking6):

Prob(x,step) =






1 if x ∈ Sat(φ)
0 if k < 0

∑
y∈V

P(x,y)×Prob(y,step−1) otherwise.

Practically, we create a matrix P� which is a copy of P with all its transitions
from a state in Sat(φ) to another one equal to 1. If ψ is a vector representing all
the states from V , with ψi = 1 if si ∈ Sat(φ) and 0 otherwise, we compute the
probability of reaching Sat(φ) from each state by n matrices multiplication:

Prob(si,n) =
�
(P�)k.ψ

�

i
.

6Indeed, F≤nφ ≡ trueU≤nφ.

16

CHAPTER 2. BACKGROUND

For CTMCs, the concept is the same, but with continuous values ([23], instance
of bounded Until model checking):

Prob(x, t)=






1 if x ∈ Sat(φ)� t

0

�
Pemb(M)(x,y)×E(x)× e−E(x)×u

�

� �� �
probability of moving from x to y at time u

× Prob(y, t −u)� �� �
probability in y of
satisfying φ before

t −u tine units elapse

du otherwise,

with E(x) = ∑y∈V P(x,y).
These integrals can be solved numerically, using for instance trapezoidal or

Simpson and Romberg integration [23]. This technique is however expensive, and
could present some problems of numerical stability. Another approach, imple-
mented in PRISM, derives first a new CTMC from the studied CTMC, in which
all the states in Sat(φ) are absorbing (i.e. a path going to such a state remains in
this state forever). Concretely, the rates matrix R is replaced by R�, a copy of R in
which all the relations starting with a state in Sat(φ) are 0. We have then:

Prob(xi, t) =




ΠCT MC

t� �� �
matrix of

transient probability

.ψ





i

,

where ΠCT MC
t (x,y) is the probability of being in state y, starting from x, at time t.

We compute practically ΠCT MC
t via the uniformisation [23]:

ΠCT MC
t =

∞

∑
i=0

γq.t,i ×
�

Puni f (CT MC)
�i
.

The rewards R[C≤t] and R[F≤tφ] are the expectation of the random variables

XC≤t (ω) =

�
0 if t = 0
∑t−1

i=0 ρ(xi)+ ι(xi,xi+1) otherwise,

and

XFφ(ω) =






0 if x0 ∈ Sat(φ)
∞ if xi /∈ Sat(φ),∀i ≥ 0
min{ j|x j|=φ}−1

∑
i=0

ρ(xi)+ ι(xi,xi+1) otherwise.

17

CHAPTER 2. BACKGROUND

The first one is computed with matrices multiplication:

E[XC≤t] =

�
0 if t = 0
ρ+(P◦ ι).1n +P.E[XC≤t−1] if t ≥ 0

where ◦ denotes the pointwise matrix multiplication.
The second one can be computed with graph analysis and linear equation sys-

tem [23].

2.4 Statistical approaches: generation and analysis

Probabilistic model checking offers a very accurate answer (the only approxima-
tion is due to the numerical truncation in the computation). But it requires to build
the DTMC or CTMC of the model (see figure 2.4 [23]). It is acceptable for models
with no more than 107 states, but it is (currently) hardly realizable above. Unfor-
tunately, some biological problems, for instance, require models with 109 states or
above.

Figure 2.4: Global mechanism of probabilistic model checking

18

CHAPTER 2. BACKGROUND

An interesting idea consists in approximating the probability we try to compute
with a statistic estimator relying on a limited number of events from the random
space. This is the Monte Carlo method. In our case, the limited number of events
are runs (or paths) of the model. The major advantage is that we can extract these
paths directly from the high-model7 without building the graph. We name this step
generation.

For CTMCs8, the following generation algorithm can be used [5]:

Algorithm 1 Paths generation algorithm for a CTMC
1. init t = 0, x = x0
2. generate different hi such that {hi}i is a sample of realizations of the random
variable h � exp(λ(x))
3. generate the successor state, i.e. mi such that {mi}i sample of the random
variable Z with Prob(Z = mi) =

αmi (x)
λ(x)

4. set t = t +h, x = um(x) and go to 2.

Once we have extracted the paths, we estimate the probability with testing the
property over each of them - it is the verification step. For example, we compute
r
N , where r is the number of paths which validate property and N the total number
of extracted paths (the sample size). The paths are linear, so the verification is fast
to perform.

Thus, to perform statistical model checking, we basically only need to extract
these runs and compute the mean.

Now, the estimator we chose converges to the real probability asymptotically.
So taking a limited number of runs offers no absolute guarantee about the result. It

7Expressed in the PRISM description language, for instance.
8Extracting from a DTMC is very similar.

19

CHAPTER 2. BACKGROUND

seems necessary to get an idea of the reliability that an experimentation offers for
a certain number of runs. This reliability can be characterized for example by

• a confidence interval, with its level of confidence and width;

• an asymptotic confidence interval, similar to the normal one;

• a statistical test, with its two types of errors.

Also, for a given level of reliability, it could be interesting to run the optimal num-
ber of steps required. This step is the analysis part of the statistical probabilistic
model checking.

Figure 2.5 sketches the global mechanism of the statistical probabilistic model
checking. This dissertation assumes that generation and verification steps are al-
ready realized9, and focus on the analysis step.

Figure 2.5: Global mechanism of statistical model checking

9It was the case in PRISM.

20

Chapter 3

Statistical Model Checking:
P=?[φ] problem

The first problem we study is the case P=?[φ]: given a formula φ, we want to es-
timate the probability that this formula holds in the model. Having an estimation
is useful, but it is dangerous to use it directly. We do not know how close it is to
the real probability. To quantify the reliability, confidence intervals will be intro-
duced in section 3.1. Because extracting lots of paths from the model can become
expensive, the question of the optimal number of steps required to get a certain
confidence interval will be asked in section 3.2. [11] proposes another approach
to probability estimation, from which we can derive a confidence interval in a dif-
ferent way. Section 3.5 will present this method, and section 3.6 will compare
the different approaches, illustrated by some experiments done with PRISM on the
biological examples. This chapter ends with the presentation of other related prob-
lems.

3.1 Confidence interval methods

A confidence interval (denoted CI in the following) is an estimated interval of a
certain width 2w such that, if we repeat the estimation several times, the real prob-
ability is in this interval 100× (1−α)% of the times1. α is the level of confidence.
Figure 3.1 sketches a representation of intervals. This interval, associated to an
estimated value (here the means), represents the uncertainty of this value.

1It is often improperly referred as "the real probability has a probability 1−α of lying in this
interval".

21

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.1: Some estimated CIs, containing the real probability. The blue CIs are
among the 100×α% which do not contain it.

3.1.1 Confidence interval (CI)

Our objective in this section is to compute an interval for some given α, which rep-
resents the degree of confidence we can have in the result, and w, which symbolises
the accuracy of the estimation.

Suppose we have extracted a path ω from the model. We test the property φ
over ω. Let

χp(ω) =

�
1, if ω |= φ
0, otherwise

be a Bernouilli random variable. We are looking for the expectation of this variable,
E[χp]. Let {Yi}i be a set of realizations of the random variables Xi := χp defined
by

∀i ∈ {1, . . . ,N},Yi = χp(ωi).

We assume that the Yi are independent and identically distributed (IID) and nor-
mally distributed2. Thus, Y = 1

N ∑N
i=1Yi is an unbiased and consistent estimator. So

E[Y] = E[χp], and, if σ2 =Var[χp], Central-limit theorem gives

Z =
Y −E[χp]�

σ2

N

� N (0,1).

For a confidence level α∈ [0;1], 1−α=Prob(|Z| ≤ z)=Prob
�
|Y −E[χp]| ≤ z

�
σ2

N

�
.

2This relies on the generator of pseudo random paths.

22

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

The confidence interval for a level α is then

CI =

�
Y − z1−α/2

�
σ2

N
;Y + z1−α/2

�
σ2

N

�
, (3.1)

where z1−α/2 is a quantile from Normal distribution.

Actually, we do not know σ2, so we estimate it with

S2 =
1

N −1

N

∑
i=1

(Yi −Y)2.

The random variable becomes

Z� =
Y −E[χp]�

S2

N

and follows a Student distribution with N −1 degrees of freedom: Z� � TN−1. The
confidence interval for a level α is then

CI =

�
Y − tN−1,1−α/2

�
S2

N
;Y + tN−1,1−α/2

�
S2

N

�
, (3.2)

where tN−1,1−α/2 is a quantile from Student distribution with N −1 degrees of
freedom. This is one of the intervals we implement in our PRISM: if we are given
α and w, we iterate until

|CI|=

�����2tN−1,1−α/2

�
S2

N

�����≤ 2w,

so the bound of the CI method is

t2
N−1,1−α/2S2

w2 ≤ N. (3.3)

We have then Y , and CI = [Y ±w].

23

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

3.1.2 Asymptotic confidence interval (ACI)

In [5], it was deduced from S2 → σ2 when n →+∞ that

Z =
Y −E[χp]�

S2

N

�n→+∞ N (0,1)

approximately3, and Prob(|Z| ≤ z) ≈ 1−α, so the quantile z1−α/2 from Normal
distribution is used instead of the Student one. [26] implemented a technique using
the same formula. The bound becomes then:

t2
N−1,1−α/2S2

w2 ≤ N. (3.4)

This is actually the asymptotic confidence interval4, that we also implement in
PRISM. [19], which proposes the same approximation p. 233, notes however that
there is some perceptible differences between CIs and ACIs practically, CIs being
more exact. [7], chapter 5, presents it as a misuse of Normal distribution.

In [25], in the context of Bernouilli variables, it is proposed to substitute the
estimator S2 of the variance by an estimator built with the empirical mean: σ̂2 =
Y (1−Y) (close to the property of Bernouilli variables Var[X] = E[X](1−E[X])).
This is asymptotically equivalent, because here

σ̂2 =
n−1

n
S2.

Indeed,

S2 =
1

n−1

n

∑
i=1

(Yi −Y)2

=
1

n−1




n

∑
i=1

Y 2
i − 1

n

�
n

∑
j=1

Yj

�2




=
1

n−1




n

∑
i=1

Yi −
1
n

�
n

∑
j=1

Yj

�2




3That is to say for N "large enough".
4There are also credible intervals, using Bayesian theory [35], and prediction intervals, roughly

the same but with a frequentist approach. These intervals are out of the scope of this dissertation.

24

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

because Y 2
i = Yi, and

σ̂2 = Y (1−Y) =
1
n




n

∑
i=1

Yi −
1
n

�
n

∑
j=1

Yj

�2


 .

So, for N > 1,
Y −E[χp]�

S2

N

� TN−1 ⇔
Y −E[χp]�

σ̂2

N−1

� TN−1.

3.1.3 Computation optimization

CI and ACI require the estimator S2, but its computation requires Y and all the Yi
up to here - which means we should store them, and that could raise a problem of
memory space if there are lots of iterations to perform5. To compute efficiently S2,
[5] proposes an optimization. We have

S2 =
∑n

i−1Y 2
i

n−1
−

�
∑n

i−1Yi
�2

n(n−1)
.

Yi = 0 or 1, so Y 2
i = Yi, and if r is the number of traces ω such that χp(ω) = 1,

Y = r
n and S2 = r

n−1 −
r2

n(n−1) =
r(n−r)
n(n−1) .

So we just need to store r and n during the iterations to compute S2 and Y on
the fly. We increment them through iterations.

3.2 How many steps to get a confidence interval?

We know how to compute the CI. Now, what is the minimum number of steps (i.e.
paths extracted from the model) required to compute a CI? If we fix the width w of
the CI = [a;b] to |b−a|

E[χp]
≤w, and for a confidence level α, we have Prob(|Z�| ≤ t1−α),

leading to [5]

E[χp] ∈CI =

�
Y − tN−1,1−α/2

�
S2

N
;Y + tN−1,1−α/2

�
S2

N

�
⇒ 2tN−1,1−α/2

�
S2

N
≤ wE[χp]

⇔
4t2

N−1,1−α/2S2

E[χp]2w2 ≤ N.

5In the following, we compute up to 109 iterations.

25

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Of course, the smaller w is, the more useful the CI is. But it also requires more
steps.

We considered here |b−a|
E[χp]

and not |b− a| to work on a kind of normalized in-
terval and to fix a CI width w independent from the value of E[χp]. Indeed, if
E[χp] �= 0, Prob(E[χp ∈ CI]) = 1−α ⇔ Prob(E[1 ∈ CI

E[χp]
]) = 1−α. However,

this raises two problems:

• The first problem is that we obviously ignore E[χp]. We can simply consider
absolute w, i.e. w ≥ |b−a|.

• A second one is that S2 depends on N. This requires to check the inequality
at each iteration.

For the first problem, if we know that there is a δ ∈ [0;1] such that E[χp]≥ δ, then
we have

4t2
N−1,1−α/2S2

E[χp]2w2 ≤
4t2

N−1,1−α/2S2

δ2w2 .

So if we have a N such that
4t2

N−1,1−α/2S2

δ2w2 ≤ N, then it implies
4t2

N−1,1−α/2S2

E[χp]2w2 ≤ N.
Instead of "normalizing" following the real value of E[χp], [26] proposes to

normalize by the estimated value Y , closer to the CI: we get

4t2
N−1,1−α/2S2

Y 2w2
≤ N.

Then S2

Y 2 estimates c2
Y , the squared coefficient of variation6 of Y , i.e. σ2

E[χp]2
=

1−E[χp]
E[χp]

.

Practically, we preferred to implement with an absolute width in PRISM:

4t2
N−1,1−α/2S2

w2 ≤ N.

This is more convenient for the graphic representation of what we compute and
the comparison between the different tests7.

Whatever is the bound we use, we always have at least S2 which depends on
N. This is not a problem if we compute the traces one by one and test after each of
them. But if we want to parallelize, we will have to fix an arbitrary number m (the
number of threads/process) such that the bound is checked all the m "iterations".

6With the previous notation, we have c2
Y = n(n−r)

r(n−1) .
7But implementing the relative width using estimated means would have also been valid.

26

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

3.3 Another approach: Approximate Model Checking (AMC)

[11] proposes to solve another problem:

Prob(|A− γ| ≤ ε)≥ 1−δ,

where A is the approximation of the probability computed by their algorithm, γ is
the real probability, ε a parameter of approximation and δ a parameter of confidence
(we will denote this method AMC).

The solution is based on the Chernoff-Hoeffding bound. [11] uses the formula

Prob[|A− γ|> ε]< 2e−
Nε2

4 ,

whereas [12, 22, 18] provide

Prob[|A− γ|> ε]< 2e−2Nε2
.

Because the second one imposes fewer iterations practically8, and [12] proves it,
we consider this inequality. We take δ such that 1− δ equals the inequality right-
hand side, which leads to a lower bound for the number of samples N required for
given parameters ε and δ:

N ≥
ln(2

δ)

2ε2 . (3.5)

It is easy to see that this is actually computing a confidence interval with a
confidence level lower (but unknown) than δ:

Prob(γ ∈ [A− ε;A+ ε])≥ 1−δ.

The table 3.2 presents the translation between the two problems.

AMC CI
approximation parameter: ε half CI width: width

2 = w
confidence parameter: δ (−δ� unknown) confidence level: α

sample size: N sample size: N

Figure 3.2: Table summing up the AMC and CI correspondences

δ, the level of confidence, is a probability and then must belong to the [0,1] seg-
ment. To impose this when not specifying δ explicitly, we have to be sure that we

8Indeed, we require N iterations with [11] such that N ≥ 4 ln(2
δ)

ε2 , whereas [12] requires N ≥ ln(2
δ)

2ε2 .

27

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

have enough samples for the required approximation: we must have N and ε such
that

Nε2 ≥ ln2
2

.

Indeed, N =
ln(2

δ)

2ε2 ⇒ Nε2 =
ln(2

δ)
2 , so 0 ≤ δ ≤ 1 ⇔ Nε2 ≥ ln2

2 .

We do not have this constraint with CI/ACI methods, because α= 2
�

1− cd f
�

w
�

N
S2

��
,

with the cumulative distributive function cd f (x) = 1
2+ positive area (see figure

3.3), because w
�

N
S2 ≥ 0.

Figure 3.3: Distribution of the estimations.

So 1
2 ≤ cd f (w

�
N
S2)≤ 1, and 0 ≤ α ≤ 1.

The AMC method was already implemented in PRISM. We add to this method
the CI and ACI methods, using a statistical library9, with the bound computed us-

ing the mean (
4t2

βS2

w2).

9We were initially using JSC [4], but we now use Colt [36], which has an open source license and
is more efficient in our context.

28

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

3.4 Decisions and display

Until now, we were only considering Z� = Y−E[χp]�
S2
n

� Tn−1, for Y1, . . . ,Yn realiza-

tions of IID random variables X1, . . . ,Xn. This formula is obviously no more valid
if σ2 = 0, which means S2 = 0, or Y1 = . . . = Yn. This can however happen: if we
test a simple model with a property that always or never holds, we have χ(ω) = 0
for all the paths or 1 for all the paths, and we get S2 = 0. A first idea could be then
to decide that if the m first Yis are equal, then Y = Y1. The problem is that we can
have a sample starting with m 0s and continuing with 0 or 1, i.e. "non-tautological
or antilogical property".

To decide whether we are in Y = Y1 case or in a Z� � Tn−1 case, given our
confidence intervals (or approximation parameter) width ε, we choose (arbitrarily)
to say that if we arrive at a moment with a n such that the next result will not change
the mean with respect to ε approximation, then we are in the Y = Y1 case. In other
words, ����1−

n+Yn+1

n+1

����≤ ε, (3.6)

with Yn+1 = 0 or 1 (for Y = 1 case).
So the decision is

1−Yn+1

n+1
≤ ε ⇔0 ≤ ε ∧ 1

n+1
≤ ε

⇔n ≥ 1
ε
−1.

And we get the same condition for Y = 0 case (
���0− 0+Yn+1

n+1

���≤ ε).
Unfortunately, it is still possible (but very rare) to have

Y1 = 0, . . . ,Ym = 0� �� �
m

,Ym+1 = 1, . . . ,Yn = 1� �� �
n−m

such that the 1s are significant for the mean Y . This automatic decision maker is
implemented, but the user has always the possibility to specify manually its deci-
sion, which can be useful for limit cases.

Monte Carlo simulations can take time, and it is always good to have an in-
dex of the progress through time. With AMC, we can display the progress of the
computation because we know before the simulation the number of samples to test.
This is not the case in CI and ACI cases. We propose anyway a possible displayer:

29

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

since we have n < t2
n−1,1−α/2

S2

ε2 , and the simulation converges to n ≥ t2
n−1,1−α/2

S2

ε2 ,
we can use

100× nε2

t2
n−1,1−α/2S2 (≤ 100).

Obviously, this is not linear, and generally, the closer the simulation is to sat-
isfy the n ≥ t2

n−1,1−α/2
S2

ε2 property, the more numerous the samples are needed to
improve the accuracy.

3.5 Experiments and comparisons

In this section, the different methods are compared and tested through the imple-
mentation in PRISM. We first illustrate these analyses with a simple model, poll.sm,
which models a cyclic server polling system [13], and compute the probability that
the first station is awaiting service within one time unit, namely P=?[F≤1s1 = 1].
Then we confirm the observations with the three biological models presented in
table 2.2.

3.5.1 How to read the graphs?

If one run of PRISM is enough to get an estimation Y of the probability and check
the width of the CI 2w (here given in parameters), it is not enough to check the
level of confidence α. That is why we perform for each test 100 runs of PRISM,
and we display the repartition of the computed estimations Y i (see figure 3.4 for ex-
ample). The bars represent the number of estimations which belong to a subclass10

of values, the vertical blue dashed line (theoretical mean, in the legend) represents
the real probability, and the red one (experimental mean, in the legend) the average
of the estimations11. The normal curve is computed by R12 with these data, and
the bold part represents the 1−α part of the area - that is to say the estimations Y i
such that the real probability is in the corresponding CI, i.e. E[χp]∈CIi = [Y i±w].
Because all the Y i of the bold area are such that Y i −w ≤ E[χp]≤ Y i +w, all these
estimations must respect E[χp]−w ≤ Y i ≤ E[χp] +w, and the bold part must be
contained in the interval centred in the real probability with a width 2w (see graphic
representation in figure 3.4).

10The number of classes used on these graphs was computed automatically by R - but it does not
induce anything in our study.

11This average is not useful if we know the real probability, as in the first examples. The real value
is computed numerically with PRISM. But for the biological models, the numerical approach is out
of range, so we consider this average.

12R is a free software environment for statistical computing and graphics.

30

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

3.5.2 AMC vs. CI

Figure 3.4 shows the distribution of means obtained for 100 runs of PRISM with
AMC method. It is clear that the experimental level of confidence δ”, materialized
by the bold part of the curve, is much lower than the expected one α - which would
take almost the whole interval centred in the real probability with a width 2w. This
means there was some useless sampling (N = 18445 samples).

Figure 3.4: Distribution of means with AMC method for α = 5%, ε = 10−2

(which induces exactly N = 18455 samples for each run of PRISM), 100 runs of
textscPrism for poll.sm. All the estimations in the black segment have E[χp] in
their CI, e.g. the black CI. The red estimation does not have E[χp] in its CI.

We run 100 times PRISM with the CI method, always with example poll.sm,
the CSL formula P=?[F≤1s1 = 1], and the parameter ε = 10−2 and the confidence
level13 α = 5%. Figure 3.5 presents the distribution (the number of samples, in-
constant, was under 9200). As expected, the bold part of the curve is closer to the
interval of width 2w centred on the real probability.

13The slight approximation, α” ≈ α, is due to the fact that we compute until the next integer n
such that n ≥ t2

n−1,1−α/2
S2

ε2 .

31

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.5: Distribution of means with CI method for α = 5%, ε = 10−2 (which
induces less than N = 9200 samples for each run of PRISM), 100 runs of PRISM
for poll.sm. The computed α” ≈ α.

This would mean that the Chernoff-Hoeffding inequality would be too large
here. Let us compare the AMC and CI bounds:

AMC CI

N ≥ ln(2
α)

2ε2 N ≥ t2
N−1,1−α/2

S2

ε2

= 18445 samples ≤ 9200 samples

We run a Scilab simulation which computes the difference of samples respec-
tively required by one method and the other one:

Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
−

ln(2
α)

2ε2 .

For α = 5%, on the segment [0.01 : 1]2, we notice in figure 3.6 that for small ε2,
we can have an extreme gain of 105 samples14.

14Note that the effect of S2 is not very important here.

32

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.6: Comparison of the AMC and CI bound (Scilab simulation). X = ε2,
Y = S2, Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
− ln(2

α)
2ε2 , with (X ,Y) ∈ [0.01 : 0.5]2

If we compute the ratio rather than the difference, we get, in figure 3.7,

Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
/

ln(2
α)

2ε2 .

We maximize the relative gain with S2 the biggest and ε2 the smallest.

33

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.7: Comparison of the AMC and CI bound (Scilab simulation). X = ε2,
Y = S2, Z = argminn

�
t2
n−1,1−α/2

S2

ε2 ≤ n
�
/

ln(2
α)

2ε2 , with (X ,Y) ∈ [0.01 : 0.5]2

So, most of the time, the AMC method computes for far much more iterations
than it is required to have, as in CI.

3.5.3 CI vs. ACI

We decide to compute ACI, i.e. CI using N instead of TN−1.

ACI =

�
Y − z1−α/2

�
S2

N
;Y + z1−α/2

�
S2

N

�
. (3.7)

This induces the bound (3.4), namely

q2
1−α/2S2

w2 ≤ N,

and because of Student and Normal distributions15, z1−α/2 ≤ tN−1,1−α/2 ([19], p.
234), so the number of steps required is likely to be lower.

15Actually, tN−1,1−α/2 → z1−α/2 when n →+∞.

34

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Practically, for the same example as previously and with the same parameters,
we get the figure 3.8.

Figure 3.8: Distribution of means with ACI method for α = 5%, ε = 10−2 (which
induces less than N = 9200 samples for each run of PRISM), 100 runs of PRISM
for poll.sm. The computed α” ≈ α.

In figure 3.8, the number of samples required is a little lower than for the CI
(see comparison in figure 3.9), but if the confidence level looks unchanged, we
notice that the mean is further from the real probability than it was with Student
distribution. This is simply due to the fact that Z� does follow N (0,1) only for
large number of samples (these errors can also be seen in the examples of [19]).
However, this is not a problem here, because we compute confidence interval - we
are not looking for a perfect estimation Y , just an interval in which we are likely to
have the real probability we are looking for 100× (1−α)% of the time.

35

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.9: Distribution of the number of samples required for CI method (on the
left) and ACI method (on the right) for α = 5%, ε = 10−2, 100 runs of PRISM for
poll.sm.

Figure 3.10: Distribution of means with CI method on the left, ACI method on the
right for α = 5%, ε = 10−2 (which induces around N = 9200 samples for each run
of PRISM), 1000 runs of PRISM for poll.sm.

36

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

In figure 3.10, we make the same experiment, but with 1000 runs. The dif-
ference of means is no more perceptible. But we notice that, like in the previous
experiment, the confidence interval is larger than the one with CI. This is due to
the fact that the confidence interval really computed is not the one we think.

Let us note CI∗ the real confidence interval we are looking for. The CI con-
fidence interval computed with CI method is, because of the integer truncation, a
bit more accurate than the real one - so, if we centre the estimator16, CI∗ ⊇ CI.
We have also, with centring, CI∗ ⊇ AMC. This is convenient, because if the real
probability is in CI or AMC, then it is in the CI∗ we think we have computed.

This property is unfortunately not verified for ACI: it is possible to have, with
centring, ACI ⊇ CI∗, as in this example. That is a possible explanation of why it
is a little more hazardous to interpret ACI method results instead of CI or AMC
methods results.

3.5.4 Tests and comparisons

We extend the experimentations to the biological examples with

• the distribution of computed estimation of probability for 100 runs in figure
3.12;

• the time and number of samples required in figure 3.11;

• the distribution of number of samples required for 100 runs in figure 3.13.

poll.sm circadian.sm cyclin.sm fgf.sm
AMC 18445 samples / 35 sec 18445 samples / 14 sec 18445 samples / 4 sec 18445 samples / 8 sec

CI 9170 samples / 6 sec 2700 samples / 2 sec 8625 samples / 1 sec 9400 samples / 4 sec
ACI 9160 samples / 7 sec 2600 samples / 2 sec 8625 samples / 1 sec 9350 samples / 4 sec

Figure 3.11: Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM (test
configuration: Core2duo @ 2.1Ghz, 4GB ram, Linux Fedora 10).

16Or, without centring the confidence intervals, we can simply say that the widths wCI∗ ≥ wCI .

37

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

circadian.sm cyclin.sm fgf.sm

AMC

CI

ACI

Figure 3.12: Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of
PRISM.

38

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

circadian.sm cyclin.sm fgf.sm

CI

ACI

Figure 3.13: Comparisons of distributions of number of samples required for α =
5%, ε = 10−2, 100 runs of PRISM.

3.5.5 Analysis

• AMC knows from the beginning the number of loops it must perform. It
does not need to do expensive comparison in every loop - it just increments
variables. But it performs more loops.

• CI performs fewer loops and is almost optimal in this sense. Unfortunately,
it must compare at every loop (to check whether it has reached the bound
or not) and must recompute tN−1,1−α/2 because the number of degrees of
freedom changes - at an expensive cost.

• ACI computes a little fewer loops than CI and, even if it compares at every
loop, only compute once the z1−α/2 quantile. This is much faster - but unfor-
tunately the confidence interval we really compute is bigger than the one we

39

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

ask. It is not convenient, because we can have then the real probability E[χp]
in the confidence interval we have computed, but not in the real confidence
interval we thought to compute.

We can also find a compromise by only testing during one iteration out of
M with CI and ACI. The greater M is, the faster the iterations run, but the more
numerous they potentially are.

3.6 Other related problems

Figure 3.14: Different algorithms to use in terms of given data.

CIs and ACIs computation is also implemented for the case in which the algorithm
is given the number of samples and another parameter - either the confidence level
or the CI width. As for AMC method, the number of iterations is known before

40

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

execution - but we cannot compute the third parameter before iterations as in AMC
because we need the S2 estimator.

The graph 3.14 presents the different possibilities and the order the parameters
are computed.

3.6.1 How to compute the missing parameters?

From the bounds of AMC (3.5), CI (3.3) and ACI (3.4), we can derive equations
which relate a parameter to two other ones. This allows us to compute the missing
parameter.

For AMC:

ε =

�
ln(2

δ)

2N
(3.8)

δ = 2e−2Nε2
(3.9)

For CI17:

w = tN−1,1−α/2

�
S2

N
(3.10)

α = 2

�
1− cd f tN−1

�
w
�

N
S2

��
(3.11)

For ACI18:

w = z1−α/2

�
S2

N
(3.12)

α = 2

�
1− cd f n

�
w
�

N
S2

��
(3.13)

17cdft is the cumulative distributive function of the Student law with N −1 degrees of freedom.
18cdfn is the cumulative distributive function of the Normal law.

41

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Indeed, tN−1,1−α/2 = w
�

N
S2 and Prob(−tN−1,1−α/2 ≤ Z� ≤ tN−1,1−α/2) = 1−α,

so, using the symmetry of Student distribution,

2Prob(Z� ≥ tN−1,1−α/2) = α,

and
Prob(Z� ≤ tN−1,1−α/2) = cd f tN−1(tN−1,1−α/2) =

1−α
2

,

leading to

α = 2

�
1− cd f tN−1

�
w
�

N
S2

��
.

And the same for ACI with the normal quantiles.

3.6.2 Implementation

We finally create an interface which summarize all the confidence interval compu-
tation methods (figure 3.15), and implement them. All the probability (and reward)
computation methods can be used with the same scheme (algorithm 2).

Algorithm 2 General computation algorithm for statistical model checking
compute missing parameter before simulation (if AMC)
while the bound of the method is not reached do

pick a path from the high-level model
check it
update the estimators
print the progress, if relevant

end while
compute missing parameter after simulation (if CI/ACI)
if the property has its probability/reward bounded then

compare threshold probability/reward and computed mean estimator
return validity

else
return mean estimator

end if

42

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

Figure 3.15: UML diagram of the implementation

Note that the missing parameter computation before simulation does nothing in
case of CI or ACI method (because they require the simulation to estimate the last
parameter), and the missing parameter computation after simulation is also null in
case of AMC method (because the last parameter can be computed independently
from the simulation). At any time, we can print all the (known) parameters.

43

CHAPTER 3. STATISTICAL MODEL CHECKING: P=?[φ] PROBLEM

3.7 Summary

We introduced in this chapter the CI, ACI and AMC methods, which can compute
an estimation of the property’s probability. CI and ACI re-estimate the bound at
every iteration, i.e. at every time they pick a new path, and need the optimal num-
ber of iterations. They can not however compute the last parameter of the problem
before or during the simulation. AMC can compute the missing parameter before
the simulation, and can fix the number of iterations before the simulation. Unfor-
tunately, it relies on a probability upper bound, which can be large, and the size of
sample it needs can be much higher than the real required one. This induces that
the confidence parameter is greater than the real computed level of confidence.

If AMC is valid whatever the values are, CI and ACI methods assume the
variance is not null. So one have to choose whether we are in a case of null variance
or not. The decision maker we propose, based on a (arbitrary) simple observation,
offers good results for general cases (including the examples we used). If we have
a model which is likely to have a property always true or false, i.e. which can have
a null variance, then it is wiser to specify manually the number of iterations after
which we can conclude about the result.

These methods have been implemented in the console and graphic modes of
PRISM (to use them, read appendix A).

44

Chapter 4

Statistical Model Checking:
R=?[φ] problem

In this chapter, we focus on the estimation of the value of a reward, i.e. for formula
of type R=?[φ] with a given reward structure < ρ, ι >. Up to our knowledge, the
problem of computing reward expectation statistically is not treated in the litera-
ture. Our task here will be then to develop new methods adapted to this problem,
inspired by the previous methods for probabilities. In particular, we will see that the
method for CI and ACI computation (and all their possible derivations) can almost
directly be extended to this problem in section 4.1. This is illustrated by experi-
mentations in section 4.3. Unfortunately, AMC method requires some hypotheses
which are not holding in this case anymore. We will then propose two different
extensions of the AMC method in sections 4.4 and 4.5 with different assumptions,
test them in section 4.6 and compare them practically in section 4.7.

4.1 Confidence interval methods

As for 3.1, we first extract some samples ωi from the Markov chain. Then, instead
of representing the validity of a property P over a run ω by χp(ω), we represent
the reward of this path for a given property P and a reward structure Σ by χP,Σ(ω)
(χP.Σ ∈ Ω �−→R+). The χi

P,Σ are still supposed IID and normally distributed, so we
still have:

Z� =
Y −E[χp,Σ]�

S2

N

� TN−1.

Note however that Chernoff-Hoeffding bound does not hold anymore with non

45

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

Bernouilli variables. We have then no guarantee when using AMC method.

Practically, the implementation is the same as for properties probabilities, ex-
cept that we can no more use the optimization we were using to compute Y and S2

- we have to compute both of them at every iteration.

The other problems are treated in the same way as for CI and ACI with proba-
bilities in 3.6. The formulae (3.10), (3.11), (3.12) and (3.13) remain valid.

4.2 Decisions

In CI and ACI cases where the number of iterations is not known before the simu-
lation, we still have to decide whether we are in S2 = 0 or Z� � TN−1 case during a
simulation. Once again, we propose an arbitrarily solution based on the width ε:

����v−
nv+Yn+1

n+1

����≤ ε, (4.1)

where v is a non-negative real, n the number of iterations already done and Yn+1
the last realisation which can equal v or not. The decision becomes

����
v−Yn+1

n+1

����≤ ε ⇔0 ≤ ε ∧ |v−w|
n+1

≤ ε

⇔n ≥ |v−w|
ε

−1.

where w is the value of Yn+1. We can give to |v−w|
ε −1 an upper bound1:

max
�

v
ε
−1,

maxReward
ε

−1
�
= max

�
Y n

ε
−1,

maxReward
ε

−1
�
,

which equals
maxReward

ε
−1,

because Y n ≤ maxReward, so any n > maxReward
ε −1 respects the condition above.

1Here maxReward refers to the maximum value the reward can get in general.

46

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

For DTMCs, we could have then2

n ≥ maxStructureReward ×maxPath
ε

−1.

For CTMCs with bounded time properties, the decision could take the form

n ≥ maxStructureReward ×maxTime
ε

−1.

In PRISM, as for the probabilities, we let the user the possibility of providing
manually the number of samples from which we can make a decision.

4.3 Confidence interval experiments

cluster.sm (with N = 4) dice.pm

CI

ACI

Figure 4.1: Comparisons of distributions for α= 5%, ε= 10−2, 100 runs of PRISM.
2maxStructureReward refers to the maximum value existing in the structure.

47

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

We compare cluster.sm and dice.pm examples in terms of

• distribution of computed estimation of expectation for 100 runs in figures
4.1;

• time and number of samples required in figure 4.3;

• distribution of number of samples required for 100 runs in figure 4.2.

The results for CI and ACI methods are correct, and the bold part of the curve
is close to the 2w-width interval centred in the real expectation E[χP,Σ].

cluster.sm (with N = 4) dice.pm

CI

ACI

Figure 4.2: Comparisons of distributions of number of samples required for α =
5%, ε = 10−2, 100 runs of PRISM.

48

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

cluster.sm (with N = 4) dice.pm
CI 6,250 samples / < 1 sec 68,400 samples / 1 sec

ACI 6,250 samples / < 1 sec 68,300 samples / 1 sec
AMC (not valid) 18,445 samples / 1 sec 18,445 samples / 1 sec

Figure 4.3: Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM.

We observe in figure 4.4 with the dice example that AMC method is no more
valid in this context. The bold part of the curve is indeed much greater than the
interval centred on the real expectation with width 2w. This is explained by the fact
that the random variables are no more Bernouilli variables, and thus are no more
bounded by 1. We will need to modify this method.

cluster.sm (with N = 4) dice.pm

AMC

Figure 4.4: Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of PRISM
with normal AMC method.

4.3.1 Limit test

An interesting limit test for this Monte Carlo method would be to have the χP,Σ
variable taking extreme values. For instance, there would be a path with very low
probability in the Markov chain3 inducing a very high reward whereas the reward
would be null everywhere else.

For example, let us consider a modification of the dice Markov chain in figure
3From the Monte Carlo point of view, there would be few paths ωi in Ω such that χP,Σ(ωi)>> 0.

49

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

4.5, with the reward structure





ρ = 0
ι(s,d) = 100,000 if s = ∗,d = 2
ι(s,d) = 0 otherwise

.

Figure 4.5: Modified Markov chain of the die

We compute the reward for the following property: R=?[F s = 8] (numerical result:
33.3).

For α = 5%, width= 1, CI method computes the correct CI in N = 12671165
samples, in 131 seconds on the test configuration.

AMC methods do not work for this example - for a CI supposed to be with
ε = 0.01, we generally have an ε between 1 and 10.

50

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

The CI and ACI methods without the number of iterations known before the
simulation require however the S2 = 0 against Z� � TN−1 cost/reward decision -
the decision for probabilities used before would consider we are in a S2 = 0 case,
given the width and the very low probability4. This minimal number of iterations
required to conclude is here given manually - N� = 1000000 in this example.

4.4 Bounded extension of AMC

A nice property of AMC method is that we can compute the missing parameters
without any simulation.

We would like to extend the AMC method to cost/reward system - the AMC
required indeed to have Bernouilli variables (i.e. variables with values in {0,1}),
whereas here the random variables are in Ω �−→ R+. [12] extends the bound to
any bounded random variables. So, if we know the maximum reward maxReward
which can be computed in a model, we have

Prob[|A− γ|> ε]< 2e−
2Nε2

maxReward2 .

We derive then
δ = 2e−

2Nε2

maxReward2 , (4.2)

and the other equations similarly to the AMC method in 3.3:

N =
maxReward2

2ε2 × ln
�

2
δ

�
, (4.3)

ε =

�
maxReward2

2N
× ln

�
2
δ

�
. (4.4)

Note that we still have a precondition: δ = 2e−
2Nε2

maxReward2 ≤ 1, which leads to

Nε2 ≥ maxReward × ln2
2

. (4.5)

4Or, from Monte Carlo point of view, the rareness of path offering a non null reward.

51

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

4.4.1 What happens if the bound is exceeded?

Suppose that among the realizations Yi, there is a j such that Yj > maxReward.
This means that there is a realMaxReward > maxReward. We compute with a

level of confidence α = 2e−
2nε2

maxReward2 , which is then lower than the real level αreal =

2e−
2nε2

realMaxReward2 we should compute. So the confidence interval we have computed,
CIAMC, is smaller than the one we think we have computed, say CI∗. In other
words, if the means are centred, we have CIAMC ⊇ CI∗, which is not convenient.
The (unpredictable) α increases directly with the distance between maxReward and
realMaxReward (if maxReward < realMaxReward).

This can be illustrated with figure 4.6. The real reward of dice.pm is 3.666.
The graphs have been computed for ε = 10−2 and δ = 5%, the left graph with
maxReward = 1.0 (< 3.66), the right one with maxReward = 4.0 (≥ 3.666). It is
clear the confidence interval on the left is bigger than the one expected (3.666±
0.01), whereas the right one is smaller.

Figure 4.6: Comparison of distributions of dice.pm rewards for α = 5%, ε = 10−2,
100 runs of PRISM, with extended AMC method. The maximum reward for the
left graph is 1.0, the right graph’s one is 4.0 (real reward is 3.666).

4.4.2 Implementation

Figure 4.7 gives a decision tree to find out which additional parameter must be
given to make a computation.

52

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

Figure 4.7: Decision tree to find which additional parameter to use.

4.4.3 Limit test

In the previous example, requiring about N = 12,671,165 samples with CI and ACI
methods, AMC method would require 1000002

2×1 × ln
� 2

0.05
�
≈ 1.84×1010 iterations,

which is out of the range of this implementation5 - and would certainly take more
than 50 hours of computation on the testing configuration. So we consider the same
model, but with a more modest reward structure:






ρ = 0
ι(s,d) = 10,000 if s = ∗,d = 2
ρ(s,d) = 0 otherwise.

We get then the correct results after the numbers of iterations presented in
figure 4.8.

5We encoded iterations with Java integer, which cannot be greater than 231 −1.

53

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

AMC 184,443,973 / 1876 sec
CI 114,268 / 2 sec

ACI 139,944 / 2 sec

Figure 4.8: Number of iterations (and time on the testing configuration) to approx-
imate R=? [F s = 8]

4.5 Unbounded extension of AMC

4.5.1 Unbounded problem

Now, it is not always easy to know the maximum reward. It would be better to
extend these formulae to unbounded variables. The formulae developed in [12] are
unfortunately limited to bounded variables. In its introduction, [34] suggests that
the truncation method is a possible method to solve the unbounded problem6. We
can find this method, combined with Markov’s inequality, in [30] for example. We
adapt this method to our context.
Let us consider the random variable

V :=
1
n

n

∑
i=1

Xi −E[χP,Σ].

We split it into two random variables according to a value L:

V =: V≤L +V>L.

For the bounded variable, we can apply the general Hoeffding’s inequality:

Prob(|V≤L|) = Prob

������

�
1
n

n

∑
i=1

Xi −E[χP,Σ]

�

≤L

�����≥ ε

�
≤ 2e

− 2nε2

(L+E[χP,Σ])2 ,

because Xi −E[χP,Σ]≤ L.
For the unbounded part, we notice that, if L ≥ ε,

Prob(|V>L| ≥ ε) = Prob(V > L∩V>L ≥ ε)+Prob(V ≤ L∩0 ≥ ε)� �� �
=0

≤ Prob



V > L∩V>L +V≤L� �� �
=V

≥ ε



= Prob(V > L)≤ Prob(V ≥ L).

6Even though it does not study it.

54

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

We apply Markov’s inequality and get

Prob(|V>L| ≥ ε)≤ Prob(V ≥ L) = Prob(
1
n

n

∑
i=1

Xi ≥ L+E[χp,Σ])≤
E[χP,Σ]

L+E[χP,Σ]
.

By summing, we get finally

Prob(
��X −E[χP,Σ]

��≥ ε)≤ 2e
− 2nε2

(L+E[χP,Σ])2 +
E[χP,Σ]

L+E[χP,Σ]
. (4.6)

If L →+∞, we recognize the bound from 4.4, i.e.

2e
− 2nε2

(L+E[χP,Σ])2 +
E[χP,Σ]

L+E[χP,Σ]
∼ 2e−

2nε2

L2 .

But we notice that a moment of the random variables appears in the bound.
This can be estimated with the realizations of the random variables, but only after
the simulation - we lose the property of computing missing parameters without
simulation.

Note that we are also adding a new parameter, L, which can be considered
as the supposed maximum reward - but without requiring to be the real one. As
suggested in [30], we can also choose an arbitrary7 γ > 0, and take L such that

E [χP,Σ]≤ γ.

[34] proposes a more theoretical method to deal with this unbounded problem.
Unfortunately, this requires the knowledge of another random variable U which
dominates X , i.e. ∀v,Prob(X < v)≤ Prob(U < v). So we still have a kind of arbi-
trary bound.

We can find in [22] the Bernstein’s inequality presented as a generalization of
Hoeffding’s bound.






P
�
n(X −E[χP,Σ])≥

√
2vx+ cx

�
≤ e−x

with nE[χ2
P,Σ]≤ v

and ∀k ≥ 3, nE[(χk
P,Σ)+]≤ k!

2 vck−2.

But this inequality, which does not require any bound on random variables, has
some moments of the random variables in the bound. We can estimate them, but

7It is represented by δ in the [30].

55

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

one more time, it also means we can compute the missing parameters only at the
end of the simulation.

In terms of interpretation, we were looking here for a bound which, for an α
and a ε given, was the same whether the maximum reward was 1 or 1012. This
objective is maybe a bit optimistic in this general case.

4.5.2 Unbounded problem with bounded expectation

We assumed from the beginning the expectation was finite, i.e. E[χP,Σ] ≤ M, for
some M > 0. If we know a γ such that γ ≥ M, and because we also know that
E[χP,Σ]> 0, the bound of equation (4.6) has for upper bound

δ = 2e
− 2nε2

(L+γ)2 +
γ
L
, (4.7)

with L ≥ ε a real number. Because of the exponential and the fact that δ and γ
L are

> 0, we get the condition
L >

γ
δ
.

So, given γ, ε and n, we can compute δ (for some L). Conversely, if we are given
γ, ε and δ, we can compute n with

n =

�
(L+ γ)2

2ε2 ln
�

2L
δL− γ

��
, (4.8)

and ε with

ε =

�
(L+ γ)2

2ε2 ln
�

2L
δL− γ

�
, (4.9)

for some L. Now our objective is to get the minimum n, so we have to choose the
L > γ

δ which minimizes

f (x) =
(x+ γ)2

2ε2 ln
�

2x
δx− γ

�
.

56

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

Figure 4.9: n = (L+γ)2

2ε2 ln
�

2L
δL−γ

�
, with δ = 5%, ε = 10−2, γ (Y) from 0.5 to 40,

L (X) from 10 to 1000, n (Z). The function is not defined on the left part, where
L ≤ γ

δ . The peaks in the middle represent actually an asymptote for L → γ
δ . We can

see on the admissible part a local minimum.

As we can see in figure 4.9, this is a hyperbolic function. limx→ γ
δ

2x
δx−γ = +∞, so

f (x)→+∞ when x → γ
δ . On the other side, we have8

(x+ γ)2

2ε2 ln
�

2x
δx− γ

�
∼+∞

x2

2ε2 ln
�

2
δ

�
,

so f (x)→+∞ when x →+∞ as well. All the functions composing f are continue
and non-null on] γ

δ ,+∞[, so there is at least a minimum on this interval. It does
not seem easy to find an expression minimizing f , so we compute numerically a L
which is very close to Lmin.

8 2x
δx−γ ∼x→+∞

2
δ , 2

δ is not null and limx→+∞
2x

δx−γ �= 1, so we have

ln
�

2x
δx− γ

�
∼x→+∞ ln

�
2
δ

�
.

57

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

Note that we still have the condition δ = 2e
− 2nε2

(L+γ)2 + γ
L ≤ 1, leading to

nε2 ≥
(Lmin + γ)2ln

�
2L

Lmin−γ

�

2
. (4.10)

4.6 AMCs experiments

cluster.sm (with N = 4) dice.pm

extended bounded AMC
(with maxi {Xi}=1.0 for
cluster.sm, 4.0 for dice.pm)

extended unbounded AMC
(with E[X]≤0.2 for
cluster.sm, 3.7 for dice.pm)

Not computed
(would require around
2.5 days for 100 runs)

Figure 4.10: Comparisons of distributions for α = 5%, ε = 10−2, 100 runs of
PRISM (for the extended AMC, we took 1.0 for cluster.sm and 4.0 for dice.pm as
maximum reward).

58

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

We compare cluster.sm and dice.pm examples in terms of

• distribution of computed estimation of expectation for 100 runs in figures
4.10;

• time and number of samples required in figure 4.11.

extended bounded AMC 18,445 samples / 1 sec 295,100 samples / 3 sec
extended unbounded AMC 657,109 samples / 17 sec 225,717,722 samples / 35 min

Figure 4.11: Comparisons of times for α = 5%, ε = 10−2, 100 runs of PRISM (for
the extended AMC, we took 1.0 for cluster.sm and 4.0 for dice.pm as maximum
reward).

The results are correct, but the level of confidence actually computed is much
greater than the wanted one, especially for the unbounded case.

4.7 Bounded vs. unbounded AMC extensions

The unbounded AMC extension is likely to treat correctly more problems than
the bounded extension can, because the constraint is lighter: E[χP,Σ] ≤ γ instead
of ∀i, Xi ≤ maxReward. A path with an abnormally high reward will not affect
the global result of unbounded extension - in this sense, it is more reliable. The
constraint of having an upper bound of the expectation seems also natural, because
we assume from the beginning that it is finite.

If we consider the limit test from section 4.3.1, almost all the samples produce
a null reward, but there is one path, with a very low probability, which produces
100000. The expectation E[χP,Σ] approximatively equals 3.33, so we can fix γ to
3.5, for instance, and get the result after 201,972,770 samples (35min with the test
configuration). With the bounded method, we need to fix maxReward = 100000 to
get a correct result, and, as presented in subsection 4.3.1, this would require around
1.84×1010 iterations, which is out of the range of our implementation.

On the other hand, the probability bound of the unbounded method is growing
clearly faster than the bounded one. If we consider the cluster.sm example (ta-
ble 4.3), for maxReward = 1.0, bounded method requires 18,445 samples whereas
for γ = 0.2, unbounded method needs 657,109 samples. The gap is really get-
ting bigger with dice.pm, where the bounded method uses 295,100 samples for
maxReward = 4.0 and the unbounded one produces 225,717,722 samples for only

59

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

γ = 3.7. The unbounded method appears to be less efficient.

We can ask when it is better to use one or the other method. In this perspective,
we compare the respective numbers of iterations:

the unbounded method requires more iterations iff

(Lmin +E[χP,Σ])2

2ε2 ln
�

2Lmin

δLmin −E[χP,Σ]

�
≥ max2

i {Xi}
2ε2 ln(

2
δ
),

or

(E[χP,Σ]+Lmin)

�����

������

ln
�

δ− E[χP,Σ]
Lmin

�

ln(2
δ)

������
≥ maxi{Xi},

with Lmin the value minimizing f (x) = (x+E[χP,Σ])2

2ε2 ln
�

2x
δx−E[χP,Σ]

�
.

For δ = 5% and ε = 10−2, we compute the relation between E[χP,Σ] and maxi{Xi}
(figure 4.12). If the pair (E[χP,Σ],maxi{Xi}) of the problem is above the line, it is
better to take the unbounded method - if not, the bounded method will be more
convenient.

In other words, if the variance of the data is very high, unbounded method
should be used; otherwise, bounded method with a given maxi{Xi} should be pre-
ferred.

Figure 4.12: (E[χP,Σ]+Lmin)

�����

������

ln
�

δ−
E[χP,Σ]

Lmin

�

ln(2
δ)

������
≥ maxi{Xi}, with E[χP,Σ] as abscissa

and maxi{Xi} as ordinate.

60

CHAPTER 4. STATISTICAL MODEL CHECKING: R=?[φ] PROBLEM

4.8 Summary

The objectives of the chapter was to extend the methods of the chapter 3 to rewards
computation. If mathematically the CI and ACI methods are almost identical to
previously, we showed theoretically and experimentally that AMC method can not
be applied anymore. On the basis of the same Hoeffding’s bound, a first solution
was proposed, but it assumes that we have the knowledge of the maximum reward a
path picked by lot can get, which is rarely obvious - and a too small bound induces
an uncontrolled unreliability in the parameters. Using truncation method, Markov’s
and Hoeffding’s inequalities, we ended up with a second solution, which assumes
we know a bound of the expected value we want to compute. This is consistent
and more natural, because we assume from the beginning the expectation of the
variable was finite.

Experimentally, even through they can compute estimations that the classic
numerical model checker could not, these two methods really suffer from their dis-
tance from the optimal number of iterations (given by the CI method, for instance),
and the effect is strongly amplified by the high expected values of computed re-
wards, especially for the second one. We compared the required numbers of itera-
tions, and conclude that the second method has to be used in case of high variance
in the validity evaluation of the paths. This is confirmed experimentally by our set
of tests and a limit test we designed.

These methods have been implemented in the console and graphic modes of
PRISM (to use them, read appendix A).

61

Chapter 5

Statistical Model Checking:
P��θ[φ] problem

In this chapter, we turn to the problem of checking property with bounded prob-
abilities: formula of type P��θ[φ]. There is two ways of testing this. The first one
consists in computing an estimation of the probability with one of the methods de-
scribed in the previous chapters, and making a decision in terms of this result and
the given parameters (section 5.1). Experiments illustrate this in section 5.2. The
second one, proposed in [33], relies on the power of the statistical tests - and in par-
ticular with the Wald’s sequential probability ratio test (section 5.3, followed by
experimentations in section 5.4). Even though the two approaches require different
parameters and seem to work differently, we can sketch some relations between
them in section 5.5.

5.1 Using confidence interval methods

In this problem, as the CI computation problem, we are given two parameters
among the approximation ε, the confidence level δ and the number of samples
N. We aim at checking whether the property is true or not, with a certain level of
confidence and an approximation. [11] proposes1 for the AMC method:

P≥θ[φ]⇔ Y n ≥ θ− ε, with n =

�
ln
� 2

δ
�

2ε2

�
,

1[11] proposes actually only the right to left implication, because they work on an unbounded
logic (LTL), and they have to bound arbitrarily their model checking. We are working here only on
bounded formulae, so this is an equivalence.

62

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

so we just have to test the right hand formula2. On figure 5.1, this means we accept
the null hypothesis (i.e. the property is true) if Y n is in the right area or in the grey
region.

Figure 5.1: Accepting regions for AMC test

We have similarly

P≤θ[φ]⇔ Y n ≤ θ+ ε, with n =

�
ln
� 2

δ
�

2ε2

�
.

However, this grey region would clearly define the indifference region: we
know that the real probability of the formula, say p∗, is in this area (with a proba-
bility δ), but it is possible that this p∗ is close to θ− ε, and if we take a θ close to
θ+ ε would wrongly accept it (type I error).

This is designed to return an answer after every simulation, and to avoid a "un-
known" response3. Nevertheless, this gives advantage to the null hypothesis, and
testing P≤θ[φ] is no more equivalent to ¬P>θ[φ]. That is why we will prefer an
indifference region in our implementation, to remain consistent with the SPRT ap-
proach we will present in the section 5.3 - a comparison between the two methods
will be proposed in section 5.5.

So if we are in the H0 accepting region, the formula is said true, if we are
in the H1 accepting region, the formula will be considered false, and if we are in
indifference region, the user will be advised to either increase or decrease its θ, or

2Here, we assume that >≈≥ and <≈≤, which is an acceptable approximation given the numeri-
cal truncations in computation and the ε in the formula.

3APMC, which implements this choice, has indeed been thought to always provide an answer -
and preferably a quantitative one, through estimations.

63

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

to decrease the ε, which clearly reduces the size of this region (but also increases
the samples size).

In other words,

P≥p[φ]⇐ Y n ≥ p+ ε, with n =

�
ln
� 2

δ
�

2ε2

�
, (5.1)

P≤p[φ]⇐ Y n ≤ p− ε, with n =

�
ln
� 2

δ
�

2ε2

�
, (5.2)

and p− ε ≤ Y n ≤ p+ ε means that we have to refine the parameters.

5.2 Confidence interval experiments

The figure 5.2 presents the experimentation of these techniques with the three bio-
logical examples. The number of iterations and times are the same as in table 3.11,
and do not depend on the value of θ4.

Every figure is a zoom on the values θ in abscissa which are close to the real
probability. Each dot represents on ordinates the percentage of true answers by the
model checker for θ = x in abscissa, with properties of form P≤θ[φ]. To be clearer,
we choose for this experimentation not to consider the indifference region and to
advantage the H0 hypothesis, as APMC does. We observe, as expected, a transition
between f alse and true around the real probability. With our implementation, the
transition could be not as visible as it is here - the transition mostly lies in the
indifference region. The figure 5.3 presents the kind of graph we obtain with our
normal implementation.

4Because Y n is computed first, and then we only compare the result to θ

64

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

circadian.sm cyclin.sm fgf.sm

AMC

CI

ACI

Figure 5.2: Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ (abscissa),
without indifference region.

65

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

Figure 5.3: Example of probabilities of accepting H0 hypothesis (ordinates), for
α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ (abscissa), with indiffer-
ence region.

5.3 Using statistical test

If we want to check P≥θ[φ], [33] proposes to use the statistical test





H0 : p ≥ θ+δ� =: p0

against
H1 : p ≤ θ−δ� =: p1

, (5.3)

for some δ� > 0, with αe the type I error and βe the type II error. We can use the
Wald’s sequential probability ratio test, which compares the likelihoods ratio of
the binomial distribution under H0 and H1 hypotheses

L(x1, . . . ,xm, p1)

L(x1, . . . ,xm, p0)
=

pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (5.4)

where dm = ∑m
i=1 xi, to two values A and B:

66

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

• if the ratio is lower than B, H0 is accepted;

• if the ratio is greater than A, H1 is accepted;

• otherwise, we get a new realization xm+1 and iterate.

Practically, we choose A = 1−βe
αe

and B = βe
1−αe

[33].

5.4 SPRT experiments

The figure 5.4 presents the experimentation of these techniques with the three bi-
ological examples. The number of iterations required by SPRT depends on θ, so
these numbers are displayed in figure 5.5 in terms of θ.

circadian.sm cyclin.sm fgf.sm

Figure 5.4: Comparisons of the probabilities of accepting H0 hypothesis (ordinates)
with SPRT, for αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs of PRISM per value of θ
(abscissa).

The closer we are to the real probability, the harder it is for the algorithm to "make
the decision", that is to say to have the likelihood growing and accepting H0 or
diving and accepting H1. This explains the peaks of samples in the neighbourhood
of the real probability.

67

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

circadian.sm cyclin.sm fgf.sm

Figure 5.5: Average number of iterations required by SPRT in terms of θ. SPRT is
run with αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs are used to compute each point
of the graph.

5.5 Relations between CI methods and SPRT

These two methods presented previously have different parameters and at first sight
seem to work differently.

AMC method5 requires two parameters among

• δ, the confidence parameter, which represents the reliability of the computa-
tions;

• ε, the approximation parameter, which will define the size of the indifference
region;

• N, the number of iterations;

• θ, the threshold probability.

The property is true if we are in H0, false if we are in H1, and unknown if we
are in the indifference region.

SPRT method requires:

• αe, the type I error, i.e. accepting H0 while H1;

• βe, the type II error, i.e. accepting H1 while H0;
5And also CI and ACI methods, with the correspondences of parameters from table 3.2.

68

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

• δ�, a parameter to make H0 and H1 independent, by creating an indifference
region;

• N, the number of iterations;

• θ, the threshold probability.

If the likelihood of the distribution is greater than a value A(αe,βe), H0 is ac-
cepted, if it is lower than B(αe,βe), H1 is accepted. Otherwise, we iterate one more
time to make the Y N evolves, and so on until we converge.

An iteration of SPRT can be seen as applying AMC method: if we are in the
indifference region at iteration m, we iterate, which makes the ε decrease, and thus
the indifference region reduces.

So these two methods work globally in the same way, but provide different
controls:

• SPRT controls αe and βe, and this define A(αe,βe) and B(αe,βe) and thus
the width of the indifference region at every iteration;

• CI methods control directly the width of the indifference region, through ε,
which defines implicitly the αe and βe of the test.

5.6 Summary

Tests of properties with threshold probabilities have been investigated in this chap-
ter. We proposed two ways of dealing with this problem. The first one relies on
the previous methods from chapter 3: we compute an estimation, and we com-
pare it with the threshold probability, given the parameters. It provides a reliable
response, but can answer it cannot conclude, because the estimation is in an indif-
ference region. The user has then to repeat the simulation with refined parameters.
The number of iterations for the estimation is optimal for the given parameters with
CI method, and it is independent from the threshold probability, but we cannot be
sure the test will provide an answer after the simulation.

The second solution is the Wald’s sequential probability ratio test, which relies
on different parameters. It always converges and provides a reliable answer, and is
optimal in terms of iterations for the given parameters. The number of iterations
depends however on the threshold probability, and the closer the threshold and real
probabilities, the more expensive this algorithm is likely to be.

69

CHAPTER 5. STATISTICAL MODEL CHECKING: P��θ[φ] PROBLEM

We finally related the meanings and the operations of the two algorithms and
their respective parameters.

These methods have been implemented in the console mode of PRISM (to use
them, read appendix A).

70

Chapter 6

Statistical Model Checking:
R��θ[φ] problem

In this chapter, we focus on the statistical model checking of properties with bound
rewards, i.e. properties of form R��θ[φ]. The first possibility is almost identical to
the first method described in the previous chapter: we estimate the expectation with
a corresponding method from chapter 4 and make a decision, given the parameters
(section 6.1, experimentation in section 6.2). However, the second one is no more
valid in this context: the distribution the random variables follow is a normal law,
with several parameters, and Wald’s test does not deal with this. We propose to
use the Bartlett’s test instead in section 6.3, and experiments confirm this method
in section 6.4.

6.1 Using confidence interval methods

We use the same technique as in 5.1 (this time with θ ∈ R∗
+), with CI and ACI, or

the extensions of AMC:

R≥θ[φ]⇐ Y n ≥ θ+ ε, with n =

�
ln
� 2

δ
�

2ε2

�
, (6.1)

R≤θ[φ]⇐ Y n ≤ θ− ε, with n =

�
ln
� 2

δ
�

2ε2

�
, (6.2)

and θ− ε ≤ Y n ≤ θ+ ε means that we have to refine the parameters.

71

CHAPTER 6. STATISTICAL MODEL CHECKING: R��θ[φ] PROBLEM

6.2 Confidence interval experiments

The figures 6.1 and 6.2 present the experimentation of these techniques with the
cluster.sm and dice.pm examples. The number of iterations and times are the same
as in table 4.3, and do not depend on the value of θ1.

cluster.sm (with N = 4) dice.pm

CI

ACI

Figure 6.1: Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ (abscissa).

1Because Y n is computed first, and then we only compare the result to θ

72

CHAPTER 6. STATISTICAL MODEL CHECKING: R��θ[φ] PROBLEM

cluster.sm (with N = 4) dice.pm

extended bounded AMC
(with maxi {Xi}=1.0 for
cluster.sm, 4.0 for dice.pm)

extended unbounded AMC
(with E[X]≤0.2 for
cluster.sm, 3.7 for dice.pm)

Not computed
(would require around
2.5 days for 100 runs)

Figure 6.2: Comparisons of the probabilities of accepting H0 hypothesis (ordi-
nates), for α = 5%, ε = 10−2, and 10 runs of PRISM per value of θ (abscissa).

6.3 Using statistical test

We can extend the method of section 5.3 to rewards - but this time, we consider
normal distributions N (µi,σ), and no more binomial ones. The test would be






H0 : r ≥ θ+δ� =: µ0

against
H1 : r ≤ θ−δ� =: µ1

, (6.3)

where δ� > 0. Note that the normal distribution has a second parameter, σ2. We are

73

CHAPTER 6. STATISTICAL MODEL CHECKING: R��θ[φ] PROBLEM

not interested in this parameter, but it appears in the likelihood ratio,
L(x1, . . . ,xm,µ1,σ)
L(x1, . . . ,xm,µ0,σ)

= e−
1

2σ2 ∑m
i=1(xi−µ1)2−(xi−µ0)2

.

and has thus an incidence in the test. This is a nuisance parameter, and unfortu-
nately, Wald’s SPRT does not support this kind of problems [32].

[29] faced a similar problem in a biostatistics context, and proposed to use the
Bartlett’s SPRT [21], which is really close to the Wald’s one, except that it supports
distributions with more than one parameter. The strategy consists in replacing
the nuisance parameter in both of the conditional likelihoods by its conditional
maximum likelihood estimator.

In the specific case of normal distribution, the maximum likelihood estimator
of the means is

µ̂MLE =
1
N

N

∑
i=1

Xi = X ,

and the MLE of variance is

σ̂2
MLE =

1
N

N

∑
i=1

(Xi − µ̂MLE)
2 =

1
N

N

∑
i=1

(Xi −X)2,

which actually does not depend on the condition (H0 or H1).
The ratio of likelihoods is then

L(x1, . . . ,xm,µ1)

L(x1, . . . ,xm,µ0)
= e

− 1
2σ̂2

MLE
∑m

i=1(xi−µ1)2−(xi−µ0)2

. (6.4)

The iterations and bounds are equivalent to section 5.3.

Practically, we notice that:
L(x1, . . . ,xm,µ1)

L(x1, . . . ,xm,µ0)
= e

− 1
2σ̂2

MLE
∑m

i=1(xi−µ1)2−(xi−µ0)2

= e
− µ0−µ1

2σ̂2
MLE

∑m
i=1(2xi−µ1−µ0)

= e
− 1

2σ̂2
MLE

(2(µ0−µ1)(∑m
i=1 xi)+mµ2

1−mµ2
0)
,

with

σ̂2
MLE =

1
m

m

∑
i=1

�
Xi −

1
m

m

∑
i=1

Xi

�2

=
1
m




m

∑
i=1

X2
i −

1
m

�
m

∑
i=1

Xi

�2


 ,

74

CHAPTER 6. STATISTICAL MODEL CHECKING: R��θ[φ] PROBLEM

so we just store ∑m
i=1 xi and ∑m

i=1 x2
i in the sampler to compute the likelihood ratio.

6.4 SPRT experiments

The figure 6.3 presents the experimentation of this technique with the cluster.sm
and dice.pm examples. The number of iterations required by SPRT depends on θ,
so these numbers are displayed in figure 6.4 in terms of θ.

cluster.sm (with N = 4) dice.pm

Figure 6.3: Comparisons of the probabilities of accepting H0 hypothesis (ordinates)
with Bartlett’s SPRT, for αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs of PRISM per
value of θ (abscissa).

75

CHAPTER 6. STATISTICAL MODEL CHECKING: R��θ[φ] PROBLEM

cluster.sm (with N = 4) dice.pm

Figure 6.4: Average number of iterations required by SPRT in terms of θ. SPRT is
run with αe = 0.1, βe = 0.1, δ� = 10−2, and 10 runs are used to compute each point
of the graph.

6.5 Summary

The chapter extended the test methods to rewards computation. The first way of
checking a property with threshold reward is unchanged: we compute the estima-
tion, and compare it with the threshold reward, given the parameters. It remains
optimal using CI method, with respect to the parameters.

The Wald’s sequential test does not extend to the normal distribution the re-
wards are following. We use Bartlett’s sequential test instead, which estimates the
nuisance parameter, the variance, by the maximum likelihood estimator for this dis-
tribution. We validate this experimentally with the examples we used previously.

These methods have been implemented in the console mode of PRISM (to use
them, read appendix A).

76

Chapter 7

Conclusion

The initial objective of the project was to enhance PRISM with good statistical
model checking support. Statistical probabilistic model checking can be divided in
several components (see figure 2.5): generation, verification and analysis. I chose
to improve the last part, which was limited in PRISM to an implementation of the
AMC method only for probabilities estimation.

The literature offers often different presentations of the statistical model check-
ing analysis for probabilities, with sometimes some empirical explanations. In this
dissertation, these methods, regrouped into CI, ACI and AMC, have been statisti-
cally explained, tested on real-size biological examples - which require statistical
model checking because of the number of states - and compared.

The methods have also been extended to the context of reward expectation. If
it is natural for CI and ACI methods, which rely on the central-limit theorem, this
required additional assumptions and theorems to end up with methods comparable
to AMC. Bartlett’s sequential probability ratio test has been proposed to substitute
the Wald’s one, no more valid in the case of rewards, because rewards random vari-
ables are following normal distribution.

Globally, one cannot conclude that a method is better in absolute than the oth-
ers. CI and SPRT are optimal in terms of sampling, AMC knows the required
number of samples before the simulation, ACI is certainly faster but unsure in
terms of reliability, etc. The different parameters the methods take have also their
own meanings, and it can be more convenient in some situations to use type I and
II error rather than level of confidence, or the opposite. These methods also have
specific assumptions, which can be accepted or not in certain applications. To help
the user1 in choosing the most convenient method for his problem, I propose the

1Especially the PRISM user!

77

CHAPTER 7. CONCLUSION

following table summing up all the methods presented in this dissertation, with the
problems they solve, the parameters they require, the conditions they must respect,
some comments about their efficiency observed on the examples and some recom-
mendations about when to use (or not to use) them.

The initial objectives of this thesis have been fulfilled: the modified version of
PRISM I worked on provides a good support for reliable statistical estimations of
probabilities and rewards. It offers several methods for each problem, and some
decisions can be automatically made in terms of the parameters. The extensions
to rewards computation I developed are efficient for CI and ACI, but a bit disap-
pointing for AMC: the two AMC extensions I proposed seem to be really ineffi-
cient (bounded expectation) or not reliable in some cases (bounded variables, when
some paths have a reward bigger than the given bound - see limit test 4.3.1)2. On
the basis of the observations, a table is finally proposed to help in the selection of
the most adapted method to a context.

I had started to study the case of statistical model checking for Markov De-
cision Process, but this question is very vast and still open, and could certainly
constitute the subject of a thesis. Some improvements could also certainly be real-
ized in the first component of the PRISM statistical model checker, the generation
of path, using some specific optimizations of Monte Carlo method. A last area
which has not been considered here but could be investigated is the approach of
model checking with Bayesian statistics (read [14, 35]).

2The next version of APMC will provide a similar support for rewards.

78

CHAPTER 7. CONCLUSION

Problem: Method: When to use it: Parameters: Conditions on parameters: Efficiency:

P=?[φ]
CI reliable, unknown

number of itera-
tions

2 among {α,
w, n}

none optimal

ACI approximative, un-
known number of
iterations

2 among {α,
w, n}

none can be faster than
CI

AMC reliable, parame-
ters computable
before simulation

2 among {δ,
ε, n}

nε2 ≥ ln2
2 compute more it-

erations than re-
quired

P��θ[φ]

CI reliable, unknown
number of itera-
tions

2 among {α,
w, n}, θ

none optimal, but can re-
quire new simula-
tions with refined
parameters

ACI approximative, un-
known number of
iterations

2 among {α,
w, n}, θ

none faster than CI, can
require new simu-
lations with refined
parameters

AMC reliable, parame-
ters computable
before simulation

2 among {δ,
ε, n}, θ

nε2 ≥ ln2
2 compute more

iterations than
required, can
require new simu-
lations with refined
parameters

Wald’s SPRT reliable, unknown
number of itera-
tions

θ, δ�, αe, βe none optimal [33]

79

CHAPTER 7. CONCLUSION

Problem: Method: When to use it: Parameters: Conditions on parameters: Efficiency:

R=?[φ]

CI reliable, unknown
number of itera-
tions

2 among {α,
w, n}

none optimal

ACI approximative, un-
known number of
iterations

2 among {α,
w, n}

none can be faster than
CI

bounded ex-
tended AMC

reliable if a Xi
bound maxReward
known, parameters
computable before
simulation, to be
used when variance
not abnormal (see
figure 4.12)

2 among
{δ, ε, n},
maxReward

nε2 ≥ maxReward×ln2
2 ,

maxi{Xi} ≤ maxReward
compute (really)
more iterations
than required,
depend on the
precision of
maxReward

unbounded ex-
tended AMC

reliable if a E[χP,Σ]
bound γ known,
parameters com-
putable before
simulation, to be
used in case of very
high variance (see
figure 4.12)

2 among {δ,
ε, n}, γ

nε2 ≥
(Lmin+γ)2ln

�
2L

Lmin−γ

�

2 ,
E[χP,Σ]≤ γ

compute (really)
more iterations
than required,
depend on the
precision of γ

80

CHAPTER 7. CONCLUSION

Problem: Method: When to use it: Parameters: Conditions on parameters: Efficiency:

R��θ[φ]

CI reliable, unknown
number of itera-
tions

2 among {α,
w, n}, θ

none optimal, but can re-
quire new simula-
tions with refined
parameters

ACI approximative, un-
known number of
iterations

2 among {α,
w, n}, θ

none can be faster than
CI, can require new
simulations with
refined parameters

bounded ex-
tended AMC

reliable if a Xi
bound maxReward
known, parameters
computable before
simulation, to be
used when variance
not abnormal (see
figure 4.12)

2 among
{δ, ε, n},
maxReward,
θ

nε2 ≥ maxReward×ln2
2 ,

maxi{Xi} ≤ maxReward
compute (really)
more iterations
than required,
depend on the
precision of
maxReward; can
require new simu-
lations with refined
parameters

unbounded ex-
tended AMC

reliable if a E[χP,Σ]
bound γ known,
parameters com-
putable before
simulation, to be
used in case of very
high variance (see
figure 4.12)

2 among {δ,
ε, n}, γ, θ

nε2 ≥
(Lmin+γ)2ln

�
2L

Lmin−γ

�

2 ,
E[χP,Σ]≤ γ

compute (really)
more iterations
than required,
depend on the
precision of γ;
can require new
simulations with
refined parameters

Bartlett’s SPRT reliable, unknown
number of itera-
tions

θ, δ�, αe, βe none optimal

81

CHAPTER 7. CONCLUSION

.

Tables legend:

α level of confidence
w half-width of the confidence interval
n number of required iterations
δ confidence parameter
ε approximation parameter
θ threshold probability or reward
δ� value to make the two hypotheses independent
αe type I error
βe type II error
maxReward maximum reward
γ an upper bound of the expectation
E[χP,Σ] reward expectation
maxi{Xi} maximum reward in the paths sample
Lmin value minimizing the function f (x) = (x+γ)2

2ε2 ln
�

2x
δx−γ

�

CI confidence interval method
ACI asymptotic confidence interval method
AMC approximate model checking method
SPRT sequential probability ratio test

82

Bibliography

[1] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, Cambridge,
2007.

[2] N. Barkai, S. Leibler, Biological rhythms: Circadian clocks limited by noise,
Nature, vol. 403, pp. 267-268, 2000.

[3] V. Bentkus, An Extension of the Hoeffding Inequality to Unbounded Ran-
dom Variables, Lithuanian Mathematical Journal, vol. 48, n. 2, pp. 137-157,
Springer, 2008.

[4] A. J. Bertie, Java Statistical Classes Library, 2005.
http://www.jsc.nildram.co.uk/

[5] F. Didier, T.A. Henzinger, M. Mateescu, V. Wolf, Approximation of Event
Probabilities in Noisy Cellular Processes, CMSB 2009, LNBI 5688, pp. 173-
188, Springer-Verlag, Berlin Heidelberg 2009.

[6] M. Duflot, M. Kwiatkowska, G. Norman, D. Parker, A formal analysis of
Bluetooth device discovery, International Journal on Software Tools for Tech-
nology Transfer (STTT), vol. 8, n. 6, pp. 621-632, October 2006.

[7] P.I. Good, J.W. Hardin, Common Errors in Statistics (and how to avoid them),
third edition, Wiley, 2009.

[8] B. Haverkort, H. Hermanns, J.-P. Katoen, On the use of model checking tech-
niques for dependability evaluation, Proc. 19th IEEE Symposium on Reliable
Distributed Systems, pp. 228-237, 2000.

[9] J. Health, M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, Proba-
bilistic model checking of complex biological pathways, Proc. Computational
Methods in Systems Biology, Lecture Notes in Bioinformatics, vol. 4210, pp.
32-47, Springer Verlag, 2006.

83

BIBLIOGRAPHY

[10] J. Health, M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, Prob-
abilistic model checking of complex biological pathways, Theoretical Com-
puter Science, vol. 319, n. 3, pp. 239-257, 2008.

[11] T. Hérault, R. Lassaigne, F. Magniette, S. Peyronnet, Approximate Proba-
bilistic Model Checking, VMCAI 2004, LNCS 2937, pp. 73-84, Springer-
Verlag, Berlin Heidelberg 2004.

[12] W. Hoeffding, Probability Inequalities for Sums of Bounded Random Vari-
ables, Journal of the American Statistics Association, vol. 58, Mars, n. 301,
pp. 13-30, 1963.

[13] O. Ibe, K. Trivedi, Stochastic Petri Net Models of Polling Systems, In IEEE
Journal on Selected Areas in Communications, Vol. 8, n. 9, pp. 1649-1657,
1990.

[14] S.K. Jha, E.M. Clarke, C.J. Langmead, A. Legay, A. Platzer, P. Zuliani, A
Bayesian Approach to Model Checking Biological Systems, CMSB 2009,
LNBI 5688, pp. 218-234, Springer-Verlag, Berlin Heidelberg 2009.

[15] D. E. Knuth, A. C. Yao, The complexity of nonuniform random number gen-
eration, in Algorithm and Complexity, Academic Press, New York 1976.

[16] L.L. Kupper, K.B. Hafner, How Appropriate are popular Sample Size Formu-
las?, in The American Statistician, vol. 43, May, n. 2, pp. 101-105, 1989.

[17] M. Kwiatkowska, G. Norman, D. Parker, Stochastic Model Checking, LNCS
4486, pp. 220-270, Springer-Verlag, 2007.

[18] R. Lassaigne, S. Peyronnet, Probabilistic Verification and Approximation,
Annals of Pure and Applied Logic, n. 152, pp. 122-131, Elsevier, 2007.

[19] A. Law, D. Kelton, Simulation Modelling and Analysis, McGraw-Hill Educa-
tion, New York 2000.

[20] P. Lecca, C. Priami, Cell cycle control in eukaryotes: A BioSpi model, Proc.
Workshop on Concurrent Models in Molecular Biology, ENTCS, 2003.

[21] J. Li, D. Jeske, Bartlett and Wald Sequential Hypothe-
sis Testing with Correlated Data, Quality & Productivity
Research Conference, New York 2009. http://www.amstat-
online.org/sections/qp/qprc/2009/papers/QPRC_Contributed_Session_4/Judy
_Bartlett_QPRC09.pdf

84

BIBLIOGRAPHY

[22] P. Massart, Concentration Inequalities and Model Selection, Lecture Notes in
Mathematics, n. 1896, Springer, 2003.

[23] D. Parker, Probabilistic Model Checking, lectures, Oxford University, 2009.
http://www.prismmodelchecker.org/lectures/pmc/

[24] A. Pnueli, L. Zuck, Verification of Multiprocess Probabilistic Protocols, Pro-
ceedings of the third annual ACM symposium on Principles of distributed
computing, p.12-27, August 27-29, Vancouver 1984.

[25] S.M. Ross, Simulation, third edition, Academic Press, 2002.

[26] W. Sandmann, C. Maier, On the Statistical Accuracy of Stochastic Simulation
Algorithms implemented in Dizzy, Proc. WCSB, pp. 153–156, 2008.

[27] K. Sen, M. Viswanathan, G. Agha, On Statistical Model Checking of Stochas-
tic Systems, CAV 2005, LNCS 3576, pp. 266-280, Springer-Verlag, Berlin
Heidelberg 2005.

[28] K. Sen, M. Viswanathan, G. Agha, Statistical Model Checking of Black-
Box Probabilistic Systems, R. Alur, D.A. Peled (Eds.), Proceedings of the
16th International Conference on Computer Aided Verification, pp. 202-215,
Springer, Berlin 2004.

[29] P. K. Shah, D. R. Jeske, R. F. Luck, Sequential Hypothesis Testing Techniques
for Pest Count Models With Nuisance Parameters, Journal of Economic En-
tomoly, vol. 102, n. 5, pp. 1970-1976, 2009.

[30] T. Tao, Concentration of Measure Notes, 2010.
http://terrytao.wordpress.com/2010/01/030254a_notes_1_contration_of
_measure/

[31] J. Vilar, H.-Y. Kueh, N. Barkai, S. Leiber, Mechanisms of noise-resistance in
genetic oscillators, Proc. Nat Acad Sci, vol. 99, n. 9, pp. 5988-5992, USA
2002.

[32] G. Barrie Wetherill, Sequential Methods in Statistics, chap. 4, Wiley, 1966.

[33] H.L.S. Younes, M. Kwiatkowska, G. Norman, D. Parker, Numerical vs.
Statistical Probabilistic Model Checking, International Journal on Software
Tools for Technology Transfer (STTT), vol. 8, June, n. 3, pp. 216-228,
Springer, 2006.

85

BIBLIOGRAPHY

[34] D. Zhang, Z. Wang, Probability Inequalities for Sums of Independent Un-
bounded Random Variables, Applied Mathematics and Mechanics, vol. 22,
May, n. 5, Shanghai 2001.

[35] P. Zuliani, E.M. Clarke, A. Platzer, Bayesian Statistical Model Checking with
Application to Stateflow/Simulink Verification, HSCC, April 12-15, Stock-
holm 2010.

[36] Colt Library, CERN, 1999. http://acs.lbl.gov/software/colt/

86

Appendix A

User guide for Statistical Model
Checking with enhanced PRISM

A good support for statistical approaches of probabilistic model checking has been
added to a development version of PRISM (present on the attached disk), and will
be integrated soon to the distributed version1. This provides all the methods de-
scribed in the thesis. Because there is lots of possible parameters, options, auto-
matic decisions and so on, these few pages offer a guide for the user who wants to
use PRISM statistically.

A.1 Graphic mode

The graphic mode of PRISM with statistics is easy to use, but not convenient for
automation of computation (see appendix B). It implements all the methods from
chapters 3 and 4, except the unbounded AMC method. To get information about
the console mode, which implements all the methods, read section A.2.

PRISM GUI offers the possibility of estimating the probability or reward of one
property2. To launch a simulation, add a model, create or add a property, and click
on this property and select simulation. A dialogue box is displayed, with several
fields (figure A.1). In the first one, one method among CI, ACI and AMC can
be chosen. Then select the parameter which is not supposed to be known. If the
CI or ACI method has been selected, this parameter will be computed after the
simulation. If AMC is used, the missing parameter is computed continuously. The
last field defines the maximum length of each path picked from the model.

1http://www.prismmodelchecker.org/
2Console mode can test several properties a time - read section A.2.

87

APPENDIX A. USER GUIDE FOR STATISTICAL MODEL CHECKING
WITH ENHANCED PRISM

Figure A.1: Dialogue box of method selection in graphic mode

Note that if AMC method has been selected with the confidence parameter δ as
missing parameter, if the approximation parameter ε and the number of iterations

N are such that Nε2 <
ln(2

δ)
2 , or Nε2 <

maxReward×ln(2
δ)

2 if it is a reward property, the
last field will ask to either decrease the accuracy or increase the number of itera-
tions.

If CI or ACI method is used, the decision concerning the possible null variance
will be made on the base of inequalities 3.6 and 4.1. To impose manually a mini-
mum number of iterations before claiming whether it is a null variance or not, just
uncheck the box automatic decision in the dialogue box (figure A.2) of options,
simulation, and specify the number of iterations in the number of iterations to con-
clude field.

For reward properties, the maxReward for AMC method can be defined in the
dialogue box (figure A.2) of options, simulation.

88

APPENDIX A. USER GUIDE FOR STATISTICAL MODEL CHECKING
WITH ENHANCED PRISM

Figure A.2: Dialogue box of simulation options in graphic mode

A.2 Console mode

The console mode implements all the methods presented in the dissertation, and
can be easily automatized using Unix/Dos environment.

To launch the model checking of a property prop over a model model, the
command3 is

. / p r i sm model −c s l p rop
n u m e r i c a l model c h e c k i n g o f prop on model

Now to use statistical model checking instead of the classic numerical ap-
proach, add -sim and define two parameters among -simapprox4, -simconf5 and
-simsamples - the number of iterations.

. / p r i sm model −c s l p rop −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h AMC
method , w i t h e p s i l o n =0.01 and d e l t a =0.05

3-csl or -pctl
4Approximation parameter if AMC, width of the CI if CI or ACI.
5Confidence parameter for AMC, level of confidence for CI and ACI.

89

APPENDIX A. USER GUIDE FOR STATISTICAL MODEL CHECKING
WITH ENHANCED PRISM

If three parameters are provided, the confidence parameter is ignored. If only
one or no parameter is given, the default values are considered.

The default selected method is AMC. To use CI or ACI instead, just add re-
spectively -CI and -ACI.

. / p r i sm model −c s l p rop −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5 −CI
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h CI
method , w i t h w i d t h =0.01 and a lpha =0.05

The maximum depth of each path in the model can be defined with -simpathlen:

. / p r i sm model −c s l p rop −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5 −CI −s i m p a t h l e n 10000

Until now, the decision concerning the nullity of the variance was made auto-
matically by equations 3.6 and 4.1. If we want to specify it manually, for a limit
case for instance, then we add the option -simmanual. The number of required
iterations to conclude is then the default one - to use another one, add -simvar:

. / p r i sm model −c s l p rop −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5 −CI −s immanual −s i mv a r 1000
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h CI
method , w i t h w i d t h =0.01 and a lpha = 0 . 0 5 . The d e c i s i o n
i s made a f t e r 1000 i t e r a t i o n s .

If we consider a reward property, the default AMC method is the AMC with
bounded variables. A default maximum reward value is taken into account, but it
can be modified with the option -simmaxrwd:

. / p r i sm model −c s l p rop . rwd −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5 −simmaxrwd 1000
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h AMC
method w i t h bounded v a r i a b l e s (bound : 1 0 0 0) , w i t h
w i d t h =0.01 and a lpha = 0 . 0 5 .

To use the unbounded AMC method (or method with bounded expectation),
add -ext to the command line. The expectation’s bound takes a default value, which
can be specified with -simmaxrwd.

. / p r i sm model −c s l p rop . rwd −sim −s imapprox 0 . 0 1 −s imconf
\ 0 . 0 5 −e x t −simmaxrwd 10
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h
unbounded AMC method , w i t h w i d t h =0.01 and a lpha = 0 . 0 5 .

90

APPENDIX A. USER GUIDE FOR STATISTICAL MODEL CHECKING
WITH ENHANCED PRISM

All these options can be used simultaneously.

Finally, to use the SPRT method, just specify the type I error α, the type II error
β and the δ� after the option -sprt.

. / p r i sm model −c s l p rop −sim − s p r t 0 . 1 0 . 1 0 . 1
s t a t i s t i c a l model c h e c k i n g o f prop on model w i t h
SPRT method w i t h a lpha =0.1 , b e t a =0 .1 , d e l t a ’ = 0 . 1 .

91

Appendix B

Strategies of automation for
simulations

Once the different methods have been implemented, it is interesting to test them
on real models and check experimentally that their behaviour is consistent. If the
width/approximation parameter and the number of iterations can be checked di-
rectly with one run of PRISM, it is not the case of the confidence parameter/level
of confidence (see subsection 3.5.1), and we have to develop some strategies to au-
tomatize the simulations, the collection of the data and their treatment and display.

We use the Linux environment, with our modified version of PRISM, to get the
results, GREP and SED to collect and format the data, BC to compute reals in the
Unix environment, and R to sketch graphs from data. A BASH script automatizes
all these operations. Some examples of this script can be found on the attached
disk.

All the strategies for probabilities and rewards estimations follow the following
scheme:

• compute numerically the probability/reward with PRISM (if relevant1)

• for each method,

– compute statistically the probability/reward with PRISM

– get and store the result, with GREP and SED

• generate a R command file with the data and the parameters2

1This is not possible for the biological examples, which are out of the range of the numerical
resolution of PRISM.

2To get the area of confidence in R, we need the quantile 1− α
2 - we use BC to compute it.

92

APPENDIX B. STRATEGIES OF AUTOMATION FOR SIMULATIONS

• make R generate a graph of the distribution of the estimations, with the area
of confidence for the confidence parameter.

This generates graphs such as figure 3.4.

To verify the properties with bounded probabilities/rewards, we check the ac-
ceptance regions of the test. The graphs like in figure 5.2 are generated with scripts
which have the following scheme:

• specify the threshold probability/reward range to test [θmin;θmax], and the
number of steps N

• specify the number S of samples per step

• for each step

– compute the corresponding threshold probability/reward using BC

– for S iterations

∗ compute the result using PRISM

∗ get the result with GREP and SED

∗ update the average of the results

– write in a R command file the pair (computed threshold, average)

• make R generate a graph linking the points.

93

