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Abstract. We present automated techniques for the verification and
control of partially observable, probabilistic systems for both discrete
and dense models of time. For the discrete-time case, we formally model
these systems using partially observable Markov decision processes; for
dense time, we propose an extension of probabilistic timed automata in
which local states are partially visible to an observer or controller. We
give probabilistic temporal logics that can express a range of quantita-
tive properties of these models, relating to the probability of an event’s
occurrence or the expected value of a reward measure. We then propose
techniques to either verify that such a property holds or synthesise a
controller for the model which makes it true. Our approach is based on
a grid-based abstraction of the uncountable belief space induced by par-
tial observability and, for dense-time models, an integer discretisation
of real-time behaviour. The former is necessarily approximate since the
underlying problem is undecidable, however we show how both lower and
upper bounds on numerical results can be generated. We illustrate the
effectiveness of the approach by implementing it in the PRISM model
checker and applying it to several case studies from the domains of task
and network scheduling, computer security and planning.

1 Introduction

Guaranteeing the correctness of complex computerised systems often needs to
take into account quantitative aspects of system behaviour. This includes the
modelling of probabilistic phenomena, such as failure rates for physical compo-
nents, uncertainty arising from unreliable sensing of a continuous environment,
or the explicit use of randomisation to break symmetry. It also includes timing
characteristics, such as time-outs or delays in communication or security pro-
tocols. To further complicate matters, such systems are often nondeterministic
because their behaviour depends on inputs or instructions from some external
entity such as a controller or scheduler.

Automated verification techniques such as probabilistic model checking have
been successfully used to analyse quantitative properties of probabilistic sys-
tems across a variety of application domains, including wireless communication
protocols, computer security and task scheduling. These systems are commonly
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modelled using Markov decision processes (MDPs), if assuming a discrete notion
of time, or probabilistic timed automata (PTAs), if using a dense model of time.
On these models, we can consider two problems: verification that it satisfies
some formally specified property for any possible resolution of nondeterminism;
or, dually, synthesis of a controller (i.e., a means to resolve nondeterminism)
under which a property is guaranteed to hold. For either case, an important
consideration is the extent to which the system’s state is observable to the en-
tity controlling it. For example, to verify that a security protocol is functioning
correctly, it may be essential to model the fact that some data held by a par-
ticipant is not externally visible; or, when synthesising an optimal schedule for
sending packets over a network, a scheduler may not be implementable in prac-
tice if it bases its decisions on information about the state of the network that
is unavailable due to the delays and costs associated with probing it.

Partially observable MDPs (POMDPs) are a natural way to extend MDPs in
order to tackle this problem. However, the analysis of POMDPs is considerably
more difficult than MDPs since key problems are undecidable [38]. A variety of
verification problems have been studied for these models (see, e.g., [1,5,16]) and
the use of POMDPs is common in fields such as AI and planning [11], but there
is limited progress in the development of practical techniques for probabilistic
verification in this area, or exploration of their applicability.

In this paper, we present novel techniques for verification and control of
partially observable, probabilistic systems under both discrete and dense models
of time. We use POMDPs in the case of discrete-time models and, for dense
time, propose a model called partially observable probabilistic timed automata
(POPTAs), which extends the existing model of PTAs with a notion of partial
observability. The semantics of a POPTA is an infinite-state POMDP. In order to
specify verification and control problems on POMDPs and POPTAs, we define
temporal logics to express properties of these models relating to the probability
of an event (e.g., the probability of some observation eventually being made)
or the expected value of various reward measures (e.g., the expected time until
some observation). Nondeterminism in both a POMDP and a POPTA is resolved
by a strategy that decides which actions to take and when to take them, based
only on the history of observations (not states). The core problems we address
are how to verify that a temporal logic property holds for all possible strategies,
and how to synthesise a strategy under which the property holds.

In order to achieve this, we use a combination of techniques. To analyse a
POMDP, we use grid-based techniques [37,54], which transform it to a fully
observable but continuous-space MDP and then approximate its solution based
on a finite set of grid points. We use this to construct and solve a strategy of
the POMDP. The result is a pair of lower and upper bounds on the property of
interest for the POMDP. If this is not precise enough, we can refine the grid and
repeat. In the case of POPTAs, we develop a digital clocks discretisation, which
extends the existing notion for PTAs [32]. The discretisation reduces the analysis
to a finite POMDP, and hence we can use the techniques we have developed
for analysing POMDPs. We define the conditions under which temporal logic
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properties are preserved by the discretisation step and prove the correctness of
the reduction under these conditions.

We implemented these methods in a prototype tool based on PRISM [31,44],
and investigated their applicability by developing a number of case studies in-
cluding: wireless network scheduling, a task scheduling problem, a covert channel
prevention device (the NRL pump) and a non-repudiation protocol. Despite the
undecidability of the POMDP problems we consider, we show that useful re-
sults can be obtained, often with precise bounds. In each case study, partial
observability, nondeterminism, probability and, in the case of the dense-time
models, real-time behaviour are all crucial ingredients to the analysis. This is a
combination not supported by any existing techniques or tools.

A preliminary conference version of this paper, was published as [41].

1.1 Related work

POMDPs are common in fields such as AI and planning: they have many appli-
cations [11] and tool support exists [43]. However, unlike verification, the focus in
these fields is usually on finite-horizon and discounted reward objectives. Early
undecidability for key problems can be found in, e.g., [38]. POMDPs have also
been applied to problems such as scheduling in wireless networks since, in prac-
tice, information about the state of wireless connections is often unavailable and
varies over time; see e.g. [28,35,52,27,23].

POMDPs have also been studied by the formal verification community, see
e.g. [1,5,16], establishing undecidability and complexity results for various quali-
tative and quantitative verification problems. In the case of qualitative analysis,
[14] presents an approach for the verification and synthesis of POMDPs against
LTL properties when restricting to finite-memory strategies. This has been im-
plemented and applied to an autonomous system [49]. For quantitative prop-
erties, the recent work of [15] extends approaches developed for finite-horizon
objectives to approximate the minimum expected reward of reaching a target
(while ensuring the target is reached with probability 1), under the requirement
that all rewards in the POMDP are positive.

Work in this area often also studies related models such as Rabin’s probabilis-
tic automata [5], which can be seen as a special case of POMDPs, and partially
observable stochastic games (POSGs) [17], which generalise them. More prac-
tically oriented work includes: [22], which proposes a counter-example-driven
refinement method to approximately solve MDPs in which components have
partial observability of each other; and [13], which synthesises concurrent pro-
gram constructs using a search over memoryless strategies in a POSG.

Theoretical results [8] and algorithms [12,20] have been developed for syn-
thesis of partially observable timed games. In [8], it is shown that the synthesis
problem is undecidable and, if the resources of the controller are fixed, decidable
but prohibitively expensive. The algorithms require constraints on controllers:
in [12], controllers only respond to changes made by the environment and, in [20],
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their structure must be fixed in advance. We are not aware of any work for prob-
abilistic real-time models in this area.

1.2 Outline

Section 2 describes the discrete-time models of MDPs and POMDPs, and Sec-
tion 3 presents our approach for POMDP verification and strategy synthesis. In
Section 4, we introduce the dense-time models of PTAs and POPTAs, and then,
in Section 5, give our verification and strategy synthesis approach for POPTAs
using digital clocks. Section 6 describes the implementation of our techniques
for analysing POMDPs and POPTAs in a prototype tool, and demonstrates its
applicability using several case studies. Finally, Section 7 concludes the paper.

2 Partially Observable Markov Decision Processes

In this section, we consider systems exhibiting probabilistic, nondeterminis-
tic and discrete-time behaviour. We first introduce MDPs, and then describe
POMDPs, which extend these to include partial observability. For a more de-
tailed tutorial on verification techniques for MDPs, we refer the reader to, for
example, [21].

2.1 Markov decision processes

Let Dist(X) denote the set of discrete probability distributions over a set X,
δx the distribution that selects x ∈ X with probability 1, and R the set of
non-negative real numbers.

Definition 1 (MDP). An MDP is a tuple M=(S, s̄, A, P,R) where:

– S is a set of states;
– s̄ ∈ S is an initial state;
– A is a set of actions;
– P : S×A→ Dist(S) is a (partial) probabilistic transition function;
– R=(RS ,RA) is a reward structure where RS : S → R is a state reward

function and RA : S×A→ R an action reward function.

An MDP M represents the evolution of a system exhibiting both probabilistic
and nondeterministic behaviour through states from the set S. Each state s ∈ S
of M has a set A(s)

def
= {a ∈ A | P (s, a) is defined} of available actions. The

choice between which available action is chosen in a state is nondeterministic. In
a state s, if action a ∈ A(s) is selected, then the probability of moving to state
s′ equals P (s, a)(s′).

A path of M is a finite or infinite sequence π = s0
a0−→ s1

a1−→ · · · , where
si ∈ S, ai ∈ A(si) and P (si, ai)(si+1)>0 for all i ∈ N. The (i+1)th state si of
path π is denoted π(i) and, if π is finite, last(π) denotes its final state. We write
FPathsM and IPathsM, respectively, for the set of all finite and infinite paths of
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M starting in the initial state s̄. MDPs are also annotated with rewards, which
can be used to model a variety of quantitative measures of interest. A reward of
R(s) is accumulated when passing through state s and a reward of R(s, a) when
taking action a from state s.

A strategy of M (also called a policy or scheduler) is a way of resolving the
choice of action in each state, based on the MDP’s execution so far.

Definition 2 (Strategy). A strategy of an MDP M=(S, s̄, A, P,R) is a func-
tion σ : FPathsM→Dist(A) such that, for any π ∈ FPathsM, we have σ(π)(a)>0
only if a ∈ A(last(π)). Let ΣM denote the set of all strategies of M.

A strategy is memoryless if its choices only depend on the current state, finite-
memory if it suffices to switch between a finite set of modes and deterministic
if it always selects an action with probability 1.

When M is under the control of a strategy σ, the resulting behaviour is
captured by a probability measure PrσM over the infinite paths of M [30]. Fur-
thermore, given a random variable f : IPathsM → R over the infinite paths of
M, using the probability measure PrσM, we can define the expected value of the
variable f with respect to the strategy σ, denoted EσM(f).

2.2 Partially observable Markov decision processes

POMDPs extend MDPs by restricting the extent to which their current state
can be observed, in particular by strategies that control them. In this paper (as
in, e.g., [5,16]), we adopt the following notion of observability.

Definition 3 (POMDP). A POMDP is a tuple M=(S, s̄, A, P,R,O, obs) where:

– (S, s̄, A, P,R) is an MDP;
– O is a finite set of observations;
– obs : S → O is a labelling of states with observations;

such that, for any states s, s′ ∈ S with obs(s)=obs(s′), their available actions
must be identical, i.e., A(s)=A(s′).

The current state s of a POMDP cannot be directly determined, only the cor-
responding observation obs(s) ∈ O. The requirement on available actions in
Definition 3 follows from the fact that, if states have different actions available,
then they are not observationally equivalent as the available actions are not
hidden, and hence should not have the same observation.

More general notions of observations are sometime used, e.g., that depend
also on the previous action taken or are probabilistic. However, as demonstrated
by [15], given a POMDP with the most general notion of observations (both prob-
abilistic and dependent on the previous action), we can construct an equivalent
(polynomially larger) POMDP of the form given in Definition 3. In addition,
our analysis of probabilistic verification case studies where partial observation
is needed (see, e.g., Section 6) suggests that this simpler notion of observability
will often suffice in practice. To ease presentation, we assume that the initial
state is observable, i.e., there exists ō ∈ O such that obs(s)=ō if and only if s=s̄.
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The notions of paths, strategies and probability measures given above for
MDPs transfer directly to POMDPs. However, the set ΣM of all strategies for a
POMDP M only includes observation-based strategies.

Definition 4 (Observation-based strategy). A strategy of a POMDP M =
(S, s̄, A, P,R,O, obs) is a function σ : FPathsM→Dist(A) such that:

– σ is a strategy of the MDP (S, s̄, A, P,R);

– for any paths π = s0
a0−→ s1

a1−→ · · · sn and π′ = s′0
a′0−→ s′1

a′1−→ · · · s′n satisfying
obs(si)=obs(s′i) and ai=a

′
i for all i, we have σ(π)=σ(π′).

Let ΣM denote the set of all (observation-based) strategies of M.

Key properties for MDPs and POMDPs are the probability of reaching a target
and the expected reward cumulated until this occurs (where we assume that the
expected value is infinite if there is a non-zero probability of the target not being
reached). Let O denote the target (i.e., a set of states for an MDP and a set of
observations for a POMDP). Under a specific strategy σ of an MDP or POMDP
M, we denote these two properties by PrσM(F O) and EσM(F O), respectively.

Usually, we are interested in the optimal (minimum or maximum) values
ProptM (F O) and EoptM (F O), where opt ∈ {min,max}. For MDP or POMDP M:

Prmin
M (F O)

def
= infσ∈ΣM

PrσM(F O) Emin
M (F O)

def
= infσ∈ΣM

EσM(F O)

Prmax
M (F O)

def
= supσ∈ΣM

PrσM(F O) Emax
M (F O)

def
= supσ∈ΣM

EσM(F O)

Note that the class of strategies ΣM analysed in the above is different depending
on whether M is an MDP or POMDP (see Definitions 2 and 4, respectively).
In the case of MDPs, deterministic and memoryless strategies achieve optimal
values. This allows the use of efficient computational techniques such as policy
iteration, which builds a sequence of strategies until an optimal one is reached,
and value iteration, which computes increasingly precise approximations to the
optimal probability or expected value (see for example [45]). However, in the case
of POMDPs, this no longer holds. In fact, determining the optimal probabilities
and expected rewards defined above is undecidable [38], making exact solution
intractable. Instead, the optimal value can be approximated, for example via
analysis of the belief MDP, whose construction we will discuss shortly.

Example 1. As an example POMDP, we consider a maze, originally introduced
by McCallum [40]. The example concerns a robot being placed uniformly at
random in a maze and then trying to find its way to a certain target location.
The maze is presented in Figure 1 and comprises 11 locations labelled from
‘0’ to ‘10’. There are four actions that the robot can perform in each location,
corresponding to the four directions it can move: north, east, south and west.
Performing such an action moves the robot one location in that direction (if
moving in that direction means hitting a wall, the robot remains where it is).
The robot cannot see its current location, but only what walls surround it.
Therefore, for example, the locations labelled ‘5’, ‘6’ and ‘7’ yield the same
observation, since the robot can only observe that there are walls to the east
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Fig. 1. McCallum’s maze problem [40].

and west. The goal of the robot is to reach the target location labelled ‘10’, and
hence we associate a distinct observation with this location.

We find that the optimal (minimum) expected number of moves to reach the
target is 4.3. If we instead consider a fully observable model (i.e., an MDP),
then the optimal expected number of moves is 3.9. Considering a strategy of
the POMDP that achieves the optimal value, if the robot initially observes that
the only walls are on the east and west, then the strategy believes with equal
probability that the robot is in one of the locations labelled ‘5’, ‘6’ and ‘7’. The
strategy moves the robot north which allows it to learn which of these states the
robot is actually in. More precisely, if the robot was in the location labelled ‘5’,
then, after moving north, it will observe walls to the north and west, if it was in
the location ‘6’ it will next observe only a wall to the north and, for the location
labelled ‘7’, next observe walls to the north and east.

Note that, if the strategy knew the robot was in the location labelled ‘6’,
the optimal move would be south as opposed to north. When the robot initially
observes walls to the north and south, the strategy does not know if it is in the
location labelled ‘1’ or the one labelled ‘3’. Here the strategy can either choose
east or west. When performing either action, the strategy will be able to learn
the robot’s position, while moving the robot closer to the target in one case and
further away in the other. Once the strategy knows the robot’s position, it can
easily determine the optimal route for the robot to reach the target.

Beliefs. Given a POMDP M we can construct a corresponding belief MDP B(M):
an equivalent (fully observable) MDP, whose (continuous) state space comprises
beliefs, which are probability distributions over the state space of M. Intuitively,
although we may not know which of several observationally-equivalent states we
are currently in, we can determine the likelihood of being in each one, based on
the probabilistic behaviour of M. The formal definition is given below, and we
include details of the construction in Appendix A.

Definition 5 (Belief MDP). Let M=(S, s̄, A, P,R,O, obs) be a POMDP. The
belief MDP of M is given by B(M)=(Dist(S), δs̄, A, P

B, RB) where, for any beliefs
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b, b′ ∈ Dist(S) and action a ∈ A:

PB(b, a)(b′) =
∑
s∈S b(s) ·

(∑
o∈O∧ba,o=b′

∑
s′∈S∧obs(s′)=o P (s, a)(s′)

)
RBS(b) =

∑
s∈S RS(s) · b(s)

RBA(b, a) =
∑
s∈S RA(s, a) · b(s)

and ba,o is the belief reached from b by performing action a and observing o, i.e.:

ba,o(s′) =

{ ∑
s∈S P (s,a)(s′)·b(s)∑

s∈S b(s)·(
∑
s′′∈S∧obs(s′′)=o P (s,a)(s′′))

if obs(s′)=o

0 otherwise.

The optimal values for the probability and expected reward to reach a target
in the belief MDP equal those for the POMDP, which is formally stated by the
following proposition.

Proposition 1. If M=(S, s̄, A, P,R,O, obs) is a POMDP and O ⊆ O a set of
observations, then:

Propt
M (F O) = Propt

B(M)(F TO) and Eopt
M (F O) = Eopt

B(M)(F TO)

where TO = {b ∈ Dist(S) | ∀s ∈ S. (b(s)>0→ obs(s) ∈ O)} and opt ∈ {min,max}.

2.3 Parallel composition of POMDPs

To facilitate the modelling of complex systems, we introduce a notion of parallel
composition for POMDPs, which allows us to define a system as set of interacting
components. Our definition extends the standard definition for MDPs and prob-
abilistic automata [47]. It is based on multi-way synchronisation over the same
action by several components, as used in the process algebra CSP [46] and the
PRISM model checker [31,44], but this can easily be generalised to incorporate
more flexible definitions of synchronisation. We will use parallel composition of
POMDPs for modelling the case studies that we present in Section 6.

Definition 6 (Parallel composition of POMDPs). Consider any POMDPs
Mi=(Si, s̄i, Ai, Pi,Ri,Oi, obsi), for i = 1, 2. The parallel composition of M1 and
M2 is the POMDP:

M1‖M2 = (S1×S2, (s̄1, s̄2), A1 ∪A2,R,O1×O2, obs)

where, for any s=(s1, s2) and a ∈ A1 ∪A2, we have:

– if a ∈ A1 ∩A2, then a ∈ A(s1, s2) if and only if a ∈ A(s1) ∩A(s2) with

P (s, a)(s′) = P1(s1, a)(s′1)·P2(s2, a)(s′2)

for all s′ = (s′1, s
′
2) ∈ S1×S2 and RA(s, a) = RA,1(s1, a) +RA,2(s2, a);
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– if a ∈ A1\A2, then a ∈ A(s1, s2) if and only if a ∈ A(s1) with

P (s, a)(s′) =

{
P1(s1, a)(s′1) if s2=s′2

0 otherwise

for all s′ = (s′1, s
′
2) ∈ S1×S2 and RA(s, a) = RA,1(s1, a1);

– if a ∈ A2\A1, then a ∈ A(s1, s2) if and only if a ∈ A(s2) with

P (s, a)(s′) =

{
P2(s2, a)(s′2) if s1=s′1

0 otherwise

for all s′ = (s′1, s
′
2) ∈ S1×S2 and RA(s, a) = RA,2(s2, a2);

– RS(s) = RS,1(s1) +RS,2(s2);
– obs(s) = (obs1(s1), obs2(s2)).

As is standard in CSP-style parallel composition [46], an action which is in the
action set of both components can only be performed when both components
can perform it. Formally, using Definition 6, we see that, for any state s=(s1, s2)
of M1‖M2, we have A((s1, s2)) = (A(s1) ∩ A(s2)) ∪ (A(s1)\A2) ∪ (A(s2\A1).
It therefore follows that, for any states s, s′ of M1‖M2 with obs(s)=obs(s′),
the available actions A(s) and A(s′) are identical, thus satisfying the condition
imposed on a POMDP’s actions and observability in Definition 3.

In Definition 6 we have used addition to combine the reward values of the
component POMDPs. However, depending on the system being modelled and
its context, it may be more appropriate to combine the rewards in a different
way, for example using multiplication or taking the maximum.

3 Verification and Strategy Synthesis for POMDPs

We now present our approach for verification and strategy synthesis for POMDPs.

3.1 Property specification

First, we define a temporal logic for the formal specification of quantitative
properties of POMDPs. This is based on a subset (we omit temporal operator
nesting) of the logic PCTL [24] and its reward-based extension in [21].

Definition 7 (POMDP property syntax). The syntax of our temporal logic
for POMDPs is given by the grammar:

φ ::= P./p[ψ] | R./q[ρ]

α ::= true | o | ¬α | α ∧ α
ψ ::= α U6k α | α U α

ρ ::= I=k | C6k | F α

where o is an observation, ./ ∈ {6, <,>, >}, p ∈ Q∩ [0, 1], q ∈ Q>0 and k ∈ N.
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A POMDP property φ is an instance of either the probabilistic operator P./p[·]
or the expected reward operator R./q[·]. Intuitively, a state satisfies a formula
P./p[ψ] if the probability of the path formula ψ being satisfied is ./p, and satisfies
a formula R./q[ρ] if the expected value of the reward formula ρ is ./q.

For path formulae, we allow time-bounded (α U6k α) and unbounded (α U α)
until formulae, and adopt the usual equivalences such as F α ≡ true U α (“even-
tually α”). For reward formulae, we allow I=k (state reward at k steps), C6k

(reward accumulated over the first k steps) and F α (the reward accumulated
until α becomes true). The propositional formulae (α) are Boolean combinations
of observations of the POMDP.

We have omitted nesting of P and R operators in Definition 7 to allow consis-
tent property specification for either verification or strategy synthesis problems
(the latter is considerably more difficult in the context of nested formulae [6,10]).

Definition 8 (POMDP property semantics). Let M=(S, s̄, A, P,R,O, obs)
be a POMDP. We define satisfaction of a property φ from Definition 7 with
respect to a strategy σ ∈ ΣM as follows:

M, σ |= P./p [ψ ] ⇔ PrσM({π ∈ IPathsM | π |=ψ}) ./ p
M, σ |= R./q [ ρ ] ⇔ EσM(rew (ρ)) ./ q

and, for any state s ∈ S and path π = s0
a0−→ s1

a1−→ · · · ∈ IPathsM:

s |= true always
s |= o ⇔ o ∈ obs(s)

s |=¬α ⇔ s 6|=α
s |=α1 ∧ α2 ⇔ s |=α1 and s |=α2

π |=α1 U6k α2 ⇔ ∃i ∈ N. ( i6k ∧ si |=α2 ∧ ∀j<i. (sj |=α1) )
π |=α1 U α2 ⇔ ∃i ∈ N. ( si |=α2 ∧ ∀j<i. (sj |=α1) )

rew (I=k)(π) = RS(sk)

rew (C6k)(π) =
∑k−1
j=0

(
RS(sj) + RA(sj , aj)

)
rew (F α)(π) =

{
∞ if ∀j ∈ N. sj 6|=α∑mα−1

j=0

(
RS(sj) + RA(sj , aj)

)
otherwise

where mα = min{j | sj |=α}.

3.2 Verification and strategy synthesis for POMDPs

Given a POMDP M and property φ, we are interested in solving the dual prob-
lems of verification and strategy synthesis.

Definition 9 (POMDP verification). The verification problem for a POMDP
M is: given a property φ, decide if M, σ |=φ holds for all strategies σ∈ΣM.
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Definition 10 (POMDP strategy synthesis). The strategy synthesis prob-
lem for a POMDP M is: given a property φ, find, if it exists, a strategy σ∈ΣM

such that M, σ |=φ.

The verification and strategy synthesis problems for a POMDP M and prop-
erty φ can be solved similarly, by computing optimal values (i.e., minimum or
maximum) for either path or reward objectives:

Prmin
M (ψ)

def
= infσ∈ΣM

PrσM(ψ) Emin
M (ρ)

def
= infσ∈ΣM

EσM(ρ)

Prmax
M (ψ)

def
= supσ∈ΣM

PrσM(ψ) Emax
M (ρ)

def
= supσ∈ΣM

EσM(ρ)

and, where required, also synthesising an optimal strategy. For example, verifying
φ=P>p [ψ ] requires computation of Prmin

M (ψ) since φ is satisfied by all strategies
if and only if Prmin

M (ψ)>p. Dually, consider synthesising a strategy for which
φ′=P<p [ψ ] holds. Such a strategy exists if and only if Prmin

M (ψ)<p and, if it
does, we can use a strategy that achieves a value less than p. A common practice
in probabilistic verification is to simply query the optimal values directly, by
omitting the bounds ./p (for P) or ./q (for R) using numerical properties.

Definition 11 (Numerical POMDP property). Let ψ and ρ be as speci-
fied in Definition 7. A numerical POMDP property is of the form Pmin=?[ψ ],
Pmax=?[ψ ], Rmin=?[ ρ ] or Rmax=?[ ρ ] and yields the optimal value for the proba-
bility or reward formula.

As mentioned earlier, when solving a POMDP, we may only be able to under-
and over-approximate optimal values, which requires adapting the processes
sketched above. For example, if we have determined lower and upper bounds
p[ 6 Prmin

M (ψ) 6 p]. We can verify that φ=P>p [ψ ] holds for every strategy if
p[ > p or ascertain that φ does not hold if p > p]. But, if p[ < p < p], we need
to refine our approximation to produce tighter bounds. An analogous process
can be followed for the case of strategy synthesis. The remainder of this sec-
tion therefore focuses on how to (approximately) compute optimal values and
strategies for POMDPs.

3.3 Numerical computation algorithms

Approximate numerical computation of either optimal probabilities ProptM (ψ) or

expected reward values EoptM (ρ) on a POMDP M=(S, s̄, A, P,R,O, obs) is per-
formed with the sequence of steps given below, each of which is described in more
detail subsequently. We compute both an under- and an over-approximation. For
the former, we also generate a strategy which achieves this value.

(A) We modify POMDP M, reducing the problem to computing optimal values
for a probabilistic reachability or expected cumulative reachability property;

(B) We build and solve a finite abstraction of the (infinite-state) belief MDP
B(M) yielding an over-approximation;

(C) We synthesise and analyse a strategy for M, giving an under-approximation;
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(D) If required, we refine the abstraction’s precision and repeat (B) and (C).

(A) Property reduction. Checking P./p[ψ] or R./q[ρ] properties of the logic
from Definition 7 can always be reduced to checking either a probabilistic reacha-
bility (P./p[F α]) or expected cumulative reachability reward (R./q[F α]) property
on a modified POMDP M′=(S′, s̄′, A′, P ′, R′,O′, obs ′). For the reduction in the
case of MDPs, see for example [45].

(B) Over-approximation. We solve the modified POMDP M′. For simplic-
ity, here and below, we describe the case of maximum reachability probabilities
(the other cases are very similar) and thus need to compute Prmax

M′ (F O). We
first compute an over-approximation, e.g., for maximum reachability probabil-
ities Prmax

M′ (F O), we would find an upper bound. This is computed from an
approximate solution to the belief MDP B(M′), whose construction we outlined
in Section 2. This MDP has a continuous state space: the set of beliefs Dist(S′),
where S′ is the state space of M′.

To approximate its solution, we adopt the approach of [53,54] which com-
putes values for a finite set of representative beliefs G whose convex hull is
Dist(S′). Value iteration is applied to the belief MDP, using the computed val-
ues for beliefs in G and interpolating to get values for those not in G. The
resulting values give the required upper bound. We use [53,54] as it works with
unbounded (infinite horizon) and undiscounted properties. There are many other
similar approaches [48], but these are formulated for discounted or finite-horizon
properties.

The representative beliefs can be chosen in a variety of ways. We follow [37],
where G = { 1

M v | v ∈ N|S′| ∧
∑|S′|
i=1 v(i)=M} ⊆ Dist(S′), i.e. a uniform grid with

resolution M . A benefit is that interpolation is very efficient, using a process
called triangulation [19]. A downside is that the grid size is exponential in M .
Efficiency might be improved with more complex grids that vary and adapt
the resolution [48], but we found that [37] worked well enough for a prototype
implementation.

(C) Under-approximation. Since it is preferable to have two-sided bounds, we
also compute an under-approximation: here, a lower bound on Prmax

M′ (F O). To
do so, we first synthesise a finite-memory strategy σ∗ for M′ (which is often a re-
quired output anyway). The choices of this strategy are built by stepping through
the belief MDP and, for the current belief, choosing an action that achieves the
values returned by value iteration in (B) above – see for example [48]. We then
compute, by building and solving the finite discrete-time Markov chain induced
by M′ and σ∗, the value Prσ

∗

M′(F O) which is a lower bound for Prmax
M′ (F O).

(D) Refinement. Finally, when the computed approximations do not suffice to
verify the required property (or, for strategy synthesis, σ∗ does not satisfy the
property), we refine, by increasing the grid resolution M and repeating steps
(B) and (C). We note that no a priori bound can be given on the error between
the generated under- and over-approximations (recall that the basic problem is
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undecidable). Furthermore, just incrementing the resolution is not guaranteed
to yield tighter bounds and in fact can yield worse bounds.

However, the abstraction approach that we use [53, Chap. 7], does provide
an asymptotic guarantee on convergence. More precisely, convergence is shown
for the case of expected total cumulative reward over models with non-negative
rewards under the assumption that the cumulative reward is always finite. The
case of probabilistic reachability can easily be reduced to the case of cumula-
tive reward by assigning a one-off reward of 1 once the target is reached. For
probabilistic reachability, finiteness of the cumulated reward is immediate. For
expected cumulative reachability, reward finiteness is achieved by performing
qualitative reachability analysis to remove states with infinite expected reward,
i.e. the states that do not reach the target with probability 1. This is the stan-
dard approach for verifying MDPs against expected reachability properties [21]
and is decidable for POMDPs [5].

Example 2. We return to the maze example from Example 1 and Figure 1.
We can query the minimum expected number of steps to reach the target using
the property Rmin=?[ F otarget ], where otarget is the distinct observation corre-
sponding to the target location labelled ‘10’. Following the approach described
above, we obtain a precise answer (the bounds are [4.300, 4.300]) for grid reso-
lution M=2 (for which the number of points in the grid is 19) and are able to
synthesise the optimal strategy described in Example 1.

We now increase the size of the maze by adding an additional location to the
southern end of each of the three north-south alignments of locations (i.e., to
the locations labelled ‘8’, ‘9’ and ‘10’) and keep the target as the southern most
location of the middle such alignment. The resulting POMDP has 14 states and
the same observation set as the original POMDP. Again considering the optimal
expected number of steps to reach the target, we obtain the following results as
the grid resolution is refined during the analysis:

– M=2 yields 34 grid points and the bounds [4.3846,∞];

– M=3 yields 74 grid points and the bounds [4.8718, 5.3077];

– M=4 yields 150 grid points and the bounds [4.8846, 5.3077];

– M=5 yields 283 grid points and the bounds [5.0708, 5.3077];

– M=6 yields 501 grid points and the bounds [5.3077, 5.3077].

The ∞ value for the case when M=2 follows from the fact that the synthesised
strategy does not reach the target with probability 1, and hence the expected
reward for this strategy is infinite (see Definition 8). As can be seen, the under-
approximation (the upper bound, here), obtained from the value of the synthe-
sised strategy in step (C), yields the optimal value almost immediately, while the
over-approximation (the lower bound), obtained from the approximate solution
to the belief MDP in step (B), takes more time to converge to the optimal value.

The synthesised optimal strategy is essentially the same as the one for the
maze of Figure 1. For example, if the robot observes only walls on the east and
west sides, then the strategy chooses to move the robot north until it reaches a
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location labelled either ‘0’, ‘2’ or ‘4’. Then it knows where the robot is and the
strategy can easily determine an optimal route to the target.

4 Partially Observable Probabilistic Timed Automata

In this section, we define partially observable probabilistic timed automata (POP-
TAs), which generalise the existing model of probabilistic timed automata (PTAs)
with the notion of partial observability from POMDPs explained in Section 2.
We define the syntax of a POPTA, explain some syntactic restrictions that we
impose and formally define the semantics, which is given by a POMDP param-
eterised by a time domain T. We also present a notion of parallel composition
for POPTAs and give several illustrative examples of the model. The section
begins with some background on the simpler model of PTAs and the notions
used to define them. For more detailed tutorial material on this topic, we refer
the interested reader to [42].

4.1 Time, clocks and clock constraints

Let T ∈ {R,N} be the time domain of either the non-negative reals or nat-
urals. As in classic timed automata [2], we model real-time behaviour using
non-negative, T-valued variables called clocks, whose values increase at the same
rate as real time. Assuming a finite set of clocks X , a clock valuation v is a
function v : X→T and we write TX for the set of all clock valuations over the
time domain T. Clock valuations obtained from v by incrementing all clocks
by a delay t ∈ T and by resetting a set X ⊆ X of clocks to zero are denoted
v+t and v[X:=0], respectively, and we write 0 if all clocks take the value 0. A
(closed, diagonal-free) clock constraint ζ is either a conjunction of inequalities
of the form x6c or x>c, where x ∈ X and c ∈ N, or true. We write v |= ζ if
clock valuation v satisfies clock constraint ζ and use CC (X ) for the set of all
clock constraints over X .

4.2 Syntax of POPTAs

To explain the syntax of POPTAs, we first consider the simpler model of PTAs
and then show how it extends to POPTAs.

Definition 12 (PTA syntax). A probabilistic timed automaton (PTA) is a
tuple P=(L, l,X ,A, inv , enab, prob, r) where:

– L is a finite set of locations and l ∈ L is an initial location;
– X is a finite set of clocks;
– A is a finite set of actions;
– inv : L→ CC (X ) is an invariant condition;
– enab : L×A→ CC (X ) is an enabling condition;
– prob : L×A→ Dist(2X×L) is a probabilistic transition function;
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– r=(rL, rA) is a reward structure where rL : L → R is a location reward
function and rA : L×A→ R is an action reward function.

A state of a PTA is a pair (l, v) of location l ∈ L and clock valuation v ∈
TX . Time t ∈ T can elapse in the state only if the invariant inv(l) remains
continuously satisfied while time passes and the new state is then (l, v+t), which
we denote (l, v)+t. An action a is enabled in the state if v satisfies enab(l, a) and,
if it is taken, then the PTA moves to location l′ and resets the clocks X ⊆ X
with probability prob(l, a)(X, l′). PTAs have two kinds of rewards:

– location rewards, which are accumulated at rate rL(l) while in location l;
– action rewards rA(l, a), which are accumulated when taking action a in lo-

cation l.

PTAs equipped with such reward structures are a probabilistic extension of
linearly-priced timed automata [7], also called weighted timed automata [7,4].

We now introduce POPTAs which extend PTAs by the inclusion of an ob-
servation function over locations.

Definition 13 (POPTA syntax). A partially observable PTA (POPTA) is a
tuple P = (L, l,X ,A, inv , enab, prob, r ,OL, obsL) where:

– (L, l,X ,A, inv , enab, prob, r) is a PTA;
– OL is a finite set of observations;
– obsL : L→ OL is a location observation function.

For any locations l, l′ ∈ L with obsL(l)=obsL(l′), we require that inv(l)=inv(l′)
and enab(l, a)=enab(l′, a) for all a ∈ A.

The final condition of Definition 13 ensures the semantics of a POPTA yields
a valid POMDP: recall states with the same observation are required to have
identical available actions. Like for POMDPs, for simplicity, we also assume that
the initial location is observable, i.e., there exists ō ∈ OL such that obsL(l)=ō if
and only if l=l.

The observability of clocks. The notion of observability for POPTAs is simi-
lar to the one for POMDPs, but applied to locations. Clocks, on the other hand,
are always observable. The requirement that the same choices must be available
in any observationally-equivalent states, implies the same delays must be avail-
able in observationally-equivalent states, and so unobservable clocks could not
feature in invariant or enabling conditions. The inclusion of unobservable clocks
would therefore necessitate modelling the system as a game with the elapse of
time being under the control of a second (environment) player. The underlying
semantic model would then be a partially observable stochastic game (POSG),
rather than a POMDP. However, unlike POMDPs, limited progress has been
made on efficient computational techniques for this model (belief space based
techniques, for example, do not apply in general [17]). Even in the simpler case of
non-probabilistic timed games, allowing unobservable clocks requires algorithmic
analysis to restrict the class of strategies considered [12,20].
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Encouragingly, however, we will later show in Section 6 that POPTAs with
observable clocks were always sufficient for our modelling and analysis.

Restrictions on POPTAs. At this point, we need to highlight a few syntactic
restrictions on the POPTAs treated in this paper.

Assumption 1 For any POPTA P, all clock constraints appearing in P, i.e.,
in its invariants and enabling conditions, are required to be closed (no strict
inequalities, e.g. x<c) and diagonal-free (no comparisons of clocks, e.g., x<y).

Assumption 2 For any POPTA P=(L, l,X ,A, inv , enab, prob, r ,OL, obsL), re-
sets can only be applied to clocks that are non-zero. More precisely, for any
l, l′ ∈ L, a ∈ A and X ⊆ X , if prob(l, a)(X, l′)>0 then for any v ∈ RX such that
v(x)=0 for some x ∈ X we have either v 6|= inv(l) or v 6|= enab(l, a).

Assumption 1 is a standard restriction when using the digital clocks discretisa-
tion [32] which we work with in this paper. The reasoning behind Assumption 2
is demonstrated in Example 4. Checking both assumptions can easily be done
syntactically – see Section 5.

4.3 Semantics of POPTAs

We now formally define the semantics of a POPTA P, which is given in terms
of a POMDP. This extends the standard semantics of a PTA [32] with the same
notion of observability we gave in Section 2 for POMDPs. The semantics, [[P]]T,
is parameterised by a time domain T, giving the possible values taken by clocks.
Before giving the semantics for POPTAs we consider the simpler case of PTAs.

Definition 14 (PTA semantics). Let P=(L, l,X ,A, inv , enab, prob, r) be a
probabilistic timed automaton. The semantics of P with respect to the time do-
main T is the MDP [[P]]T=(S, s̄,A ∪ T, P,R) such that:

– S = {(l, v) ∈ L×TX | v |= inv(l)} and s̄ = (l,0);

– for any (l, v) ∈ S and a ∈ A ∪ T, we have P ((l, v), a) = µ if and only if one
of the following conditions hold:

• (time transitions) a ∈ T, µ = δ(l,v+a) and v+a |= inv(l) for all 06t′6a;

• (action transition) a ∈ A, v |= enab(l, a) and for (l′, v′) ∈ S:

µ(l′, v′) =
∑
X⊆X∧v′=v[X:=0] prob(l, a)(X, l′)

– for any (l, v) ∈ S and a ∈ A ∪ T:

RS(l, v) = rL(l)

RA((l, v), a) =

{
rL(l)·a if a ∈ T
rA(l, a) if a ∈ A.
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For the standard (dense-time) semantics of a PTA, we take T=R. Since the
semantics of a PTA is an infinite-state model, for algorithmic analysis, we first
need to construct a finite representation. One approach for this is to use the
digital clocks semantics for PTAs [32] which generalises the approach for timed
automata [25]. This approach discretises a PTA model by transforming its real-
valued clocks to clocks taking values from a bounded set of integers.

Before we give the definition we require the following notation. For any clock
x of a PTA, let kx denote the greatest constant to which x is compared in the
clock constraints of the PTA. If the value of x exceeds kx, its exact value will
not affect the satisfaction of any invariants or enabling conditions, and thus not
affect the behaviour of the PTA.

Definition 15 (Digital clocks semantics). The digital clocks semantics of a
PTA P, written [[P]]N, can be obtained from Definition 14, taking T to be N and
redefining the operation v+t such that for any clock valuation v ∈ NX , delay
t ∈ N and clock x ∈ X we have (v+t)(x) = min{v(x)+t,kx+1}.

We now extend Definition 14 and define the semantics of a POPTA.

Definition 16 (POPTA semantics). Let P=(L, l,X ,A, inv , enab, prob, r ,OL,
obsL) be a POPTA. The semantics of P, with respect to the time domain T, is
the POMDP [[P]]T=(S, s̄,A ∪ T, P,R,OL×TX , obs) such that:

– (S, s̄,A∪T, P,R) is the semantics of the PTA (L, l,X ,A, inv , enab, prob, r);
– for any (l, v) ∈ S, we have obs(l, v) = (obsL(l), v).

As for PTAs, we consider both the ‘standard’ dense-time semantics and the
digital clocks semantics of a POPTA, by taking T = R and T = N respectively.
The fact that the digital clocks semantics of a POPTA is finite, and the dense-
time semantics is generally uncountable, can be derived from the definitions.
Under the restrictions on POPTAs described above, as we will demonstrate in
Section 5, the digital semantics of a POPTA preserves the key properties required
in this paper, namely optimal probabilities and expected cumulative rewards for
reaching a specified observation set.

Time divergence. As for PTAs and classic timed automata we restrict atten-
tion to time-divergent (or non-Zeno) strategies. Essentially this means that we
restrict attention to strategies under which there are no unrealisable executions
in which time does not advance beyond a certain point. There are syntactic and
compositional conditions for PTAs for ensuring all strategies are time-divergent
by construction [42]. These are derived from analogous results on timed automata
[50,51] and carry over to our setting of POPTAs.

4.4 Parallel composition of POPTAs

As we did for POMDPs in Section 2, to aid the modelling of complex system,
we now define a notion of parallel composition for POPTAs.
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Definition 17 (Parallel composition of POPTAs). Consider any POPTAs
Pi=(Li, li,Xi,Ai, inv i, enabi, probi, ri,OL,i, obsL,i) for i ∈ {1, 2} such that X1 ∩
X2 = ∅. The parallel composition of M1 and M2, denoted P1‖P2 is the POPTA:

P1‖P2 = (L1×L2, (l1, l2),X1 ∪ X2,A1 ∪A2, inv , enab, prob, r ,OL,1×OL,2, obsL)

where for any l=(l1, l2), l′=(l′1, l
′
2) ∈ L1×L2, a ∈ A1 ∩ A2, a1 ∈ A1\A2, a2 ∈

A2\A1 and X ⊆ X1 ∪ X2:

inv(l) = inv1(l1) ∧ inv2(l2)

enab(l, a) = enab1(l1, a) ∧ enab2(l2, a)

enab(l, a1) = enab1(l1, a1)

enab(l, a2) = enab2(l2, a2)

prob(l, a)(X, l′) = prob1(l1, a)(X ∩ X1, l
′
1)·prob2(l2, a)(X ∩ X2, l

′
2)

prob(l, a1)(X, l′) =

{
prob1(l1, a1)(X, l′1) if l2 = l′2 and X ⊆ X1

0 otherwise

prob(l, a2)(X, l′) =

{
prob2(l2, a2)(X, l′2) if l1 = l′1 and X ⊆ X2

0 otherwise

rA(l, a) = rA,1(l1, a) + rA,2(l2, a)

rA(l, a1) = rA,1(l1, a1)

rA(l, a2) = rA,2(l2, a2)

rL(l) = rL,1(l1) + rL,2(l2)

obsL(l) = (obsL,1(l1), obsL,2(l2)) .

For POPTAs, it follows from Definitions 17 and 13 that, for any locations l, l′ of
P1‖P2 such that obsL(l)=obsL(l′) and action a of P1‖P2 we have inv(l)=inv(l′)
and enab(l, a)=enab(l′, a). In addition the following lemma holds.

Lemma 1. If P1 and P2 are POPTAs satisfying Assumptions 1 and 2, then
P1‖P2 satisfies Assumptions 1 and 2.

Proof. Consider any POPTAs P1 and P2 which satisfy Assumptions 1 and 2.
Since the conjunction of closed and diagonal-free clock constraints are closed
and diagonal-free, it follows that P1‖P2 satisfies Assumption 1.

For Assumption 2, consider any locations l=(l1, l2) and l′=(l′1, l
′
2), action a,

set of clocks X and clock valuation v of P1‖P2 such that prob(l, a)(X, l′)>0 and
v(x)=0 for some clock x ∈ X. We have the following cases to consider.

– If a ∈ A1 ∩ A2, then since X ⊆ X1 ∪ X2 either x ∈ X1 or x ∈ X2. When
x ∈ X1, since P1 satisfies Assumption 2, it follows that v 6|= inv1(l1) or
v 6|= enab1(l1, a). On the other hand, when x ∈ X2, since P2 satisfies As-
sumption 2, it follows that v 6|= inv2(l2) or v 6|= enab2(l2, a). In either case,
if follows from Definition 17 that v 6|= inv(l) or v 6|= enab(l, a).

– If a ∈ A1, then by Definition 17 and since prob(l, a)(X, l′)>0 we have X ⊆ X1

and prob(l1, a)(X, l′1)>0. Therefore x ∈ X1 using the fact that P1 satisfies
Assumption 2 it follows that v 6|= inv1(l1) or v 6|= enab1(l1, a). Again using
Definition 17 it follows that v 6|= inv(l) or v 6|= enab(l, a).
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Fig. 2. Example of a partially observable PTA (see Example 3).

– If a ∈ A2, then using similar arguments to the case above and the fact P2

satisfies Assumption 2 we have v 6|= inv(l) or v 6|= enab(l, a).

Since these are all the cases to consider, it follows that P1‖P2 satisfies Assump-
tion 2 as required. ut

Similarly to POMDPs (see Section 2), the reward values of the component POP-
TAs can be combined using alternative arithmetic operators depending on the
system under study. As for PTAs [32], the semantics of the parallel composi-
tion of two POPTAs corresponds to the parallel composition of their individual
semantic POMDPs using Definition 6. Formally, for POPTAs P1,P2 and time
domain T, we have that [[P1‖P2]]T = [[P1]]T‖[[P2]]T.

Additional modelling constructs to aid higher level modelling for PTAs also
carry over to the case of POPTAs. These include discrete variables, urgent and
committed locations and urgent actions. For further details, see [42].

4.5 Example POPTAs

Finally in this section, we present two example POPTAs. The second of these
demonstrates why we have imposed Assumption 2 on POPTAs when using the
digital clocks semantics.

Example 3. Consider the POPTA in Figure 2 with clocks x, y. Locations are
grouped according to their observations, and we omit enabling conditions equal
to true. We aim to maximise the probability of eventually observing o5. If the
locations were fully observable, i.e. the model was a PTA, we would leave the
initial location l when x=y=1 and then, depending on whether the random choice
resulted in a transition to location l1 or l2, wait 0 or 1 time units, respectively,
before leaving the location. This would allow us to move immediately from the
locations l3 or l4 to the location l5, meaning we eventually observe o5 with
probability 1. However, in the POPTA, we need to make the same choice in l1
and l2 since they yield the same observation. As a result, at most one of the
transitions leaving locations l3 and l4 is enabled when reaching these locations
(the transition from l3 will be enabled if we wait 0 time units before leaving both
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Fig. 3. Example POPTA for only resetting non-zero clocks (see Example 4).

l1 and l2, while the transition from l4 will be enabled if we wait 1 time units
before leaving both l1 and l2), and hence the maximum probability of eventually
observing o5 is 0.5.

Example 4. The POPTA P in Figure 3 demonstrates why our digital clocks
approach (Theorem 1) is restricted to POPTAs which reset only non-zero clocks.
We aim to minimise the expected reward accumulated before observing o3 (the
non-zero reward values are shown in Figure 3). If the model was a PTA and
locations were fully observable, the minimum reward would be 0, achieved by
leaving the initial location l immediately and then choosing a1 in location l1 and
a2 in location l2. However, in the POPTA model, if we leave l immediately, the
locations l1 and l2 are indistinguishable (we observe (o1,2, (0)) when arriving in
either), so we must choose the same action in these locations. Since we must
leave the locations l1 and l2 when the clock x reaches the value 2, it follows that,
when leaving the initial location immediately, the expected reward equals 0.5.

Now consider the strategy that waits ε ∈ (0, 1) before leaving the initial lo-
cation l, accumulating a reward of ε. Clearly, since ε ∈ R\N, this is possible only
in the dense-time semantics. We then observe either (o1,2, (ε)) when entering the
location l1, or (o1,2, (0)) when entering the location l2. Thus, observing whether
the clock x was reset, allows a strategy to determine if the location reached is l1
or l2, and hence which of the actions a1 or a2 needs to be taken to observe o3

without accumulating any additional reward. This yields a strategy that accu-
mulates a total reward of ε before observing o3. Now, since ε can be arbitrarily
small, it follows that the minimum (infimum) expected reward for [[P]]R is 0. On
the other hand, for the digital clocks semantics, we can only choose a delay of 0
or 1 before leaving the initial location l. In the former case, the expected reward
is 0.5, as described above; for the latter case, we can again distinguish which of
the locations l1 or l2 was reached by observing whether the clock x was reset.
Hence, we can choose either a1 or a2 such that no further reward is accumulated,
yielding a total expected reward of 1. Hence the minimum expected reward for
[[P]]N is 0.5, as opposed to 0 for [[P]]R.
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5 Verification and Strategy Synthesis for POPTAs

We now present our approach for verification and strategy synthesis for POPTAs
using the digital clock semantics given in the previous section.

5.1 Property specification

Quantitative properties of POPTAs are specified using the following logic.

Definition 18 (POPTA property syntax). The syntax of our logic for POP-
TAs is given by the grammar:

φ ::= P./p[ψ] | R./q[ρ]

α ::= true | ζ | o | ¬α | α ∧ α
ψ ::= α U6k α | α U α

ρ ::= I=k | C6k | F α

where ζ is a clock constraint, o is an observation, ./ ∈ {6, <,>, >}, p ∈ Q∩[0, 1],
q ∈ Q>0 and k ∈ N.

This property specification language is similar to the one we proposed earlier
for POMDPs (see Definition 7), but we allow clock constraints to be included in
propositional formulae. However, as for PTAs [42], the bound k in path formulae
(α U6k α) and reward formulae (I=k and C6k) corresponds to a time bound, as
opposed to a bound on the number of discrete steps.

In the case of POPTAs, omitting the nesting of P and R operators is fur-
ther motivated by the fact that the digital clocks approach is not applicable to
nested properties (see [32] for details). Before we give the property semantics for
POPTAs, we define the duration and position of a path in a POPTA.

Definition 19 (Duration of a POPTA path). For a POPTA P, time domain

T, path π = s0
a0−→ s1

a1−→ · · · ∈ IPaths [[P]]T
and i ∈ N, the duration of π up to

the (i+1)th state is given by:

durπ(i) =
∑

06j<i∧aj∈T aj .

Definition 20 (Position of a POPTA path). For a POPTA P, time domain

T and path π = s0
a0−→ s1

a1−→ · · · ∈ IPaths [[P]]T
, a position of π is a pair

(i, t) ∈ N×T such that t 6 durπ(i+1)−durπ(i). We say that position (j, t′)
precedes position (i, t), written (j, t′) ≺ (i, t), if j<i or j=i and t′<t.

Definition 21 (POPTA property semantics). Let P be a POPTA and T
a time domain. We define satisfaction of a property φ from Definition 18 with
respect to a strategy σ ∈ Σ[[P]]T

as follows:

[[P]]T, σ |= P./p [ψ ] ⇔ Prσ[[P]]T
({π ∈ IPaths [[P]]T

| π |=ψ}) ./ p
[[P]]T, σ |= R./q [ ρ ] ⇔ Eσ[[P]]T

(rew (ρ)) ./ q
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and for any state (l, v) ∈ L×TX and path π = s0
a0−→ s1

a1−→ · · · ∈ IPaths [[P]]T
:

(l, v) |= true always
(l, v) |= o ⇔ o ∈ obsL(l)
(l, v) |= ζ ⇔ v |= ζ

(l, v) |=¬α ⇔ (l, v) 6|=α
(l, v) |=α1 ∧ α2 ⇔ (l, v) |=α1 and (l, v) |=α2

π |=α1 U6k α2 ⇔ there exists a position (i, t) of π such that π(i)+t |=α2,
durπ(i)+t 6 k and π(j)+t′ |=α1∨α2

for all positions (j, t′)≺(i, t) of π
π |=α1 U α2 ⇔ there exists a position (i, t) of π such that π(i)+t |=α2

and π(j)+t′ |=α1∨α2 for all positions (j, t′)≺(i, t) of π

rew (I=k)(π) = RS(smk)

rew (C6k)(π) =
∑mk−1
j=0 RA(sj , aj) + RS(smk)·(k−durπ(mk))

rew (F α)(π) =

{∑mα−1
j=0 RA(sj , aj) + RS(smα)·tα if (mα, tα) exists

∞ otherwise

where m0=0 and mk= max{j | durπ(i)<k} if k>0 and, when it exists, (mα, tα) is
is the minimum position of the path π under the ordering ≺ for which smα+tα |=α.

In the case of the until operator, as for timed automata [26], due to the dense
nature of time we require that the disjunction α1∨α2, as opposed to the formula
α1, holds at all positions preceding the first position at which α2 is satisfied.

For a POPTA P and time domain T, the action rewards of [[P]]T (see Defi-
nitions 16 and 14) encode both the accumulation of state rewards when a time
transition is taken and the action rewards of P. It follows that for cumulative
reward properties, we only need to consider the action rewards of [[P]]T together
with the reward accumulated in the location we are in when either the time
bound or the goal is first reached.

5.2 Verification and strategy synthesis

Given a POPTA P and property φ, as for POMDPs we are interested in solving
the dual problems of verification and strategy synthesis (see Definitions 9 and
10) for the ‘standard’ dense-time semantics of P:

– decide if [[P]]R, σ |=φ holds for all strategies σ∈Σ[[P]]R
;

– find, if it exists, a strategy σ∈Σ[[P]]R
such that [[P]]R, σ |=φ.

Again, in similar fashion to POMDPs, these can be solved by computing optimal
values for either path or reward objectives:

Prmin
[[P]]R

(ψ)
def
= infσ∈Σ[[P]]R

Prσ[[P]]R
(ψ) Emin

[[P]]R
(ρ)

def
= infσ∈Σ[[P]]R

Eσ[[P]]R
(ρ)

Prmax
[[P]]R

(ψ)
def
= supσ∈Σ[[P]]R

Prσ[[P]]R
(ψ) Emax

[[P]]R
(ρ)

def
= supσ∈Σ[[P]]R

Eσ[[P]]R
(ρ)
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and, where required, also synthesising an optimal strategy. The remainder of this
section therefore focuses on how to (approximately) compute optimal values and
strategies for POPTAs.

5.3 Numerical computation algorithms

Approximate numerical computation of either optimal probabilities or expected
reward values on a POPTA P is performed with the sequence of steps given
below, As for POMDPs we compute both an under- and an over-approximation.
For the former, we also generate a strategy which achieves this value.

(A) We modify POPTA P, reducing the problem to computing optimal values
for a probabilistic reachability or expected cumulative reward property [42];

(B) We apply the digital clocks discretisation of Section 4 to reduce the infinite-
state semantics [[P]]R of P to a finite-state POMDP [[P]]N;

(C) We build and solve a finite abstraction of the (infinite-state) belief MDP
B([[P]]N) of the POMDP from (B), yielding an over-approximation;

(D) We synthesise and analyse a strategy for [[P]]N, giving an under-approximation;
(E) If required, we refine the abstraction’s precision and repeat (C) and (D).

(A) Property reduction. As discussed in [42] (for PTAs), checking P./p[ψ]
or R./q[ρ] properties of the logic from Definition 18 can always be reduced to
checking either a probabilistic reachability (P./p[F α]) or expected cumulative
reachability reward (R./q[F α]) property on a modified model. For example, time-
bounded probabilistic reachability (P./p[F

6t α]) can be transformed into proba-
bilistic reachability (P./p[F (α ∧ y6t)]) where y is a new clock added to P which
is never reset and does not appear in any invariant or enabling conditions. We
refer to [42] for full details.

(B) Digital clocks. Assuming the POPTA P satisfies Assumptions 1 and 2,
we can construct a finite POMDP [[P]]N representing P by treating clocks as
bounded integer variables. The correctness of this reduction is demonstrated
below. The translation itself is relatively straightforward, involving a syntactic
translation of the PTA (to convert clocks), followed by a systematic exploration
of its finite state space. At this point, we also syntactically check satisfaction of
the restrictions (Assumptions 1 and 2) that we require of POPTAs.

(C–E) POMDP analysis. This follows the approach for analysing probabilistic
and expected cumulative reachability queries of POMDPs given in Section 3.

5.4 Correctness of the digital clocks reduction

We now prove that the digital clocks reduction preserves optimal probabilistic
and expected reachability values of POPTAs. A direct corollary of this is that,
for the logic presented in Definition 21, we can perform both verification and
strategy synthesis using the finite-state digital clocks semantics.
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Theorem 1. If P is a POPTA satisfying Assumptions 1 and 2, then, for any
set of observations OL of P and opt ∈ {min,max}, we have:

Propt[[P]]R
(F OL) = Propt[[P]]N

(F OL) and Eopt[[P]]R
(F OL) = Eopt[[P]]N

(F OL).

Corollary 1. If P is a POPTA satisfying Assumptions 1 and 2, and φ is a
property from Definition 18, then:

– [[P]]R, σ |=φ holds for all strategies σ∈Σ[[P]]R
if and only if [[P]]N, σ |=φ holds

for all strategies σ∈Σ[[P]]N
;

– there exists a strategy σ∈Σ[[P]]R
such that [[P]]R, σ |=φ if and only if there

exists a strategy σ′∈Σ[[P]]N
such that [[P]]N, σ

′ |=φ;
– if a strategy σ∈Σ[[P]]N

is such that [[P]]N, σ |=φ, then σ∈Σ[[P]]R
and [[P]]R, σ |=φ.

Proof. In each case, the proof follows straightforwardly from [42] which demon-
strates that checking a property φ of the logic given in Definition 18 can always
be reduced to checking either a probabilistic reachability (P./p[F α]) or expected
cumulative reachability reward (R./q[F α]) property and using Theorem 1. The
generalisation of results in [42] from PTAs to POPTAs relies on the fact that
propositional formulae α in the logic are based on either observations or clock
valuations, both of which are observable. ut

Before we give the proof of Theorem 1 we require the following definitions and
preliminary result. Consider a POPTA P=(L, l,X ,A, inv , enab, prob, r ,OL, obsL).
If v, v′ are clock valuations and X,Y sets of clocks such that X 6=Y and v(x)>0
for any x ∈ X ∪ Y , then v[X:=0]6=v[Y :=0]. Therefore, since we restrict our
attention to POPTAs which reset only non-zero clocks (see Assumption 2), for
a time domain T, if there exists a transition from (l, v) to (l′, v′) in [[P]]T, then
there is a unique (possibly empty) set of clocks which are reset when this tran-
sition is taken. We formalise this through the following definition. For any clock
valuations v, v′ ∈ TX , let:

X[v 7→v′]
def
= {x ∈ X | v(x)>0 ∧ v′(x)=0} . (1)

Using (1), the probabilistic transition function of [[P]]T is such that, for any
(l, v) ∈ S and a ∈ A, we have P ((l, v), a)=µ if and only if v |= enab(l, a) and for
any (l′, v′) ∈ S:

µ(l′, v′) =

{
prob(l, a)(X[v 7→v′], l

′) if v[X[v 7→v′]:=0]=v′

0 otherwise.

We next introduce the concept of a belief PTA.

Definition 22 (Belief PTA). If P=(L, l,X ,A, inv , enab, prob, r ,OL, obsL) is
a POPTA, the belief PTA of P is given by the tuple:

B(P) = (Dist(L, obsL), δl,X ,A, invB, enabB, probB, rB)

where:
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– Dist(L, obsL) denotes the subset of Dist(L) where λ ∈ Dist(L, obsL) if and
only if, for l, l′ ∈ L such that λ(l)>0 and λ(l′)>0 we have obsL(l)=obsL(l′);

– the invariant condition invB : Dist(L, obsL)→CC (X ) and enabling condition
enabB : Dist(L, obsL)×A→ CC (X ) are such that, for λ ∈ Dist(L, obsL) and
a ∈ A, we have invB(λ)=inv(l) and enabB(λ, a)=enab(l, a) where l ∈ L and
λ(l)>0;

– the probabilistic transition function:

probB : Dist(L, obsL)×A→ Dist(2X×Dist(L, obsL))

is such that, for any λ, λ′ ∈ Dist(L, obsL), a ∈ A and X ⊆ X we have:

probB(λ, a)(λ′, X) =
∑
l∈L

λ(l) ·

( ∑
o∈O∧λa,o,X=λ′

∑
l′∈L∧obsL(l′)=o

prob(l, a)(l′, X)

)

and, for any l′ ∈ L:

λa,o,X(l′) =

{ ∑
l∈L prob(l,a)(l′,X)·λ(l)∑

l∈L λ(l)·(
∑
l′∈L∧obsL(l′)=o

prob(l,a)(l′,X))
if obsL(l′)=o

0 otherwise;

– the reward structure rB=(rBL , r
B
A) consists of a location reward function rBL :

Dist(L, obsL) → R and action reward function rBA : Dist(L, obsL)×A → R
such that, for any λ ∈ Dist(L, obsL) and a ∈ A:

rBL (λ) =
∑
l∈L λ(l) · rL(l) and rBA(λ, a) =

∑
l∈L λ(l) · rA(l, a) .

For the above to be well defined, we require the conditions on the invariant
condition and observation function given in Definition 13 to hold. For any λ ∈
Dist(L, obsL), we let oλ be the unique observation such that obsL(l)=oλ and
λ(l)>0 for some l ∈ L.

We now show that, for a POPTA P, the semantics of its belief PTA is iso-
morphic to the belief MDP of the semantics of P.

Proposition 2. For any POPTA P satisfying Assumption 2, time domain T
we have that the MDPs [[B(P)]]T and B([[P]]T) are isomorphic.

Proof. Consider any POPTA P=(L, l,X ,A, inv , enab, prob, r ,OL, obsL) which
satisfies Assumption 2, time domain T and let [[P]]T=(S, s̄,A∪T, P,R). To show
the MDPs [[B(P)]]T and B([[P]]T) are isomorphic we first give a bijection between
their state spaces and then use this bijection to show that the probabilistic
transition and reward functions of [[B(P)]]T and B([[P]]T) are isomorphic.

Considering the belief MDP B([[P]]T), see Definitions 5 and 16, and using the
fact that obs(l, v) = (obsL(l), v), for any belief states b, b′ and action a:

PB(b, a)(b′) =
∑

(o,vo)∈O×TX

ba,(o,vo)=b′

∑
(l,v)∈S

b(l, v) ·

 ∑
l′∈L∧obsL(l′)=o

P ((l, v), a)(l′, vo)


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where, for any belief b, action a, observation (o, vo) and state (l′, v′), we have
ba,(o,vo)(l′, v′) equals:{ ∑

(l,v)∈S P ((l,v),a)(l′,v′)·b(l,v)∑
(l,v)∈S b(l,v)·(

∑
l′′∈L∧obsL(l′′)=o

P ((l,v),a)(l′′,v′))
if obsL(l′)=o and v′=vo

0 otherwise
(2)

and RB(b, a) =
∑

(l,v)∈S R((l, v), a) · b(l, v). Furthermore, by Definition 16 and
since P satisfies Assumption 2, if a ∈ A:

P ((l, v), a)(l′, v′) =

{
prob(l, a)(X[v 7→v′], l

′) if v[X[v 7→v′]:=0]=v′

0 otherwise
(3)

while if a ∈ T:

P ((l, v), a)(l′, v′) =

{
1 if l′=l and v′=v+a
0 otherwise.

(4)

We see that ba,(o,vo)(l′, v′) is zero if v′ 6=vo, and therefore we can write the belief
as (λ, vo) where λ ∈ Dist(L) and λ(l)=ba,(o,vo)(l, vo) for all l ∈ L. In addition, for
any l′ ∈ L, if λ(l′)>0, then obsL(l′)=o. Since the initial belief b̄ can be written
as (δl,0) and we assume obsL(l)6=obsL(l) for any l 6=l ∈ L, it follows that we can
write each belief b of B([[P]]T) as a tuple (λ, v) ∈ Dist(L)×TX such that for any
l, l′ ∈ L, if λ(l)>0 and λ(l′)>0, then obsL(l)=obsL(l′). Hence, it follows from
Definitions 22 and 14 that there is a bijection between the states of B([[P]]T) and
the states of [[B(P)]]T.

We now use this bijection between the states to show that the probabilistic
transition function and reward functions of [[B(P)]]T and B([[P]]T) are isomorphic.
Using Definitions 5 and 16, for the probabilistic transition and the action reward
functions we have the following two cases to consider.

– For any belief states (λ, v) and (λ′, v′) and action a ∈ A:

PB((λ, v), a)(λ′, v′) =
∑
o∈OL

λa,(o,v
′)=λ′

∑
l∈L

λ(l) ·

 ∑
l′∈L
O(l′)=o

P ((l, v), a)(l′, v′)



=
∑
o∈OL

λa,(o,v
′)=λ′

∑
l∈L

λ(l) ·

 ∑
l′∈L
O(l′)=o

prob(l, a)(X[v 7→v′], l
′)

 by (3)

=
∑
l∈L

λ(l) ·

 ∑
o∈OL

λa,(o,v
′)=λ′

∑
l′∈L
O(l′)=o

prob(l, a)(X[v 7→v′], l
′)

 rearranging
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where for any l′ ∈ L:

λa,(o,v
′)(l′) =

{ ∑
l∈L P ((l,v),a)(l′,v′)·λ(l)∑

l∈L λ(l)·(
∑
l′′∈L∧obsL(l′′)=o

P ((l,v),a)(l′′,v′))
if obsL(l′)=o

0 otherwise

=

{ ∑
l∈L prob(l,a)(X[v 7→v′],l

′)·λ(l)∑
l∈L λ(l)·(

∑
l′′∈L∧obsL(l′′)=o

prob(l,a)(X[v 7→v′],l′))
if obsL(l′)=o

0 otherwise
by (3)

= λa,o,X[v 7→v′] by Definition 22.

Using this result, together with Definitions 22 and 14, it follows that the
probabilistic transition functions are isomorphic in the case. For the action
reward functions, we have:

RBA((λ, v), a) =
∑
l∈L rA(l, a)·λ(l)

which, again from Definitions 22 and 14, shows that the reward functions
are isomorphic in this case.

– For any belief states (λ, v) and (λ′, v′) and time duration t ∈ T:

PB((λ, v), t)(λ′, v′) =

{∑
l∈L λ(l) · P ((l, v), a)(l, v′) if λt,(oλ,v

′)=λ′

0 otherwise

where for any l′ ∈ L:

λt,(oλ,v
′)(l′) =

{
λ(l′)∑
l∈L λ(l) if v′=v+t

0 otherwise

=

{
λ(l′) if v′=v+t

0 otherwise
since λ is a distribution.

Substituting this expression for λt,(oλ,v
′) into that of PB((λ, v), t) we have:

PB((λ, v), t)(λ′, v′)

=

{∑
l∈L λ(l) ·

(∑
l′∈L P ((l, v), a)(l′, v′)

)
if λ=λ′ and v′=v+t

0 otherwise

=

{∑
l∈L λ(l) if λ=λ′ and v′=v+t

0 otherwise
by (4)

=

{
1 if λ=λ′ and v′=v+t
0 otherwise

since λ is a distribution

which, from Definitions 22 and 14, shows the probabilistic transition func-
tions are isomorphic. For the action reward function of B([[P]]T), we have
RBA((λ, v), t) =

∑
l∈L(rL(l)·t)·λ(l) and, from Definitions 22 and 14, this im-

plies that the action reward functions are isomorphic.

Since these are the only cases to consider, both the probabilistic transition and
action reward functions of B([[P]]T) and [[B(P)]]T are isomorphic.
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To complete the proof it remains to show that the state reward functions are
isomorphic. Since, by Definition 5, for any belief state (λ, v), we have RBS (λ, v) =∑
l∈L rL(l)·λ(l), the result follows from Definitions 22 and 14. ut

We are now in a position to present the proof of Theorem 1.

Proof (of Theorem 1). Consider any POPTA P satisfying Assumptions 1 and
2 and set of observables OL of P. Since the PTA B(P) satisfies Assumption 1,
using results presented in [32], we have that:

Propt[[B(P)]]R
(F TOL) = Propt[[B(P)]]N

(F TOL) (5)

Eopt[[B(P)]]R
(F TOL

) = Eopt[[B(P)]]N
(F TOL

) (6)

for opt ∈ {min,max} and where TOL
= {(l, v) ∈ L×TX | obs(l) ∈ OL}. Note

that, although [32] considers only PTAs with a finite set of locations, the proofs
corresponding to the above results do not rely this fact, and hence the results
carry over to B(P) which has an uncountable number of locations.

Due to the relationship we have given between the optimal probabilistic and
expected reachability values of a POMDP and its belief MDP (see Proposition 1),
it follows that:

Propt
[[P]]T

(F OL) = Propt
B([[P]]T)(F TOL

) and Eopt
[[P]]T

(F OL) = Eopt
B([[P]]T)(F TOL

) . (7)

Using Proposition 2 and, since P satisfies Assumption 2, it follows therefore that
[[B(P)]]T = B([[P]]T) for T ∈ {R,N}. Combining this result with (5), (6) and (7),
the theorem follows. ut

6 Implementation and Case Studies

We have built a prototype tool for verification and strategy synthesis of POMDPs
and POPTAs as an extension of the PRISM model checker [31,44]. Models are
described in an extension of the existing PRISM modelling language, described
in Section 6.1 below. For a specified POMDP or POPTA and property, the tool
performs the steps outlined in Sections 3 and 5, computing a pair of bounds for
a given property and synthesising a corresponding strategy.

We have developed a number of POMDP and POPTA case studies, from a
variety of different application domains, to evaluate the tool and techniques. In
each case, partial observability, nondeterminism, probability and, in the case of
POPTAs, real-time behaviour are all essential aspects required for the analysis.
The case studies are described in detail in Sections 6.2 to 6.7, and we summarise
the experimental results from these examples in Section 6.8.

The software, details of all case studies, parameters and properties are avail-
able from [55]. Also available through this link are the details for the POMDPs
in Examples 1 and 2 and the POPTAs in Examples 3 and 4.
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6.1 Modelling POMDPs and POPTAs in PRISM

Models in PRISM are specified in a high-level language based on guarded com-
mands, which is a variant of Reactive Modules [3]. A model is constructed as a
set of modules which can interact with each other. A module contains a num-
ber of finite-valued variables which define the module’s state. It’s behaviour is
described by a set of guarded commands containing an (optional) action label,
a guard and a probabilistic choice between updates:

[<action>] <guard>→ <prob> : <update> + · · · + <prob> : <update>;

A guard is a predicate over the variables of all modules and an update specifies,
using primed variables, how the module’s own variables are updated. Interaction
is both through the guards (guards can refer to variables of other modules) and
the action labels (which allow modules to synchronise over commands). PRISM
includes support for reward structures through reward items of the form:

<guard> : <reward>; or [<action>] <guard> : <reward>;

representing state and action rewards respectively. In the case of real-time mod-
els, modules can also contain clock variables which can appear in guards and
be reset by updates. In addition, the invariant keyword is used to allow for the
specification of location invariants.

We have extended the existing modelling language for MDPs and PTAs to
allow specification of which variables are observables (the unspecified variables
are considered hidden) through the keyword observables.

6.2 Wireless network scheduling

Our first case study is based on [52] and concerns the wireless downlink schedul-
ing of traffic to a number of different users with hard deadlines and where packets
have priorities. The system is time-slotted: time is divided into periods and each
period is divided into an equal number of slots. The system is parameterised
by the total number of time periods (K) and the number of slots (T ) per time
period. At the start of each time period, a new packet is generated for each user
with a priority assigned randomly. The goal of scheduling is to, in each period,
deliver the packets to each user before the period ends. Packets not delivered by
the end of a period are dropped.

There are c users and each one has a separate channel which can be in
two states: one in which it is able to decode packets and one where it cannot.
The state of each channel remains fixed within a time slot and between slots
is Markovian, i.e., it changes randomly based only on the state in the previous
slot. It is assumed that the conditions of the channels are unavailable to the
system when scheduling packets. This corresponds to the real world situation
where perfect channel information is not normally available since it requires
non-negligible network resources.



30 Norman, Parker, Zou

pomdp

observables
sched, k , t, pack1 , pack2 , pack3 , prio1 , prio2 , prio3

endobservables

// timing constants
const int K ; // total number of time periods
const int T ; // number of slots per time period

// probabilities that channels change status
// channel of user 1
const double p1 = 0.8; // probability channel remains on
const double r1 = 0.2; // probability channel moves from off to on
// channel of user 2
const double p2 = 0.6; // probability channel remains on
const double r2 = 0.4; // probability channel moves from off to on
// channel of user 3
const double p3 = 0.7; // probability channel remains on
const double r3 = 0.3; // probability channel moves from off to on

Fig. 4. Initial fragment of the PRISM model for the network scheduling case study.

module scheduler

k : [0..K−1]; // current time period
t : [0..T−1]; // correct slot
sched : [0..1]; // local state

// next slot/time period
[slot] sched=0 & t<T−1 → (sched′=1) & (t′=t+1);
[slot] sched=0 & t=T−1 & k<K−1 → (sched′=1) & (t′=0) & (k ′=k+1);

// make scheduling choice
[idle] sched=1 → (sched′=0);
[send1 ] sched=1 → (sched′=0);
[send2 ] sched=1 → (sched′=0);
[send3 ] sched=1 → (sched′=0);

// loop when finished
[] sched=0 & t=T−1 & k=K−1 → true;

endmodule

Fig. 5. PRISM module for the scheduler in the network scheduling case study.

The system is modelled in PRISM as a POMDP through the parallel com-
position of 3·c+1 modules (one module for the packet, priority and status of
each channel and one module representing the scheduler). We show here the
PRISM code for the case of c=3 users (and hence 3 channels). Figure 4 presents
the first parts of the corresponding PRISM model. This defines the model type
(POMDP), states which variables are observable and defines some constants
used to describe the model. All variables except those representing the status
of the channels are defined as observable, and hence the scheduler can observe
the elapsed time, which packets need to be sent and their priorities. The con-
stants include the numbers of time periods (K), of slots per period (T ), and the
probabilities that the channels change state after each time slot.

The module for the scheduler is presented in Figure 5. The scheduler has two
local states: in the first (when sched=0), it updates the timing variables, i.e.,
either moves to the next slot or to the next period; in the second local state
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// packets for channel 1
module packet1

pack1 : [0..1]; // packet to send in current period

// next slot
[slot] t=0 → (pack1 ′=1); // new period so new packet
[slot] t>0 → true;
// sending
[send1 ] pack1=1 & chan1=1 → (pack1 ′=0); // channel up
[send1 ] pack1=1 & chan1=0 → true; // channel down

endmodule

// construct further channels’ packets through renaming
module packet2=packet1 [pack1=pack2 , send1=send2 , chan1=chan2 ] endmodule
module packet3=packet1 [pack1=pack3 , send1=send3 , chan1=chan3 ] endmodule

// priority of the packets for channel 1
module priority1

prio1 : [0..3]; // three priority values

// new period so new packet and randomly assign priority
[slot] t=0 → 0.1 : (prio1 ′=1) + 0.3 : (prio1 ′=2) + 0.6 : (prio1 ′=3);
// priority already assigned for this period
[slot] t>0 → true;

// reset priority when packet has been sent
[send1 ] chan1=0 → true;
[send1 ] chan1=1 → (prio1 ′=0);

endmodule

// construct further priorities through renaming
module priority2 = priority1 [prio1=prio2 , chan1=chan2 , send1=send2 ] endmodule
module priority3 = priority1 [prio1=prio3 , chan1=chan3 , send1=send3 ] endmodule

// channel 1 status
module channel1

chan1 : [0..1]; // status of channel (off/on)

// initialise
[slot] t=0 & k=0 → 0.5 : (chan1 ′=0) + 0.5 : (chan1 ′=1);
// next slot
[slot] chan1=0 & !(t=0 & k=0) → 1−r1 : (chan1 ′=0) + r1 : (chan1 ′=1);
[slot] chan1=1 & !(t=0 & k=0) → 1−p1 : (chan1 ′=0) + p1 : (chan1 ′=1);

endmodule

// construct further channels through renaming
module channel2=channel1 [chan1=chan2 , p1=p2 , r1=r2 ] endmodule
module channel3=channel1 [chan1=chan3 , p1=p3 , r1=r3 ] endmodule

Fig. 6. PRISM modules for the channels in the network scheduling case study.

(when sched=1), it decides which packet to schedule for delivery in the current
time slot by (nondeterministically) selecting one of the actions send1 , send2 and
send3 corresponding to the three channels. The scheduler can also choose not
to try and send a packet by instead choosing the action idle.

The modules for the channels are presented in Figure 6. Each channel has
three modules representing:
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// reward structure for number of dropped packs
rewards “dropped packets”

[slot] t=0 & k>0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[idle] t=T−1 & k=K−1 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send1 ] t=T−1 & k=K−1 & chan1=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send2 ] t=T−1 & k=K−1 & chan2=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send3 ] t=T−1 & k=K−1 & chan3=0 : ((pack1=0)?0:1) + ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send1 ] t=T−1 & k=K−1 & chan1=1 : ((pack2=0)?0:1) + ((pack3=0)?0:1);
[send2 ] t=T−1 & k=K−1 & chan2=1 : ((pack1=0)?0:1) + ((pack3=0)?0:1);
[send3 ] t=T−1 & k=K−1 & chan3=1 : ((pack1=0)?0:1) + ((pack2=0)?0:1);

endrewards

// reward structure based on priorities
rewards “priority”

[send1 ] chan1=1 & prio1=1 : 1;
[send2 ] chan2=1 & prio2=1 : 1;
[send3 ] chan3=1 & prio3=1 : 1;
[send1 ] chan1=1 & prio1=2 : 10;
[send2 ] chan2=1 & prio2=2 : 10;
[send3 ] chan3=1 & prio3=2 : 10;
[send1 ] chan1=1 & prio1=3 : 20;
[send2 ] chan2=1 & prio2=3 : 20;
[send3 ] chan3=1 & prio3=3 : 20;

endrewards

Fig. 7. PRISM specification of reward structures for the network scheduling case study.

– if the packet for the current time period has been sent;
– the priority of the current packet to be sent;
– the status of the channel.

As can be seen in Figure 6, we only give the full specification of the modules for
the first channel; the modules for the remaining channels are defined through re-
naming. In the module packet1 , commands labelled by the action send1 are only
enabled when pack1 =1, and hence, as the modules synchronise, the scheduler
can only choose to send a packet if it has not yet been delivered. This module
also specifies that, if a packet is sent and the channel is down (chan1 =0), the
packet does not get delivered and still needs to be sent. In the modules packet1
and priority1 , we can see that at the start of each period there is a new packet
to send on each channel and the priority of these packets is chosen at random.
The module channel1 specifies that in the initial state the status of the channel
is selected uniformly at random and after this the status of the channel follows
the probabilities given in Figure 4.

Finally, the reward structures for the model are presented in Figure 7. The
first reward structure is used to count the number of dropped packets, i.e.,
the number of packets that remain to be sent at the end of each period. This
is achieved by counting the number of the variables pack1 , pack2 and pack3
that equal 1 when a time period ends. The second reward structure is used to
accumulate the priorities of delivered packets, and therefore each time a packet
gets delivered we assign an action reward equal to the corresponding priority.

For this case study, we synthesise strategies that maximise the expected cu-
mulative reward based on the priorities of the packets using the reward structure
of [52] and, for a simpler model where the priorities of packets are not consid-
ered (by removing the modules priority1 , priority2 and priority3 and related
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Fig. 8. Processor task graph for computing D× (C × (A+B)) + ((A+B) + (C ×D)).

reward structure), that minimise the expected number of dropped packets. These
requirements can be specified in PRISM as follows:

– R{“priority”}max=?[F (sched=0 & t=T−1 & k=K−1) ];
– R{“dropped packets”}min=?[F (sched=0 & t=T−1 & k=K−1) ].

In [52] the analysis is through handwritten proofs while here we construct a
formal model and perform automated analysis, in addition in [52] discounted
objectives are considered while we analyse undiscounted reachability objectives.

In [52] it is demonstrated that, due to hard deadlines and unknown channel
status, idling, i.e. not sending a packet in certain slots even when there is a packet
to send, is the optimal choice in certain situations. The reasoning given is that
this allows the scheduler to learn the status of the channels and then improve
the success of future transmissions of packets. Our analysis confirms this to be
the case when priorities are considered. For example, when T=3 and K=2 which
are the parameter values [52] use, we find that disallowing the scheduler to idle
causes the maximum expected accumulated reward interval to decrease from
[36.322, 36.324] to [36.316, 36.318] when the grid resolution is 48.

Our results also demonstrate that, when priorities of packets are not con-
sidered, idling is not an optimal choice. By using the presented approach this
analysis was easy to perform as we only needed to make a simple change to
the PRISM model removing the option for the scheduler to idle unless all pack-
ets in the current slot have been delivered, i.e. in the module for the scheduler
(see Figure 5) the command labelled by the action idle becomes:

[idle]sched=1 & pack1 =0 & pack2 =0 & pack3 =0 → (sched ′=0);

6.3 Task-graph scheduler

Next, we consider a task-graph scheduling problem adapted from [9], where
the goal is to minimise the time or energy consumption required to evaluate the
arithmetic expression D×(C×(A+B))+((A+B)+(C×D)) using two processors
(P1 and P2) that have different speed and energy requirements. Figure 8 presents
a task graph for this computation showing the tasks that need to be performed
and the dependencies between the tasks. The specification of the processors, as
given in [9], is as follows:
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true

mult
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p1 done
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p1 addx1:= 0
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p1 done

x1=3

p1 mult x1:= 0
true

Fig. 9. Original timed automaton of processor P1 from [9].

– time for addition: 2 and 5 picoseconds for processors P1 and P2;
– time for multiplication: 3 and 7 picoseconds for processors P1 and P2;
– idle energy usage: 10 and 20 Watts for processors P1 and P2;
– active energy usage: 90 and 30 Watts for processors P1 and P2.

The system is formed as the parallel composition of three timed automata: one
for each processor and one for the scheduler. In Figure 9 we give the timed
automaton representing P1. The labels p1 add and p1 mult on the transitions
represent an addition and multiplication task being scheduled on P1 respectively,
while the label p1 done indicates that the current task has been completed. The
timed automaton includes the clock x1 which is used to keep track of the time
that a task has been running. It is reset when a task starts and the invariants and
guards correspond to the time required to complete the tasks of addition and
multiplication for P1. The reward structure for computing the expected energy
consumption associates a reward of 10 with the stdby location and reward 90
with the locations add and mult (corresponding to the energy usage of process
P1 when idle and active respectively) and all action rewards are 0.

The timed automaton and reward structure for processor P2 are similar ex-
cept that the names of the labels, invariants, guards and reward values corre-
spond to the specification of P2. The automata for the scheduler keeps track of
the tasks that have been completed and nondeterministically decides how tasks
get allocated to processes, subject to meeting the dependencies between tasks.
After forming the parallel composition, the reward structure for the expected en-
ergy consumption then includes the addition of the reward structures for energy
consumption of P1 and P2. The reward structure for computing the expected
time associates a reward of 1 with all locations of the composed system.

We extend both the basic model of [9] described above and the extension from
[42] which uses PTAs to model probabilistic task execution times. In both models
we extend the processor P1 with a new ‘low power’ state allowing it to save energy
when not in use, but which incurs a delay of 4 picoseconds when waking up to
execute a new task. This state is entered with probability sleep after each task is
completed. We assume that the scheduler cannot observe whether the processor
enters this lower power state, and hence the model is a POPTA. The POPTA
for P1 including this lower power state (labelled low) is given in Figure 10. We
model the scheduler inability to observe if the processor is in the standby or lower
power state by assigning the same observation (oidle) to the locations labelled
stdby and low . To model the 4 picosecond delay when waking from the low power
state, we introduce the locations wake1 and wake2 corresponding to waking up
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Fig. 10. POPTA of processor P1 with a low power state.

to perform an add and a multiplication operation respectively. Not included in
Figure 10 is the initial location, from which we immediately move, by adding
the guard x=0 to this location, to either the location low or stby each with
probability 0.5. The PRISM module representing P1 is given in Figure 11 with
the variable sleep1 specified as unobservable. The PTA model with probabilistic
task execution times given in [42] can be extended similarly. For both models,
we generate optimal schedulers (minimising expected execution time or energy
usage) using strategy synthesis.

6.4 The NRL pump

The NRL (Naval Research Laboratory) pump [29] is designed to provide reli-
able and secure communication over networks of nodes with ‘high’ and ‘low ’
security levels. It prevents a covert channel leaking information from ‘high’ to
‘low ’ through the timing of messages and acknowledgements. Communication
is buffered and probabilistic delays are added to acknowledgements from ‘high’
in such a way that the potential for information leakage is minimised, while
maintaining network performance. A PTA model is considered in [33].

We model the pump as a POPTA using a hidden variable for a secret value
z ∈ {0, 1} (initially set uniformly at random) which ‘high’ tries to covertly
communicate to ‘low ’. The model is the parallel composition of three POPTAs
representing ‘high’, ‘low ’ and the pump. This communication is attempted by
adding a delay of h0 or h1, depending on the value of z, whenever sending an
acknowledgement to ‘low ’. In the model, ‘low ’ sends N messages to ‘high’ and
tries to guess z based on the time taken for its messages to be acknowledged.
We consider the maximum probability ‘low ’ can (either eventually or within
some time frame) correctly guess z. We also study the expected time to send
all messages and acknowledgements. These properties measure the security and
performance aspects of the pump. Results are presented in Figure 12 varying h1

and N (we fix h0=2). They show that increasing either the difference between
h0 and h1 (i.e., increasing h1) or the number N of messages sent improve the
chance of ‘low ’ correctly guessing the secret z, at the cost of a decrease in network
performance. On the other hand, when h0=h1, however many messages are sent,
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module P1

p1 : [0..5];
// 0 - initial location
// 1 - inactive (idle or sleep)
// 2,3 - waking (adding and multiplying)
// 4 - adding
// 5 - multiplying
sleep1 : [0..1]; // 0 - idle and 1 - sleep
x1 : clock; // local clock

invariant
(p1=0 ⇒ x160) &
(p1=1 ⇒ true) &
(p1=2 ⇒ x164) &
(p1=3 ⇒ x164) &
(p1=4 ⇒ x162) &
(p1=5 ⇒ x163)

endinvariant

// initialise
[start] p1=0 → 0.5 : (p1 ′=1) & (sleep1 ′=0) + 0.5 : (p1 ′=1) & (sleep1 ′=1);

// start from sleep state
[p1 add] p1=1 & sleep1=1 → (p1 ′=2) & (x1 ′=0) & (sleep1 ′=0); // add
[p1 mult] p1=1 & sleep1=1 → (p1 ′=3) & (x1 ′=0) & (sleep1 ′=0); // multiply

// start from idle state
[p1 add] p1=1 & sleep1=0 → (p1 ′=4) & (x1 ′=0); // add
[p1 mult] p1=1 & sleep1=0 → (p1 ′=5) & (x1 ′=0); // multiply

// wake from sleep
[] p1=2 & x1=4 → (p1 ′=4) & (x1 ′=0); // add
[] p1=3 & x1=4 → (p1 ′=5) & (x1 ′=0); // multiply

// finish
[p1 done] p1=4 & x1=2 → (1−sleep) : (p1 ′=1) + sleep : (p1 ′=1) & (sleep1 ′=1); // add
[p1 done] p1=5 & x1=3 → (1−sleep) : (p1 ′=1) + sleep : (p1 ′=1) & (sleep1 ′=1); // multiply

endmodule

Fig. 11. PRISM module of processor P1 with a low power state.

‘low ’, as expected, learns nothing of the value being sent and at best can guess
correctly with probability 0.5.

6.5 Non-repudiation protocol

The next case study is a non-repudiation protocol for information transfer due
to Markowitch & Roggeman [39]. It is designed to allow an originator O to send
information to a recipient R while guaranteeing non-repudiation, that is, neither
party can deny having participated in the information transfer. The initialisation
step of the protocol requires O to randomly select an integer N in the range
1, . . . ,K that is never revealed to R during execution.

In previous analyses [34,42], modelling this step was not possible since no
notion of (non-)observability was used. We resolve this by building a POPTA
model of the protocol including this step, thus matching Markowitch & Rogge-
man’s original specification. In particular, we include a hidden variable to store
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Fig. 12. Analysing security/performance of the NRL pump: (a) maximum probability
of covert channel success; (b) maximum expected transmission time.

the random value N . The model is the parallel composition of two component
POPTAs representing the originator and the recipient.

We build two POPTA models: a basic model, where R’s only malicious be-
haviour corresponds to stopping early; and a more complex model, where R also
has access to a decoder. We also consider a simpler discrete-time POMDP model
where the timing information is abstracted and R’s only malicious behaviour cor-
responds to stopping early. We compute the maximum probability that R gains
an unfair advantage (obtains the information from O while being able to deny
participating). Our results (see Tables 1 and 2) show that, for the basic models,
this probability equals 1/K when convergence is achieved and that R is more
powerful in the complex model.

6.6 The dining cryptographers protocol

This protocol, due to Chaum [18], solves the following problem. A group of
N cryptographers are having dinner at their favourite restaurant. The waiter
informs them that arrangements have been made for the bill to be paid anony-
mously: one of the cryptographers might be paying for the dinner, or it might
be their master. The cryptographers respect each other’s privacy, but would like
to know if the master is paying for dinner. The protocol proceeds as follows.

– Each cryptographer flips an unbiased coin and only informs the cryptogra-
pher on the right of the outcome.

– Each cryptographer states whether the two coins that it can see (the one it
flipped and the one the left-hand neighbour flipped) are the same (‘agree’) or
different (‘disagree’). However, if a cryptographer actually paid for dinner,
then the cryptographer instead states the opposite (‘disagree’ if the coins
are the same and ‘agree’ if the coins are different).

An even number of ‘agrees’ indicates the master paid, an odd number that a
cryptographer paid. But this provides no additional information as to which
cryptographer actually paid.
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We model the protocol as a parallel composition of POMDPs: one for each
cryptographer and one representing the master. The observable behaviour of the
POMDP is with respect to a specific cryptographer. In particular, all the ‘agree’
and ‘disagree’ announcements are visible to this cryptographer, but only the
values of its own and its left-hand neighbour’s coins are visible.

In the model we do not impose any requirement on the ordering in which
the cryptographers state ‘agree’ or ‘disagree’, in case this can be used to provide
information to the specific cryptographer as to who actually pays. In the initial-
isation phase, we assume that the master selects, uniformly at random, one of
the other cryptographers to pay.

We analyse both the minimum and maximum probability that the specified
cryptographer can guess which of the other cryptographers actually pays. We
find that, when the approach converges, the maximum probability that the cryp-
tographer can correctly guess which of the other cryptographers pays is the same
both before and after the protocol is run, i.e., by selecting one of the other cryp-
tographers uniformly at random. Hence we have demonstrated that the protocol
does indeed satisfy the privacy requirement in these cases. Privacy had previ-
ously been analysed with PRISM using MDPs (see [44]), however in this work an
exponential number of properties needed to be verified, as opposed to the sin-
gle maximum probabilistic reachability property required when modelling the
protocol as a POMDP.

6.7 Grid-world robot

The final case study is based on the POMDP example given in [36]. There is a
robot placed randomly an n×n grid and its goal is to reach the south east corner
location. All locations of the grid look identical, i.e., have the same observation,
except the target. The robot can perform four different actions corresponding
to moving in the four compass directions. There is no change in location if the
chosen action would take the robot off the grid. We have constructed POMDP
models for the cases when n equals 3 and 4. For both models we have synthesised
a controller that optimises (i.e., minimises) the expected number of steps to
reach the target and a controller that optimises (i.e., maximises) the probability
of reaching the target within k steps.

6.8 Experimental results

Tables 1 and 2 summarise a representative set of experimental results from the
analysis of the POMDP and POPTA case studies, respectively. All were run on
a 2.8 GHz PC with 8GB RAM. The table shows the parameters used for each
model (see [55] for details), the property analysed and various statistics from the
analysis: the size of the POMDP (in the case of POPTAs this is the POMDP
that is obtained through the digital clocks semantics); number of observations;
number of hidden values (i.e., the maximum number of states with the same
observation); the grid size (resolution M and total number of points); the time
taken; and the results obtained. For comparison, in the rightmost column, we
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Case study
(parameters)

Property
Verification/strategy synthesis of POMDP

MDP
result

States Num. Num. Res. Grid Time Result
obs. hidd. (M) points (s) (bounds)

wireless
network
sched.

(c T K)

2 2 20

Rmin=?[ F done ]
(dropped packets)

754 214 4 16 151,811 34.2 [19.3, 19.3] 15.9
2 4 20 2,029 533 4 16 457,233 190.3 [10.2, 10.3] 8.26
2 8 20 4,589 1,173 4 16 1,077,393 893.3 [3.2, 3.2] 2.56
3 3 8 1,714 234 8 8 1,171,699 428.4 [9.4, 9.9] 6.61
3 4 8 4,777 617 8 6 967,729 654.6 [3.63, 4.20] 2.51
3 5 8 6,825 873 8 6 1,407,025 1,461 [2.00, 2.34] 1.33

wireless
network
sched.

(c T K)

2 2 8

Rmax=?[ F done ]
(priorities cumul.)

1,534 410 4 12 158,159 43.5 [125, 125] 143
2 4 8 3,577 921 4 12 387,193 174.3 [180, 180] 191
2 8 8 7,673 1,945 4 12 853,113 707.9 [222, 222] 225
3 3 2 3,932 524 8 4 133,915 90.51 [44.1, 47.2] 56.8
3 4 2 5,971 779 8 4 215,899 167.8 [55.5, 58.9] 67.0
3 5 2 8,019 1,035 8 4 300,259 277.6 [64.1, 67.4] 73.6

nrp
discrete

(K)

4

Pmax=?[ F unfair ]

39 21 5 4 173 0.1 [0.25, 0.375] 1.0
4 39 21 5 12 1,685 0.2 [0.25, 0.25] 1.0
8 125 41 9 4 2,385 0.7 [0.13, 0.38] 1.0
8 125 41 9 16 1,038,321 124.0 [0.13, 0.18] 1.0

dining
crypt
(N)

3

Pmin=?[ F paid ]

179 90 6 4 606 0.16 [0.5, 0.5] 0.0
4 964 282 15 8 674,398 210.5 [0.082, 0.333] 0.0
5 4,741 842 36 4 746,020 907.5 [0.0, 0.25] 0.0
6 22,406 2,458 85 2 210,256 505.7 [0.0, 0.2] 0.0

dining
crypt
(N)

3

Pmax=?[ F paid ]

179 90 6 4 606 0.16 [0.5, 0.5] 1.0
4 964 90 15 8 674,398 209.8 [0.333, 0.568] 1.0
5 4,741 842 36 4 746,020 1,044 [0.25, 1.0] 1.0
6 22,406 2,458 85 2 210,256 1,046 [0.2, 1.0] 1.0

grid
(n)

3

Rmin=?[ F target ]

11 3 9 4 331 0.1 [2.63, 2.88] 2.0
3 11 3 9 8 6,436 1.0 [2.84, 2.88] 2.0
4 17 3 16 4 3,061 0.8 [3.27, 4.13] 2.73
4 17 3 16 8 319,771 60.6 [3.91, 4.13] 2.73

grid
(n k)

3 1

Pmax=?[ F6k target ]

18 4 9 8 12,871 1.7 [0.13, 0.13] 0.25
3 2 27 6 9 4 991 0.4 [0.38, 0.38] 0.75
3 3 36 8 9 4 1321 0.3 [0.75, 0.75] 1.0
3 4 45 10 9 2 181 0.1 [1.0, 1.0] 1.0
4 2 48 6 16 3 2,041 0.7 [0.2, 0.2] 0.33
4 4 80 10 16 6 193,801 24.5 [0.53, 0.63] 1.0
4 5 96 12 16 6 232,561 33.5 [0.80, 0.85] 1.0
4 6 112 14 16 2 841 0.6 [1.0, 1.0] 1.0

Table 1. Experimental results from verification/strategy synthesis of POMDPs.

show what result is obtained if the POMDP or POPTA is treated as an MDP
or PTA (by making everything observable).

On the whole, we find that the performance of our prototype is good, espe-
cially considering the complexity of the POMDP solution methods and the fact
that we use a relatively simple grid mechanism. We are able to analyse POPTAs
whose integer semantics yields POMDPs of up to 60,000 states, with experi-
ments usually taking just a few seconds and, at worst, 20 minutes. These are,
of course, smaller than the standard PTA or MDP models that can be verified,
but we were still able to obtain useful results for several case studies.

The values in the rightmost column of Tables 1 and 2 illustrate that the
results obtained with POMDPs and POPTAs would not have been possible
using an MDP or PTA model, i.e., where all states of the model are observable.
In the wireless network case study in the MDP model the scheduler can see the
status of the channels, and hence use this information to decrease the number
of dropped packets and increase the cumulate reward based on the priorities of
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Case study
(parameters)

Property
Verification/strategy synthesis of POPTA

PTA
result

States Num. Num. Res. Grid Time Result
([[P]]N) obs. hidd. (M) points (s) (bounds)

scheduler
basic

(sleep)

0.25
Rmin=?[ F done ]

(exec. time)

2,090 1,619 2 2 2,537 1.6 [15.84, 15.84] 15.59
0.5 2,090 1,619 2 2 2,537 1.3 [21.1, 21.1] 18.0
0.75 2,090 1,619 2 4 3,463 1.9 [19.25, 19.25] 20.38

scheduler
basic

(sleep)

0.25
Rmin=?[ F done ]
(energy cons.)

2,090 1,619 2 2 2,537 1.0 [1.849, 1.849] 1.834
0.5 2,090 1,619 2 2 2,537 1.8 [2.149, 2.149] 2.119
0.75 2,090 1,619 2 4 3,463 2.1 [2.444, 2.444] 2.399

scheduler
prob

(sleep)

0.25
Rmin=?[ F done ]

(exec. time)

5,484 4,204 2 2 6,662 4.5 [16.21, 16.21] 15.96
0.5 5,484 4,204 2 2 6,662 3.4 [18.73, 18.73] 18.23
0.75 5,484 4,204 2 4 9,154 5.2 [21.29, 21.29] 20.53

scheduler
prob

(sleep)

0.25
Rmin=?[ F done ]
(energy cons.)

5,484 4,204 2 4 6,662 3.5 [1.890, 1.890] 1.875
0.5 5,484 4,204 2 2 6,662 4.0 [2.177, 2.177] 2.147
0.75 5,484 4,204 2 4 9,154 4.7 [2.461, 2.461] 2.416

pump
(h1 N)

16 2
Pmax=?[ F guess ]

243 145 3 2 342 0.7 [0.940, 0.992] 1.0
16 2 243 145 3 40 4,845 4.0 [0.940, 0.941] 1.0
16 16 1,559 803 3 2 2,316 16.8 [0.999, 0.999] 1.0

pump
(h1 N D)

8 4 50

Pmax=?[ F6D guess ]

12,167 7,079 3 2 17,256 11.0 [0.753, 0.808] 1.0
8 4 50 12,167 7,079 3 12 68,201 36.2 [0.763, 0.764] 1.0
16 8 50 26,019 13,909 3 2 38,130 52.8 [0.501, 0.501] 1.0
16 8 100 59,287 31,743 3 2 86,832 284.8 [0.531, 0.532] 1.0

nrp
basic
(K)

4

Pmax=?[ F unfair ]

365 194 5 8 5,734 0.8 [0.25, 0.281] 1.0
4 365 194 5 24 79,278 5.9 [0.25, 0.25] 1.0
8 1,273 398 9 4 23,435 4.8 [0.125, 0.375] 1.0
8 1,273 398 9 8 318,312 304.6 [0.125, 0.237] 1.0

nrp
complex

(K)

4

Pmax=?[ F unfair ]

1,501 718 5 4 7,480 2.1 [0.438, 0.519] 1.0
4 1,501 718 5 12 72,748 14.8 [0.438, 0.438] 1.0
8 5,113 1,438 9 2 16,117 6.1 [0.344, 0.625] 1.0
8 5,113 1,438 9 4 103,939 47.1 [0.344, 0.520] 1.0

Table 2. Experimental results from verification/strategy synthesis of POPTAs.

packets. In the crypt and pump case studies, the MDP and PTA give probability
1 of guessing correctly (e.g., in the pump example, ‘low ’ can simply read the
value of the secret). Similarly, for the nrp models, the PTA gives probability
1 of unfairness because the recipient can read the random value the originator
selects. For the scheduler example, the PTA model gives a scheduler with better
time/energy consumption but which cannot be implemented in practice since
the power state is not visible. In similar fashion, for the grid example, we see
that optimal strategy is improved if the precise location on the grid is available.

Another positive aspect is that, in many cases, the bounds generated are
very close (or even equal, in which case the results are exact). For the pump and
scheduler case studies, we included results for the smallest grid resolution M
required to ensure the difference between the bounds is at most 0.001. In many
cases, this is achieved with relatively small values (for the scheduler case study,
in particular, M is at most 4). For the cases we were unable to do this we have
instead included the results for the largest grid resolution for which POMDP
solution was possible: higher values could not be handled within the memory
constraints of our test machine. We anticipate being able to improve this in the
future by adapting more advanced approximation methods for POMDPs [48].
For the crypt case study, as we increase the number of cryptographers, we find
that the over approximations obtained through the approximate solution of the
belief MDP are coarse (0.0 and 1.0 for minimum and maximum probabilities,
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respectively) while the under approximations obtained through synthesis are
precise. This appears to be the due to large number of hidden values in the
POMDP compared to the other case studies and our prototype implementation
using only a basic approximation method.

7 Conclusions

We have proposed novel methods for the verification and control of partially
observable, probabilistic systems for both discrete and dense models of time. We
have used temporal logics to define probabilistic, timed properties and reward
measures. For discrete-time models, the techniques developed are based on a
belief space approximation. For dense-time models we have demonstrated that
the digital clocks discretisation preserves the properties of interest, which allows
us to employ the techniques developed for the discrete-time case. We have im-
plemented this work in an extension of the probabilistic model checker PRISM
and demonstrated the effectiveness on several case studies.

Future directions include more efficient approximation schemes, zone-based
implementations and development of the theory for unobservable clocks. Allow-
ing unobservable clocks, as mentioned previously, will require moving to partially
observable stochastic games and restricting the class of strategies.
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6. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: Lévy, J.J., Mayr, E., Mitchell, J. (eds.) Proc. 3rd IFIP
Int. Conf. Theoretical Computer Science (TCS 2006). pp. 493–506. Kluwer (2004)



42 Norman, Parker, Zou

7. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J.,
Vaandrager, F.: Minimum-cost reachability for linearly priced timed automata. In:
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Proc. 4th Int. Conf. Hybrid
Systems: Computation and Control (HSCC 2001). LNCS, vol. 2034, pp. 147–162.
Springer (2001)

8. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: Proc. 15th Int. Conf. Computer Aided Verification (CAV’03).
LNCS, vol. 2725, pp. 180–192 (2003)

9. Bouyer, P., Fahrenberg, U., Larsen, K., Markey, N.: Quantitative analysis of real-
time systems using priced timed automata. Communications of the ACM 54(9),
78–87 (2011)
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A Construction of the Belief MDP

For the convenience of the reader, we have included below, the construction of
the belief MDP for a POMDP M=(S, s̄, A, P,R,O, obs) (see Definition 5). We
use the standard notation from the POMDP literature, for example Pr[ s′, a, b ]
denotes the probability that the next state is s′, the action a is performed and
the current belief is b and Pr[ o | a, b ] denote the probability of observing o
conditioned on the action being a is performed and that the current belief state
is b.

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org/files/rts-poptas/
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First, let us suppose we are in a belief state b, perform action a and observe
o. Based on this new information we move to a new belief state ba,o using the
observation function of M. Let us now construct this new belief state. First, by
construction, we have for any s′ ∈ S:

ba,o(s′) = Pr[ s′ | o, a, b ]

=
Pr[ s′, o, a, b ]

Pr[ o, a, b ]
by definition of conditional probabilities

=


Pr[ s′, a, b ]

Pr[ o, a, b ]
if obs(s′)=o

0 otherwise
by definition of obs.

Now considering the numerator in the first case, since the value of s′ is dependent
on the other values:

Pr[ s′, a, b ] = Pr[ s′ | a, b ] ·Pr[ a, b ]

= Pr[ s′ | a, b ] · 1 since b and a are fixed

=
∑
s∈SPr[ s′ | a, s ] · b(s) definition of b

=
∑
s∈SP (s, a)(s′) · b(s) definition of P .

For the denominator since o is dependent on b and a we have:

Pr[ o, a, b ] = Pr[ o | a, b ] ·Pr[ a, b ]

= Pr[ o | a, b ] · 1 since b and a are fixed

=
∑
s∈SPr[ o | a, s ] · b(s) by definition of b

=
∑
s∈S

(∑
s′∈SPr[ o | s′, a ] · P (s, a)(s′)

)
· b(s) by definition of P

=
∑
s∈S

(∑
s′∈S∧obs(s′)=oP (s, a)(s′)

)
· b(s) by definition of obs.

Combining these results (and rearranging) we have:

ba,o(s′) =

{ ∑
s∈S P (s,a)(s′)·b(s)∑

s∈S b(s)·(
∑
s′′∈S∧obs(s′′)=o P (s,a)(s′′))

if obs(s′)=o

0 otherwise.

Now using this we can define the probabilistic transition function of the belief
MDP B(M). Suppose we are in a belief state b and we perform action a. Now
the probability we move to belief b′ is given by:

PBT (b, a)(b′) = Pr[ b′ | a, b ] =
∑
o∈OPr[ b′ | o, a, b ] ·Pr[ o | a, b ] .

The first term in the summation (Pr[ b′ | o, a, b ]) is the probability of being in
belief b′ after being in belief b, performing action a and observing o. Therefore
by definition of ba,o, this probability will equal 1 if b′ equals ba,o and 0 otherwise.

For the second term, as in the derivation of the denominator above, we have:

Pr[ o | a, b ] =
∑
s∈Sb(s) ·

(∑
s′∈S∧obs(s′)=oP (s, a)(s′)

)
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This completes the construction of the transition function of the belief MDP.

It remains to construct the reward structure RB of the belief MDP. In this case,
we just have to take the expectation of the state and action reward functions
with respect to the current belief, i.e. for any belief state b and action a:

RBS(b) =
∑
s∈SRS(s) · b(s)

RBA(b, a) =
∑
s∈SRA(s, a) · b(s) .
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