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Abstract. Numerical analysis based on uniformisation and study, that allows one to express properties such as “the prob-
statistical techniques based on sampling and simulation arability of n servers becoming faulty withinh5.07 seconds is
two distinct approaches for transient analysis of stochastiat most 0.01".
systems. We compare the two solution techniques when ap- Analysis of stochastic systems is typically carried out us-
plied to the verification of time-bounded until formulae in the ing eithernumerical or statistical solution techniques. Nu-
temporal stochastic logic CSL, both theoretically and throughmerical methods can often provide a higher accuracy than
empirical evaluation on a set of case studies. Our study differstatistical methods, whose results are probabilistic in nature.
from most previous comparisons of numerical and statisticaHowever, numerical methods are far more memory intensive,
approaches in that CSL model checking is a hypothesis testwhich often leaves statistical solution techniques as a last re-
ing problem rather than a parameter estimation problem. Weort [31[8].
can therefore rely on highly efficient sequential acceptance The verification of time-bounded CSL formulae can be
sampling tests, which enables statistical solution techniquegeduced to transient analys[s[[5,6]. Efficient numerical so-
to quickly return a result with some uncertainty. We also pro-|ytion techniques, such as uniformisation|[16[26,23, 8], for
pose a novel combination of the two solution techniques fortransient analysis of CTMCs have existed for decades and
Verifying CSL queries with nested probabilistic operators. are well-understood. Younes and Simmons [38] have pro-
posed a statistical approach for verifying time-bounded CSL
formulae, based on acceptance sampling and discrete event
. o o simulation. The use of acceptance sampling is possible be-
Key words: Model checking — Probabilistic verification - ¢ayse CSL formulae only ask if a probability is above or be-
Markov chains — Temporal logic — Transient analysis — Uni- oy, some threshold. Previous comparisons of numerical and
formisation — Hypothesis testing — Sequential analysis — Distagistical solution techniques have typically been based on
crete event simulation estimation problems. This study is concerned with hypoth-
esis testing problems, for which there exist highly efficient
_ sequentiabcceptance sampling tests that make statistical so-
1 Introduction lution techniques look more favourable than in a comparison
with numerical techniques on estimation problems. For prob-

Continuous-time Markov chains (CTMCs) are an importantabilistic model checking, it would generally be a waste of ef-
class of stochastic models, widely used in performance andort to obtain a good estimate of a probability, only to realise
dependability evaluation. The temporal logic CSL (Contin- that it is far from the threshold.

uous Stochastic Logic) introduced by Aziz et al[]2,3] and  We have implemented the statistical model checking al-
since extended by Baier et dl] [6] provides a powerful meansgyorithm in YMER [35], which also includes numerical solu-
to specify both path-based and traditional state-based perfotion engines for time-bounded CSL formulae taken from the
mance measures on CTMCs in a concise and flexible mannePRISM tool [25,18]. PRISM, a probabilistic model checker
CSL contains a time-bounded until operator, the focus of thisdeveloped at the University of Birmingham, makes use of

symbolic data representation in order to reduce memory re-
* Supported in part by DARPA and ARO under contract no. DAAD19— quirements for numerical techniques.
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Sect[?2, which includes a theoretical discussion of the comwheref € [0,1], ¢ € [0,00], < € {<,<,>,>} anda is an
putational complexity for the two competing approaches. Inatomic proposition from the setP used to label states of the
this section we also propose a combination of numerical andCTMC. We used I/ ¥ as a short-form fob /<> ¥. Other
statistical solution techniques to handle CSL formulae withlogic operators, such as disjunction and implication, can be
nested probabilistic operators. The idea of combining the twabtained using standard logic equivalence rules.
technigues has been explored beforel[[29,8], but not in the A states of a CTMC satisfies the formul®@..s [], de-
context of nested CSL queries. The mixed solution techniquenoteds = Puqg [¢], if P(s,¢) < 0, whereP(s, o) is the
has also been implemented inMER. probability that a path starting in statesatisfies the path
In Sect[4, we present empirical results obtained usingormula ¢. Here, a path formula is either® U<t ¥ for
YMER on a number of case studies, described in $éct. 3. This € [0, c0), meaning that formul# is satisfied withirt time
serves as a practical comparison of the two approaches. Theits and formulap is satisfied up until that point, @ I/ ¥,
empirical evaluation confirms the theoretical complexity re- meaning that /<t ¥ holds for some € [0, o). The value
sults discussed in Seff. 2. It demonstrates that the complexity(s, ) is defined in terms of the probability measure over
of both the numerical and the statistical approach is typicallypaths starting in state, as defined by Baier et al.l[6]. The
linear in the time-bound of the property, but that the statisticalS, 4 [#] operator describes the behaviour of the CTMC in
approach scales better with the size of the state space. Futhe steady-stateor long-run. The precise semantics of this
thermore, the statistical approach requires considerably lessnd the other CSL operators can be found_in [6]. In this pa-
memory than the numerical approach, allowing us to verifyper, we will focus our attention on CSL formulae of the form
models far beyond the scope of numerical solution methodsp,y [® U/S! ¥| with finite time-boundt.
The principal advantage of numerical techniques based on
uniformisation is that increased accuracy in the result come
at almost no price. The statistical solution method can ver
rapidly provide solutions with some uncertainty, however re-
ducing the uncertainty is costly, making numerical techniquesthe numerical model checking approach for verifying a time-
more appropriate when very high accuracy in the result is rebounded until formulaP..y [® &S ] in a states € S is
quired. based on first computing the probabili(s, ® U<t &), and
then testing ifP (s, ® US! ¥) < 6 holds.
First, as initially proposed by Baier et all [5], the problem
2 CTMCs and Probabilistic Model Checking is reduced to the computation of transient probabilities on a
modified CTMC. For a CTMQ@ = (S, R, L), we construct

Probabilistic model checking refers to a range of techniquedn® CTMCC" = (S, R/, L) by making all states satisfying
for the formal analysis of systems that exhibit stochastic be-"? V ¥ absorbing, i.e. removing all of their outgoing transi-
haviour. The system is usually specified as a state transitioHOns- HenceR' is obtained fromR by removing all entries
system, with probability values attached to the transitionsfom the appropriate rows. The probabiliy(s, # ¢/<' ¥) in

In this paper, we consider the case where this model is &€ CTMCC is now equal to the probability of, in the CTMC

.1 Numerical Probabilistic Model Checking

continuous-time Markov chain (CTMC). C’, being in a state satisfying at timet¢ having started in
A CTMC C is a tuple(S, R, L) whereS is a finite set of ~ States. . _ - . _
statesR.: S x S — [0, 00) is therate matrixand : S — The computation of this probability is carried out via a

24P is alabelling function mapping each state to a subset of Process known agniformisation(also known asandomisa-
the set of atomic propositiondP. For any states € 5, the  tion), originally proposed by Jensen [16]. We construct the
probability of leaving state within ¢ time units is given by ~ uniformiseddiscrete-time Markov chain (DTMC) @’. The
1— e Pe)t whereE(s) = Y. cs R(s,s'). E(s) is known probability transition matri¥ of C’ equalsl + (R’ — E') /¢,
as theexit rate If R(s,s’) > 0 for more than one’ € §,  Wherelisthe |dent!ty matrixE’ is adlagonallmatrlx contain-
then there is aace between the transitions leavinsgwhere ~ iNg exitrates ot”’, i.e. E'(s, s) equalsE’(s) if s = s” and0
the probability of moving tas’ in a single step equals the Otherwise, ang > max{E'(s) |s € S} is theuniformisation
probability that the delay corresponding to moving freto ~ constantof the CTMCC’.
s’ “finishes before” the delays of any other transition leaving It then follows thatP(s, & ¢/<* ¥) can be computed si-
s. A pathof the CTMC is a sequence of states, between eactinultaneously for all states € .S by computing the vector of
of which there is a non-zero probability of making a transi- Probabilities
tion. A path of the CTMC can be seen as a single execution -
of the system .be.ing modelled. _ . P@US W) = Z7<k’ gt) - (Pk g) ’ 1)
In probabilistic model checking, properties of the system —
to be verified are specified in a temporal logic. For CTMCs,
we use the temporal logic CSLI[2[3, 6], an extension of CTL.wherey(k, ¢-t) is thekth Poisson probability with parameter
The syntax of CSL is defined as gt (i.e.v(k,qt) = et (¢-t)* /k!), and¥ characterises the
<t set of states satisfying (i.e.¥(s) = 1 if s = ¥, and0 other-
=T |a|PND|[ D | Pog [PUS' D] | S [P] wise). If we are only interested in verifyirB..o [® US' ¥]

k
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in a single state, then we only need to carry out the summa- region. This is a result of the error due to steady-state detec-
tion in (3) for P(s,® US! &), which in practice can save us tion being two-sided, while the truncation error is one-sided.
both memory and time. However, as pointed out by KatoernTo guarantee an error region of widtinstead oRe, itis nec-
et al. [17], the asymptotic time complexity is the same whenessary to boundP*s - & — IT*|| by ¢/8 instead of/4. This
computing the entire vectaP(® LSt W). In this paper, we  correction yields the error bounds:/4 < P(s,® USt &) —
only compute the entire vector for nested probabilistic for- P(s, d US! @) < 3e/4 forall s € S.
mulae. In practice, the true steady-state vecibt is not known

In practice, the infinite summation in|(1) is truncated from a priori, so instead we stop when the norm of the difference
the left and the right by using the techniques of Fox andbetween successive iterates is sufficiently small (at ryst
Glynn [10] so that the truncation error is bounded by an aby the above analysis), as suggested by Malhotra et al. [23].
priori error tolerance. This means that i (& U/<* ¥) is the
solution vector obtained with truncation, then 2.1.2 The Sequential Stopping Rule

<tg)— P <t . . .
0< P(s, @US W) = P(s,PUN W) <e VseS5. () 19 potentially reduce the number of iterations even further,

The left and right truncation points, denotedandR, re- ~ We note that the CSL quef. [@ <" ¥] does not require
spectively, depend on the truncation ercoNote that, since  that we compute’(s, @ U/<* ¥) with higher accuracy than is
iterative squaring is generally not attractive for sparse matri'éeded to determine whethB(s, » 1/<* ¥) e ¢ holds. In
ces due to fill-in[[30, 26], the matrix produd®" are typically the following ana_IyS|s we restrick to > as the other three
computed in an iterative fashioR* - ¥ = P . (Pk—1.g). ~ casesare essentially the same. -
Thus, although the left truncation poift allows us to skip Let P#(s, & US' @) denote the accumulated probability
the firstL, terms of [[1), we still need to compul®* - w for ~ UpP until and _mcludlng iteratiort. Because each term ip] (1)
k < L., making the total number of iterations required by the i NOn-negative, we have'(s, # US' ¥) > P*(s, 0 US' ¥)
algorithm R... The value ofR, is g-t + ky/2 + 3/2, where  for all i > k. Therefore if P*(s,® U<* ¥) > ¢ holds for
kis o(\/log(1/€)) [I0]. This means that the number of iter- SOMek < R, then we can answer the quePy. o [¢ U< V]
ations grows very slowly asdecreases. For large values of affirmatively after onlyk iterations instead oR. (or ) iter-
¢-t, the number of iterations is essentiafl(g-t). Each iter- ~ ations. o _
ation involves a matrix-vector multiplication and each such ~ For early termination with a negative result, we can use
operation take®) (M) time, whereM is the number of non- the upper bound on the right Poisson tail provided by Fox and

zero entries in the rate matrR. The time complexity for ~ Glynn [10] fork > 2+ [q-t] to determine ifPs o [& US' 7]

the numerical solution technique is theref@dég-t-M) (cf. is false before completing, iterations. Letl’ be the upper
[23)). bound on the right Poisson tail. #*(s,® USt @) + T < 0,

then we know already aftdr iterations thatPs ¢ [ US' V]
2.1.1 Steady-State Detection is false.

We now have a sequential stopping rule for our algorithm,
To potentially reduce the number of iterations required bybut note that the potential savings are limited by the fact that
the numerical model checking algorithm, we can use on-thethe positive part of the rule applies first after iterations and
fly steady-state detection in conjunction with uniformisation the negative part first aftex + |¢-¢| iterations, and bottd.
[26//23]. If the uniformised DTMC reaches steady-state afterandZ. are of the same order of magnitudegais We will see
k., < R, iterations, therP* . & = Pk . ¢ for all k > ks, later that the sequential component of the statistical approach
which means that we can compulé® U/<* ¥) as follows  is much more significant.
using onlyk; iterations:
2.1.3 Symbolic Representation

PRISM uses binary decision diagrams (BDDs) [7] and multi-

W=t ) terminal BDDs (MTBDDs) [[9,4,11] to construct a CTMC
re from a model description in the PRISM language, a variant
ks | ’
- k; v(k.at) | - (P*-2) of Alur and Henzinger's Reactive Modules formaligt [1]. For

numerical computation though, PRISM includes three sepa-
We can ensure that a steady-state vector actually exists byateenginesnaking varying use of symbolic methods.
choosingy strictly greater thamax{E(s) | s € S} [26/23]. The first engine uses MTBDDs to store the model and it-
Malhotra et al.[[2B] derive an error bound fp} (3) under the eration vector, while the second uses conventional data struc-
assumption that the steady-state point can be detected exactiyres for numerical analysis: sparse matrices and arrays. The
within a given error tolerance. Lél * denote the true steady- latter nearly always provides faster numerical computation
state vector. Malhotra et al. claim thaf|iP*- - W —IT*|| < ¢/4  thanits MTBDD counterpart, but sacrifices the ability to save
for L. < ks < R., then the same error bound as|[if (2) is memory by exploiting structure. A thirdhybrid, engine pro-
guaranteed. The error analysis is flawed, however, in that ivides a compromise by storing the models in an MTBDD-like
results in an error region twice as wide as the original errorstructure, which is adapted so that numerical computation can
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be carried out in combination with array-based storage for The above problem formulation is flawed, however, since,
vectors. This hybrid approach is generally faster than MTB-in the case whergis equal to the threshol] we simultane-
DDs, while handling larger systems than sparse matrices, andusly require the hypothesi$ to be accepted both with prob-
hence is the one used in this paper. For further details andbility at leastl —« and with probability at mogt. For this to
comparisons between the engines 5eé [19, 24]. work, we need to have — « = 3, which means that we can-
not control the two error probabilities independently. In order
to obtain the desired control over the two error probabilities,
we relax the hypothesis testing problem by introducing two
thresholdspy andp;, with pg > 6 > p;. Instead of testing
Statistical technigues, involving Monte Carlo simulation and g7 againstK, we choose to test the hypothesls : p > po
sampling, have been in use for decades to analyse stochasfigainst the alternative hypothedi : p < pi. We require
systems. Younes and Simmons|[38] show how discrete everhat the probability of accepting; whenH, holds is at most
simulation and acceptance Sampling can be used to Verif)&, and the probabmty of acceptingo When[—[1 holds is at
properties of general discrete event systems expressed as Cqlgst 3. Figure[2 shows the typical performance characteris-
formulae not includingPuqe [© U @] and Swp [2]. We fo-  tic of a realistic acceptance sampling test. If the valup isf
cus here orPs 4 [¢ US' W], noting thatP< g [P US' W] = petweenp, andp;, we are indifferent with respect to which
—Ps ¢ [ US' W], and also that- (<) is practically indistin-  hypothesis is accepted, and both hypotheses are in fact false
guishable from> (<) to any acceptance sampling test. The in this case. The regiofp;, po) is referred to as thndiffer-
same can of course be said of numerical approaches as wedhce regiorand it is shown as a gray area in Fig. 2.
due to the use of finite precision floating-point arithmetic. For CSL model checking, the two thresholels and p;
Given a CTMCC, a states of C, and a CSL formula can be defined in terms of a single thresh@land the half-
P g [¢], we wish to test whether the probabilify(s, ), for  width of the indifference regios, i.e.p, = 6 + § andp;, =
the remainder of this section simply denotgds above or  §—g. TestingH, againstH, can then be interpreted as testing
below the threshold. We can formulate this as the problem the hypothesisf : p > 6 against the alternative hypothesis
of testing the hypothes# : p > 6 against the alternative hy- K : p < 6, as originally specified, where acceptancerf
pothesisk : p < 6. In this section, we discuss how to solve results in acceptance df and acceptance dff; results in

2.2 Statistical Probabilistic Model Checking

such a problem using statistical hypothesis testing. acceptance of’. The probability of accepting/ is therefore
atleastl —«aif p > 0+ dand atmospif p < 6 — 0. If
2.2.1 Statistical Hypothesis Testing |p — 6] < 4, then the test gives no bounds on the probability

of accepting a false hypothesis. In this case, however, we say

Let X, be a random variable representing the verification ofthatp is sufficiently close to the thresholtiso that we are
the path formulay over a path foC drawn at random from  indifferent with respect to which of the two hypothes#sor
the set of paths starting in statelf we chooseX; = 1 to K, is accepted. By narrowing the indifference region, we can

represent the fact that holds over a random path, aid = get arbitrarily close to the ideal performance shown in[Fig. 1.
0 to represent the opposite fact, th&pnis aBernoulli variate
with parametep, i.e. Pr[X; = 1] = p andPr[X; = 0] = 2.2.2 The Sequential Probability Ratio Test

1 — p. An observation ofX;, denotedr;, is the verification of
v over a specific path;. If o; satisfies the path formula, We use Wald'ssequential probability ratio teg32] to test
thenz; = 1, otherwiser; = 0. In our case, an observation is the hypothesig{, : p > py against the alternative hypothesis
obtained by generating a sample path,using discrete event H; : p < p;. The sequential probability ratio test does not use
simulation, and then testingdf; satisfiesp. Note that we can  a predetermined number of observations, but instead deter-
perform simulation at the level of the PRISM language andmines after each observation if another observation is needed
never need to generate the underlying CTMC. or if the information currently available is sufficient to accept
Whenever we consider statistical approaches for solvinga hypothesis so that the test has the prescribed strength. A sta-
hypothesis testing problems, we generally have to toleratdistical procedure that takes observations into account as they
that any test procedure we use can accept a false hypothese made is called sequentiaprocedure.
but this is satisfactory so long as the probability of error is ~ The sequential probability ratio test is carried out as fol-
sufficiently low. In particular, the test procedure should limit lows. At themth stage of the test, i.e. after makingobser-

the probability of accepting the hypothegiswhenH holds  vationsz, ..., z,,, we calculate the quantity

(known as a type | error, or false negativeptoand the prob-

ability of acceptingf whenk holds (a type Il error, or false ~ Pim 17 PrXi =zilp=p1]  pim(1—py)™ =
positive) should be at mogt with a + 5 < 1. Figure[] plots Pom bl Pr[X; = zi|p = po] pim (1 — pg)m—dm

the probability of accepting/ as a function op, denotedL,,

for a hypothetical acceptance sampling test with ideal perforwhered,, = >, ;. The quantityp;,, is the probability
mance in the sense that the type | error is exaethnd the  of the observation sequenesg, . . ., z,, given thatPr[X; =
type Il error is exactly3. The parameters and5 determine 1] = p; making the computed quantity a ratio of two proba-
thestrengthof an acceptance sampling test. bilities, hence the phrag@obability ratioin the name of the
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Fig. 1. Probability,L,,, of accepting the hypothesig : p > 6 as a function
of p for a hypothetical statistical test.

test. Hypothesigi, is accepted if

Pom
and hypothesiéi, is accepted (i.eH is rejected) if
Pom

whereA andB, with A > B, are chosen so that the probabil-

ity is at mosta of acceptingH; when H holds, and at most
0 of acceptingdy when H, holds. Otherwise, additional ob-
servations are made until eithgt (4) of (5) is satisfied.
Finding A and B that gives strengtkxy, 5) is non-trivial.
In practice we choosd = (1 — 3)/a andB = /(1 — a),
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Fig. 2. Probability, L,,, of accepting the hypothesi$y : p > po as a func-
tion of p for a statistical test with indifference region.

so is the time per observation, which means that we can only
talk about theexpectedtomplexity of the method.

First, consider the time per observation. A sample path
o; may very well be infinite, but in order to verify the path
formulay = @ USt ¥, we only need to generate a prefix of
o;. We stop as soon as we reach a state satisfyiby ¥, or
if the time limit ¢ is exceeded. In each state along the prefix,
we verify the formulaed and¥. If both of these formulae
are classical logic expressions, i.e. contain no probabilistic
operators, then we can treat the time required per state as a
constant. Consequently, the time per observation is propor-
tional to the length of the prefix af; required to determine
the truth-value of the path formula If we are lucky, a state
satisfying—® v ¥ is reached early, but in the worst case we

which results in a test that very closely matches the prescribetlave to continue until the time limit is exceeded. The ex-

strength. Let the actual strength of this testbg 5’). Wald
[32] shows that the following inequalities hold:

/ (07

‘<15 (6)
g<t ™
—

This means that ifv and 5 are small, which typically is the
case in practical applications, then and 3’ can only nar-

pected time per observation is theref@péq-t), whereq is

the maximum exit rate of the CTMC model. In order to ob-
tain a tighter bound, we would have to know more about the
CTMC than just its maximum exit rate.

The second component of the complexity is the expected
sample size, which for a sequential test depends on the un-
known parametep. Let V, denote the expected sample size
as a function of the parameterThe complexity of the statis-
tical model checking approach is thérg-t-N,,), which can

rowly exceed the target values. Wald [32] also shows thabe compared t®(q-t-M) for the numerical solution method.

o + 3 < a+ S, so at least one of the inequalitie$ < «

The expected sample size for statistical hypothesis testing, in

ands’ < 8 must hold, and in practice we often find that both general, depends on the error boundsnd3, and the proba-

inequalities hold.

2.2.3 Complexity of the Statistical Solution Method

bility thresholdspy andp; (alternatively expressed using the
threshold? and the half-width of the indifference region.
There is, however, no immediate dependence between the
expected sample size and the size of the state space for the

The complexity of the statistical approach depends on théeTMC model. This is in sharp contrast to the time complex-

number of observations, also called g@nple sizerequired

ity for the numerical method where the factar, the number

to reach a decision, as well as the time required for each obef non-zero entries in the rate matidg, is at least linear in
servation. An observation involves the verification of a CSL the size of the state space.

path formulap over a sample path;. The sample size for

An exact formula for the expected sample size required

the sequential probability ratio test is a random variable, andy the sequential probability ratio test is not available, but
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P N, that there exist tests that achieve a lower expected sample size
o 1-7 for other values op, in particular ifp happens to be in the in-
0 S difference region. Alternative approaches have therefore been
log l-m suggested, in particular so callBdyesiarapproaches where
1 =po the objective is to minimise the expected cost subject to a cost
.y ¢ per observation and a unit cost for accepting a false hypoth-
flog ¢ +(1—0)log esis [27.21]. While this and other alternative formulations of
b —n the hypothesis testing problem are certainly interesting, we
prlog=— + (1 —p1)log . S
— Do will not explore them further in this paper because they rep-
8 1-3 resent a departure from the model where the user specifies the
—log 7 log — desired strength of the test. We refer the reader to Lai [22] for
5 p1 1T —po a more detailed account of the developments in the field of
log Do log 1—p1 sequential hypothesis testing since the ground breaking work
of Wald.
(l—a)log1 + alog ;ﬂ
Po otog P+ (1— po) log 1— gl 2.3 Mixing Numerical and Statistical Techniques
— Po

Although the algorithm of Younes and Simmons][38] can

log 11— handle CSL formulae with nested probabilistic operators, the
1 Tloe 2L way in which it is done requires that the nested formulae be
% po verified in each state along a sample path. Since the verifi-

. : . .. cation of path formulae now involves acceptance sampling,
Table 1. Approximate expected sample size for the sequential probability . . . .
ratio test. The approximation formulae for= 0 andp — 1 differ from there is some probability of error associated with each obser-

those derived by Wald [33]. This is because we asspme> p1, while vation used for the verification of the outer probabilistic op-
Wald assumes the opposite. erator. To cope with this uncertainty in the observations, the
indifference region of the outer probabilistic operator must be
reduced, which leads to an increase in the expected sample
size. In addition, the nested formulae must be verified with
lower values forx and 5 than used with the outer probabilis-
-8 tic operator. The numerical approach, on the other hand, can
1—a o verify the nested formulae for all states simultaneously at the
D1 1—p 8) same (asymptotic) cost as verifying the formulae for a single
plog -+ (1 —p)log — - state. This is beneficial when dealing with nested probabilis-
tic operators.
We therefore propose a mixed approach, implemented in
Y MER, where statistical sampling is used to verify the out-
ermost probabilistic operator, while numerical techniques are
used to verify the nested probabilistic operators. We can mix
the numerical and statistical techniques by assuming that the
result of the numerical technique holds with certainty (i.e.
a = = 0interms of a statistical test). The nested formulae
are first verified for all states using numerical methods. When

Wald [32] provides

1
L,log +(1—-L,)log

p =

as a good approximation d¥,, whenp; is not far fromp,
which is typically the case in practice. The quantityis the
probability of acceptingd, whenPr[X; = 1] = p. Wald
provides an approximation formula fdr, as well, but the
formula is not suited for computing an approximation/gf
for an arbitraryp. ApproximatingV,, for an arbitraryp is
therefore non-trivial, but we can provide explicit formulae for
a few cases of special interest shown in Table 1, with

1—po verifying a path formula over a sample path we only need to
log 1—p, read the value for each state along the path without any addi-

5= T —po) (9)  tional verification effort for the nested formulae. The cost for
lo m verifying the nested components of a formula is exactly the

same for the mixed approach as for the numerical approach,
The expected sample size increasesgses fromdtop; and  but the use of sampling for the outermost probabilistic oper-
decreases gsgoes frompg to 1. In the indifference region ator can provide a faster solution.

(p1,p0), the sample size increases frgmto some poinp’ The time complexity for the pure numerical approach is
and decreases fromi to pg. The pointp’ is generally equal  O(g-t-M + ¢-t'-M), when used to verify a CSL formula with
to s or at least very near [33]. a single nested probabilistic operator and time bounds of

An amazing property of the sequential probability ratio and¢’ for the outer and nested until formulas, respectively.
test is that it minimises the expected sample size at ppth The mixed solution method replaces the uniformisation step
andpy, i.e. no other statistical test with the same strength willfor the outer probabilistic operator with statistical hypothesis
have a lower expected sample size if the unknown parametdesting, which therefore yields an overall time complexity of
p is equal to eithepy or p; [34]. It is well-known, however,  O(g-t-N, + ¢-t'-M).
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Fig. 3. Tandem queueing network with a two-phase Coxian distribution gov- * |
erning the routing time between the queues. [
T
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3 Case Studies Fig. 4. A grid world with a robot (R) in the bottom left corner and a janitor

(J) inthe centre. The dashed arrow indicates the path of the robot. The janitor
moves with equal probability to any of the adjacent squares.
We now present two case studies, taken from the literature
on performance evaluation and probabilistic model checking,
on which we will base our empirical evaluation. A third sim-
ple example is also introduced to illustrate the use of neste
probabilistic operators in CSL. More information about all of
these case studies can be found on the PRISM welj site [25

& if ¢ = n). The polling and service times are exponentially

distributed, as is the time before arrival of a new message
t each station. The fact that arrival rates are equal for all sta-
ions makes the system symmetric. The size of the state space

for a system withn stations isO(n-2").

3.1 Tandem Queueing Network We will verify the property that, if the buffer of station

1 is full, then it is polled withinT' time units with prob-

The first case Study is based on a CTMC model of a tanderﬁ{b”ity at least0.5. We do so in the state where station 1

queueing network presented by Hermanns et al. [12]. The nefias just been polled and the buffers of all stations are full.

work consists of ai/Cox, /1 queue sequentially composed Let s € {1,...,n} be the station currently receiving the

with anM/M/1 queue. The capacity of each queuej@nd  Server's attention, let € {0,1} represent the activity of

the state space i8(n?). The property of interest is given by the server ({ for polling and1 for serving), and letn; €

the CSL formulaP_ o 5 [T UST full] whichis truein astate {0,1} be the number of messages in the buffer of station

if there is a less than0% chance of the queueing network The property of interest is represented in CSlnas=1 —

becoming full withinT" time units. We verify the correctness P> 0.5 [ T UST polll], wherepolll = s=1 A a=0, and the

of this property in the state where both queues are empty. State in which we verify the formula is given by=1 A a=1A
Figure[3 shows a schematic view of the tandem queueingu=1A--- Amp=1.

network. Messages arrive at the first queue with pgtand

exit the_system from the second queue with ve_ltb‘ thefirst 33 Grid World

queue is not empty and the second queue is not full, then

messages are routed from the first to the second queue. Th

routing time is governed by a two-phase Coxian distributionTehe final case study mvolvgs a robot nawg:_;ttlng in a grid
with parametersu;, 11, anda. Here, 1; is the exit rate for world, and is introduced to illustrate the verification of for-
H il . Ll k2

theith phase of the distribution, arid— « is the probability mulae with nested probabilistic operators. We have anr.

of skipping the second phase. Let € {0, ...,n}, fori € grid Worl_d with a robot moving frc_>m the bottom left corner to
(1,2}, denote the number of messages currently in qugue the top right corner. The r(_)bot first moves ql_ong the bottom
and letph € {1,2} denote the current phase of the Coxian edge ‘.Emd .the_n along_the right edge. In addition to thg robot,
distribution. We express the condition that the system is fullther? IS a janitor moving fa”dom'Y around t_he grid. Figre 4
with the formulafull = s,=n A sy=n A ph=2, and the state  PrOides a schematic view of a grid world with- 5.

in which we verify the CSL formule- o5 [T U< full] is The _rob(_)t moves at _ratkeRz unless the janitor occupies
given bys; —0As,=0A ph=1, i.e. when the system is empty. the destination square, in which case the robot remains sta-

tionary. The janitor moves around randomly in the grid world
at rate) 5, selecting the destination from the set of neighbor-
3.2 Symmetric Polling System ing squares according to a discrete uniform distribution. The
robot initiates communication with a base station at yate
For the next case study, we considerrastation symmet- and the duration of each communication session is exponen-
ric polling system described by Ibe and Trivedi[14]. Each tially distributed with rates.
station has a single-message buffer and the stations are at- The objective is for the robot to reach the goal square
tended by a single server in cyclic order. The server beginst the top right corner withirf; time units with probabil-
by polling stationl. If there is a message in the buffer of sta- ity at least0.9, while maintaining at least &.5 probability
tion 1, the server starts serving that station. Once statims  of periodically communicating with the base station (on av-
been served, or if there is no message in the buffer of statioerage, at least once every time units). The CSL formula
i when it is polled, the server starts polling station 1 (or P> .9 [(P>o.5 [T US™2 comm]) UST* goal] expresses the
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given objective. There is nothing in the model that obstructsory logarithmic in the size of the state space. We never ex-
communication, but the communication requirement will not hausted memory during verification when using the statistical
be satisfied in any statesit is too low. The size of the state solution method.

space i€)(n?) for this case study.

4.2 Performance of the Numerical Solution Method

4 Empirical Evaluation
For model checking time-bounded until formulae using the

We base our empirical evaluation on the case studies prer]umerlcal approach, PRISM computes the Poisson probabil-

sented in Secf.]3. We have verified the time-bounded untilt!es (see Seck 3 1) using the Fox-Glynn algoritfim [10]. This

formulae for the first two case studies using both the numeri—y'ems’ for the hybrid engine, an overall time complexity of

- . . -t-M), wheregq is the uniformisation constant described
cal and the statistical approach, varying the problem size anQ(q. 2 . . ;
bp ying P ( earlier,t is the time bound of the until formula and is the

thereby the size of the state space) and the time bound. All re= .
number of non-zero entries R.

sults, for both the numerical and the statistical approach, are .
In all the examples considered, the number of non-zeros

for the verification of a CSL property in singlestate. The . N : ,
results were generated on a 500 MHz Pentium IIl PC runnin n the rate matrix is linear in the size of the state space. Hence,
he verification time for a given time-bounded until formula

Linux, and with a 700 MB memory limit set per process. is i i the si  the stat be ob di
Figs.[5 and b present statistics for model checking of thel> 'N€ar in the size of the state space, as can be observed in

tandem queueing network and symmetric polling system casg igs[3(a) anfl]6(a). Thecreasan Fig.[§(a) of the verifica-

studies, respectively. In each case, we include the verificatioH.On time is caused by the fact that, f_or modgls above a pertam
size, on-the-fly steady-state detection is triggered during the

time for both the numerical solution method and the statis- X .
tical solution method using various test strengths (subfigure§Iumerlcal (_:omputatlon (see S_l‘l)_' . _ .
For a single model, the complexity is linear in the time

(a) and (b)). We also give, for the statistical approach, de- k
tails of both sample size (subfigures (c) and (d)) and patfpound. as demonstrated by the results in figs. S(b and 6(b).
length (subfigures (e) and (f)). For all data, we plot the re-Note that the vern‘lc_:atlon time in both these cases becomes
sults against both model size (subfigures (a), (c) and (e)) anaorjsyant once the time bound has bepome ;uﬁlc!ently large.
against the CSL until time bound (subfigures (b), (d) and (f))_Thls_ is caused by stegd_y-state detection, which gives _the nu-

For the numerical approach, we used a precision of merlcal_approach a distinct z_idvantage over the statistical ap-
10-5. For the statistical approach, we used an indifference rePTach in the tandem queueing network case study.

gion with 25 = 10~2, unless otherwise noted, and the results '€ sequential stopping rule (see SEct. 2.1.2) for the nu-
obtained correspond to the average over ten runs. merical solution method also helps to reduce the verification

time, but the reduction is typically moderate. Figure 7 shows,
) for the symmetric polling systen¥( = 20), the number of

4.1 Memory Requirements iterations required for solution, as a fraction Bf (the up-

per truncation point provided by the Fox-Glynn algorithm,
In the case of the numerical solution method, all experiments.e. the maximum possible number of iterations). Note that,
were run using the hybrid engine (see SEect] 2.1) which, alin all cases, this fraction is less than one. For the smaller
though not necessarily the fastest engine, in general allowmodels, the large reduction in iterations is due to steady-state
the analysis of larger problems than the other engines. Thdetection. On the otherhand, for larger models the reduction
limiting factor in this approach is the space required to storeis caused by the sequential stopping rule (corresponding to
the iteration vector: however compact the matrix representathe plateau in the graph). The reduction stays at ardund
tion is, memory proportional to the number of states is re-percent, and starts to get smaller for larger models because
quired for numerical solution. the probability of the path formula holding gets closer to the

More precisely, the hybrid engine with steady-state detecthreshold).5.
tion requires storage of three double precision floating point
vectors of sizgS|, which for the memory limit of 700 MB
means that systems with at most 31 million states can be an
ysed. We need an additional floating point vector of $&e
for verifying a formula in all states simultaneously, which is As discussed in Sedt. 2.2, there are two main factors influ-
done for nested probabilistic formulae, and this would makeencing the verification time for the statistical approach: the
the limit 23 million states. In practice, for the first two case number of samples and the length of sample paths (in terms
studies, we were able to handle systems with about 27 milef state transitions). Consider the problem of verifying the
lion states, showing that the symbolic representations of thdormula P> ¢ [¢] in states, with p = P(s, ) denoting the
probability matrices are fairly compact. probability thaty holds over paths starting
The memory requirements for the statistical approach are  For fixeda and § (test strength) and (indifference re-

very conservative. In principle, all that we need to store dur-gion), the number of samples grows larger the clasgets
ing verification is the current state, which only requires mem-to the probabilityp. The peaks in the curves for the statistical

afl_.3 Performance of the Statistical Solution Method
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Fig. 5. Empirical results for the tandem queueing network, with= 50 to the left andn = 31 to the right. The dashed curves in (a) and (b) are for the
numerical approach using the hybrid engine wite: 10~6. The solid curves are for the statistical approach @ith= 102, anda and as indicated. The
dotted lines mark a change in the truth value of the formula being verified.



10 Hakan L. S. Younes et al.: Numerical vs. Statistical Probabilistic Model Checking

t(s) 1 (s)
X, numerical - x - . numerical - x -
104 o= ﬁ = 1078 —A—
a=p=10" =
10° A a=p= 10*? ——
a=4=10" ——
10
X e X m =X mm X - - - - X
10!
10°
107!
1072
102100 10° 108 100 102 10™ISI 10! 10? 108 T
(a) Verification time as a function of state space size. (b) Verification time as a function of formula time bound.
N
10° a=p=10"% =
a=p=10" =
a=p=107
10° a==10" -
10*
10°
=) =) =) =]
SO0 1o—-C b 102 R n ——%= '”? ; P ”,? >
102100 106 108 10 10 10MIS 107 108 T
(c) Sample size as a function of state space size. (d) Sample size as a function of formula time bound.

10!

100 100 10 108 101 10" 10M1S 10! 10° 100 T
(e) Path length as a function of state space size. (f) Path length as a function of formula time bound.

Fig. 6. Empirical results for the symmetric polling system, with= 20 to the left andn = 10 to the right. The dashed curves in (a) and (b) are for the
numerical approach using the hybrid engine wite: 10~6. The solid curves are for the statistical approach @ith= 102, anda and as indicated. The
dotted lines mark a change in the truth value of the formula being verified.
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that in the worst case we can expect sample path lengths to be
proportional ton. As n increases, the sample path length be-
comes the dominant performance factor because the sample
size remains constant as seen in Fjg. 5(c), meaning that verifi-
cation time for the statistical approach becomes proportional
to n. This is to be compared with the numerical approach,
whose performance is linear in the size of the state space,
which is quadratic im. In the polling example, the arrival
rate \ is inversely proportional to the number of polling sta-
tionsn, while the other rates remain constant forsallThis
explains the levelling-off of the expected sample path length
plotted in Fig[ §(e).

Recall that we only need to generate as much of a sam-
ple path as is needed to determine the truth value.d¥or
o0 102 100 100 105 106 107 1SI ¢ = ®UST ¥, we can stop if we reach a state satisfying
-® Vv ¥ (cf. the CTMCC’ constructed in the numerical ap-
proach in Secf. 2]1). The effect of this is seen most clearly for

Fig. 7. Iterations as a fraction ak. for the symmetric polling system with

r=20 the polling case study as we increase the time bound. Once
the path formula is satisfied the average length of the sample
i o ] ) . paths does not increase (Hig. 6(f)).
solution method all coincide with being close to or in the In general, we can say that the statistical solution tech-
indifference regior{f — 4,0 +4). nigue scales better than the numerical solution technique with

The average sample size required to verify a formula ofyp jncrease in the size of the state space, but that steady-state
the form P 4 [¢] rapidly decreases gs gets further away  getection can give the numerical approach an advantage when
from the threshold. We see this clearly in Fig§] 5(¢)} 6(C). the time bound is high. It should also be clear from the results
and[§(d) where the sample size is plotted against either thgresented here that the sequential aspect of the statistical ap-
state space size or the time bound of the until formula. Thebroach has a greater effect then the sequential component of
empirical results also indicate that the sample size is proporthe numerical approach. This means that the statistical is bet-

tional to the logarithm of the test strength, so that the requireder gt adapting to the difficulty of the verification problem at
sample size doubles whenand3 goes froml0~* to 1027, hand.

This is generally only true ip is not in the indifference re-
gion. From the approximation formula for= s in Table[]
(s refers to the quantity defined if](9), and not to a state), it4.4 Trading Accuracy for Speed
follows that the numerator a¥, is equal to(log(a™! — 1))2
for a = (3, which means thalv, is approximately propor-  With both solution methods, it is possible to adjust the accu-
tional to thesquareof log « if p is in the indifference region. racy of the result. For the statistical approach, we can con-
We can see an example of this in Hig). 6(d). The exceptionallytrol the parameters;, 3, andd so as to trade accuracy for
sharp peak is fof” = 9.71, which is almost in the centre of efficiency. By setting these parameters high, we can get an
the indifference region. answer quickly. We could then gradually tighten the error
Outside of the indifference region, where the sample sizébounds and/or the indifference region to obtain higher accu-
remains almost constant at a low level, the key performanceacy. This approach is taken by Younes etlall [37], who mod-
factor instead becomes the length of sample paths. This fadfy the statistical solution method for verifying CSL formulae
tor depends on the exit rates of the CTMC and on the pattof the formP- 4 [¢] without nested probabilistic operators so
formula ¢. An upper bound on the expected sample paththat it can be stopped at any time to return a result.
length for an until formula with time bound’, as noted in Figure[§ shows how the verification time for the symmet-
Sect[2.P, i90(¢-T'), which is also the number of iterations ric polling system case study.(= 10, T = 40) depends on
for the numerical solution technique. We can see in [Figs. 5(b}he strength of the test and the width of the indifference re-
and 6(b) that the curves for the numerical and statistical solugion. We can see that the verification time is inversely propor-
tion techniques initially have very similar slope. For the tan-tional both to the error bounds and the width of the indiffer-
dem queueing network case study, the numerical approachnce region, and that for some parameter values the numerical
benefits greatly from steady-state detection and outperformapproach is faster while for others the statistical approach is
the statistical approach dsincreases. Figuig 5(f) shows that the fastest. Using the statistical approach with error bounds
the average sample path length for the statistical approachin = 3 = 10~* and half-width of the indifference region
this case is proportional to the time boufigcross the entire  § ~ 7105, for example, Fii]s demonstrates that we could
range of time bounds considered. obtain a verification result for the symmetric polling system
For the tandem queueing network, the arrival rate for mesproblem in roughly the same time as is required by the nu-
sages idn, wheren is the capacity of the queues. This meansmerical approach. For larger models, we would of course be
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Fig. 8. Verification time for the symmetric polling system & 10 andT = Fig. 9. Verification time as a function of state space size for the grid world
40) as a function of the half-width of the indifference region for different test example, withl; = 100 and7> = 7. The dotted line marks a change in the
strengths. The dashed line represents the verification time for the numericatuth value of the formula being verified.

approach.

able to obtain even higher accuracy with the statistical ap_focused our attention on time-bounded properties as these are

proach if allowed as much time as needed by the numerica'i_he type of properties most suited for statistical methods (the

approach to solve the problem. The results in Fg. 8 also infime-bound provides a natural limit for simulations).

dicate that it is more costly to make the indifference region ~ The nature of CSL formulae allows us to use statistical
narrower than to reduce the error probabilities. For examplehypothesis testing instead e$timationsince we only need
reducing the error probabilities frot0—2 to 10~ roughly 10 know if the probability of a path formula holding is above
doubles the verification time, while the same reduction in theor below some threshold. The use of sequential acceptance
half-width of the indifference region leads to a hundredfold Sampling allows the statistical approach to adapt to the diffi-
increase in the verification time. culty of the problem: verifying a propert® ¢ [] in a state

We can adjust the accuracy for the numerical solutions takes more time if the true probability ¢f holding in s
method by varying the parameteibut increasing or decreas- is close to the threshol@. This can give a statistical meth-
ing e has very little effect on the verification time as shown 0ds a distinct advantage over numerical approaches for model
by Reibman and Trived[[26] and Malhotra et al.[23]. This checking CSL formulae. Most previous assessments of statis-
means that the numerical solution method can provide veryical techniques (e.g! [29]) are based on parameter estima-
high accuracy without much of a performance degradationtion problems, which are clearly harder in that they typically

while the statistical solution method is well suited if a quick réquire a large number of samples. Our results show that the
answer with some uncertainty is more useful. intuition from earlier studies does not necessarily carry over

to CSL model checking.
Our results are otherwise in line with known complexity
results for the two techniques. We show a linear complex-

Finally, we present some results for the grid world case studylty in the time-bound for both approaches and also confirm
where the CSL property has nested probabilistic operatoré.hat statistical m_ethods scale better with the size qf the state
We can see in Fig]9 that the mixed approach shares perfogPace, but that high accuracy comes at a greater price than for
mance characteristics with both approaches, outperformingumerical methods.
the pure numerical solution method for larger state spaces. Sen et al.[[28] have recently claimed to have developed
Verification times are shown far = 8 = 10~2 and three @ faster statistical solution technique than the one used in
different values ob. this paper, but their comparison is misleading. Their algo-
rithm, unlike the one presented here, cannot guarantee any
bound on the probability of accepting a false hypothesis, and
5 Discussion instead reports a confidencg-\alue [13]) in the computed
result. The sample sizes reported by Sen et al. were selected
In this paper, we have compared numerical and statistical sananuallybased on prior empirical testing (K. Sen, personal
lution techniques for probabilistic model checking both the- communication, May 20, 2004), and there is in fact no fixed
oretically and empirically. The empirical evaluation has beenprocedure by which they can determine the sample size re-
carried out using case studies taken from the literature on pequired to achieve a certajvalue. The two algorithms are
formance evaluation and probabilistic model checking. Wecomplementary rather than competing, and are useful under

4.5 Mixing Solution Techniques
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disparate sets of assumptions. If we cannot generate sample
paths on demand, then their algorithm (or the variation de-
scribed by Younes [36]) allows one to still reach conclusions 9
regarding the behaviour of a system. If, however, we know
the dynamics of a system well enough to enable simulation,
then we are better off using the approach presented here as.i
gives full control over the probability of obtaining an incor-
rect result. It is of course not necessary to use the sequentigh_
probability ratio test as we have done. There exist other ac-
ceptance sampling tests, as discussed briefly in[Seft. 2.2, that
may outperform the sequential probability ratio test in some
circumstances. 12.

The case studies we considered in this paper were all
CTMCs. To verify time-bounded properties of more com-
plex models with general distributions, such as semi-Markov
processes, more elaborate numerical techniques are required
than those used for CTMC model checking (see .9l [15,20]), 5
A statistical approach, on the other hand, would work just as
well for semi-Markov processes (assuming, of course, that4.
samples from the distributions used in the model can be gen-
erated in roughly the same amount of time as samples from
the exponential distribution). Statistical solution techniquesls.
are also easier to parallelise, as each sample path can be gen-
erated independently. WER does in fact include support for
distributed acceptance sampling, and it is possible to get a
performance improvement close to linear in the number of16
CPUs made available tonER.

17.
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