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Abstract

Computer systems are ubiquitous in almost all spheres of our life, motivat-

ing the need for them to function correctly and in a timely manner. Con-

tinuous time Markov chains (CTMCs) are a widely used formalism for the

performance analysis of computer systems. A large variety of useful per-

formance measures can be derived from a CTMC via the computation of

its steady-state probabilities. Traditional methods for performance analysis

typically require the generation and storage of the underlying state space of

the CTMC, and the processing of the state space for the numerical solution.

CTMC models for even trivial real-life systems are usually huge, and both

the amount of required memory and the time to compute the solution pose

a major difficulty.

In this thesis, we present techniques which extend the size of analysable

models on a single workstation, with the goal for alleviating the state space

explosion problem. We introduce explicit and symbolic disk-based methods

which relax the storage limitations of contemporary techniques and are able

to extend the size of solvable models by an order of magnitude. We also pro-

pose a new sparse storage scheme which provides 30% or more savings over

the conventional sparse schemes and improves the solution speed. Further-

more, we present modifications to multi-terminal binary decision diagrams

(MTBDDs), a symbolic data structure for storing CTMCs. The modifica-

tions improve the time and memory properties of this data structure, and

allow an efficient implementation of the Gauss-Seidel iterative method, which

was not possible previously.

Using the techniques introduced in this thesis, we demonstrate analysis of

models with over 1.2 billion states and 16 billion transitions on a single work-

station. Currently, models of such sizes cannot be solved on a contemporary

workstation using conventional techniques.
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CHAPTER

ONE

Introduction

Computer and communication systems are being used in a variety of appli-

cations ranging from financial institutions, information services to aeroplane,

railway and car control systems. The complexity of these systems is rising due

to the amount of concurrency and communication among their components.

The applications of these systems to safety and security critical entities, in

particular, motivates the need for these systems to function safely, correctly

and in a timely manner.

Discrete-state models have proved to be a valuable tool in the performance

analysis of computer systems and communication networks. Modelling of

such systems involves the description of the system’s behaviour by the set

of different states the system may occupy (the state space), and identifying

the transitions which may occur among the states of the system. Since many

real-life systems, or the environments in which they operate, are inherently

stochastic, it is desirable or even necessary to include these probabilistic as-

pects in their models. Often, a system under study can be modelled as a con-

tinuous time Markov chain (CTMC). CTMCs are widely used in modelling

and performance analysis. Typically, the models are represented as matrices

consisting of rates, the parameters of exponential distributions. Performance

characteristics such as mean waiting time or throughput are obtained from

so called steady-state probabilities, i.e. the probability of being in each state

in the long run. This thesis focuses on the calculation of the steady-state

probability vector, which can be obtained from the solution of a system of a
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1 - Introduction

linear equations. The size of this system equals the number of states.

A major hurdle associated with the CTMC-based performance analysis is

the so called state space explosion or the largeness problem. This is caused

by the fact that a system is usually composed of a number of concurrent sub-

systems, and that the size of the state space of the overall system is generally

exponential in the number of subsystems. This means that the number of

states for even a trivial real-life system is substantial. Consequently, much

research is focused on the development of techniques, i.e. methods and data

structures, which minimise the computational (space and time) requirements

for analysing large and complex systems.

There are a number of techniques that attempt to reduce the amount

of storage required for CTMCs, or avoid the storage altogether. Here, we

assume that the CTMC matrix has been generated and will be used for the

numerical solution of the steady-state vector. The conventional approach is

to use the explicit storage of the state space and associated data structures,

employing sparse storage techniques inherited from the linear algebra com-

munity. Standard numerical algorithms can thus be used for the solution.

Another direction in this context comprises those techniques which rely on

exploiting the regularity and structure in models, and hence provide an im-

plicit, usually compact, representation for large models. In the worst case,

however, such approaches may result in a larger storage requirement than

the explicit methods. A subcategory among the implicit methods is sym-

bolic methods, i.e. those usually based on binary decision diagrams (BDDs)

and extensions thereof. These implicit techniques include special routines to

manipulate the implicit data structures during the process of performance

analysis. Essentially, the difference between the implicit and explicit ap-

proaches lies in that the former relies on generating a compact storage of the

CTMC matrix by exploiting structure and regularity in the CTMC, while

the latter stores and manipulates the entire matrix explicitly. Both implicit

and explicit techniques have been strengthened by parallel and distributed

techniques, which use resources of shared or distributed memory computers

to store and analyse a model.

Our aim in this dissertation is to combat the state space explosion prob-

lem for CTMC analysis. We develop techniques which can extend the size of

models analysable on a single workstation. To realise this, we have employed

2



1 - Introduction

both implicit and explicit representations. In particular, we focus on out-of-

core techniques which use disk to store all or part of the data structures. The

so called disk-based or out-of-core techniques have been in use for a long time,

but this is the first time they have been used in combination with symbolic

data structures. These are designed to achieve high performance when their

data structures are stored on disk.

We propose to augment the implicit and explicit approaches with two

new methods: first, the complete out-of-core method based on a sparse disk-

based storage of all data structures; and, second, the symbolic out-of-core

method, which combines implicit and disk-based approaches. The symbolic

data structure we use for the second proposed approach is a BDD variant

known as offset-labelled MTBDDs. We also propose a new sparse storage

scheme, called the compact MSR format, which provides significant memory

savings and the solution based on this scheme is typically faster than for the

existing sparse schemes. Moreover, we propose modifications to the offset-

labelled MTBDD data structure, improving its time and space requirements

as well as addressing one of its major limitations regarding the use of iterative

solution methods, namely the lack of an efficient Gauss-Seidel method.

We support our proposed techniques with an extensive analysis of their

implementations, and comparisons of these techniques with conventional ap-

proaches. The benchmark case studies used in our work have been generated

using the tool PRISM which is briefly described in Appendix A. The case

studies are briefly described in Appendix B. The work presented in this the-

sis is part of an ongoing effort to improve the range of solution techniques

supported by PRISM, and the software produced will shortly be integrated

within the tool itself. The source code for the out-of-core methods introduced

in this thesis can be found on the Web page http://www.cs.bham.ac.uk/˜rxm/.

We use a workstation of modest specifications (440 MHz CPU, 512MB

RAM, 6GB disk) for our implementations and experiments. We solve models

with up to 384 millions states and 4 billion transitions on this workstation.

Furthermore, using a relatively powerful workstation (2.8 GHz CPU, 1GB

RAM, 60GB disk), we demonstrate the feasibility of an analysis of a model

with over 1.2 billion states and 16 billion transitions. Currently, models of

such sizes cannot be solved on a contemporary workstation using conventional

techniques.

3
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1 - Introduction 1.1 Thesis Layout

1.1 Thesis Layout

This dissertation is organised as follows:

Chapter 2 introduces the background material related to this dissertation.

The numerical solution methods used for the analysis are discussed. A com-

pact sparse matrix representation is at the heart of the analysis techniques

for large Markov chains, especially considering that the time required for

disk I/O determines the overall solution time for out-of-core methods. The

main storage schemes for sparse matrices are reviewed. The offset-labelled

MTBDD data structure, which is used in our work presented later in this

dissertation, has also been studied in this chapter. The latter part of Chap-

ter 2 surveys related work. It outlines the research which has already been

done in this area and how the work in this dissertation contributes to it.

Chapter 3, along with next two chapters, presents the main contributions of

this dissertation. This chapter introduces the compact MSR storage scheme

and two explicit out-of-core methods. The explicit methods explained in this

chapter are analysed and compared with the help of experimental results

from their implementations.

Chapter 4 introduces the symbolic out-of-core method. Two implementa-

tions of this method are described and compared using the collected results.

Furthermore, the method is compared with the explicit methods detailed in

Chapter 3 using their implementations on an identical workstation.

Chapter 5 introduces modifications to offset-labelled MTBDDs. Both in-core

and out-of-core implementations of the MTBDD-based solution are realised.

The two implementations are analysed in detail, and are compared with the

explicit and symbolic methods presented in the earlier part of the disserta-

tion.

Finally, in Chapter 6, we summarise and evaluate our work, outline ideas for

future research, and conclude.

4



1 - Introduction 1.2 Publications

1.2 Publications

Some of the work presented in this dissertation has already appeared in joint-

authored publications. The complete out-of-core method and the compact

MSR scheme described in Chapter 3 were introduced in [KM02]. Two im-

plementations of the symbolic out-of-core method described in Chapter 4

were presented in [KMNP02] and [MPK03a]. The improvement to the offset-

labelled MTBDD data structure, as described in Chapter 5, appeared as

[MPK03b]. The main ideas for the compact MSR, out-of-core algorithms

and the two-layer data structure introduced in these four papers are due to

the author, as are their implementation and analysis. Marta Kwiatkowska,

Gethin Norman and David Parker have all provided guidance throughout.

David Parker implemented the original version of the offset-labelled MTBDD

data structure that was extended as a result of this thesis. He has also in-

corporated the resulting source code into the tool PRISM. Gethin Norman

developed the case studies used as benchmarks. A recent paper [KPZM04]

reports on shared memory dual-processor parallelisation of the Gauss-Seidel

method using the offset-labelled MTBDD data structure. The parallel im-

plementation is not the work of the author, but the data structure used is

based on the contribution of this thesis.

A survey paper was also written for inclusion in the handbook entitled

“Validation of Stochastic Systems”, which appeared as [Meh04].

5



CHAPTER

TWO

Background Material and Related Work

In this chapter, we introduce the background material and the work from

the literature which is related to the topic of this thesis. We first explain

the overall process of Markov modelling in Section 2.1. In this section, we

also explain CTMCs (Section 2.1.1) and define the numerical problem (Sec-

tion 2.1.2) which we have focused on here. In this thesis, we consider iterative

solution methods for the numerical solutions of a system of linear equations,

typically the steady-state equations. These are covered in four sections. We

begin with an introduction to basic iterative methods in Section 2.2, and

move on to review block iterative methods and Krylov subspace methods in

Section 2.3 and 2.4, respectively. In Section 2.5, we discuss few widely used

convergence criteria for iterative methods.

Analysis of CTMC models usually involves the generation and storage of

their state space. We concentrate on two representations for CTMCs, explicit

and implicit. The explicit representations are based on sparse storage scheme;

we review notable sparse schemes in Section 2.6. The implicit storage we

have considered, called offset-labelled MTBDDs, is described in Section 2.7.

Finally, we review the work related to the subject of this thesis in Section 2.8.

The related work is discussed in two sections. In Section 2.8.1, we review the

work carried out mainly for a single (CPU) workstation. In Section 2.8.2, we

summarise the approaches targeted for multiple CPUs or workstations.

6



2 - Background Material and Related Work 2.1 Markov Modelling

2.1 Markov Modelling

Computer and communication systems are ubiquitous in all spheres of our

life. Discrete-state models have proved to be a valuable tool in the analysis of

these computer systems and communication networks. Modelling of such sys-

tems involves the description of the system’s behaviour by the set of different

states the system may occupy, and identifying the transition relation among

the various states of the system. Uncertainty is an inherent feature of real-life

systems and, to take account of such behaviour, probability distributions are

associated with the possible events (transitions) in each state, so that the

model implicitly defines a stochastic process. If the probability distributions

are restricted to be either geometric or exponential, the stochastic process

can be modelled as a discrete time (DTMC) or a continuous time (CTMC)

Markov chain respectively. A Markov decision process (MDP) admits a num-

ber of discrete probability distributions enabled in a state which are chosen

nondeterministically by the environment. In this thesis we concentrate on

continuous time Markov chains.

The overall process of the state based analytical modelling for CTMCs

involves the specification of the system, the generation of the state space, and

the numerical computation of all performance measures of interest. Specifi-

cation of a system at the level of a Markov chain, however, is difficult and

error-prone. Consequently, a wide range of high-level formalisms have been

developed to specify the system under study. These formalisms, among oth-

ers, include queueing networks (QN) [CG89], stochastic Petri nets (SPN)

[Mol82], generalised SPNs (GSPN) [MBC84, MBC+95], stochastic process

algebras (SPA) such as PEPA [Hil94], EMPA [BG96] and TIPP [HR94],

mixed forms such as queueing Petri nets (QPN) [Bau93], and stochastic au-

tomata networks (SAN) [Pla85, PA91]. See, for example, [Sie01] for a survey

of model representations.

Once a system is specified using some suitable high-level formalism, the

entire state space needs to be generated from this specification. This excludes

product form queueing networks [BCMP75]; on-the-fly techniques [DS98b],

to some extent, are also an exception. In this thesis, we assume that a

CTMC has already been generated, and therefore do not discuss state space

generation algorithms and techniques. For details on state space generation

algorithms and techniques, see e.g. [CCM95], [ADK97], [CGN98], [KMHK98],

7



2 - Background Material and Related Work 2.1 Markov Modelling

[HBB99], [GMS01], and [Cia01a]. We define continuous time Markov chains

in Section 2.1.1. In Section 2.1.2, we formally define the numerical problem

which we have considered in this thesis.

2.1.1 Continuous Time Markov Chains

As mentioned in the previous section, a system may be represented as a

stochastic process by describing the set of different states the system may

occupy and by identifying the transitions which can occur between the various

states of the system. A stochastic process is a family of random variables

{X(t), t ∈ T} indexed by t, usually a time parameter. The random variable

X(t) denotes an observation of the system at time instant t. A stochastic

process with discrete time indices, for example, T = {0, 1, 2, · · · }, is called

a discrete time parameter stochastic process; if time is continuous, e.g. T =

{0 ≤ t ≤ +∞}, it is a continuous time parameter stochastic process. The

values that random variable X(t) can take are called states, and the set of

all possible values constitutes the state space of the process. If the values

assumed by the variable X(t) are discrete, it forms a discrete state space.

A Markov process is a stochastic process which satisfies the Markov prop-

erty, i.e. for all positive integers k, any sequence of time instances t0 < t1 <

· · · < tk and states x0, · · · , xk:

P [X(tk) ≤ xk|X(tk−1) = xk−1, · · · , X(t0) = x0] = P [X(tk) ≤ xk|X(tk−1) = xk−1].
(2.1)

The Markov property formulated above, sometimes known as the memory-

less property, implies that the state in which the system finds itself at time

tk depends only on the state of the system at time tk−1, while the state oc-

cupied by the system at any previous time instances (i.e. t0, t1, · · · , tk−2) is

completely irrelevant. Consequently, the future state of the system is also

independent of the time spent so far in the current state of the system. Note

that it is still possible for the transitions to depend on the actual time at

which they occur. In this thesis, however, we only consider the homogeneous

case where the transitions are independent of time.

A Markov process with a discrete state space is referred to as a Markov

chain. Accordingly, a Markov chain with a continuous time parameter (t)

is called a continuous time Markov chain (CTMC), and one with a discrete

8



2 - Background Material and Related Work 2.1 Markov Modelling

time parameter is called a discrete time Markov chain (DTMC). We focus

on CTMCs.

A CTMC is a continuous time, discrete-state stochastic process, i.e. it is

a Markov chain which can change state at any time instant. Mathematically,

a CTMC is a stochastic process {X(t), t ≥ 0} which satisfies the Markov

property given by Equation (2.1), which in this case (continuous state) can

be formulated as:

P [X(tk) = xk|X(tk−1) = xk−1, · · · , X(t0) = x0] = P [X(tk) = xk|X(tk−1) = xk−1],
(2.2)

for all positive integers k, any sequence of time instances t0 < t1 < · · · < tk
and states x0, · · · , xk. The only continuous probability distribution which

satisfies the Markov property is the exponential distribution.

A CTMC may be represented by a set of states S, and the transition rate

matrix R : S×S → R≥0. A transition from state i to state j is only possible

if the matrix entry rij > 0. The matrix coefficients determine transition

probabilities and state sojourn times (or holding times). Given the exit rate

of state i, E(i) =
∑

j∈S, j 6=i rij, the mean sojourn time for state i is 1/E(i),

and the probability of making transition out of state i within t time units is

1− e−E(i)·t. When a transition does occur from state i, the probability that

it goes to state j is rij/E(i).

An infinitesimal generator matrix Q may be associated to a CTMC by

setting the off-diagonal entries of the matrix Q with qij = rij, and the diago-

nal entries with qii = −E(i). The matrix Q (or R) is usually sparse; further

details about the properties of these matrices can be found in [Ste94]. We

show a simple example of a CTMC in Figure 2.1. We use the example of a

web server which accepts requests for TCP connections from arbitrary clients.

Only one connection can be processed by the server at a time. Other requests

arriving when the server is busy are enqueued in a single queue which can

hold a maximum of 3 requests. The CTMC shown in Figure 2.1 models the

queue of requests for the connection to the web server. The CTMC con-

tains four states; state i indicates the number of connection requests in the

queue. The arrival rate of requests is 2 and the service rate of the server

is 3. Figure 2.1(b) shows the generator matrix Q associated to the CTMC.

The transition rate matrix R for the CTMC can be obtained by replacing

the diagonal entries of the generator matrix with zeros.

9
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(a) A request queue modelled as a CTMC
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(b) The associated generator matrix (Q)

Figure 2.1: A CTMC and the associated generator matrix

In general, when analysing CTMCs, the performance measure of interest

corresponds to either the probability of being in a certain state at a certain

time (transient) or the long-run (steady-state) probability of being in a state.

Transient state probabilities can be determined by solving a system of or-

dinary differential equations. The computation of steady-state probabilities

involves the solution of a system of linear equations. We will focus in this

thesis on the steady-state solution of a CTMC. See the next section for more

details.

Finally, we define the notion of reachability. We say that there exists

a transition from state i to state j if qij > 0. A state j in a CTMC is

reachable from another state i in the CTMC if there exists a finite sequence

of transitions in the model from the state i to the state j. The set of all states

which can be reached from the initial state is called the set of reachable states

of the model.

2.1.2 Numerical Problem and Methods

Let Q ∈ Rn×n be the infinitesimal generator matrix of a continuous time

Markov chain with n states, and

10



2 - Background Material and Related Work 2.1 Markov Modelling

π(t) = [π0(t), π1(t), . . . , πn−1(t)] (2.3)

the transient state probability row vector, where πi(t) denotes the probability

of the CTMC being in state i at time t. The transient behaviour of the CTMC

is described by the Chapman-Kolmogrov differential equation:

dπ(t)

dt
= π(t) Q. (2.4)

To compute this, the initial probability distribution of the CTMC, π(0), is

also required. We concentrate on the steady-state behaviour of a CTMC

which is obtained by solving the system of equations:

πQ = 0,
n−1∑
i=0

πi = 1, (2.5)

where π = limt→∞ π(t) is the steady-state probability vector. A sufficient

condition for the unique solution of the Equation (2.5) is that the CTMC is

finite and irreducible. A CTMC is irreducible if every state can be reached

from every other state [Ste94]. In this thesis, we restrict our attention to

solving only irreducible CTMCs; for details on the solution in the general

case, see [Ste94], for example. The Equation (2.5) can be reformulated as

QT πT = 0, and well-known methods for the solution of systems of linear

equations of the form Ax = b can be used.

Using Equation (2.5), the steady-state probabilities for the CTMC shown

in Figure 2.1 can be computed by solving the following system of linear

equations:

−2π0 + 3π1 = 0,

2π0 − 5π1 + 3π2 = 0,

2π1 − 5π2 + 3π3 = 0,

2π2 − 3π3 = 0,

π0 + π1 + π2 + π3 = 1,

which yields the steady-state probability vector π = [27
65

, 18
65

, 12
65

, 8
65

].
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Numerical Methods

The numerical solution methods for linear systems of the form Ax = b are

broadly classified into two categories: direct methods, such as Gaussian elim-

ination, LU factorisation etc; and iterative methods. Direct methods obtain

the exact solution in finitely many operations and are often preferred to itera-

tive methods in real applications because of their robustness and predictable

behaviour. However, as the size of the systems to be solved increases, they

often become almost impractical due to the phenomenon known as fill-in.

The fill-in of a sparse matrix is a result of those entries which change from

an initial value of zero to a nonzero value during the factorisation phase, e.g.

when a row of a sparse matrix is subtracted from another row, some of the

zero entries in the latter row may become nonzero. Such modifications to

the matrix mean that the data structure employed to store the sparse matrix

must be updated during the execution of the algorithm.

Iterative methods, on the other hand, do not modify matrix A; rather,

they involve the matrix only in the context of matrix-vector product (MVP)

operations. The term “iterative methods” refers to a wide range of techniques

that use successive approximations to obtain more accurate solutions to a

linear system at each step [BBC+94]. Beginning with a given approximate

solution, these methods modify the components of the approximation, until

convergence is achieved. They do not guarantee a solution for all systems

of equations. However, when they do yield a solution, they are usually less

expensive than direct methods. They can be further classified into stationary

methods like Jacobi and Gauss-Seidel (GS), and non-stationary methods such

as Conjugate Gradient, Lanczos, etc. The volume of literature available on

iterative methods is huge, see [BBC+94, Axe96, GL96, GO93, Saa03]. In

[SV00], Saad and Vorst present a survey of the iterative methods; [Ste94]

describes iterative methods in the context of solving Markov chains.

2.2 Basic Iterative Methods

In this section, we consider the so-called stationary iterative methods, those

which can be expressed in the simple form x(k) = Fx(k−1) + c, where x(k) is

the approximation to the solution vector at the k-th iteration and neither F

nor c depend on k [BBC+94].
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2.2.1 Power Method

Before we consider the iterative methods for the solution of the system of

equations Ax = b, we would like to mention the Power method for the steady-

state solution of Equation (2.5). Given the generator matrix Q, setting P =

I + Q/α in Equation (2.5), where α ≥ maxi | qii |, leads to:

πP = π, (2.6)

where π is the steady-state probability vector. In fact, for good convergence,

the parameter α should be chosen very close to the bound yet satisfying

α > maxi | qii |.
Using π(0) as the initial estimate, an approximation of the steady-state

probability vector after k transitions is given by π(k) = π(k−1)P . The method

successively multiplies the steady-state probability vector with the matrix P

until convergence is reached.

The Power method is guaranteed to converge (for irreducible CTMCs).

However, in practice, it takes a very long time to converge; below we consider

alternative iterative methods which, although not guaranteed to converge, in

practice converge much faster than the Power method.

2.2.2 Jacobi Method

We now consider the iterative methods for the solution of the system of

equations Ax = b, where A is of size n. In the k-th iteration of the Jacobi

method, we calculate:

x
(k)
i =

1

aii

(
bi −

∑
j 6=i

aijx
(k−1)
j

)
, (2.7)

for 0 ≤ i < n, where aij denotes the element in row i and column j of matrix

A and the term x
(k)
i indicates the i-th element of the k-th iteration vector.

The above equation can also be written in matrix notation as:

x(k) = D−1(L + U) x(k−1) + D−1b, (2.8)

13
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1. while not converged

2. x̃← b− Ǎx

3. x̃← D−1x̃

4. Test for convergence

5. x← x̃

6. end while

Figure 2.2: A standard Jacobi algorithm

where A = D − (L + U) is a partitioning of A into its diagonal, lower-

triangular and upper-triangular parts, respectively. Note the similarities be-

tween x(k) = Fx(k−1) + c and Equation (2.8) above. The Jacobi method

can be formulated into an MVP (matrix-vector product) based algorithm, for

example, as shown in Figure 2.2.

In Figure 2.2, Ǎ contains the off-diagonal elements of matrix A, i.e.

Ǎ = −(L + U). Observe also the similarities between the algorithm and

Equation (2.8) above. Line 2 of the algorithm performs the MVP operation.

The algorithm requires storage for two iteration vectors (the previous iterate

x and the new iterate x̃), for the matrix Ǎ and for the diagonal entries in D.

Note that the new approximation of the solution vector is calculated using

only the old approximation of the solution. This makes the Jacobi method

well suited for parallelisation, but means it tends to exhibit slow convergence.

2.2.3 Gauss-Seidel Method

The Gauss-Seidel method, which in practice converges faster than the Jacobi

method, uses the most recently available approximation of the solution:

x
(k)
i =

1

aii

(
bi −

∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k−1)
j

)
(2.9)

for 0 ≤ i < n. The other advantage of the Gauss-Seidel algorithm is that

it can be implemented using only one iteration vector. The Gauss-Seidel

method can also be expressed in matrix notation:

x(k) = (D − L)−1 U x(k−1) + (D − L)−1 b (2.10)
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where D, L and U are as described for the Jacobi method above. In prac-

tice, it would be inefficient to perform Gauss-Seidel in this way due to the

computation required for matrix inverses.

2.2.4 Successive Over-Relaxation (SOR) Method

An SOR iteration is given by:

x
(k)
i = ωx̂

(k)
i + (1− ω)x

(k−1)
i , 0 ≤ i < n (2.11)

where x̂ denotes a GS iterate, and ω ∈ (0, 2) is the relaxation factor. The

method is under-relaxed for 0 < ω < 1, and is over-relaxed for ω > 1; the

choice ω = 1 reduces SOR to GS. It is shown in [Kah58] that SOR fails to

converge if ω /∈ (0, 2). For a good choice of ω, SOR can have considerably

better convergence behaviour than GS. However, a priori computation of an

optimal value for ω is not feasible.

2.3 Block Iterative Methods

Consider a partitioning of the state space S of a CTMC into P contiguous

partitions S0, . . . , SP−1 of sizes n0, . . . , nP−1, such that n =
∑P−1

i=0 ni. Using

this, the matrix A can be divided into P 2 blocks, {Aij | 0 ≤ i, j < P}, where

the rows and columns of block Aij correspond to the states in Si and Sj,

respectively, i.e. block Aij is of size ni× nj. Using such a partitioning of the

state space for P = 4, the system of equations Ax = b can be partitioned as:
A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33




X0

X1

X2

X3

 =


B0

B1

B2

B3

 (2.12)

Given the partitioning introduced above, block iterative methods essen-

tially involve the solution of P sub-systems of linear equations, of sizes

n0, . . . , nP−1 within a global iterative structure, say Gauss-Seidel; hence the

block Gauss-Seidel method. From Equations (2.9) and (2.12), the block

Gauss-Seidel method for the solution of the system Ax = b is given by:
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Aii X
(k)
i = Bi −

∑
j<i

Aij X
(k)
j −

∑
j>i

Aij X
(k−1)
j , 0 ≤ i < P (2.13)

where X
(k)
i , X

(k−1)
i and Bi are the i-th blocks of vectors x(k), x(k−1) and

b respectively. Hence, in each of the P phases of the k-th iteration of the

block Gauss-Seidel iterative method, we solve the Equation (2.13) for X
(k)
i .

These subsystems can be solved by either direct or iterative methods. It is

not necessary even to use the same method for each sub-system. If iterative

methods are used to solve these sub-systems then we have several inner

iterative methods within a global or outer iterative method. Each sub-system

of equations can receive either a fixed or varying number of inner iterations.

Such block methods (with an inner iterative method) typically require fewer

iterations but each iteration requires more work (multiple inner iterations).

Block iterative methods are well known and are an active area of research;

for further details, see [Ste94, DS00], for example.

2.4 Krylov Subspace Methods

We briefly mention Krylov subspace methods in this section. We have not

employed these methods for the implementations of the solution techniques

presented in this thesis. However, these methods are mentioned here because

of their importance.

The Krylov subspace methods are iterative methods for the solution of

large linear systems of the form Ax = b that offer faster convergence than

the methods discussed in the previous sections and do not require a priori

estimation of parameters depending on the inner properties of the matrix.

Furthermore, they are based on matrix-vector product computations and

independent vector updates, which makes them particularly attractive for

parallel implementations. Krylov subspace methods for arbitrary matrices,

however, require multiple iteration vectors which makes it difficult to apply

them to the solution of large systems of linear equations.

Nearly all notable Krylov subspace methods have been used to solve

Markov models. The sizes of the models solved, however, are relatively

small. Philippe et al. [PSS92] use various numerical methods including the
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GMRES method, and report results for Markov models with up to 24, 000

states. Buchholz [Buc99a, Buc99b] experimented (in addition to the station-

ary iterative methods) with GMRES, Arnoldi, conjugate gradient squared,

BCGStab, and TFQMR methods, and reported results for models with up

to 0.5 million states. In [Buc00], Buchholz employed projection methods in a

multilevel setting and reported solutions for structured Markov chains with

approximately one million states.

The conjugate gradient squared (CGS) method [Son89], to our knowl-

edge, is the only Krylov subspace method used in the past for solving large

Markov models. It performs 2 MVPs, 6 vector updates and two vector in-

ner products during each iteration, and requires 7 iteration vectors. Further

discussion of the Krylov methods is beyond the scope of this thesis. For

details on Krylov subspace methods for the solution of Markov chains, see

[Saa91, Saa95, DS00], for instance. A CGS algorithm for the steady-state

analysis of CTMCs can be found in [KH99]; an interested reader may also find

the paper [Meh03] relevant, where a survey of the Krylov subspace methods

is included. In addition, the paper [SV00] is an excellent account of iterative

methods.

2.5 Test for Convergence

Consider ξ is the residual vector, b − Ax, for the linear equation system

Ax = b. Consequently, ξ = 0 for the desired solution x of the system.

An iterative algorithm is said to have converged after k iterations if the

magnitude of the residual vector becomes zero or desirably small. Usually,

a test is carried out in each iteration to test for convergence; [BBC+94]

discusses this subject in some detail. A frequent choice for the convergence

test is to compare the Euclidean norm (also known as the l2-norm) of ξ(k)

(residual vector in the k-th iteration), calculated as:

‖ξ(k)‖2 =

√
ξ(k)T ξ(k), (2.14)

with some predetermined threshold, usually ε‖ξ0‖2 for 0 < ε � 1; ‖ξ0‖2
denotes the Euclidean norm of the initial residual ξ0, calculated as b− Ax0.

Another convergence criterion used in the iterative solution of Markov chains
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is to check the l∞-norm:

‖x(k) − x(k−1)‖∞ = max
i
| x(k)

i − x
(k−1)
i |, (2.15)

until it falls below some ε (0 < ε � 1). In the context of the steady-state

solution of a CTMC, a widely used convergence criterion is the so-called

relative (l∞-norm) error criterion:

max
i

(
| x(k)

i − x
(k−1)
i |

| x(k)
i |

)
< ε � 1. (2.16)

It is found to have less erratic behaviour than the other criteria mentioned

above.

2.6 Sparse Matrix Storage

An n × n dense matrix is usually stored in a two-dimensional n × n array.

For sparse matrices, in which most of the entries are zero, storage schemes

are sought which can minimise the storage while keeping the computational

costs to a minimum. Consequently, a number of sparse storage schemes exist

which exploit various matrix properties, e.g., the sparsity pattern of a matrix.

Our discussion of sparse schemes in this section is not exhaustive; for more

schemes see, for instance, [BBC+94].

The simplest of sparse schemes which makes no assumption about the

matrix is the so-called coordinate format [Saa90, Her92]. Figure 2.3 gives a

4×4 sparse matrix with a = 6 off-diagonal nonzero entries and its storage in

coordinate format. The scheme uses three arrays. The first array Val (of size

a+n doubles) stores the matrix nonzero entries in any order, while the arrays

Col and Row, both of size a+n ints, store the column and row indices for these

entries, respectively. Given an 8-byte floating point number representation

(double) and a 4-byte integer representation (int), the coordinate format

requires 16(a+n) bytes to store the whole sparse matrix, including diagonal

and off-diagonal entries.

Figure 2.4(a) illustrates the storage of the matrix in Figure 2.3(a) in the

compressed sparse row (CSR) [Saa90] format. All the a + n nonzero entries
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(a) A CTMC generator matrix
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(b) The coordinate format

Figure 2.3: A 4× 4 sparse matrix and its storage in the coordinate format

are stored row by row in the array Val, while Col contains column indices of

these nonzero entries; the elements within a row can be stored in any order.

The i-th element of the array Starts (of size n ints) contains the index in

Val (and Col) of the beginning of the i-th row. The CSR format requires

12a + 16n bytes to store the whole sparse matrix including the diagonal.

2.6.1 Separate Diagonal Storage

A second dimension for sparse schemes is added if we consider that many it-

erative algorithms treat diagonal entries of a matrix differently. This gives us

the following two additional choices for sparse storage schemes; an alternative

choice will be mentioned in Section 2.6.2.

The Modified Sparse Row Format

The diagonal entries may be stored separately in an array of n doubles.

Storage of column indices of diagonal entries in this case is not required,

which gives us a saving of 4n bytes over the CSR format. This scheme
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(a) The compressed sparse row format
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(b) The modified sparse row format

Figure 2.4: The CSR and MSR formats for the example matrix

is known as the modified sparse row (MSR) format [Saa90] (a modification

of CSR), see Figure 2.4(b). We note that the MSR scheme essentially is

the same as the CSR format except that the diagonal elements are stored

separately. The scheme requires 12(a + n) bytes to store the whole sparse

matrix. Some computational advantage may be obtained by storing the

diagonal entries as 1/aii instead of aii, which replaces n division operations

with n multiplications.

Avoiding the Diagonal Storage

In certain contexts, such as for the steady-state solution of a Markov chain,

it is possible to avoid the in-core storage of the diagonal entries during the

iterative solution phase. We define the matrix D as the diagonal matrix with

dii = qii, for 0 ≤ i < n. Given R = QT D−1, the system QT πT = 0 can be

equivalently written as QT D−1DπT = Ry = 0, with y = DπT . Consequently,

the equivalent system Ry = 0 can be solved with all the diagonal entries of
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the matrix R being 1. The original diagonal entries can be stored on disk for

computing π from y. This saves 8n bytes of the in-core storage, along with

computational savings of n divisions for each step in an iterative method

such as Gauss-Seidel.

2.6.2 Exploiting Matrix Properties

The number of distinct values in a generator matrix depends on the model.

This characteristic can lead to significant memory savings if one considers

indexing the nonzero entries in the above mentioned formats. Consider the

MSR format. Let MaxD be the number of distinct values the off-diagonal

entries of a matrix can take, where MaxD ≤ 216; then MaxD distinct values

can be stored as double Val[MaxD ]. The indices to this array of distinct

values cannot exceed 216, and, in this case, the array double Val[a] in MSR

format can be replaced with short Val−i[a]. In the context of CTMCs, in

general, the maximum number of entries per row of a generator matrix is

also small, and is limited by the maximum number of transitions leaving a

state. If this number does not exceed 28, the array int Starts[n] in MSR

format can be replaced by the array char row−entries[n].

Consequently, in addition to the array of distinct values, Val[MaxD ],

the indexed variation of MSR mentioned above uses three arrays: the array

Val−i[a] of length 2a bytes for the storage of a short (2-byte integer repre-

sentation) indices to the MaxD entries, an array of length 4a bytes to store a

column indices as int (as in MSR), and the n-byte long array row−entries[n]

to store the number of entries in each row. The total in-core memory require-

ment for this scheme is 6a + n bytes plus the storage for the actual distinct

values in the matrix. Since the storage for the actual distinct values is rel-

atively small for large models, we do not consider it in future discussions.

Such variations of the MSR format, based on indexing the matrix elements,

have been used in the literature [DS98a, Bel99, KH99, BH01, KM02] under

various names. We call it the indexed MSR format.

We note that, in general, for any of the above-mentioned formats, it is

possible to replace the array double Val[a] with short Val−i[a], or with

char Val−i[a], if MaxD is less than 216, or 28, respectively. In fact, for

each index, dlog2(MaxD)e bits suffice. Similarly, it is also possible to index

diagonal entries of a matrix provided the diagonal vector has relatively few
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k states off-diagonal a/n memory required for Q (MB) MB

(n) nonzero (a) MSR format Indexed MSR per π

8 4,459,455 38,533,968 8.64 489 234 34
9 11,058,190 99,075,405 8.96 1,260 598 84
10 25,397,658 234,523,289 9.23 2,962 1,415 194
11 54,682,992 518,030,370 9.47 6,554 3,120 417
12 111,414,940 1,078,917,632 9.68 13,563 6,492 850
13 216,427,680 2,136,215,172 9.87 26,923 12,842 1,651
14 403,259,040 4,980,958,020 12.35 61,609 29,652 3,077
15 724,284,864 9,134,355,680 12.61 112,810 54,334 5,526

Table 2.1: Comparison of MSR and indexed MSR sparse formats

distinct entries. This justifies an alternative choice for separate diagonal

storage (see Section 2.6.1).

Table 2.1 gives a fact sheet for a model of a flexible manufacturing sys-

tem (FMS) [CT93] comparing storage requirements in MSR and indexed

MSR formats. The first column in the table gives the model parameter k

(see Appendix B); the second and third columns list the resulting number of

reachable states and the number of transitions respectively. The number of

states and the number of transitions increase with an increase in the parame-

ter k. The fourth column (a/n) gives the average number of the off-diagonal

nonzero entries per row, an indication of the matrix sparsity. Columns 5 and

6 give the storage requirements for matrices (including storage for the diag-

onal) in MB for the MSR and indexed MSR schemes respectively. Finally,

the last column lists the memory required to store a single iteration vector of

doubles (8 bytes) for the solution phase. The largest model reported in the

table is FMS(k = 15) with over 724 million states and 9 billion transitions.

2.7 Implicit Matrix Storage

In the previous section, we have discussed various schemes to store a gener-

ator matrix explicitly. Another approach, which has been enormously suc-

cessful in model checking, is implicit storage of the matrix. These techniques

are usually known as “implicit” because they do not require data structures

of size proportional to the number of states. These methods, which can be
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traced back to Binary Decision Diagrams (BDDs) [Bry86] and the Kronecker

approach [Pla85], include multi-terminal binary decision diagrams, Matrix

Diagrams (MD) [CM99, Min01] and on-the-fly methods [DS98b]. In the fol-

lowing sections, we describe MTBDDs, which we will use later in the thesis.

The interested reader may follow the individual references for further details

on each of the implicit methods; see also [MP04, BK04] for recent surveys of

such data structures.

2.7.1 Multi-Terminal Binary Decision Diagrams

Multi-Terminal Binary Decision Diagrams (MTBDDs) [CFM+93, BFG+93]

are a simple extension of binary decision diagrams (BDDs). An MTBDD is a

rooted, directed acyclic graph (DAG), which represents a function mapping

Boolean variables to real numbers. MTBDDs can be used to encode real-

valued vectors and matrices by encoding their indices as Boolean variables.

Since a CTMC is described by a square, real-valued matrix, it can also be

represented as an MTBDD. Techniques which use data structures based on

BDDs are often called symbolic approaches.

The advantage of using MTBDDs (and other symbolic data structures)

to store CTMCs is that they can often provide extremely compact storage,

provided that the CTMCs exhibit a certain degree of structure and regularity.

In practice, this is very often the case since they will have been specified in

some, inherently structured, high-level description formalism. Intuitively, the

reason that MTBDDs can exploit such regularity is that the data structure

is stored in a reduced form, with identical nodes of the graph being merged.

This means that, where possible, identical portions of the matrix are stored

only once.

In the work in this thesis, we have actually used a variant of MTBDDs

called offset-labelled MTBDDs [Par02, KNP02b, KNP04b]. The principal

difference is the addition of offsets to each node of the graph, used to allow

conversion between the potential and actual (reachable) state spaces. The

potential state space is often significantly larger than the actual state space

and hence inefficient to deal with. The reason for selecting offset-labelled

MTBDDs will be clarified further in Section 2.7.3.
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2.7.2 Offset-Labelled MTBDDs

In this section, we briefly describe the offset-labelled MTBDD data structure.

A detailed account of the data structure can be found in [Par02]. Occasion-

ally, in this thesis, we may refer to this data structure as an MTBDD.

To describe MTBDDs, we use a similar matrix as used for the explana-

tion of sparse storage schemes in Section 2.6. For the sake of explanation,

however, we make some changes in the actual values of the matrix in Fig-

ure 2.3(a). Figure 2.5 shows a matrix which might occur in the numerical

solution of a CTMC, its representation as an offset-labelled MTBDD, and

a table explaining how the information is encoded. Note that there are six

off-diagonal entries in the matrix; only three of these are distinct (0.9, 1.2,

and 3.7). Note also that state 2 of the CTMC is unreachable. To preserve

structure in the symbolic representation of a CTMC’s generator matrix, its

diagonal elements are stored separately as an array. Hence, the diagonal

entries of the matrix in Figure 2.5 are all zero.

The offset-labelled MTBDDs comprise two types of nodes: non-terminal

nodes, drawn as circles, and terminal nodes, drawn as squares. Non-terminal

nodes are labelled with integer offsets, terminal nodes with real values. Each

row of nodes in the data structure is associated with a Boolean variable which

is written on the far left of the row. The MTBDD represents a function over

these Boolean variables. For the example in Figure 2.5, the function is over

the variables x1, y1, x2, y2. For a given valuation of these variables, the value of

the function can be computed by tracing a path from the top of the MTBDD

to the bottom, at each node taking the dotted edge if the associated Boolean

variable is 0 and the solid edge if it is 1. The MTBDD is ordered such that

on each path from the root to a terminal node, the variables are visited in the

same order. The function value can be read from the label of the terminal

node reached. For example, if (x1, y1, x2, y2) = (1, 0, 1, 1), the function returns

0.9. If there is no such path, the value is 0. As in Figure 2.5(a), for clarity,

the zero terminal node of an MTBDD and any edges leading directly to this

node are usually not drawn. The functions (x1, y1, x2, y2) = (0, 0, 0, 0) and

(x1, y1, x2, y2) = (1, 1, 0, 0) both return zero. We indicate this in the figure,

by listing “-” in the corresponding “Path” entry for the first and the last row

in the table. For explanation, we (only) list two zero entries in the table.

To represent the matrix, the offset-labelled MTBDD in Figure 2.5 uses
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(a) A CTMC and its offset-labelled MTBDD representation

Matrix Encoding Path Offsets Reachable

entry x1 x2 y1 y2 x1 y1 x2 y2 x1 y1 x2 y2 entry

(0, 0) = 0 0 0 0 0 0 0 0 - - - - - (0, 0) = 0

(0, 1) = 0.9 0 0 0 1 0 0 0 1 - - - 1 (0, 1) = 0.9

(0, 3) = 1.2 0 0 1 1 0 1 0 1 - 2 - 0 (0, 2) = 1.2

(1, 0) = 1.2 0 1 0 0 0 0 1 0 - - 1 - (1, 0) = 1.2

(1, 3) = 1.2 0 1 1 1 0 1 1 1 - 2 1 0 (1, 2) = 1.2

(3, 0) = 3.7 1 1 0 0 1 0 1 0 2 - 0 - (2, 0) = 3.7

(3, 1) = 0.9 1 1 0 1 1 0 1 1 2 - 0 1 (2, 1) = 0.9

(3, 2) = 0 1 1 1 0 1 - - - - - - - (2, 2) = 0

(b) Encoding of the offset-labelled MTBDD given in (a) above

Figure 2.5: A CTMC matrix and its offset-labelled MTBDD representation
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the variables x1, x2 to encode row indices and y1, y2 to encode column indices.

We call the nodes associated with the Boolean variables xi, the row nodes ,

and the nodes associated with the variables yi, the column nodes. Notice that

these are ordered in an interleaved fashion in the figure. This is a common

heuristic in BDD-based representations to reduce their size. In the example,

row and column indices are encoded using the standard binary representation

of integers. For example, the row index 3 is encoded as 11 (x1 = 1, x2 = 1)

and the column index 1 is encoded as 01 (y1 = 0, y2 = 1). To determine the

value of the matrix entry, we read the value of the function represented by

the MTBDD for x1 = 1, y1 = 0, x2 = 1, y2 = 1. Hence, the matrix entry (3, 1)

is 0.9.

Each non-terminal node of an offset-labelled MTBDD represents a sub-

matrix of the matrix represented by the whole MTBDD. Since an MTBDD is

based on binary decisions, each xi node divides the (sub)matrix it represents

into two submatrices, i.e. the top submatrix (from the dotted edge) and the

bottom submatrix (from the solid edge). Similarly, each yi node divides the

matrix into the left submatrix and the right submatrix. We define a level of

an MTBDD to be an adjacent pair of rows of nodes corresponding to a match-

ing pair of variables xi and yi; counting levels from the top of the MTBDD,

level i contains all the xi and yi nodes. As a consequence, descending each

level of the data structure splits the matrix into 4 submatrices. In Figure 2.5,

for example, each of the three x2 nodes represents a 2× 2 submatrix, of the

4× 4 matrix.

As noted earlier, the distinguishing feature of the offset-labelled MTB-

DDs is that the MTBDD nodes are labelled with integer values called offsets .

These offsets are used to compute the actual row and column indices of the

matrix entries. Actual indices here means the indices in terms of reachable

states only. As mentioned earlier, this is typically important since the poten-

tial state space can be much larger than the actual state space (for examples,

see Table 4.2 on Page 81). Essentially, for a row node, the offset denotes the

number of reachable rows in the top submatrix, and for a column node, the

offset denotes the number of reachable columns in the left submatrix. The

actual row index is determined by summing the offsets on xi nodes from which

the solid edge is taken (i.e. if xi = 1). The actual column index is computed

similarly using yi nodes. In the CTMC example in Figure 2.5, state 2 is not

26



2 - Background Material and Related Work 2.7 Implicit Matrix Storage

reachable (it has no incoming transitions, i.e. column 2 of the matrix con-

tains only zero entries). For the previous example of matrix entry (3,1), the

actual row index is 2+0=2 and the column index is 1, i.e. the matrix entry

(3,1) in the potential state space corresponds to the entry (2,1) in the actual

state space.

For efficiency reasons, pure MTBDDs are usually stored in a reduced

form. The identical nodes in an MTBDD, i.e nodes which share the same

level and have identical children, are merged. The don’t care nodes in the

MTBDD, i.e. the nodes for which both the dotted and solid edges point

to the same node, are removed or skipped. In an offset-labelled MTBDD,

however, nodes cannot be skipped; the don’t care nodes which point to the

zero terminal node are an exception. The reason for this restriction is that

the nodes are required on each level so that the nodes can be labelled with

the respective offsets. Secondly, in an offset-labelled MTBDD, we have the

additional restriction that merging of nodes can only occur if the nodes are

identical in terms of their level, children and offset labellings.

Finally, we briefly describe the construction of an offset-labelled MTBDD

from a pure MTBDD; for a detailed description of this process, see [Par02].

Firstly, a (reduced) BDD representation of the reachable state space is mod-

ified by reinserting the don’t care nodes, and by labelling the BDD nodes

with appropriate offsets. More precisely, this BDD over k Boolean variables,

x1, x2, · · · xk, encodes a vector of length 2k. The vector corresponds to the

state space of a CTMC. The values in the vector are Boolean, i.e. the values

belong to the set B. A state is reachable if the corresponding entry in the

vector is 1, and the states associated to the zero vector entries are unreach-

able. Reinserting the don’t care nodes to this reduced BDD is easy; the edges

which skip one or more nodes can be checked for, and where appropriate, new

nodes are inserted. In analogy to an MTBDD, each non-terminal node of a

BDD divides the vector it represents into two subvectors, the top and the

bottom subvectors. An offset, in this case, denotes the number of reachable

states in the top subvector. The offset value for a node can be computed by

recursively adding the number of reachable states of its children and grand-

children.

Once an offset-labelled BDD has been built, it is used to construct an

offset-labelled MTBDD. Firstly, as for the BDD, the don’t care nodes are
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reinserted into a pure MTBDD. This can be carried out in a similar manner.

Secondly, each node of this MTBDD is labelled with appropriate offsets. This

is accomplished with the help of two offset-labelled BDDs, one for the row

nodes and one for the column nodes. The MTBDD and the two instances

of the offset-labelled BDD are concurrently traversed during this process.

Possible conflicts of offsets due to the merged nodes are also checked for and,

where applicable, additional offset-labelled nodes are inserted.

2.7.3 Numerical Solution with MTBDDs

Numerical solution of CTMCs can be performed purely using conventional

MTBDDs; see for example [HMPS96, HMKS99, HKN+03]. This is done

by representing both the matrix and the vector as MTBDDs and using

an MTBDD-based matrix-vector multiplication algorithm (see [CFM+93,

BFG+93] for instance). However, this approach is often very inefficient be-

cause, during the numerical solution phase, the solution vector becomes more

and more irregular and so its MTBDD representation grows quickly.

A second disadvantage of the purely MTBDD-based approach is that

it is not well suited to the Gauss-Seidel iterative method, only the Jacobi

method. In fact, an MTBDD version of Gauss-Seidel, using matrix-vector

multiplication, has been presented in the literature [HMKS99]. However,

this relies on computing and representing matrix inverses using MTBDDs.

Generally, this will be inefficient because converting a matrix to its inverse

will usually result in a loss of structure and possibly fill-in. As mentioned in

Section 2.2, an efficient implementation of Gauss-Seidel is desirable because

it typically converges faster than Jacobi and it requires only one iteration

vector instead of two.

Fortunately, significant progress has been made to address the problems

of the purely MTBDD-based approach mentioned above. This is realised in

offset-labelled MTBDDs [KNP04b, Par02], described earlier in Section 2.7.2.

The first restriction of pure MTBDDs regarding the vector representation

is resolved by combining MTBDD-based storage (with addition of offsets to

the MTBDD nodes) of the matrix with explicit, array-based storage of the

solution vector. A matrix-vector multiplication operation, as required in an

iteration of numerical solution, can now be performed by a single depth-

first traversal of the data structure. This is because a multiplication needs
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access to every matrix element exactly once and each element corresponds to

a path through the MTBDD. Unsurprisingly, the overhead associated with

this process makes an iteration of iterative method slower than the equivalent

operation with sparse matrices since it is significantly faster to read the

matrix entries directly from an array-based data structure. This, however,

can be addressed as follows.

We have seen in the previous section that MTBDDs provide a natural

decomposition of a matrix into its submatrices. An MTBDD is traversed

recursively, from one node to another. Each node in the MTBDD represents

a (sub)matrix, divides this submatrix into its two submatrices, and provides

access to these submatrices through its two edges. The nodes near the bottom

of the MTBDD, in particular, are visited many times during its traversal.

It is much faster to extract entries of the matrix if some of these nodes can

be replaced with an explicit representation of their corresponding submatrix,

eliminating the need to traverse the nodes below this point. With these

modifications to the approach, it has been shown in [KNP04b, Par02] that

the resulting data structure furnishes significantly faster numerical solutions

while retaining the symbolic storage advantages. Numerical solution using

offset-labelled MTBDDs has also been applied successfully in [KSW04].

One remaining drawback of offset-labelled MTBDD-based numerical so-

lution is that, although the Jacobi iterative method can be efficiently imple-

mented, Gauss-Seidel cannot because it requires row-wise access to matrix

entries. A depth-first traversal of the MTBDD does not allow matrix entries

to be extracted in this order. Of course, it would be possible to access each

element of each row individually, going from top to bottom of the MTBDD

each time, but this would be very inefficient.

This limitation can be relaxed to some extent by making use of the fact

that MTBDDs allow convenient access to matrix blocks. Descending one level

from the top of an MTBDD splits the matrix which it represents into 4 blocks,

and, therefore descending l levels, gives a decomposition into (2l)2 blocks. If

pointers to the nodes representing these blocks are stored in an array-based

data structure, these matrix blocks can be accessed swiftly without having to

traverse the top part of the MTBDD. This allows efficient access to each row

of matrix blocks, and therefore, implementation of block iterative methods

(see Section 2.3) with MTBDDs is possible. Based on this optimisation, the
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Figure 2.6: A matrix as an offset-labelled MTBDD: another perspective

pseudo Gauss-Seidel iterative method was introduced in [Par02] which typi-

cally converges faster than the Jacobi iterative method and requires storage

of only one iteration vector. We give a pseudo Gauss-Seidel algorithm in

Chapter 4, where we have employed this method to implement our symbolic

out-of-core method.

Finally, in Figure 2.6, we give the reader an intuition of the offset-labelled

MTBDDs. The figure depicts a simplified perspective of the data structure.

The matrix in the figure is shown to be decomposed into a number of blocks.

Most of these blocks are zero, i.e. all entries in these blocks are zero. On

the top layer, the offset-labelled MTBDD data structure stores a sparse ma-

trix, each nonzero entry thereof is a reference to an offset-labelled MTBDD

node. For illustrative reason, in the figure, each such reference is shown as

a node with an incoming and two outgoing edges. The top-layer matrix is

stored using the CSR sparse format (see Section 2.6). Each nonzero entry

of this matrix, i.e. a block, itself is stored as an offset-labelled MTBDD. A

nonzero matrix block represented as an offset-labelled MTBDD is shown on

the right side of figure. The top three nodes of the offset-labelled MTBDD

(labelled with offsets a, b, and c) are drawn. The bottom part of the offset-

labelled MTBDD is stored using the explicit sparse representation of the

bottom submatrices. Further explanation of offset-labelled MTBDDs follows

in Chapter 5, where we introduce modifications to the data structure.
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2.8 Related Work

Recall that a large variety of useful performance measures can be derived

from a CTMC via the computation of its steady-state probabilities. This

reduces to the more general problem of solving a linear equation system

Ax = b of size equal to the number of states in the CTMC. Unfortunately,

these models tend to grow extremely large, as we know, due to a phenomenon

known as the state space explosion problem.

A great deal of effort has gone into developing efficient implementations

for the computation of steady-state probabilities of CTMCs, with particular

emphasis on the problem of storing large CTMCs. This is also the focus of

our research. As mentioned earlier, the various approaches can be broadly

classified into, firstly, explicit approaches, where the CTMC is kept in a data

structure of size proportional to the number of states and transitions, typi-

cally using a sparse matrix scheme, or, secondly, implicit approaches, where

this explicit storage is avoided. Explicit approaches typically provide faster

solutions due to the fast, array-based data structures used (Section 2.6). Im-

plicit techniques offer compact storage by exploiting structure and regularity

in the CTMCs, and can hence be applied to larger CTMCs than explicit

methods. Another classification of the solution techniques is into in-core

approaches, where data is stored in the main memory of a computer, and

out-of-core approaches, where it is stored on disk.

Another direction taken to combat the state space explosion problem is to

use the large amount of memory and compute power available with parallel

and distributed computers. Therefore, the solution techniques are either de-

veloped for single workstations, i.e. serial , or for parallel architectures. Par-

allel solution techniques can be further divided into three categories. These

include the standard parallel approaches where CTMC (in a sparse format)

is stored using only RAM of the parallel machine, secondly, the parallel

techniques which are based on the implicit CTMC storage, and finally, the

parallel techniques which rely on the out-of-core storage of CTMCs.

This section presents a survey of the work related to this thesis, i.e.

efficient storage and numerical methods for steady-state analysis of large

CTMCs. The techniques to combat the state space problem are summarised

in the next two subsections; Section 2.8.1 reviews the techniques developed

for a single workstation, and Section 2.8.2 considers parallel architectures.
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2.8.1 State Space Explosion: Serial Solutions

In this section, we review the main representative approaches used for over-

coming the state space explosion problem when analysing stochastic models.

We mention only those techniques which are targeted for single workstations.

We outline these approaches in Table 2.2, and concentrate on the iterative

methods employed, the data structures used to store the matrix and vector,

and whether they are stored in-core or out-of-core. The approaches listed in

the table are sorted into implicit and explicit categories. In the table, we also

include the work presented in this thesis in order to give a clear picture of

how our work relates to the existing work in the literature. We first consider

the implicit methods.

Multi-Terminal Binary Decision Diagrams [CFM+93, BFG+93] provide a

compact representation for CTMC matrices. However, the pure MTBDD ap-

proach, where both the matrix as well as the vector are stored using MTBDDs

[HMPS96, HMKS99, HKN+03], as mentioned earlier, is often impractical for

large models. This is due to an inefficient MTBDD representation of the

probability vector which grows larger through loss of structure and rapidly

increasing number of distinct values. Secondly, the pure MTBDD approach

is not well suited to the Gauss-Seidel iterative method which typically con-

verges faster than Jacobi and requires only one iteration vector instead of

two.

The offset-labelled MTBDD method [KNP04b, Par02] combines MTB-

DDs and explicit techniques. The matrix is stored using an MTBDD, la-

belled with offsets, and the vector is stored in-core, as an array. We know

from Section 2.7.3 that this approach can be used with the pseudo Gauss-

Seidel (PGS) iterative method. The method typically converges faster than

the Jacobi method and has relatively low memory requirements compared

to Jacobi. Its limitations are in the explicit in-core storage of the iteration

vector, and in that it does not permit an efficient implementation of the

standard Gauss-Seidel iterative method. The offset-labelled MTBDDs have

also been successfully used for the numerical solution in [KSW04].

The next three approaches also rely on exploiting structure in CTMCs.

They use Kronecker algebra to derive implicit methods for the analysis

of CTMCs. The philosophy behind the Kronecker approaches is that the

CTMC matrix can be expressed as a set of smaller matrices which are com-
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bined by Kronecker (tensor) operations. These submatrices correspond to

the system components. This results in a very compact representation of

the CTMC matrix. In [Pla85], Plateau first proposed the Kronecker ap-

proach as an efficient means for representing CTMC matrices of a formal-

ism called stochastic automata networks (SANs). Several improvements

over the original approach of Plateau have been reported in, for exam-

ple, [Don94, Kem96, CT96, CT97, BCDK00, FPS98, UD98]. For instance,

the original approach operates over the potential state space, representing

all possible interleavings of the state spaces of the components. This re-

quires storage for considerably larger solution vectors compared to the case

if only the vector for reachable states is stored. This deficiency was removed

[Kem96, CT96, CT97, BCDK00]. The original approach was also extended to

certain other formalisms. Furthermore, efficient implementations of more ad-

vanced iterative methods including the Gauss-Seidel iterative method were

realised [Ste94, BCDK00, UD98]. Consequently, these extensions allowed

analysis of CTMCs at competitive speeds while maintaining the compact

CTMC representation.

The next approach [CM99, Min00, Min01] is the work of Ciardo and

Miner. They developed the matrix diagrams (MDs) data structure for effi-

cient Kronecker-based solution of CTMCs. Like MTBDDs, a matrix diagram

is a directed acyclic graph. In contrast to MTBDDs, the nodes for the ma-

trix diagrams, however, are the submatrices which make up the Kronecker

representation of the model. Matrix diagrams provide a compact represen-

tation for the storage of CTMCs. Furthermore, the authors have developed

efficient implementations of the Gauss-Seidel iterative method. Solution of

models with as many as 41 million states have been reported using their

approach.

The probabilistic decision graphs (PDGs) data structure was originally

introduced by Bozga and Maler in [BM99]. A PDG is a BDD-based data

structure designed specifically for vectors and matrices of probabilities. The

nodes in PDGs are labelled with conditional probabilities. A vector entry,

for example, can be determined by multiplying the conditional probabilities

along the corresponding path in the graph. The motivation for the PDG data

structure was to provide a compact representation of matrices and vectors

which cannot be stored compactly in MTBDDs. This data structure was later
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extended by Buchholz and Kemper [BK01]. Modifications to PDGs were

made to allow more than two edges from each node. For numerical solution,

the matrix was stored using a Kronecker representation and the vector was

kept as a PDG. However, the overhead associated with the manipulation of

PDGs in this case was found to be considerable, leading to unsatisfactory

speeds for the numerical solution.

We now consider the methods based on the explicit storage for both ma-

trix and vector. In Table 2.2, we do not include the conventional explicit

approaches where the CTMC matrix and vector are kept in-core, and in-

stead we consider the methods which employ out-of-core techniques for the

solution of CTMCs. Out-of-core techniques for the analysis of Markov chains

have emerged as an effective method of combating the state space explosion

problem. In this context, Deavours and Sanders [DS97] were the first to

use an out-of-core technique for the steady-state solution of Markov models.

This is the first explicit method listed in the table. The authors used a block

Gauss-Seidel iterative method for the numerical solution of CTMCs. They

stored the matrix on disk and read blocks of matrix into RAM when re-

quired. The in-core storage of iteration vector in this case, however, was still

prohibitive. The authors introduced their disk-based tool in 1997, and later,

in 1998, improved their tool by storing the CTMC to disk in a compressed

format [DS98a]. We will give more technical discussion of this method in

Chapter 3, where we compare it with the complete out-of-core method.

The other notable manuscripts on the out-of-core solution of CTMCs

are [KH99] and [BH01, Bel03]. Since the main emphasis of these is on the

parallelisation of the matrix out-of-core approach of Deavours and Sanders,

we discuss these in Section 2.8.2.

In summary, all the implicit and explicit approaches which we have re-

viewed in this section provide a compact representation for CTMCs, or oth-

erwise provide a solution to the state space explosion problem by employing

out-of-core storage. However, it is recognised that [Cia01b, KNP04b] a major

hurdle for all these approaches has been the storage of iteration vector(s).

The techniques presented in this thesis (see Table 2.2) provide a solution

for both implicit and explicit methods through out-of-core storage of the

iteration vector.
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Solution Iterative Matrix (Q) Vector (π)
Method Method Data structure Storage Data structure Storage

Implicit Methods

MTBDDs Jacobi MTBDD In-core MTBDD In-core
[HMPS96, HMKS99, HKN+03]

Offset-labelled MTBDDs PGS Offset-labelled In-core Array In-core
[KNP04b, Par02] MTBDD

Kronecker GS Kronecker In-core Array In-core
[Pla85, FPS98, UD98, BCDK00] Expression

Matrix Diagrams GS Matrix In-core Array In-core
[CM99, Min00, Min01] Diagram

PDGs GS Kronecker In-core PDG In-core
[BK01] Expression

Symbolic Out-of-core PGS Offset-labelled In-core Array Out-of-core
this thesis MTBDD

Improved OL-MTBDDs GS Improved In-core Array In-core
this thesis OL-MTBDD Out-of-core

Explicit Methods

Matrix Out-of-core GS Sparse Out-of-core Array In-core
[DS97, DS98a] matrix

Complete Out-of-core GS Sparse Out-of-core Array Out-of-core
this thesis matrix

Table 2.2: Solution methods for CTMC analysis35
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2.8.2 State Space Explosion: Parallel Solutions

Shared memory multiprocessors, distributed memory computers, workstation

clusters and grids provide a natural way of dealing with the memory and com-

puting power problems, i.e. the task can be effectively distributed to parallel

processors with shared or distributed memories. The goal of using parallel

computers is to obtain high performance. Achieving this goal is usually a

challenge in many areas of scientific computing. Various performance issues

and techniques trade off with one another, which makes parallel computing

so challenging and interesting. The books [KGGK94, GO93, GL96] contain

a wealth of information on parallel computing. [CSG99] is an excellent book

on parallel computer architecture.

In the previous section, we concentrated on the solution methods for

the steady-state analysis of Markov chains, where the target architecture

was a single, contemporary workstation. We now survey the parallel and

distributed CTMC analysis techniques. We will use the terms “parallel” and

“distributed” to refer to the techniques developed for shared memory and

distributed memory architectures, respectively.

Much work is available concerning the parallel and distributed numerical

iterative solution of general systems of linear equations, see [BBC+94, DV99,

Saa03], for instance. There are two major directions taken in the context of

solutions of Markov chains: firstly, the approaches based on explicit storage

of the matrix, and secondly, the parallel techniques which rely on implicit

CTMC storage. We first consider the explicit parallel approaches.

By far the most promising generally applicable techniques for the steady-

state solution of large Markov models are iterative solution methods where

matrices are stored explicitly in sparse format. Parallel solutions for the

largest Markov models are included in this category. The two methods we

first mention in this category are based on parallelisation of the matrix out-

of-core technique.

In 1999, Knottenbelt and Harrison [KH99] introduced the first distributed

matrix out-of-core solution for large CTMCs on a 16-node (256MB RAM per

node) distributed memory computer. This was an effort to utilise the concur-

rent power as well as the secondary memory of parallel processing nodes for

the solution of CTMCs. The authors used the Jacobi and conjugate gradient

squared (CGS) iterative methods for the numerical solution. We know from
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Section 2.4 that the CGS method requires storage for 7 iteration vectors, in

addition to the matrix storage. However, since not all of these 7 vectors are

needed at the same time, the intermediate vectors can be written to disk and

hence storage requirements of the algorithm can be reduced. Knottenbelt

[Kno99] used a parallel out-of-core version of CGS with a reduced in-core

storage of 3 iteration vectors. The author reported results for CTMCs with

as many as 94 million states.

In 2001, Bell and Haverkort [BH01] used the distributed matrix out-of-

core techniques to further extend the size of solvable models, this time on

a workstation cluster. The authors used the conjugate gradient squared

method to solve smaller models. In the implementation of the CGS method,

they kept 5 iteration vectors in-core and stored two vectors out-of-core. The

largest model they solved using this iterative method contained 54 million

states. For larger models, they used the Jacobi iterative method and reported

the solution of a 724 million state system. It is interesting to mention here

that the solution took 16 days to converge on a 26-node (52 processors)

cluster with 13GB RAM and 1040GB disk space. The largest solvable model

in this case was limited by the storage required (in-core) for the two iteration

vectors.

The two approaches mentioned above relied on explicit out-of-core stor-

age of the CTMC matrices. The remaining approaches in this category

do not rely on out-of-core storage and use RAM to store all the explicit

data structures. These include the distributed solution of Marenzoni et

al. [MCC97], the shared memory parallel implementation of Allmaier et al.

[AKH97], the parallel CTMC solution of [MPS99] based on a block iterative

method, and distributed approach of [BDKW03] on a workstation cluster.

See also [Cia01a], where Ciardo gives a survey of explicit distributed tech-

niques for CTMC analysis; the author excludes the approaches implemented

on a shared memory architecture.

We now consider parallel steady-state solution methods which are based

on implicit storage of CTMCs. The first to mention in this category is the

work of Buchholz et al. [BFK99]. The authors reported parallelisation of

the Kronecker methods on a cluster of workstations. A representation of the

generator matrix provided by the Kronecker methods partitions naturally

into a block structure. These matrix blocks hence can be easily assigned
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to distributed processors. The authors used a block Jacobi method for the

steady-state solution and reported results for models with up to 8 million

states.
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CHAPTER

THREE

Explicit Out-of-Core Solution Methods

In this chapter, we present the explicit out-of-core algorithms which we have

developed during the PhD studies for the steady-state solution of CTMCs.

We begin by introducing an in-core block Gauss-Seidel algorithm in the next

section. Then we introduce and explain the compact MSR scheme, a contri-

bution of this thesis, in Section 3.2. The scheme offers significant saving over

other sparse storage schemes. For the out-of-core methods, these savings

(disk and RAM) also result in smaller amount of disk I/O. It has been used

to store CTMC matrices in all our experiments presented in this chapter.

This storage scheme will also be used in our work presented in Chapter 5.

In Section 3.3, we briefly explore the general issues involved in the design

and analysis of out-of-core algorithms. In Section 3.4, we present and explain

a matrix out-of-core algorithm based on the work of Deavours and Sanders

[DS98a]. In Section 3.5, we describe our complete out-of-core algorithm

which relaxes storage limitations for the matrix out-of-core methods. The

implementation details of the two out-of-core algorithms are given in the

corresponding subsections. Then, in Section 3.6, we present experimental

results for the solution methods and analyze them in detail. A discussion

of the work related to the material presented in this chapter is given in

Section 3.7.
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3.1 An In-Core Block Gauss-Seidel Algorithm

Recall from Chapter 2 that, in this thesis, we focus on the computation of

the steady-state probabilities of a CTMC, a problem which corresponds to

solving the system of equations πQ = 0, where π ∈ Rn and Q ∈ Rn×n.

We have reviewed block iterative methods for the solution of linear equation

systems in Chapter 2. In this section, we present and explain an in-core

block Gauss-Seidel algorithm for the solution of the system Ax = 0, where

A = QT and x = πT . We reproduce from Chapter 2, the block Gauss-Seidel

equation for the solution of the system Ax = 0:

X
(k)
i = −A−1

ii

(∑
j<i

Aij X
(k)
j +

∑
j>i

Aij X
(k−1)
j

)
, 0 ≤ i < P. (3.1)

The partitioning of matrix A and iteration vector x employed in the above

equation has been explained in Section 2.3. The equation can be refined into

a block Gauss-Seidel algorithm, shown in Figure 3.1. The algorithm, in addi-

tion to the storage for the matrix, requires an array x of size n (states in the

CTMC) to store the iteration vector, the i-th block of which is denoted Xi,

and another array X̃i of size nmax to accumulate the sub-matrix-vector prod-

ucts (sub-MVPs), AijXj, i.e., the multiplication of a single matrix block by a

single vector block. The number nmax denotes the size of the largest matrix

and vector blocks. The subscript i of X̃i in the algorithm is used to make

the description intuitive and to keep the vector block notation consistent; it

does not imply that we have used P such arrays.

Each iteration of the algorithm can be seen as progressing in P phases.

In the i-th phase, elements from the i-th block of the iteration vector are

updated. Note that the update of the i-th block, Xi, only requires access to

entries from the i-th row of blocks in A, i.e., Aij for 0 ≤ j < P . We have also

illustrated this fact with the help of Figure 3.2 for the second phase (i = 1)

with P = 4; the matrix and vector blocks used in this computation are shaded

grey. In the figure, all blocks are of equal size but this is generally not the

case. Line 5 of the algorithm in Figure 3.1 performs a unit of computation,

a sub-MVP, and accumulates these products. Line 8 corresponds to solving

a system of equations, either by direct or iterative methods (see Section

2.3). We use the Gauss-Seidel iterative method to solve AiiXi = X̃i, for Xi.
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0. while not converged

1. for i = 0 to P − 1

2. X̃i ← 0

3. for j = 0 to P − 1

4. if j 6= i

5. X̃i = X̃i − AijXj

6. end if

7. end for

8. Perform AiiXi = X̃i

9. Test for convergence

10. end for

11. end while

Figure 3.1: A block Gauss-Seidel algorithm

More precisely, we apply the following computations to update each of the

ni elements of the i-th vector block, Xi:

for p = 0 to ni − 1

Aii[p, p] Xi[p] = X̃i[p] −
∑

q 6=p Aii[p, q] Xi[q],

where Xi[p] is the p-th entry of the vector block Xi, and Aii[p, q] denotes the

(p, q)-th element of the diagonal block (Aii).

In summary, therefore, the block iterative algorithm of Figure 3.1 ap-

plies one Gauss-Seidel (inner) iteration on each sub-system of equations, in

a global Gauss-Seidel iterative structure. Note that applying one Gauss-

Seidel iteration for each Xi in the global Gauss-Seidel structure reduces the

block Gauss-Seidel method to the standard Gauss-Seidel method, although

the method is based on block sub-MVPs.

The test for convergence (Line 9 in Figure 3.1) is carried out using the

relative error criterion given by Equation (2.16) on Page 18. This is accom-

plished as follows. In the i-th phase of the algorithm, using Equation (2.16),

we compute the maximum relative error for the i-th block of the iteration

vector. These computations are repeated for each phase (i.e. for each vector

block) in order to calculate the maximum relative error for the whole iter-

ation vector. This maximum relative error is finally compared to a preset
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value of ε (in this thesis, we use ε = 10−6) before proceeding to the next iter-

ation (Line 0 in Figure 3.1). Actually, during an iteration, the computations

given by Equation (2.16) are only applied until the relative maximum error

remains smaller than the preset value of ε.

3.2 The Compact MSR Storage Scheme

We have surveyed sparse matrix storage schemes in Chapter 2. In this section

we describe the compact Modified Sparse Row (compact MSR) scheme, a ma-

trix storage scheme which is a contribution of this thesis. We have used this

scheme to store CTMC matrices in all our implementations of the solutions

which are based on explicit matrix storage. The scheme can be viewed as

a compact variation of the Modified Sparse Row (MSR) scheme, which has

been described in Chapter 2. It offers significant savings over MSR and other

sparse storage schemes. In the case of out-of-core solutions, these savings in

disk memory as well as RAM are reflected in faster solution times due to

better caching and reduced I/O.

It has also been mentioned in Chapter 2 that the indexed variations of the

MSR scheme exploit the fact that the number of entries in a generator matrix

is relatively small. We have also seen that the indexed MSR format (largely

true for all mentioned formats) stores the column index of a nonzero entry

in a matrix as a data type int. An int usually uses 32 bits, which can store a

column index as large as 232 (above 4 billion). The size of the models which

can be fitted within the RAM of a modern workstation are much smaller

( 1,1 ) ( 1,3 )

( 0,0 )

( 1,0 ) ( 1,2 )

A Sub−MVP

( i,j ) X j

1 1

0

2

3( 3,3 )

Figure 3.2: Matrix vector multiplication at block level
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0130 ... ..........31

int Column index of a matrix nonzero entry Index to the matrix entry

Figure 3.3: The idea of the compact MSR scheme

than 232. For example, it is evident from Table 2.1 on Page 22 that using

an in-core method such as Gauss-Seidel, today, we can hardly solve a model

with 54 million states on a single workstation. The column index for a model

with 54 million states requires at most 26 bits, leaving 6 bits unused. Even

more bits can be made available, if we consider that, for out-of-core and for

parallel solutions, it is common practice (or, at least, it is possible) to use

local numbering for a column or row index inside each matrix block. In these

cases, the upper bound on a row or column local index can be decreased by

increasing the number of blocks or processes.

The compact MSR format exploits the above mentioned facts and stores

the column index of a matrix entry along with the index to the actual value

of this entry in a single int. This is depicted in Figure 3.3. The storage and

retrieval of these indices into, and from an int can be carried out efficiently

using shift and mask bit operations. Since the operation QT D−1 increases

the number of distinct values in the resulting matrix R, matrix Q and the

diagonal vector d can be stored separately (see Section 2.6.1, Page 20). As

mentioned earlier, the diagonal entries can be indexed, and the distinct en-

tries can be stored as 1/aii to save n divisions per iteration; indices to these

distinct values may be stored as short.

The compact MSR scheme, therefore, uses three arrays: an array Col−i

of length 4a bytes which stores the column positions of matrix entries as

well as the indices to these entries, an n-byte long array row−entries to

store the number of entries in each row, and a 2n-byte long array Diag−i of

short indices to the original values in the diagonal. We do not consider the

storage for the original matrix entries. The total memory requirements in

the compact MSR format is thus 4a + 3n bytes.

We compare now the storage requirements of the compact MSR scheme

with other sparse schemes discussed earlier in Chapter 2. We focus for these
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k states a/n memory required for Q (MB) MB

(n) MSR format Indexed MSR Compact MSR per π

FMS models

8 4,459,455 8.64 489 225 160 34
9 11,058,190 8.96 1,260 577 409 84
10 25,397,658 9.23 2,962 1,366 967 194
11 54,682,992 9.47 6,554 3,016 2,133 417
12 111,414,940 9.68 13,563 6,279 4,433 850
13 216,427,680 9.87 26,923 12,429 8,768 1,651
14 403,259,040 12.35 61,609 28,882 20,152 3,077
15 724,284,864 12.61 112,810 52,952 36,913 5,526

Kanban models

4 454,475 8.75 51 23 17 3
5 2,546,432 9.60 218 142 101 19
6 11,261,376 10.27 1,456 674 475 86
7 41,644,800 10.82 5,264 2,613 1,835 318
8 133,865,325 11.26 18,843 8,783 6,153 1,021
9 384,392,800 11.64 55,428 25,881 18,109 2,933
10 1,005,927,208 11.97 149,310 69,858 48,811 7,675

Table 3.1: Comparison of sparse storage formats
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sparse schemes on the amount of RAM required during the steady-state, it-

erative solution phase. Table 3.1 reports these storage requirements in MSR,

indexed MSR, and compact MSR formats for the flexible manufacturing sys-

tem (FMS) of [CT93], and the Kanban manufacturing system of [CT96]. The

first column in Table 3.1 gives the model parameter k; see Appendix B for

details. Second column lists the resulting number of reachable states. Third

column (a/n) lists the average number of nonzero entries per row.

The largest model reported in the table is of the Kanban system with over

1 billion reachable states and 12 billion transitions. Column 4 and 6 give the

storage requirements for matrices (including storage for diagonal) in MB for

MSR and compact MSR respectively. The amount of RAM required for the

indexed MSR format, listed in column 5, excludes the storage for diagonal

because it can be kept on disk and is not required during the iteration phase.

Finally, the last column lists the memory required to store a single iteration

vector of doubles (8 bytes) for the steady-state solution phase.

We note in Table 3.1, that the compact MSR scheme is around 30% more

compact than the indexed MSR format. This significantly more compact

storage reduces the RAM and (or) disk memory requirements of the (in-core

or out-of-core) solution, and therefore, using the compact MSR scheme, it is

possible to solve larger models on a particular hardware. Secondly, compact

storage improves the speed of the solution due to reduced memory I/O and

better caching. Furthermore, smaller amounts of data to move from disk

mean faster solution due to reduced disk I/O.

3.3 Out-of-Core Algorithms

Programmers want to have access to an unlimited amount of fast memory.

To satisfy these needs, most modern computers have a memory hierarchy

organised into several levels, typically ranging from the fastest level of CPU

registers to random access memory and (slower but inexpensive) magnetic

disks. The goal is to provide a memory system with cost of the cheapest

memory level and speed of the fastest.

Most modern computing systems provide the concept of a virtual mem-

ory, which enables programmers to access memory larger than the available

RAM. A virtual memory system also means that programmers do not need to
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worry about the actual location of the data in the memory hierarchy. System

mechanisms, such as caching , swapping and demand paging, have been devel-

oped to control the data movement across the different levels of the memory

hierarchy. The virtual memory systems, however, are usually designed to

be general-purpose, and therefore, do not always fulfil programmers’ expec-

tations, in particular, when the ratio of virtual to physical memory sizes is

large. Moreover, applications may still exist that require the amount of space

much larger than the virtual memory can address. Distributed computing

systems, such as clusters of workstations, provide a natural way of dealing

with the memory (and computing) problems. However, as we have seen in

Section 2.8.2, there is still a need to solve even larger problems, i.e. the prob-

lems for which the required memory can exceed the main memory available.

In these cases, where the primary or virtual memory is unable to hold the

application data, the so-called out-of-core methods can be used.

Out-of-core algorithms are those which are designed to attain high perfor-

mance when their data structures are stored on disks. These algorithms can

be classified as a sub-category of more general algorithms, known as external

memory algorithms, which are designed to achieve performance by explicit

and efficient control of the memory hierarchy. The two terms, out-of-core

and external memory, have also been used interchangeably in the literature.

We concentrate on the out-of-core algorithms, i.e. on the explicit control of

the communication between the main memory (RAM) and disk, and, in this

section, briefly explore the general issues involved in the design and analy-

sis of such algorithms. For further details on out-of-core algorithms see e.g.

[Vit01, Tol99]; see also [HP03], an excellent book on computer architecture.

The principle of locality plays a vital role in obtaining performance from

algorithms. It states that programs tend to reuse data (and code) they have

used recently. The concept of locality is usually divided into temporal locality,

which states that recently accessed items are likely to be accessed in the near

future, and spatial locality, which states that items whose addresses are near

one another tend to be referenced close together in time [HP03].

An implication of this concept of locality, for out-of-core algorithms, is

that the data must be laid out on disk such that it can be moved in large

blocks between RAM and disk. Secondly, the computations must be per-

formed such that the data which has been brought in is completely used
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before its eviction from RAM. Moreover, the computations must be ordered

such that the I/O between the two memory levels is minimised. For example,

iterative methods which perform vector-matrix computations in a block-by-

block manner, as we have seen in Section 3.1, provide high-level of data

locality for out-of-core algorithms. The matrix and/or vector can be divided

into blocks, and these blocks can be stored on disk in contiguous locations,

hence exploiting spatial locality in the algorithm.

It is possible that a particular algorithm does not admit an efficient out-of-

core scheduling. In this case, the original computations may be transformed

in order to achieve performance from the out-of-core algorithm. For example,

a block-based iterative algorithm can be considered as an efficient transfor-

mation of the corresponding (standard) iterative method, assuming that the

standard method performs the matrix computations in a row or column wise

fashion.

Creating locality may also bring some additional cost to the out-of-core al-

gorithm. This cost may be incurred in that the resulting algorithm performs

significantly larger amount of work than the original algorithm, degrading

the overall out-of-core performance. Furthermore, although the out-of-core

algorithm was kept equivalent to the original algorithm in exact arithmetic,

it may become numerically unstable due to floating point arithmetic. Nu-

merically stable out-of-core algorithms are usually preferred over less stable

counterparts.

In addition to numerical stability, another property which is desirable

in an out-of-core algorithm is its predictability in terms of the amount of

space and time. One can ask questions, for example the following. How

much RAM and disk memory the out-of-core algorithm requires? What is

the impact of the amount of available RAM on the out-of-core performance

of the algorithm? Are the time and space requirements of the algorithm

predictable for larger sizes of the problem? How does the algorithm scale

with the increase in the problem size? Is the amount of space and time linear

in problem size? How large benchmarks have been used to demonstrate the

performance of the algorithm? How does the benchmark sizes compare with

the main memory of the workstation used? Is the workstation used, a fairly

standard one, or a special computing equipment? What is the ratio of the

largest problem sizes solved using in-core and out-of-core?
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An out-of-core algorithm can also be analysed by comparing its perfor-

mance against the in-core version of the algorithm. How do the memory

requirements of the two versions compare? What is the ratio of the main

memory requirements for the two versions? What is the ratio of the main

memory for the in-core and the total disk space for the out-of-core? How

does the solution time for the two versions compare? Does the out-of-core

solution result in a many-fold increase in the in-core solution time? Is the

increase in the solution time worth using the out-of-core algorithm?

A comparative analysis of an out-of-core algorithm can be made wherever

one or more baseline algorithms are available. The amount of I/O performed

by the individual algorithms can be compared. Their memory (both RAM

and disk) requirements and solution times can be studied. The data layout in

the main memory as well as on disk can be investigated, in order to compare

the extent to which principal of locality has been exploited by the algorithms.

3.4 A Matrix Out-of-Core Algorithm

The block Gauss-Seidel algorithm given in Section 3.1 can be implemented

for the steady-state solution of CTMCs such that the CTMC matrix can be

stored using, for example, the compact MSR sparse scheme, and the vector

can be stored using an array of length n doubles, where n is the number of

states in the CTMC. However, this makes the total memory requirements for

large CTMCs well above the size of the RAM available in standard worksta-

tions (see Table 3.1). One possible solution is to use an out-of-core approach,

i.e. to store the matrix on disk and read blocks of matrix into RAM when

required. In each iteration of the iterative method, we can do the following:

while there is a block to read

read a matrix block

use the matrix and vector blocks to compute the sub-MVP

perform additional computations

We note that, in this disk-based approach, the processor will remain idle

until a block has been read into RAM. We also note that the next disk read

operation will not be initiated until the computations have been performed.

It is not an efficient approach, in particular for large models and for iterative
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methods, because they require a relatively large amount of data per floating

point operation. To overcome these inefficiencies, we would like to use a

two-process approach where the disk I/O and the computation can proceed

concurrently. We present such an approach in this section. Once we have ex-

plained the working of a basic out-of-core iterative algorithm, we will be able

to consider out-of-core algorithms which are more involved. Furthermore, it

will allow us to make a comparison of various out-of-core approaches pursued

in the literature.

Figure 3.4 presents a high-level description of a matrix out-of-core al-

gorithm which uses the block Gauss-Seidel method for the solution of the

system Ax = 0. The name “matrix out-of-core” implies that only the matrix

is stored out-of-core and the vector is kept in-core. The algorithm is imple-

mented using two separate concurrent processes: the DiskIO Process and the

Compute Process. The two processes communicate via shared memory and

synchronise with semaphores.

The algorithm of Figure 3.4 assumes that the CTMC matrix to be solved

is divided into P 2 blocks of size n/P × n/P , and is stored on disk. This is

called a uniform checkerboard partitioning of the matrix. In fact, for this

algorithm, it is not necessary to divide the matrix into P 2 blocks. It suffices

to have P matrix blocks of size n/P × n, i.e. P matrix blocks, where each

matrix block consists of n/P rows of the CTMC matrix. This corresponds to

the rowwise block-striped partitioning of the CTMC matrix; see [KGGK94]

for details of matrix partitioning, for instance.

For clarity reasons, in Figure 3.4, the vector x is also shown to be divided

into P blocks, although a single array of doubles is used to keep the whole

vector. Another vector X̃i of size n/P is required to accumulate the sub-

MVPs (line 8). Only one X̃i vector is used, the subscript i is used for clarity

reasons. The algorithm assumes that, before it commences, the array x holds

an initial approximation to the solution.

As for the in-core Gauss-Seidel algorithm of section 3.1, each iteration of

the out-of-core algorithm given in Figure 3.4 progresses in P phases, where

the i-th phase computes the next approximation for the i-th block of the

iteration vector. To update the i-th block, Xi, the Compute Process requires

access to entries from the i-th row of blocks in A, i.e., Aij for 0 ≤ j < P ; see

Figure 3.2. The DiskIO Process helps the Compute Process with this task
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Integer constant: P (number of blocks)

Semaphores: S1, S2 ← occupied

Shared variables: R0, R1 (To read row of matrix blocks into RAM)

DiskIO Process

1. Local variables: i, j, t = 0

2. while not converged

3. for i← 0 to P − 1

4. read all nonzero Aij

5. Signal(S1) /* over Rt */

6. Wait(S2) /* over Rt̄ */

7. t = t̄

8. end for

9. end while

Compute Process

1. Local variables: i, j, t = 0

2. while not converged

3. for i← 0 to P − 1

4. X̃i ← 0

5. Wait(S1) /* over Rt */

6. Signal(S2) /* over Rt̄ */

7. for all nonzero Aij | j 6= i

8. X̃i = X̃i − AijXj

9. end for

10. Perform AiiXi = X̃i

11. Test for convergence

12. t = t̄

13. end for

14. end while

Figure 3.4: A matrix out-of-core block Gauss-Seidel algorithm
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and fetches the required row of the blocks of matrix A from disk (line 4).

Note that in the DiskIO Process , the whole row of matrix blocks is fetched at

once in a single buffer. Once the i-th row of blocks is in-core, the Compute

Process can perform the numerical computations given by lines 8, 10 and

11. Line 8 in the process accumulates the sub-MVPS, and line 10 solves the

equation for Xi, using a Gauss-Seidel (inner) iteration. Line 11 performs a

test of convergence in part using the previous and newly calculated entries

of the vector block Xi. These computational steps have been explained in

detail in Section 3.1.

The algorithm in Figure 3.4 uses two shared memory buffers, R0 and R1,

to achieve the communication between the two processes. At a certain point

in time during the execution, the DiskIO Process is reading a row of matrix

blocks in one shared buffer, say R0, while the Compute Process is consuming

a row of matrix blocks from the other buffer, R1. Both processes alternate

the value of a local boolean variable t, in order to switch between the two

buffers R0 and R1. The two semaphores S1 and S2 are used to synchronise

the two processes, and to prevent inconsistencies over these buffers; see, for

instance, lines 5− 6 in the DiskIO Process.

The high-level structure of the algorithm, given in Figure 3.4, is that of a

producer-consumer problem. In each execution of its for loop, the i-th phase

(lines 3− 8), the DiskIO Process reads the i-th row of blocks in A, into one

of the shared memory buffers Rt, and issues a Signal(·) operation on S1 (line

5). Since the two semaphores are occupied initially, the Compute Process

waits on S1 (line 5). On receiving this signal, the Compute Process issues

a return signal on S2 (line 6) and then advances to update the i-th vector

block (lines 7 − 10). The DiskIO process, on receiving this signal from the

Compute Process, advances to read the next i-th row of blocks in A. This

activity of the two processes is repeated until all of the vector blocks have

been read or updated; the two processes then advance asynchronously to the

next iteration.

3.4.1 Implementation

We have used the compact MSR storage scheme (see Section 3.2) to store

the matrix in our implementation of the matrix out-of-core algorithm. The

blocks have been stored on disk in the order they are required during the
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numerical computation. Hence, the DiskIO Process is able to read the file

containing the matrix sequentially throughout an iteration of the algorithm

and no file seek operations are required during an iteration.

We have implemented the algorithm using shared memory and semaphores,

the Inter Process Communication (IPC) mechanisms available on Unix-like

operating systems. Another possibility is to use a single process comprising

two threads. In this case, the two threads will share a single address space

and, depending on the underlying operating system, this approach may result

in faster solution speed.

3.5 The Complete Out-of-Core Algorithm

A limitation of the solution method based on a matrix out-of-core approach

is the in-core storage of the iteration vector. In this section, we introduce

our complete out-of-core algorithm which stores the CTMC matrix as well

as the iteration vector on disk. As for the matrix out-of-core algorithm, the

complete out-of-core algorithm employs the block Gauss-Seidel algorithm of

Section 3.1 to solve the system Ax = 0.

The high-level description of the complete out-of-core algorithm for the

block Gauss-Seidel solution of the system Ax = 0 is shown in Figure 3.5.

The algorithm assumes that the iteration vector and the CTMC matrix are

divided into P and P 2 blocks of equal size, respectively. It also assumes that,

before it commences, an initial approximation for the probability vector x

has been stored on disk and that the approximation for the last block, XP−1,

is already in-core.

As for the matrix out-of-core, the complete out-of-core algorithm of Fig-

ure 3.5 uses two shared memory buffers, R0 and R1, to read blocks of matrix

into RAM from disk (line 8 of the DiskIO Process). Similarly, vector blocks

are read (line 10) from disk into shared memory buffers, Xbox0 and Xbox1.

Another array X̃i, which is local to the Compute Process, is used to accu-

mulate the sub-MVPs (line 11, Compute Process). The subscript i for X̃i, as

mentioned earlier, is only for clarity reasons. The local boolean variable t is

used to switch between the pair of shared buffers, Rt and Xboxt. We note in

the figure that, in the i-th phase of an iteration, the two processes wait over

different sets of shared memory buffers, i.e. the DiskIO Process (line 14) waits
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Integer constant: P (number of blocks)
Semaphores: S1, S2 ← occupied

Shared variables: R0, R1 (To read matrix A blocks into RAM)
Shared variables: Xbox0, Xbox1 (To read iteration vector x blocks into RAM)

DiskIO Process

1. Local variable: h, i, j, k, t = 0
2. k ← P − 1
3. while not converged
4. for i← 0 to P − 1
5. j ← i ? (i− 1) : (P − 1)
6. for h← 0 to P − 1
7. if not an empty block
8. read Aij from disk
9. if h 6= 0

10. read Xj from disk
11. end if

12. end if

13. Signal(S1) /* Rt, Xboxt */

14. Wait(S2) /* Rt̄, Xboxt̄ */

15. if h = 0
16. write Xk to disk
17. end if

18. j ← j ? (j − 1) : (P − 1)
19. t = t̄

20. end for

21. k ← i

22. end for

23. end while

Compute Process

1. Local variable: h, i, j, t = 0
2. while not converged
3. for i← 0 to P − 1
4. j ← i ? (i− 1) : (P − 1)
5. X̃i ← 0
6. for h← 0 to P − 1
7. Wait(S1) /* Rt, Xboxt */

8. Signal(S2) /* Rt̄, Xboxt̄ */

9. if j 6= i

10. if not an empty block
11. X̃i ← X̃i −AijXj

12. end if

13. end if

14. else

15. Perform AiiXi = X̃i

16. Test for convergence

17. end else

18. j ← j ? (j − 1) : (P − 1)
19. t = t̄

20. end for

21. end for

22. end while

Figure 3.5: The complete out-of-core block Gauss-Seidel iterative algorithm
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over the shared buffers Rt̄ and Xboxt̄, while the Compute Process (line 7)

waits over the buffers Rt and Xboxt (shown as comments in the algorithm).

A similar explanation applies to the signal operations for the two processes in

the algorithm. For the sake of algorithm layout and simplicity, we have ab-

stracted some information from the algorithm regarding the shared memory

buffers.

The vector blocks corresponding to empty matrix blocks are not read

from disk (lines 7, 10, DiskIO Process). Moreover, to reduce disk I/O, the

algorithm reads only the range of those elements in a vector block which are

required for a sub-MVP; this information is abstracted from the algorithm.

Once a vector block has been updated, this new approximation of the block

must be updated on disk (lines 15, 16, DiskIO Process). The variable k

(lines 2, 21, DiskIO Process) is used to keep track of the index of the vector

block to be written during an inner iteration (lines 6− 20, DiskIO Process).

The variable j (lines 5 and 18, DiskIO Process) is used to keep track of the

matrix and vector blocks to be read from disk, and to be consumed by the

Compute Process (lines 4 and 18). The variable j for the two processes is

updated using a conditional statement; line 4 in the Compute Process, for

instance, is explained as:

if(i = 0) then j ← P − 1 else j ← i− 1.

Line 18 in the Compute Process can be explained similarly. We use this

notation to improve the readability of the algorithm. It is a standard nota-

tion used for conditional statements in the C programming language. The

Compute Process accumulates the sub-MVPs at line 11, and solves the sub-

systems of equations for Xi (line 15) using a Gauss-Seidel (inner) iteration,

as explained in Section 3.1.

Finally, we note that, in the algorithm, the diagonal blocks for vector and

matrix (j = i) will always be consumed (and read) when h = P − 1, i.e. in

the last iteration of the inner for loop; see lines 14 − 17 in the Compute

Process. In the light of this discussion, and the explanation of the algorithms

given in Sections 3.1 and 3.4, the Compute Process is self explanatory.
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3.5.1 Implementation

We have used two separate files to store the matrix and the iteration vector

on disk. The matrix is stored in the compact MSR scheme and the vector

is stored as an array of doubles. As for the matrix out-of-core solution,

the matrix for the complete out-of-core method has been stored on disk,

block by block, in an order which enables the DiskIO Process to read the file

sequentially throughout an iteration. However, the case for reading through

the file which keeps the vector is more involved because, in this case, the

DiskIO Process has to skip those vector blocks which correspond to empty

blocks of the matrix. Another array of size P 2 can be allocated in the main

memory to keep track of the zero and nonzero matrix blocks. Actually, we

have used a sparse scheme to store this information regarding nonzero blocks.

The number of blocks P for the complete out-of-core solution is small, usually

less than 100, and therefore the memory required for the array is negligible.

The complete out-of-core method was originally introduced in [KM02].

There, we described another implementation of the complete out-of-core al-

gorithm which exploits the sparsity pattern in the CTMC matrices. Further

research can be carried out to develop intelligent out-of-core algorithms which

are able to dynamically exploit sparsity patterns available in a CTMC ma-

trix.

3.6 Experimental Results

We now analyse the performance of the algorithms which have been presented

in this chapter. We have implemented these algorithms on an UltraSPARC-

II 440MHz CPU machine running SunOS 5.8 with 512MB RAM, and a 6GB

local disk. We have used three widely used benchmark models to test the im-

plementations. These are: a flexible manufacturing system (FMS) of [CT93],

a Kanban system of [CT96] and a cyclic server Polling system of [IT90]. We

will use these case studies to benchmark all our solution techniques, through-

out this thesis. The models were generated using version 1.3.1 of the PRISM

tool; see Appendix A.

This results section is organised as follows. In the following subsection,

we say a few words on the file generation process for the out-of-core solutions.

Subsequently, in Section 3.6.2, we present and compare times per iteration
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for in-core and out-of-core iterative solutions. Finally, the matrix and the

complete out-of-core solutions are individually analysed in Section 3.6.3 and

Section 3.6.4, respectively, with the help of performance graphs.

3.6.1 File Generation

The PRISM tool stores CTMC matrices using an MTBDD-based data struc-

ture. Since the out-of-core solutions require the matrix to be kept in the

compact MSR format, the MTBDD-based representation of the CTMC ma-

trix is first converted into sparse format, and is then written to disk. Once

the matrix and the iteration vector are ready on disk, the out-of-core iterative

steady-state solution process can be invoked.

The times to generate the files for the out-of-core solution phase are pro-

portional to the times required to convert a model from MTBDD representa-

tion to a sparse format. This file generation process can be either optimised

for time or for memory. Optimising for memory can be achieved by allocating

in RAM a data structure of the size of a submatrix of Q which is written to

file repeatedly as the conversion progresses. This memory optimisation en-

ables us to generate very large models on a workstation with limited RAM.

Given that sufficient RAM is available, the generation process can be opti-

mised for time by carrying out the entire process stated above in one step,

i.e, converting the whole model into sparse format and then writing to file.

Essentially, the time to generate files is negligible compared to the numerical

solution times. We hereon concentrate on the iterative solution phase.

3.6.2 A Comparison of the Solution Methods

We outline the experimental results in Table 3.2 for the Kanban, FMS and

Polling system case studies. Column 2 gives the model parameter k, see

Appendix B for details. The resulting number of reachable states, n, is given

in column 3. Column 4 lists the average number of off-diagonal entries per

row, giving an indication of the sparsity of the matrices.

Columns 5–7 in Table 3.2 list the time per iteration results for the imple-

mentations of the algorithms presented in this Chapter. These include the

standard in-core version, where the matrix and the vector are kept in RAM;

the matrix out-of-core version (Section 3.4), where only the matrix is stored
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Model k States a/n Time (seconds per iteration) Iter.

(n) In-core Out-of-core

Matrix Complete

FMS 6 537,768 7.8 0.3 0.5 1.1 812

7 1,639,440 8.3 1.1 1.7 3.8 966

8 4,459,455 8.6 3.2 5.1 10.7 1,125

9 11,058,190 8.9 – 24 51.8 1,287

10 25,397,658 9.2 – 69 146 1,454

11 54,682,992 9.5 – – 374 1,624

Kanban 4 454,475 8.8 0.3 0.5 1.0 323

system 5 2,546,432 9.6 1.8 3.0 6.0 461

6 11,261,376 10.3 – 30 68.6 622

7 41,644,800 10.8 – 180 283 802

Polling 15 737,280 8.3 0.5 0.7 1.2 32

system 16 1,572,864 8.8 1.1 1.9 2.9 33

17 3,342,336 9.3 2.4 3.9 6.4 34

18 7,077,888 9.8 5.5 15.8 20.4 34

19 14,942,208 10.3 – 41 71 35

20 31,457,280 10.8 – 101 162 36

21 66,060,288 11.3 – – 359 36

Table 3.2: Comparing speeds for explicit in-core and out-of-core methods
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on disk and the vector is kept in RAM; and the complete out-of-core version

(Section 3.5), where both the matrix and the vector are stored on disk. Note

that all these methods are based on explicit storage of CTMC matrix. We

know from earlier sections in this chapter that the iterative method used for

the numerical solution in all algorithms is the block Gauss-Seidel method.

The number of blocks for these iterative solutions were manually selected,

based on our analyses of the two out-of-core methods. These analyses will be

presented in Sections 3.6.3 and 3.6.4. The number of blocks for each CTMC

generator matrix is selected such that the resulting amount of memory re-

quired for its solution remains well within the available physical memory of

the workstation. For a priori selection of the number of blocks, we discuss a

heuristic in Section 3.6.5.

The number of iterations for each solution are reported in column 8, in

Table 3.2. The criterion we have used to test for convergence, in all our

implementations, is given by Equation (2.16) for ε = 10−6. All reported run

times are wall clock times.

The CTMCs for all three solution methods are stored in the compact MSR

sparse storage scheme (Section 3.2). The scheme requires 4a + 3n bytes to

store the whole matrix including the diagonal. The entries “a/n” in column

4 can be used to calculate the memory required to store the matrices.

We note, in Table 3.2, that the in-core explicit method provides the fastest

run-times. However, pursuing this approach, the largest model solvable on

a 512MB workstation is the Polling system (k = 18) with approximately 7

million states. The upper bound on the size of the solvable model, in this

case, is determined by the total amount of memory required for the storage of

the matrix and the iteration vector. The matrix out-of-core solution requires

in-core storage for one iteration vector and two blocks of matrix. The memory

required for these matrix blocks can, in general, be reduced by increasing the

number of blocks the matrix is decomposed into. However, in this case, the

limit on the largest solvable model still exists due to the in-core storage of the

iteration vector. Pursuing the matrix out-of-core approach, the largest model

solvable on the workstation is the Kanban system (k = 7) with approximately

41 million states.

The upper bound on the size of solvable models can be increased by the

out-of-core storage of both matrix and the iteration vector. This is evident
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from column 7, and the largest model reported in this case is the Polling

system (k = 21) with 66 million states. The limit in this case is the size of

the available disk (6GB), although, using this approach, even larger models

can be solved provided a larger disk is available.

3.6.3 The Matrix Out-of-Core Method

In this section, we investigate the performance for the matrix out-of-core

solution method by analysing its memory and time properties plotted against

the number of blocks used to partition the vector. A matrix out-of-core

algorithm was given in Section 3.4 and the time per iteration results presented

in Table 3.2. In Figure 3.6(a), we plot the memory requirements of the matrix

out-of-core solution for three CTMCs, one from each case study. The plots

display the total amount of memory used against the number of vector blocks

P of equal size. This corresponds to P 2 matrix blocks of equal size.

We explain Figure 3.6(a) using the plot for the Polling system (k = 17).

The memory required to store the entire vector and matrix in this case, if

kept completely in RAM, is approximately 26MB and 135MB respectively.

Decomposing the matrix into blocks, keeping it on disk, and reading one

block at a time reduces the total in-core memory requirement of the solution.

The memory required for the case P = 4 is 85MB. Increasing the number

of blocks up to P = 64 reduces the memory requirements to nearly 30MB.

This minimum is bounded by the storage required for the iteration vector

(26MB). Similar properties are observed in the plots for the FMS (k = 7)

and Kanban system (k = 5) CTMCs.

In Figure 3.6(b), we analyse the time per iteration characteristics for the

same three CTMCs, plotted against the number of vector blocks. We note,

in the figure, a slight decrease in the time per iteration for all three CTMCs.

The reason for this slight decrease in time is the decrease in the memory

requirement of the solution process (better caching and lesser memory I/O),

as demonstrated in Figure 3.6(a). This effect would be more obvious for

larger models. Another reason for this effect is that increasing the number

of blocks typically results in smaller matrix blocks, which possibly have less

variations in their sizes (number of nonzero entries), consequently resulting

in a better balance between the disk I/O and the computation. However,

increasing the number of blocks to a very high number (not shown in the
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Figure 3.6: The matrix out-of-core method: space and time versus P

figure) will typically result in an increase in solution time due to a higher

amount of memory which is required to store the block information. The

higher number of synchronisation points in this case may also be a partial

cause for the increase in solution times (see the algorithm in Section 3.4).

Note that, although the matrix blocks have an equal number of rows, the

variations in the sizes of the blocks is caused by varying and unequal number

of nonzero entries.

3.6.4 The Complete Out-of-Core Method

We investigate here the performance for the complete out-of-core solution

by analysing the memory and time properties plotted against the number

of blocks. We have presented the complete out-of-core algorithm in Section

3.5 and have given the time per iteration results from its implementation

in Table 3.2. Figure 3.7(a) illustrates the total memory requirement of the

complete out-of-core solution against the number of blocks for the same three

CTMCs. As for the matrix out-of-core method, the vector and the CTMCs

are partitioned into P and P 2 blocks respectively, and, in this case, both

are stored on disk. The memory plots in the figure show a similar trend as

for the matrix out-of-core method illustrated in Figure 3.6(a). However, for

the complete out-of-core solution, the minimum amount of memory is not

bounded by the storage of the iteration vector. For example, for the Polling
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Figure 3.7: The complete out-of-core method: space and time versus P

system (k = 17), the memory required for the case P = 4 is 65MB. Increasing

the number of blocks up to P = 64 reduces the memory requirements to

nearly 12MB.

The time per iteration properties of the complete out-of-core solution are

plotted in Figure 3.7(b). The properties are in contrast with the matrix

out-of-core method. With an increase in the number of blocks, we observe

an increase in the solution times for this method. We explain the time

properties of the method by considering the plot for FMS system (k = 7),

which exhibits the highest rate of increase in time. The time per iteration in

this plot increases from approximately a minimum of 4 seconds to a maximum

of 7 seconds, an approximate increase ratio of 1.7. This increase in time is

explained as follows. In the complete out-of-core solution, the whole iteration

vector must be read from disk in order to compute the next approximation

for each block of iteration vector. This implies that the iteration vector must

be read P times in each iteration of the method. Consequently, an increase

in the number of blocks typically results in an increase in the amount of disk

I/O, and hence an increase in the solution time. A note, however, on the

positive aspects of this increase in time: an approximate 14-fold increase in

the number of blocks results in less than a 2-fold increase in solution time

and a 7-fold decrease in the amount of memory. We observe similar patterns

in the plots for the Polling and Kanban system CTMCs.
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3.6.5 A Priori Selection of P

We conclude this section with our observation that the performance of the

out-of-core solutions is determined by the number of blocks, P , that the

matrix and vector are partitioned into. The time per iteration for the matrix

out-of-core method remains unchanged (actually it decreases slightly) with

an increase in the number of blocks. For the complete out-of-core method,

the time per iteration increases with an increase in the number of blocks.

The total memory required for both the methods decreases as the number

of blocks increases. It follows from Figure 3.6 and Figure 3.7 that the two

methods deliver a satisfactory performance (i.e., low memory and time per

iteration) for a wide range of values of the number P . A priori estimation of

a value for the number P which can yield a desirable performance, is hence

possible. This is explained as follows. A function can be formulated for each

out-of-core method. Given a number (of blocks) P , the function yields the

amount of required RAM for the solution process. Given this function, a

number P can be searched for such that the RAM associated to this number

P remains under some predefined value (or under the available RAM in the

workstation). Such a heuristic provides, for both methods, a nearly optimum

solution time for a given amount of allocated RAM.

Further experimental analysis of the two out-of-core methods has revealed

that the memory and time plots, as given in Figure 3.6 and Figure 3.7,

demonstrate similar patterns for different values of k for each case study.

This can, in fact, be useful for predicting good choices of P for larger values

of k.

3.7 Discussion

A matrix out-of-core technique for the steady-state solution of Markov mod-

els was first considered by Deavours and Sanders [DS97] in 1997. The authors

used a block Gauss-Seidel method in their tool to reduce the amount of disk

I/O; see Section 2.3 for a description of block iterative methods in general,

and Section 3.1 for a block Gauss-Seidel algorithm. Their idea was to parti-

tion the matrix into a number of sub-systems (or blocks) and apply multiple

Gauss-Seidel inner iterations on each matrix block, i.e. to use the data mul-

tiple times. The number of inner iterations was a tunable parameter of their
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disk-based tool. They analysed the tool by presenting results for a fixed and

varying number of inner iterations. Later, in [DS98a], the authors improved

their earlier work by applying a compression technique to the matrix before

storing it to disk, hence reducing the file I/O time. Deavours and Sanders

reported the solution of models with up to 15 million states on a workstation

with 128MB RAM.

For our implementations of the out-of-core methods we have used the

compact MSR scheme for matrix storage, which can also be considered as

a replacement of their compression technique. The compact MSR scheme

provides a 30% saving over conventional schemes, and, therefore, we believe

that further file compression would not make much difference. Furthermore,

Deavours and Sanders report that the decompression time accounts for 50%

of the computation time. The compact MSR scheme, on the other hand,

does not have a decompression cost.

The other notable papers concerning the out-of-core solutions based on

explicit CTMC storage are [KH99] and [BH01], as mentioned in Section 2.8.

The main emphasis of these papers is on the parallelisation of the matrix out-

of-core approach of Deavours and Sanders. Obviously, the limitation of all

these methods, be it serial or parallel, has been the memory (RAM) required

to store the iteration vector(s). Our complete out-of-core approach coupled

with the compact MSR data structure relaxes these limitations.
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CHAPTER

FOUR

A Symbolic Out-of-Core Solution Method

The previous chapter presented a study of out-of-core iterative methods for

the steady-state solution of CTMCs, based on explicit storage of the CTMC

matrix. We now turn our attention to steady-state solution techniques which

are based on implicit CTMC storage. In this context, we use offset-labelled

MTBDDs to implement and analyse a novel symbolic out-of-core solution

method.

We organise this chapter as follows. Firstly, we give the motivation for

the symbolic out-of-core technique in Section 4.1. The Pseudo Gauss-Seidel

method, the iterative method we have employed with the symbolic out-of-

core algorithm is described in Section 4.2. The symbolic out-of-core algo-

rithm itself is presented in Section 4.3. We experiment with two different

implementations of the symbolic out-of-core algorithm, and describe these in

Section 4.4 and Section 4.5. The difference between the two implementations

lies in the way the CTMC matrix is partitioned into blocks. Experimental

results for the symbolic solution method are presented in Section 4.6. The

two implementations are compared in Section 4.6.1, and further explored in

Section 4.6.2. In Section 4.6.3, we present a heuristic for a priori selection

of the number of vector blocks P . Finally, in Section 4.6.4, we compare the

symbolic and explicit methods (see previous chapter, Section 3.6.2).
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4.1 Motivation

Recall from Chapter 2 that the computation of the steady-state probabil-

ities of a CTMC can be reduced to solving a linear equation system and

well-known iterative methods can be used for the solution. Also recall from

Section 3.1 that the Gauss-Seidel iterative method for the solution of systems

of linear equations of the form Ax = 0 requires storage for the CTMC matrix

and for the iteration vector. This makes the total memory requirement for the

solution of large CTMCs well above the size of the RAM available in standard

workstations. Consequently, we have seen the matrix out-of-core approach

of Section 3.4 (originally from Deavours and Sanders [DS97, DS98a]), where

the matrix can be stored on disk and the blocks of matrix can be read into

RAM when required. The in-core storage of an iteration vector in this case

can still be prohibitive. We then learnt in Section 3.5 that our complete

out-of-core approach can resolve the vector storage problem by keeping the

matrix and vector both on disk. The out-of-core scheduling of both the ma-

trix and the iteration vector, however, incurs a penalty in terms of disk I/O.

We now explore another approach. We keep the CTMC matrix in-core, in

a compact, for example, implicit representation, and store only the iteration

vector on disk. This can greatly reduce the disk I/O penalty while at the

same time allowing for larger models to be analysed. This motivates our

symbolic out-of-core solution described in this chapter.

The idea of the symbolic out-of-core method is to keep the matrix in-core,

in an appropriate symbolic data structure, and to store the probability vector

on disk. The iteration vector is divided into a number of blocks. During

the iterative computation phase, these blocks can be fetched from disk, one

after another, into main memory to perform the numerical computation. We

have used offset-labelled MTBDDs for CTMC storage, while the iteration

vector for numerical computation is kept on disk as an array. Note that

it is equally possible to use other implicit methods such as those based on

Matrix Diagrams [CM99] or Kronecker expressions [Pla85], as long as the

data structure holding the matrix allows an efficient decomposition of the

CTMC matrix into its submatrices.

It is interesting to note here the distinctions among the three out-of-core

approaches. In the matrix out-of-core approach, the matrix alone is kept on

disk, while the symbolic out-of-core method stores only the iteration vector
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on disk; both the vector and matrix are stored on disk for the complete

out-of-core method.

4.2 The Pseudo Gauss-Seidel Method

In this section, we describe the pseudo Gauss-Seidel iterative algorithm for

the solution of the linear equation system Ax = 0. We are already aware of

the motivation for this iterative method from Chapter 2. It is reiterated here

as follows.

Implementations of the steady-state solution for CTMCs which are based

on the Gauss-Seidel iterative method are attractive for two reasons. Firstly,

the method converges faster than its counterpart Jacobi. Secondly, its imple-

mentation requires storage of a single iteration vector while Jacobi method

requires two. Unfortunately, the offset-labelled MTBDD data structure does

not allow an efficient implementation of Gauss-Seidel. The Gauss-Seidel

method requires row-wise access to matrix entries; however, a depth-first

traversal of the MTBDD data structure does not allow matrix entries to be

extracted in this order. This problem is resolved by the the pseudo Gauss-

Seidel method [Par02], a compromise between Jacobi and Gauss-Seidel. The

method is summarised as follow.

We concentrate on the solution of the system Ax = 0, where A = QT and

x = πT . We use here the partitioning of a matrix as given in Section 2.3,

with some additional notations required to explain the pseudo Gauss-Seidel

method. Assume that the state space S of the CTMC is divided into P con-

tiguous partitions S0, . . . , SP−1 of sizes n0, . . . , nP−1, such that n =
∑P−1

i=0 ni.

No assumptions are made as regards to the relative sizes of these partitions.

Using this, the matrix A can be divided into P 2 blocks, {Apq | 0 ≤ p, q < P},
where the rows and columns of block Apq correspond to the states in Sp and

Sq, respectively, i.e. block Apq is of size np×nq. We introduce the additional

notation Np =
∑p−1

i=0 ni, for 0 ≤ p ≤ P . A partition Sp includes states with

indices Np up to Np+1 − 1. We also define nmax = max{np | 0 ≤ p < P}.
Finally, we denote by block(i) the index of the block containing state i, i.e.

the unique 0 ≤ p < P such that Np ≤ i < Np+1. The k-th iteration of the

pseudo Gauss-Seidel method comprises the computation:
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1. while not converged

2. for p = 0 to P − 1

3. X̃p ← 0

4. for q = 0 to P − 1

5. X̃p ← X̃p − ǍpqXq

6. end for

7. X̃p ← D−1
pp X̃p

8. Test for convergence

9. Xp ← X̃p

10. end for

11. Stop if converged

12. end while

Figure 4.1: The pseudo Gauss-Seidel algorithm

x
(k)
i = − 1

aii

 ∑
j<Nblock(i)

aij x
(k)
j +

∑
j≥Nblock(i) ∧ j 6=i

aij x
(k−1)
j

 (4.1)

for 0 ≤ i < n. We additionally introduce the matrices D and Ǎ, which

contain the diagonal and off-diagonal elements of A respectively, and write

the above equation in a block notation form:

X(k)
p = −D−1

pp

(∑
q<p

Ǎpq X(k)
q +

∑
q≥p

Ǎpq X(k−1)
q

)
(4.2)

for 0 ≤ p < P , where X
(k)
p and X

(k−1)
p are the p-th blocks of vectors x(k) and

x(k−1) respectively. As above, Fpq denotes the (p, q)-th block of a matrix F .

Compare the above equation with the block Gauss-Seidel equation (3.1).

The pseudo Gauss-Seidel method can be formulated into an MVP-based

algorithm, as shown in Figure 4.1. The algorithm works as follows. Each

iteration progresses in P phases. In the p-th phase, the method updates

elements in the p-th block of the solution vector. It does this using the most

recent approximation for each element of the solution vector available, i.e.
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it uses values from the previous iteration for entries corresponding to vector

blocks p, . . . , P − 1 and values from earlier phases of the current iteration for

entries corresponding to blocks 0, . . . , p− 1; see Equation (4.2). The pseudo

Gauss-Seidel method can be related to the Jacobi and Gauss-Seidel methods

by considering Jacobi to be the case where P = 1 and Gauss-Seidel to be the

case where P = n.

Note in Figure 4.1, that the p-th phase of an iteration, which computes

the p-th block of the solution vector, only requires access to entries from the

p-th row of blocks in Ǎ, i.e. Ǎpq for 0 ≤ q < P . This is the same as for

the block Gauss-Seidel algorithm of Section 3.1. We have illustrated this in

Chapter 3, Figure 3.2, for p = 1 and P = 4. All blocks in the figure are of

equal size but, as for the block Gauss-Seidel algorithm of Section 3.1, this

is generally not the case. A unit of computation in the algorithm comprises

the multiplication of a single matrix block by a single vector block, i.e. a

sub-MVP. This corresponds to line 5 of the algorithm in the figure.

The algorithm given in Figure 4.1 requires, in addition to the matrix

storage, one iteration vector x of size n to store the solution vector, the

p-th block of which is denoted Xp, and another vector X̃p of size nmax to

accumulate the sub-MVPs. Only one array X̃p is used; the subscript p of

X̃p in the algorithm is used to make the description intuitive and to keep

the vector block notation consistent. The reader may find it interesting

to compare the pseudo Gauss-Seidel algorithm with the block Gauss-Seidel

algorithm (Section 3.1).

The pseudo Gauss-Seidel iterative method uses some elements of the most

recent approximation in each iteration, and therefore, it typically converges

faster than the Jacobi method. Factors which affect the speed of its conver-

gence include the number of partitions, P , and the sizes of these partitions.

It can be shown, that the convergence characteristics of pseudo Gauss-Seidel

are similar to those of Jacobi and Gauss-Seidel, as presented for example in

[Ste94]; see Parker [Par02] for the details.

4.3 The Symbolic Out-of-Core Algorithm

In this section, we describe a symbolic out-of-core algorithm for the iterative

solution of the linear equation system Ax = 0. The iterative method we
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use to solve the system Ax = 0, the pseudo Gauss-Seidel method, has been

explained in the previous section.

In Figure 4.2, we present a high-level description of the symbolic out-of-

core algorithm for the numerical solution of the linear system Ax = 0. As

for the explicit out-of-core methods considered in Chapter 3, the symbolic

algorithm consists of two concurrent processes, the DiskIO Process and the

Compute Process. The two processes communicate via shared memory and

synchronise with semaphores.

The algorithm of Figure 4.2 assumes that the CTMC matrix to be solved

is stored in-core, using the offset-labelled MTBDD data structure. We use

the partitioning of a CTMC given in Section 4.2. The CTMC to be analysed

is divided into P 2 partitions of sizes n0, . . . , nP−1, such that n =
∑P−1

i=0 ni.

The largest partition is defined as nmax = max{np | 0 ≤ p < P}. To preserve

structure in the symbolic representation of matrix A, the diagonal entries of

the matrix A are stored separately. The matrix Ǎ and the vector d contain the

off-diagonal and the diagonal entries of the matrix A, respectively. Therefore,

using the above partitioning of the CTMC, the off-diagonal matrix Ǎ is

divided into P 2 blocks, {Ǎpq | 0 ≤ p, q < P}, i.e. block Ǎpq is of size np× nq.

An illustration of the decomposition of a matrix into 42 blocks of equal sizes

can be seen in Figure 3.2 on Page 42.

These off-diagonal matrix blocks are kept together as one offset-labelled

MTBDD. Pointers to the MTBDD nodes representing each block are stored

in a data structure to allow fast access during the sub-MVP operation (line 8,

Compute Process). We have experimented with two implementations of the

algorithm given in Figure 4.2. In the first implementation, we have divided

the matrix into blocks of equal sizes, i.e., blocks with equal number of rows

and columns. The second implementation uses the natural partitioning of the

MTBDD data structure which yields blocks of different sizes. We consider

these implementation details in the next two sections, and concentrate here

on the high-level description of the symbolic out-of-core algorithm.

The probability vector x is also divided into P blocks (using the same

partitioning as the matrix) of sizes {n0, n1, . . .nP−1}, where the p-th block is

denoted by Xp. Before the algorithm commences, it assumes that an initial

approximation for the probability vector x has been stored on disk and that

the block XP−1 is already available in RAM. In order to schedule the vector
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Integer constant: P (number of blocks)
Semaphores: S1, S2: occupied

Shared variable: Dbox (to read diagonal blocks into RAM)
Shared variables: Xbox0, Xbox1 (to read solution vector x blocks into RAM)

DiskIO Process

1. Local variable: p, q, k, m, t = 0
2. m← P − 1
3. while not converged
4. for p = 0 to P − 1
5. k ← 1
6. for all non-zero blocks Ǎpq

7. if k = 0
8. read Xq into Xboxt

9. end if

10. Signal(S1) /* Xboxt, Dbox */

11. Wait(S2) /* Xboxt̄, Dbox */

12. if k 6= 0
13. write Xm to disk
14. read Dp into Dbox

15. k ← 0
16. end if

17. t = t̄

18. end for

19. m← p

20. end for

21. end while

Compute Process

1. Local variable: p, q, t = 0, X̃p[ ]
2. while not converged
3. for p = 0 to P − 1
4. X̃p ← 0
5. for all non-zero blocks Ǎpq

6. Wait(S1) /* Xboxt, Dbox */

7. Signal(S2) /* Xboxt̄, Dbox */

8. X̃p = X̃p − ǍpqXq

9. t = t̄

10. end for

11. X̃p ← D−1
p X̃p

12. Test for convergence
13. end for

14. end while

Figure 4.2: The symbolic out-of-core pseudo Gauss-Seidel algorithm
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x out-of-core, the algorithm requires three arrays of size nmax doubles. The

array X̃p, which is local to the Compute Process, is used to accumulate the

sub-MVPs (line 8, Compute Process). As earlier, the subscript p for X̃p is

for intuitive reasons. The other two arrays required are the shared memory

buffers, Xbox0 and Xbox1. These are used to read vector blocks from disk

(line 8, DiskIO Process). At a certain point in time during the execution,

the DiskIO Process is reading a block of iteration vector in one shared buffer,

say Xbox0, while the Compute Process is consuming a vector block from the

other buffer, Xbox1, to accumulate the sub-MVP ǍpqXq. Both processes

alternate the value of a local boolean variable t, in order to switch between

the two buffers Xbox0 and Xbox1.

As mentioned earlier, the diagonal elements of the CTMC matrix are

stored separately as a vector d. Since the number of the distinct values in

the diagonal of the matrices considered in our experiments is relatively small,

n short int indices to an array of these distinct values are stored instead of n

doubles. Also, to save n divisions per iteration, the value val of each distinct

diagonal entry is stored as 1/val. The diagonal vector is divided into P blocks

of sizes {n0, n1, . . .nP−1}, in conformity to the block sizes of the matrix and

the iteration vector. The notation for the probability vector described in the

paragraph above also applies to the diagonal vector: Dp is the p-th block

of the diagonal vector d. The diagonal vector is stored on disk to reduce

the memory requirement of the solution process at the cost of increased disk

I/O. The algorithm in Figure 4.2 uses a shared memory buffer Dbox of size

nmax short ints to read a block of diagonal vector from disk (line 14, DiskIO

Process). An implementation of the symbolic out-of-core method based on

the in-core diagonal storage would provide faster execution times at the cost

of increased memory requirements.

The high-level structure of the algorithm, given in Figure 4.2, is that

of a producer-consumer. The DiskIO Process acts as a producer while the

Compute Process acts as a consumer. The two processes communicate using

the shared memory buffers Xboxt and Dbox, and synchronise using a set

of semaphores S1 and S2. In each execution of its inner for loop (lines

6 − 18), the DiskIO Process reads the required vector block, Xq, and issues

a Signal(·) operation. On receiving this signal, the Compute Process issues a

return signal and then advances to carry out a unit of computation: the sub-
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MVP ǍpqXq (line 8, Compute Process). This activity (lines 5− 9, Compute

Process) is repeated until all of the blocks in a block row have been read and

their products have been accumulated in X̃p. Once the whole p-th vector

block has been updated, and the test for convergence has been performed,

the Compute Process advances to the next phase and signals the DiskIO

Process, which receives the signal and writes the new approximation for the

p-th block to disk.

Note that, in the p-th phase, all the vector blocks which are required

for the computation of the p-th vector block are loaded into RAM from

disk such that a diagonal vector block (Xp) follows all the off-diagonal blocks

(Xq, q 6= p). This ordering is required to perform the convergence test before

a block is updated with the new approximation.

4.3.1 Notes on Improvements

It can be seen in the algorithm in Figure 4.2 that, in the i-th phase of an

iteration, the two processes wait over different (Xbox) shared memory buffers,

i.e. the DiskIO Process (line 11) waits over the shared buffer Xboxt̄, while

the Compute Process (line 6) waits over the buffer Xboxt. The two processes,

however, wait over the same diagonal shared memory buffer, Dbox. Using one

shared memory buffer to read the diagonal blocks can affect the concurrent

execution of the two processes due to the requirement for the processes to

synchronise on the single buffer. This can worsen the performance, but can

be remedied in two ways.

Firstly, two shared memory buffers can be employed for the algorithm in

Figure 4.2, in order for the two processes to concurrently read and consume

the diagonal vector. At the cost of increased memory, this can improve the

time performance of the algorithm. A point to note is that an additional

shared buffer Dbox will not necessarily cause an increase in the memory

requirement for the symbolic out-of-core solution process. Increasing the

number of blocks typically decreases nmax , the size of the largest matrix and

vector block and, hence, decreases the overall memory requirement of the

solution process. An additional Dbox buffer can improve the overall time

performance of the solution process due to possibly a reduced synchronisa-

tion cost. Consequently, the matrix can be partitioned into a higher number

of blocks P to reduce the overall memory requirement of the out-of-core solu-
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tion. It is difficult to make any claims, however, without an implementation

and analysis of this approach.

Note, in Figure 4.2, that before moving to the next iteration, the Compute

Process first consumes the shared buffer (see line 11; D−1
p is stored in Dbox)

and then performs a test for convergence. This imposes an additional delay

in the synchronisation for the two processes. This situation can be improved

by using the existing semaphores for the shared buffers Xboxt alone, and

introducing another set of semaphores in the algorithm to synchronise on

the diagonal buffer Dbox. As before, this addition of a semaphore must be

experimented on before making any definitive claims.

4.4 First Implementation

The computation of the matrix-vector product (MVP) is the core operation

of the iterative symbolic out-of-core algorithm. Its efficiency determines the

overall performance of the algorithm. To implement the symbolic out-of-

core algorithm given in Figure 4.2, the matrix is stored as an offset-labelled

MTBDD data structure. To implement each sub-MVP, as required by line 8

of the Compute Process in Figure 4.2, we need to extract the matrix entries

for a required matrix block from the MTBDD. Fast access to a required

matrix block, therefore, is critical.

The offset-labelled MTBDD data structure has been described in Sec-

tion 2.7, and we have seen that, because of its recursive nature, the MTBDD

provides a natural decomposition of a matrix into its submatrices. Since an

MTBDD is based on binary decisions, descending each level of the data struc-

ture splits the matrix into 4 submatrices. Hence, descending l levels, gives

a decomposition into (2l)2 blocks. However, in order to produce an efficient

representation, the MTBDD actually encodes a matrix over its potential state

space, which typically includes many unreachable states. Furthermore, the

distribution of these reachable states across the state space is unpredictable.

Hence, descending l levels of the MTBDD actually results in blocks of varying

and uneven sizes.

In order to obtain good performance from the symbolic out-of-core algo-

rithm, the vector and matrix should be divided into partitions of equal sizes.

Since the natural matrix decomposition of the MTBDDs results in blocks
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of varying and uneven sizes, the associated variation in the sizes of vector

blocks can seriously disrupt the overlap of numerical computation with disk

I/O, and can consequently hinder its performance. Therefore, we decided

to use equally sized partitions. To actualise this, we allocated an array of

pointers, of the size of the number of partitions P . The i-th entry in this

array points to a structure which contains references to all those subgraphs of

the MTBDD which are required to perform a sub-MVP operation associated

with the i-th matrix block.

The memory required to store this information is relatively small com-

pared to the overall memory requirement of the solution process. This is

because the array size is proportional to the number of blocks and is inde-

pendent of the number of states. However, there is a substantial CPU cost

associated with the initialisation of the array, and for the referencing of the

block information during the MVP operation.

4.5 Second Implementation

We know from the previous section that the implementation of the MVP

operation determines the overall performance of the symbolic out-of-core so-

lution. In the first implementation of the algorithm, described above, we

opted to use matrix (and vector) partitions of equal sizes. This was required

to overlap the numerical computation with disk I/O. The implementation,

however, did not provide the expected performance. To provide blocks of

equal sizes, it was necessary to associate each matrix block with several dif-

ferent subgraphs of the MTBDD. Initialising and referencing this information

required significant amount of additional time. The additional CPU require-

ment for extracting the required matrix entries overshadowed the benefit

gained by reducing the disk I/O.

We experimented with another implementation of the symbolic out-of-

core algorithm given in Figure 4.2. In this second implementation, we use

the natural matrix partitioning provided by the MTBDD data structure.

This is described as follows.

The MTBDD data structure provides a natural decomposition of a matrix

into its submatrices. Descending l level of the data structure splits the matrix

into (2l)2 blocks. For this second implementation, we select a value of l,
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take P = 2l, and use the natural decomposition of the matrix given by

the MTBDD. To access each block we simply need to store a pointer to the

relevant node of the offset-labelled MTBDD. One possible scheme would be to

use a P×P array of pointers. However, as l grows larger, many of the matrix

blocks are empty. Hence, in our implementation, we store the information in

a sparse format based on the compact MSR scheme. Using this approach, as

required by the inner loop of the Compute Process in Figure 4.2, the matrix

blocks can be accessed in an efficient manner.

4.6 Experimental Results

In this section, we present experimental results collected from the two imple-

mentations of the symbolic out-of-core algorithm. The algorithms have been

implemented on an UltraSPARC-II 440MHz CPU machine running SunOS 5.8

with 512MB RAM, and a 6GB local disk. We tested the symbolic imple-

mentations on three benchmark models. These are: a flexible manufacturing

system (FMS) [CT93], a Kanban system [CT96] and a cyclic server Polling

system [IT90]. The models were generated using the tool PRISM [KNP04a]

(see Appendix A).

This section is organised as follows. In Section 4.6.1, we compare the

two implementations of the symbolic out-of-core algorithm using the time

per iteration results. In Section 4.6.2, we analyse the memory and time

properties of the second implementation. In Section 4.6.3, we present a

heuristic for a priori selection of the number of blocks P that the iteration

vector is partitioned into. Finally, in Section 4.6.4, we compare the symbolic

out-of-core method with the explicit out-of-core methods.

4.6.1 The Two Symbolic Implementations

We first compare the time per iteration results for the two implementations

of the symbolic out-of-core algorithm. Table 4.1 summarises these results

for the Kanban, FMS and polling system case studies. The parameter k in

column 2 denotes the number of tokens in the Kanban and FMS models,

and the number of stations in the polling system models. Column 3 lists the

resulting number of reachable states in the CTMC matrices, and Column 4
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Model k States a/n Blocks (P ) Time (sec/it) Iter. MB

(n) 1st 2nd 1st 2nd 1st 2nd per π

FMS 8 4,459,455 8.6 5 223 25.41 10.4 1255 1,245 34
9 11,058,190 8.9 5 223 107.8 35.9 1424 1,416 84
10 25,397,658 9.2 18 223 380 142 1594 1,591 194
11 54,682,992 9.5 36 223 1,132 708 1763 1,770 417
12 111,414,940 9.7 – 223 – 1,554 – 2174 850
13 216,427,680 9.9 – 223 – 3,428 – > 50 1,651

Kanban 5 2,546,432 9.6 4 210 11.5 4.5 565 532 20
system 6 11,261,376 10.3 4 210 49.4 22.6 767 717 86

7 41,644,800 10.8 8 210 215 143 1003 924 317
8 133,865,325 11.3 25 213 1,074 601 1091 1,151 1,004

Polling 18 7,077,888 9.8 4 25 21 10.5 311 302 54
system 19 14,942,208 10.3 4 25 53 23.8 317 315 114

20 31,457,280 10.8 8 25 110 52 325 328 240
21 66,060,288 11.3 16 25 364 177 332 340 504
22 138,412,032 11.8 32 25 795 374 341 353 1,056

Table 4.1: Out-of-core numerical solution times for steady-state solution

gives the average number of off-diagonal entries per row.

The number of blocks, P , each vector is partitioned into are recorded in

columns 5− 6. The number of blocks for the first implementation are listed

under “1st” and for the second implementation are listed under “2nd”. Ac-

cordingly, a matrix is divided into P 2 blocks. As explained in Section 4.4, the

first implementation of the algorithm selects matrix (or vector) partitions of

equal sizes based on the actual state space (number of reachable states). The

number of partitions for the second implementation are based on potential

state space, which typically includes many unreachable states. This explains

the significant difference between the number of blocks for the two implemen-

tations. For both implementations, these value for P were selected with two

considerations. Firstly, for smaller models, we collected timing results for a

range of values of P and used this information to select the number of blocks

for larger models. Secondly, we ensured that the amount of required RAM

(corresponding to a selected value of the number P ) for the solution of a par-

ticular CTMC should remain within the RAM available in the workstation.

We will discuss this issue further in Section 4.6.3.
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Note that, for the number of blocks reported in the table for the second

implementation, we used 2l notation in column 5, where l is the number of

levels in an MTBDD. Note also that the number of blocks for the polling

systems are relatively smaller compared to the Kanban and FMS systems.

This is due to the fact that the Polling system is very structured compared

to the Kanban and FMS systems and hence it results in a smaller MTBDD

representation. We observe that, in general, the memory requirement of the

solution process can be decreased by increasing the number of blocks.

The run times per iteration of the two symbolic out-of-core implementa-

tions are recorded in column 7−8. The symbol ‘–’ in column 7 against a row

indicates that the system has not been solved using the first implementation

on this workstation. All listed run times are in wall clock time. A first glance

of the two columns confirms that the second implementation is significantly

faster than the first.

Column 9 − 10 give the number of iterations the iterative computations

for the two implementations took to converge, using the criterion given by

Equation (2.16) on Page 18. A steady pattern of convergence for all three

models can be observed. The last column indicates the amount of memory

required to store the probability vector (n doubles). Since the vector is stored

on disk, this value also corresponds to the file size for the iteration vector.

The first case study in Table 4.1 is the flexible manufacturing system

(FMS). The largest model solved in this case using the first implementation

is for k = 11 with 54 million states; the solution took 24 days to complete.

The same model, FMS (k = 11), solved using the second implementation took

over 14 days to complete. The largest FMS model solved using the second

implementation is for k = 12 with over 111 million states. The solution took

39 days to complete. The largest FMS model scheduled using the out-of-core

solution method is for k = 13 with over 216 million states. The run times

for this model are taken for 50 iterations; we were unable to wait for its

convergence, and hence the total number of iterations is not reported in the

table. The second implementation resulted in excessively large runtime per

iterations for k = 12, 13, and therefore, we have not collected the results for

these larger FMS models.

The second case study is the Kanban system. The largest CTMC solved

in this case has 133 million states and over 1.5 billion transitions. The first
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implementation in this case took 14 days to converge, while the second im-

plementation took 8 days to converge. The final case study is the polling

system, where the largest model solved is for k = 22 which contains 138

million states. The first implementation of the out-of-core solution for this

system took just over 3 days to converge. The second implementation took

1.5 days to converge. Total solution times for the other models listed in

Table 4.1 can be calculated using the time per iteration and the number of

iterations.

We note in Table 4.1 that the second implementation is significantly faster

than the first implementation of the symbolic out-of-core method. It is also

evident from Table 4.1 that, for both the implementations, the FMS system

has the highest solution times per iteration, given an equal number of states.

The lowest solution times among the three reported models are attributed

to the polling system. The FMS system is the least structured of the three

models which equates to a large MTBDD to store it; the larger the MTBDD,

the more time is required to perform its traversal. The polling system, on the

other hand, is very structured and therefore results in a smaller MTBDD.

The memory requirements for the two implementations can be considered

similar because it depends on the number of blocks a CTMC and the iteration

vector are partitioned into. The second implementation of the symbolic out-

of-core method, however, typically provides a speedup of approximately two

over the first implementation. For the symbolic method hence, in future, we

only consider the second implementation. A further analysis of the time and

memory properties for the first implementation of the out-of-core method

can be found in [KMNP02].

4.6.2 Further analysis of the Symbolic Solution

In Section 3.6.3 and Section 3.6.4, we have investigated the performance

of the explicit matrix and complete out-of-core solutions by analysing the

memory and time properties plotted against the number of blocks. In this

section, we perform a similar analysis of the symbolic out-of-core method.

We plot, in Figure 4.3, the memory and time properties against the number

of blocks for the same three CTMCs, one from each model, as were used

for the explicit out-of-core methods. To further explore the behaviour of the

symbolic out-of-core method, in Figure 4.4, we plot similar properties for
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Figure 4.3: The symbolic out-of-core method: space and time versus P

three larger CTMCs. In the following, we explain the plots for Figure 4.4; in

the light of this discussion, Figure 4.3 should be self-explanatory.

The total memory requirement of the symbolic out-of-core solution against

the number of blocks for three CTMCs is plotted in Figure 4.4(a). We ex-

plain the figure with help of the plot for the Kanban system (k = 6). The

memory required by the out-of-core solutions can typically be decreased by

increasing the number of blocks. This is due to the fact that increasing the

number of vector blocks usually causes a reduction in the size of the largest

block to be kept in RAM, i.e. reduces nmax. This is evident in the plot.

The memory required for the case P = 2 is above 650MB. The increase in

the number of blocks reduces the memory requirements for the Kanban sys-

tem to nearly 140MB. Similar properties are evident for the other plots in

Figure 4.4(a). For large numbers of blocks (i.e. the rightmost portions of

the plots), we note an increase in the amount of memory. This is because

the memory overhead required to store information about the blocks of the

MTBDD dominates the overall memory in these cases.

The time per iteration properties of the symbolic out-of-core solution

are analysed in Figure 4.3(b) and Figure 4.4(b), plotted against the number

of vector blocks. We consider the plot for the Kanban system in Figure

4.4(b). Initially, for P = 2, the memory required (see Figure 4.4(a)) for

the iteration vector is more than the available RAM. This causes thrashing
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Figure 4.4: The symbolic out-of-core method: varying the number of blocks

and results in a high solution time. An increase in the number of blocks

removes this problem and explains the initial downward jump in the plot.

From this point on, however, the times vary. The rationale for this is as

follows. As we explained in Section 4.5, our decomposition of the MTBDD

matrix into blocks can result in a partitioning such that the resulting matrix

(and hence vector) blocks are of unequal sizes. This can affect the overlap

of computation and disk I/O, effectively increasing the solution time. The

sizes of the partitions are generally unpredictable, being determined both by

the sparsity pattern of the matrix and by the encoding of the matrix into

the MTBDD. Finally, we note that the end of the plot shows an increase

in the solution time. This is due to the overhead of manipulating a large

number of blocks of the matrix and the increased memory requirements that

this imposes, as is partially evident from Figure 4.4(a).

Note that, for the symbolic implementations, we use the pseudo Gauss-

Seidel method where we apply one Jacobi (inner) iteration on each sub-

system, in a global Gauss-Seidel iterative structure (see Section 4.2). In-

creasing the number of blocks, therefore, typically causes a reduction in the

required number of iterations for a CTMC to converge (number of iteration

influences the total solution times).

Finally, we observe that, in Figure 4.3 and Figure 4.4, the number of

blocks for the CTMCs are higher than the number of the reported (reach-
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FMS (×1016) Kanban(×1012) Polling(×106)

k = 7 k = 8 k = 5 k = 6 k = 17 k = 18

Unreachable states 2.02 11.85 2.82 33.24 4.46 9.44

Table 4.2: The number of unreachable states for the CTMCs

able) states. As explained in Section 4.5, the number of blocks, P = 2l,

for the symbolic out-of-core solution are selected by descending l levels of

the MTBDD. Since an MTBDD actually encodes a CTMC matrix over its

potential state space which includes many unreachable states, the number

of blocks can exceed the number of reachable states. In Table 4.2, we list

the number of unreachable states for the six CTMCs for which the time and

memory behaviour is plotted in Figures 4.3 and 4.4. It is evident from the

table that the number of unreachable states for the CTMCs are much larger

than the number of respective reachable states. For example, the Kanban

system (k = 5) has more than 2.5 million reachable states (see Figure 4.3),

and more than 2.8 trillion unreachable states. These cases where the number

of blocks exceed the number of (reachable) states are plotted to illustrate

that (at this point) the memory and the time per iteration requirements for

the solution method increase very rapidly, and to a very high value, and

therefore, these cases are neither interesting nor practical.

4.6.3 A Priori Selection of P

We conclude here with our observation that the performance of the symbolic

out-of-core solution method is dependent on the number of blocks, P , the

matrix and vector are partitioned into. It follows from Figure 4.3 and Figure

4.4 that the symbolic out-of-core method delivers a satisfactory performance

(i.e., low memory and time per iteration) for a wide range of values of this

number P . A priori estimation of a value for number P which yields a

desirable performance, along the lines of the ideas explained for the explicit

methods in Section 3.6.5 (Page 62), is possible. A similar heuristic which

estimates a value for number P based on the calculation of associated RAM

for a number of values of P can be added to the phase responsible for setting

up the offset-labelled MTBDD data structure.
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Furthermore, it follows from the comparison of the two Figures 4.3 and

4.4, as we mentioned earlier that under different values of k (e.g. Kanban

system, k = 5, 6) for each case study, the memory and time plots against the

number of blocks display similar patterns. This can, in fact, be useful for

predicting good choices of P for larger values of k.

4.6.4 In-Core and Out-of-Core Solutions

We now compare the performance of all of the in-core and out-of-core solution

methods which we have discussed so far in this thesis. These include the solu-

tion methods presented in Chapter 3 which are based on the explicit storage

of the CTMC matrix, and the symbolic solution methods presented in this

chapter. These methods were tested for convergence using Equation (2.16)

for ε = 10−6. We report the timing results in wall clock times.

Table 4.3 summarises results for the Kanban, FMS and Polling system

case studies. As in the earlier sections, the first four columns list the model

statistics. The time per iteration results for “Explicit” implementations are

reported in columns 5–7 of Table 4.3: these include the standard in-core,

where the matrix and the vector are kept in RAM; the matrix out-of-core

(Section 3.4), where only the matrix is stored on disk and the vector is

kept in RAM; and the complete out-of-core (Section 3.5), where both the

matrix and the vector are stored on disk. The iterative method used for the

explicit implementations is the block Gauss-Seidel method, and the resulting

number of iterations is reported in column 8. The matrices for the explicit

methods are stored in the compact MSR sparse storage scheme (Section 3.2).

The scheme requires 4a + 3n bytes to store the whole matrix including the

diagonal. The entries “a/n” in column 4 can be used to calculate the memory

required to store the matrices.

We list the time per iteration results for “Symbolic” implementations in

columns 9–10 of Table 4.3. These implementations include the in-core solu-

tion, where both the matrix and the iteration vector are stored in RAM, and

the out-of-core (Section 4.5), where the matrix is kept in RAM and the vector

is stored on disk. The run times for the in-core solution are collected using

version 1.3.1 of the PRISM tool (see Appendix A). The out-of-core run times

are for the second implementation of the symbolic algorithm. The matrix for

these symbolic implementations is stored using the offset-labelled MTBDD

82



4 - A Symbolic Out-of-Core Solution Method 4.6 Experimental Results

data structure, and the vector is kept as an array. The pseudo Gauss-Seidel

iterative method (see Section 4.2) is used for the symbolic implementations,

and the respective number of iterations is reported in column 11. The run

times for FMS system (k = 13) are taken for 50 iterations; we were unable

to wait for its convergence.

We first discuss the model sizes which can be solved on this particular

workstation using a particular solution method. We note in Table 4.3 that

the in-core explicit method provides the fastest run-times. However, pur-

suing this approach, the largest model solvable on a 512MB workstation is

the Polling system (k = 18) with approximately 7 million states. The in-

core symbolic solution of column 9 can solve larger models because, in this

case, the matrix is stored symbolically. The largest model solvable with this

symbolic in-core approach is the FMS system (k = 10) with approximately

25 million states. To solve larger models, we have to turn to the out-of-core

approaches.

The matrix out-of-core solution requires in-core storage for one iteration

vector and two blocks of matrix. The memory required for these matrix

blocks can, in general, be reduced by increasing the number of blocks. How-

ever, in this case, the limit on the largest solvable model exists due to the

storage of the iteration vector. Pursuing the matrix out-of-core approach,

the largest model solvable on the workstation is the Kanban system (k = 7)

with approximately 41 million states. The out-of-core storage of both matrix

and vector allows solution of even larger models. This is reported in column

7, and the largest model possible in this case is the Polling system (k = 21)

with 66 million states. The limit in this case is the size of the available

disk (6GB), although, using this approach, even larger models can be solved

provided a larger disk is available.

The largest solvable model on the available machine is attributed to the

symbolic out-of-core approach, i.e., the FMS system (k = 13) with 216 mil-

lion states. The possibility exists because, in this case, the diagonal and

iteration vectors are stored on disk and the CTMC matrix is compactly

stored in-core, using the offset-labelled MTBDD data structure.

We now observe the relative speeds of the reported solution methods in

Table 4.3. The matrix out-of-core and the symbolic in-core methods both

provide a solution to the matrix storage problem, and hence, it is fair to
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compare the run times for the two approaches. We note in Table 4.3, for the

Polling and Kanban systems, that the run times per iteration for symbolic

in-core (column 9) are faster than the matrix out-of-core method. However,

for the FMS system, matrix out-of-core method provide better run times.

Similarly, we compare the complete and the symbolic out-of-core approaches,

because the two methods provide solution to both the matrix and the vector

storage problems. We note that the symbolic out-of-core method provides

faster run times for Polling and Kanban systems, but is slower than the

complete out-of-core approach for the FMS system.

It follows that the results for explicit solutions are quite consistent for

all three example models. However, the performance of symbolic solutions,

both in-core and out-of-core, depends on the particular system under study.

This is because the symbolic methods exploit model structure through shar-

ing (see Section 2.7.2). The FMS system is the least structured of the three

models which equates to a large MTBDD to store it; the larger the MTBDD,

the more time is required to perform its traversal. The Polling system, on the

other hand, is very structured and therefore results in a smaller MTBDD. We

conclude this chapter with our observation that, for large models, the sym-

bolic out-of-core solution provides the best overall results for the examples

considered.
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Model k States a/n Time (seconds per iteration)

(n) Explicit Symbolic

In-core Out-of-core Iter. In-core Out-of-core Iter.

Matrix Complete

FMS 6 537,768 7.8 0.3 0.5 1.1 812 0.7 1.3 916

7 1,639,440 8.3 1.1 1.7 3.8 966 3.4 3.2 1,079

8 4,459,455 8.6 3.2 5.1 10.7 1,125 11.8 10.4 1,245

9 11,058,190 8.9 – 24 51.8 1,287 37.7 35.9 1,416

10 25,397,658 9.2 – 69 146 1,454 100 142 1,591

11 54,682,992 9.5 – – 374 1,624 – 708 1,770

12 111,414,940 9.7 – – – – – 1,554 2174

13 216,427,680 9.9 – – – – – 3,428 >50

Kanban 4 454,475 8.8 0.3 0.5 1.0 323 0.5 0.8 373

system 5 2,546,432 9.6 1.8 3.0 6.0 461 3.1 4.5 532

6 11,261,376 10.3 – 30 68.6 622 15.9 22.6 717

7 41,644,800 10.8 – 180 283 802 – 143 924

8 133,865,325 11.3 – – – – – 601 1,151

Polling 15 737,280 8.3 0.5 0.7 1.2 32 0.7 0.8 263

system 16 1,572,864 8.8 1.1 1.9 2.9 33 1.6 2.0 276

17 3,342,336 9.3 2.4 3.9 6.4 34 3.8 4.6 289

18 7,077,888 9.8 5.5 15.8 20.4 34 8.1 10.5 302

19 14,942,208 10.3 – 41 71 35 19.3 23.8 315

20 31,457,280 10.8 – 101 162 36 – 52 328

21 66,060,288 11.3 – – 359 36 – 177 340

22 138,412,032 11.8 – – – – – 374 353

Table 4.3: Comparing speeds for in-core and out-of-core methods
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CHAPTER

FIVE

Improving Offset-Labelled MTBDDs

We have explored the out-of-core methods based on the sparse storage of

CTMC matrices in Chapter 3, where we also introduced our complete (ex-

plicit) out-of-core method. We then turned our attention to the techniques

based on the symbolic CTMC storage, and in this context, presented a new

symbolic out-of-core solution method. We used the offset-labelled MTBDD

data structure [KNP04b, Par02] to implement and investigate the symbolic

out-of-core technique. In this chapter, we present modifications to the offset-

labelled MTBDD data structure. Based on these modifications, we present

and examine in-core and out-of-core implementations of the symbolic method

for steady-state solution of CTMCs. The examination reveals that the mod-

ified approach renders substantial improvements over the original approach.

In Section 5.1, we present the motivations for the work presented in this

chapter. In Section 5.2, we describe the underlying implementation of the

offset-labelled MTBDDs. Using this description, in Section 5.3, we intro-

duce and explain the modifications to the principal offset-labelled MTBDDs.

Subsequently, we analyse the modified data structure using its in-core and

out-of-core implementations. In Section 5.4, we study its behaviour when all

data structures are stored in-core. In Section 5.5, we explore the performance

of the symbolic out-of-core method based on this modified data structure,

i.e. when the CTMC is stored in-core using the modified data structure and

the iteration vector is kept on disk. To further improve performance of the

symbolic out-of-core method, we propose some future work in Section 5.5.4.
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5.1 Motivation

As discussed in Chapter 2, MTBDDs can often afford extremely compact

storage for CTMC matrices and vectors and can be used to implement iter-

ative numerical solution techniques such as Power and Jacobi. During the

iterative solution phase, however, the MTBDD representation of the prob-

ability vector grows quickly and becomes impractical due to the increased

number of distinct values in the vector. The solution usually adopted is to

use offset-labelled MTBDDs [Par02, KNP04b] which combine MTBDD-based

storage of the matrix with array-based storage of the solution vector.

The offset-labelled MTBDD approach retains the compact CTMC stor-

age advantages of MTBDDs, and, for typical examples, can almost match

the numerical solution speed of explicit approaches based on sparse CTMC

storage. However, the offset-labelled MTBDD approach, as is the case for

MTBDDs, does not allow the use of more efficient iterative methods such as

the Gauss-Seidel method. Furthermore, in general (e.g. for less structured

models), an iteration of the offset-labelled MTBDD-based iterative solution

is still expensive compared to the explicit methods which allow direct (fast)

access to the matrix entries.

In this chapter, we introduce some modifications to the offset-labelled

MTBDD data structure which allow an efficient implementation of the Gauss-

Seidel iterative method for the steady-state solution of CTMCs. These mod-

ifications also result in improved time and memory characteristics for the

resulting offset-labelled MTBDD data structure.

5.2 Offset-Labelled MTBDDs

In Chapter 2, we have described the offset-labelled MTBDD data structure

in some detail. In this section, we provide some additional information about

the underlying implementation of the offset-labelled MTBDDs, which will be

required in Section 5.3 where the modifications to the principal data struc-

ture are introduced. For explanation and completeness, we reiterate some

information from Chapter 2 on offset-labelled MTBDDs in this section. Note

that the (step-wise) optimisations to the offset-labelled MTBDDs described

in this section (and its subsections) have been proposed by Parker [Par02] and
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have been implemented in the PRISM tool version 1.3.1. The optimisations

presented in Section 5.3 are the contribution of this thesis.

In order to explain the details of the implementation of offset-labelled

MTBDDs, we introduce the following running example. We show an 8 × 8

matrix in Figure 5.1, its representation as an offset-labelled MTBDD, and a

table which explains the encoding of the information. The matrix is assumed

to be derived from the generator matrix of a CTMC. Note that, to preserve

structure in the symbolic representation, the diagonal elements are stored

separately as an array. Hence, the diagonal entries of the matrix in Figure 5.1

are all zero.

The offset-labelled MTBDD in Figure 5.1 represents a function over the

six Boolean variables x1, y1, x2, y2, x3, y3. For a given valuation of these vari-

ables, the value of the function can be computed by tracing a path from

the top of the MTBDD to the bottom, at each node taking the dotted edge

if the associated Boolean variable is 0 and the solid edge if it is 1. The

value can be read from the label of the terminal node reached. For example,

if (x1, y1, x2, y2, x3, y3) = (0, 1, 0, 1, 1, 0), the function returns 3.7 (as high-

lighted in the figure). However, If (x1, y1, x2, y2, x3, y3) = (0, 0, 0, 0, 0, 0), the

function returns zero because there is no such path. We indicate this in the

figure, by listing a “-” in the corresponding “Path” entry for the first row in

the table. Of course, the matrix is sparse. For explanation, we (only) list

one zero entry in the table.

The matrix represented by the offset-labelled MTBDD in Figure 5.1 is

encoded by the function (explained in the above paragraph) as follows. The

xi variables are for row indices, and the yi variables are for column indices.

Since these variables are all Boolean, but the row and column indices are

integers in the range 0 . . . 7, the information has to be encoded. We assume

the standard binary representation of integers for this purpose. Consider

the matrix entry (1, 6) = 3.7. The row index is 1 so we code this as 001

(x1 = 0, x2 = 0, x3 = 1). The column index is 6 so we code this as 110

(y1 = 1, y2 = 1, y3 = 0). The xi and yi variables are interleaved in the

MTBDD to reduce its size. The entry (1, 6) is hence represented by the path

010110 which, as we have seen above, leads to the value 3.7.

The integer offsets on the nodes of the data structure are used to compute

the actual row and column indices (in terms of reachable states only) of the
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Matrix Encoding Path Offsets Reachable
entry x1 x2 x3 y1 y2 y3 x1 y1 x2 y2 x3 y3 x1 y1 x2 y2 x3 y3 entry

(0, 0) = 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - (0, 0) = 0
(0, 1) = 1.2 0 0 0 0 0 1 0 0 0 0 0 1 - - - - - 1 (0, 1) = 1.2
(0, 6) = 0.9 0 0 0 1 1 0 0 1 0 1 0 0 - 4 - 1 - - (0, 5) = 0.9
(1, 0) = 0.9 0 0 1 0 0 0 0 0 0 0 1 0 - - - - 1 - (1, 0) = 0.9
(1,6) = 3.7 0 0 1 1 1 0 0 1 0 1 1 0 - 4 - 1 1 - (1,5) = 3.7
(2, 3) = 1.2 0 1 0 0 1 1 0 0 1 1 0 1 - - 2 2 - 1 (2, 3) = 1.2
(2, 4) = 0.9 0 1 0 1 0 0 0 1 1 0 0 0 - 4 2 - - - (2, 4) = 0.9
(3, 2) = 0.9 0 1 1 0 1 0 0 0 1 1 1 0 - - 2 2 1 - (3, 2) = 0.9
(3, 4) = 3.7 0 1 1 1 0 0 0 1 1 0 1 0 - 4 2 - 1 - (3, 4) = 3.7
(4, 6) = 3.7 1 0 0 1 1 0 1 1 0 1 0 0 4 4 - 1 - - (4, 5) = 3.7
(4, 7) = 2.4 1 0 0 1 1 1 1 1 0 1 0 1 4 4 - 1 - 1 (4, 6) = 2.4
(6, 4) = 0.9 1 1 0 1 0 0 1 1 1 0 0 0 4 4 1 - - - (5, 4) = 0.9
(7, 4) = 3.7 1 1 1 1 0 0 1 1 1 0 1 0 4 4 1 - 1 - (6, 4) = 3.7

Figure 5.1: Representing an 8× 8 matrix as an (offset-labelled) MTBDD
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matrix entries because the potential state space can typically be much larger

than the actual state space. The actual row index is determined by summing

the offsets on xi nodes from which the solid edge is taken (i.e. if xi = 1).

The actual column index is computed similarly for yi nodes. In the example

in Figure 5.1, state 5 (counting from state index zero) is not reachable. For

the previous example of matrix entry (1, 6), the actual row index is 1 and the

actual column index is 4 + 1 = 5. Therefore, the actual index for the matrix

entry (1, 6) is (1, 5).

5.2.1 Speeding up the Graph Traversal

For the Power and Jacobi iterative methods, each iteration is based essen-

tially on a matrix-vector product operation. This requires access to each

matrix element, in any order, exactly once. When using the offset-labelled

MTBDD data structure to store a CTMC matrix (see Figure 5.1), the matrix

entries can be accessed via a single depth-first traversal of the data struc-

ture since each matrix element corresponds to a path through the MTBDD.

The overhead associated with this makes the process slower than the equiv-

alent operation with sparse matrices, since it is significantly faster to read

the matrix entries directly from an array-based data structure. Significant

optimisation of the process has been realised in [KNP04b, Par02] by replac-

ing bottom portions of the offset-labelled MTBDD graph with their explicit

array-based representations. This is explained next.

It can be seen in Figure 5.1 that each non-terminal node of the offset-

labelled MTBDD (also true for an MTBDD) represents a submatrix of the

matrix represented by the whole MTBDD. For example, x2 nodes and x3

nodes represent 4×4 and 2×2 submatrices, respectively, of the 8×8 matrix.

To explain this, we reproduce the matrix and its offset-labelled MTBDD

representation in Figure 5.2(a) and Figure 5.2(b), respectively. The CTMC

matrix in this figure consists of four 4 × 4 submatrices, or sixteen 2 × 2

submatrices. We observe in the figure that the nodes near the bottom of

the offset-labelled MTBDD, in particular, are visited many times during one

traversal (i.e. one iteration of the solution method). It is much faster to ex-

tract entries of the CTMC matrix if some of these nodes are replaced with an

explicit representation of their corresponding submatrix, since this will elim-

inate the need to traverse the nodes below this point. These modifications
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to offset-labelled MTBDDs are implemented as follows.

As mentioned in Section 2.7.3, a level of an MTBDD is an adjacent pair

of rows of nodes; counting levels from the top of the MTBDD, level i con-

tains all the xi and yi nodes. The total number of levels is denoted ltotal .

The modifications proposed in the above paragraph are made by selecting a

value lsm ≤ ltotal and replacing the xi nodes in layer ltotal− lsm +1 with an ex-

plicit, sparse representation of their corresponding submatrices. This means

that nodes in the bottom lsm levels do not need to be traversed and can be

removed entirely. The storage scheme employed for this explicit storage is

the compressed sparse row (CSR) sparse matrix scheme. Its implementation

in this case uses three arrays, Val and Col, which contain the value and col-

umn index, respectively, of each non-zero matrix entry, stored row by row,

and Starts, which contains indices into Val and Col, indicating where the

entries for each row are stored. See Section 2.6 for a description of the CSR

scheme.

The optimisation described in the above paragraph is illustrated in Fig-

ure 5.2(c) using lsm = 1 (ltotal = 3). The three arrays for the CSR scheme are

denoted V, C and S, respectively. The offset-labelled MTBDD path for the

matrix entry 3.7 with the actual index (1, 5) is highlighted in the figure. This

optimisation of the offset-labelled MTBDD data structure has been imple-

mented in the tool PRISM version 1.3.1. Generally, as lsm is increased, the

time for each iteration of numerical solution (i.e. a single traversal) decreases,

but the required memory increases. The strategy used in the tool is to choose

lsm as high as possible without exceeding some predefined memory limit on

the aggregate memory required to explicitly store all the submatrices. This

memory limit can be set in PRISM by the user. The default limit is set at

1MB.

5.2.2 A Three-Layered Perspective

A problem with the MTBDD approach described above is that, although

the Jacobi iterative method can be efficiently implemented, Gauss-Seidel

cannot because it requires row-wise access to matrix entries. A depth-first

traversal of the MTBDD does not allow matrix entries to be extracted in

this order. Of course, it would be possible to access each element of each

row individually, going from top to bottom of the MTBDD each time, but
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Figure 5.2: An Optimisation of MTBDDs
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Figure 5.3: Optimisations to the MTBDD storage scheme

this would be very inefficient. In [Par02], a compromise between Jacobi

and Gauss-Seidel called Pseudo Gauss-Seidel was implemented for the offset-

labelled MTBDD data structure . We have described the pseudo Gauss-Seidel

algorithm in Section 4.2 and have used this method for the implementation

of the symbolic out-of-core solution method presented in Chapter 4. We

describe now the modifications to offset-labelled MTBDDs, proposed and

implemented by Parker [Par02], which enabled the implementation of pseudo

Gauss-Seidel iterative method with the data structure.

We know from our earlier discussions that MTBDDs allow convenient

access to matrix blocks. Descending one level from the top of an MTBDD

splits the matrix which it represents into 4 blocks. Descending lb levels, for
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some lb ≤ ltotal , gives a decomposition into P 2 blocks, where P = 2lb . If

pointers to the nodes which represent these blocks are stored explicitly, these

blocks can be accessed quickly without having to traverse the top part of the

MTBDD. For large lb, many of the matrix blocks will actually be empty so

a sparse matrix scheme can be used. Like for the bottom layer, the CSR

scheme is used. However, in this case, node pointers are stored in the array

Val instead of numerical values. Nodes in the top lb levels of the MTBDD

(like the bottom lsm levels) can now be removed entirely. We illustrate these

modifications to the offset-labelled MTBDD data structure in Figure 5.3(b)

for lb = 1. This implies P = 2lb = 2. The CTMC matrix is reproduced in

Figure 5.3(a). A solid line is used to emphasize the top layer decomposition

of the matrix into four 4×4 submatrices. The dashed lines show the bottom-

layer submatrices of the offset-labelled MTBDD. Note that, since one of the

four (P 2 = 4) top-layer matrix blocks is empty, only 3 node pointers are

stored. An additional array Offsets is required to store the (global) index

of the first row of each block in terms of reachable states. This information

replaces the offsets on the top layer of MTBDD nodes which have now become

obsolete.

It is evident from Figure 5.3(b) that the divisions of a matrix into blocks

by descending from the top of the MTBDD, and into submatrices , by as-

cending from the bottom of the MTBDD can happily coexist, provided that

the top and bottom layers do not overlap, i.e. lsm + lb ≤ ltotal . Note that,

although the two terms are in general interchangeable, for convenience, from

hereon, we will consistently distinguish between “submatrices” and “blocks”

in this way.

The modifications described above facilitate efficient access to the matrix

elements, if not by individual rows, then at least by rows of blocks. This

permits an efficient implementation of the pseudo Gauss-Seidel method. In

an implementation of the pseudo Gauss-Seidel method based on this offset-

labelled MTBDD data structure, the value of lb can be increased to reduce

both the number of iterations required to converge and the amount of memory

for the vector storage, although not to the same extent as the standard Gauss-

Seidel. In this case, increasing lb does, however, also lead to exponential

growth in the amount of memory required for storage of the top layer of

the data structure. In version 1.3.1 of the PRISM tool, the parameter lb
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is selected as high as possible such that the memory required to store top

layer of the data structure does not exceed some limit. As for the bottom

layer storage, the default value for this is set at 1MB. See [Par02] for further

implementation details and analysis of these optimisations.

5.3 Modifying Offset-Labelled MTBDDs

We now propose improvements to the offset-labelled MTBDD techniques

described in the previous section. Recall that the offset-labelled MTBDD is

a three layered data structure (see Figure 5.3). The top layer of the data

structure consists of a blocked matrix which is stored using the compressed

sparse row (CSR) format. Each entry of this blocked matrix is a pointer

to an offset-labelled MTBDD. The middle layer of the data structure – an

offset-labelled MTBDD – consists of nodes connected in a directed acyclic

graph (DAG). The bottom layer of this data structure consists of submatrices

which are reached by traversing the nodes in the middle layer DAG. Each

of these submatrices is stored separately using the CSR format. A high-

level, simplified perspective of offset-labelled MTBDDs can also be seen in

Chapter 2, Figure 2.6 on Page 30.

The storage for the three layers of the offset-labelled MTBDD data struc-

ture has been explained in Section 5.2. However, implementation of the top

layer storage which represents the blocked matrix needs further explanation.

As before, assume that the top layer constitutes lb levels of the MTBDD,

that P = 2lb , and that the sparse storage scheme used is CSR. Assume also

that only nnzPmat of the P 2 matrix blocks are non-empty. Hence, the top

layer of the data structure consists of the following four arrays:

• The array Val of nnzPmat pointers. Each entry of this array points to

an offset-labelled MTBDD node.

• The array Col of nnzPmat integers. The i-th entry in this array stores

the column index of the i-th entry in the array Val.

• The array Starts of P integers. The i-th entry in this array contains

the index in the arrays Val (and Col) of the beginning of the i-th row

of blocks.
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• The array Offsets of P integers. This array gives us the (global) index

of the first row of each block in terms of reachable states.

The bottleneck in the storage of the top layer is the two arrays Starts and

Offsets, the size of which (4P bytes each) is exponential in lb. Since the ma-

trix is sparse, structured, and contains many unreachable states, many of the

P rows of matrix blocks are empty. Therefore, it is more efficient to use these

two arrays of length nnzP , where nnzP is the number of non-zero rows of

blocks in the matrix (or, equivalently, blocks in the vector). The relationship

between nnzP and nnzPmat is analogous to the relationship between n (num-

ber of CTMC states, or rows in the matrix) and a (number of nonzero entries

in the off-diagonal matrix). Furthermore, we know from Section 2.6.2 that,

in general, the maximum number of entries per row of a generator matrix is

small, and is limited by the maximum number of transitions leaving a state.

If this number does not exceed 128, the number of nonzero matrix entries per

row can be represented as a char (a byte); see [DS98b, KH99, BH01, KM02].

We have exploited this property in the experiments presented in Chapter 3.

Similarly, based on our empirical results, the maximum number of nonzero

blocks per row of matrix blocks does not exceed 128, and hence, we use a

char to represent the number of nonzero blocks in a row of matrix blocks.

Essentially, we use the compact MSR format (see Section 3.2), instead of

CSR to store the top layer of the data structure. The resulting top layer

storage comprises the following:

• An array Val−dist of d pointers. This array stores each distinct

offset-labelled MTBDD node pointer once only. The number of dis-

tinct MTBDD node pointers, d, depends on the model and is typically

small.

• The array Col of nnzPmat integers. Each element of this array stores

the column index of a top-layer block of the matrix (an offset-labelled

MTBDD node), and the index into the array Val−dist for this matrix

block. This index into the array Val−dist is stored in the spare bits of

Col[i], eradicating the need for the array Val entirely (see Section 3.2

for details).

• The array Starts of nnzP unsigned char. The i-th entry of this array

now contains the number of nonzero blocks in the i-th row of matrix
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blocks. This is equivalent to the information stored previously, but

requires only one byte per entry instead of four bytes.

• The array Offsets of nnzP integers.

We note that the memory required for the modified data structure detailed

above is no longer exponential in the number of levels lb. To further reduce

the memory requirements of the data structure, we use the compact MSR

scheme instead of CSR to store the bottom layer of the data structure.

Provided that the total memory required for the storage of the matrix in

the modified offset-labelled MTBDDs remains affordable, as we will see in

Section 5.4, it is possible to select much larger values for lb and lsm , and hence

to remove the middle-layer storage of the original offset-labelled MTBDD

data structure, i.e., it is possible now with these modifications to remove the

middle-layer directed acyclic graph. We choose values such that lb + lsm =

ltotal , i.e. the blocks indexed by the top layer and the submatrices described

on the bottom layer coincide, the middle layer of the data structure being

removed entirely. Consequently, the resulting data structure consists of two

layers of sparse storage. This is illustrated in Figure 5.4(a), where we show

the modified offset-labelled MTBDD data structure for the running example

of Figures 5.2 and 5.3. For clarity of presentation, the sparse matrix scheme

used for both the top and bottom layers in this figure is actually CSR, rather

than compact MSR. Figure 5.4(b) illustrates the resulting partitioning of the

8× 8 example matrix, emphasizing the distinct blocks in the CTMC matrix.

Another view of the modified offset-labelled MTBDD data structure is
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depicted in Figure 5.5, where a matrix consists of a number of blocks. The

top layer of the data structure stores the blocked sparse matrix using the

compact MSR format. Each of the bottom layer submatrices is also stored

using compact MSR format. Note that, although the new data structure is

made up entirely of sparse matrix storage, it should still be seen as a sym-

bolic approach. The data structure is constructed directly from the MTBDD

representation and is completely reliant on the exploitation of regularity that

this provides.

5.3.1 Implementing Gauss-Seidel

Using the modified offset-labelled MTBDD data structure described above,

we are now able to obtain an efficient implementation of the Gauss-Seidel

iterative method. This is so because the modified data structure provides

efficient access both to each row of matrix blocks, and to each individual row

within these blocks. Using this data structure, we have employed the block

Gauss-Seidel algorithm given in Chapter 3 to implement in-core and out-of-

core solutions. Results for these implementations are presented in Section 5.4

and Section 5.5.

5.4 Experimental Results: In-Core

In this section, we analyse the performance of the modified offset-labelled

MTBDD data structure for the in-core steady-state numerical solution of

CTMCs. The term “in-core” emphasises that all data structures, the matrix

and the vector, are kept in RAM. We performed steady-state probability

computation on the three sets of benchmark CTMCs: the flexible manufac-

turing system (FMS) [CT93], the Kanban system [CT96] and the cyclic server

polling system [IT90]. These models were generated using the probabilistic

model checker PRISM; see Appendix A and B for details. Experiments were

run on a 440MHz 512MB UltraSPARC-II workstation running SunOS 5.8. It-

erative methods were tested for the convergence criterion given by Equation

(2.16) for ε = 10−6.

In this section, we first analyse the memory and time properties of the

modified offset-labelled MTBDD data structure against a range of values for
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the number of block levels lb. From this analysis, we derive a heuristic for

a priori selection of this parameter. Using this heuristic, we present the nu-

merical solution times for the modified data structure in Section 5.4.2. These

timing results are compared with the original offset-labelled MTBDDs and an

explicit sparse implementation. Finally, in Section 5.4.3, we investigate the

relative memory properties of the two symbolic data structures. In this chap-

ter, we will use the term “two-layer” and “modified offset-labelled MTBDD

data structure” interchangeably. In all cases, the time taken to generate the

two symbolic representations of a CTMC were negligible compared to the

numerical solution times, and hence we concentrate in this chapter on the

latter.

5.4.1 A Good Choice for the Parameter lb

The selection of the parameter lb determines lsm and controls the size of

the top and bottom layers of the modified offset-labelled MTBDDs. The

parameter is hence a crucial factor for its performance. In this section, we

analyse the issue in more detail. Although determining the optimal value for

lb is likely to be expensive or infeasible, we seek a heuristic which provides

good performance.

An MTBDD comprises a total number of levels ltotal . As has been ex-

plained in Section 5.2, for the original offset-labelled MTBDDs, the CTMC

matrix is decomposed into 2lb blocks by selecting a value for parameter

lb ≤ ltotal . The value for parameter lsm is selected such that lb + lsm ≤ ltotal ,

and all the MTBDD nodes at the level ltotal − lsm + 1 are replaced with an

explicit sparse representations of their corresponding submatrices. In the im-

plementation of the offset-labelled MTBDDs for version 1.3.1 of the PRISM

tool, these two parameters, lb and lsm , are selected such that the storage for

the top and the bottom layers do not exceed some fixed limits. The default

values are set at 1MB for both parameters.

For the modified offset-labelled MTBDD data structure, we collected

memory and time per iteration results for the same three sets of CTMCs

against a range of values for the parameter lb. In this case, lb + lsm = ltotal .

Some of these results are plotted in Figure 5.6. We first explain Figure 5.6(a),

where we have plotted the memory for the off-diagonal matrix storage against

the parameter lb. The number lb also governs the parameter nmax , which is
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Figure 5.6: Performance: behaviour against lb

the size of the matrix block consisting of the largest number of rows. Hence,

in the plotted memory, we have also included the RAM to store the addi-

tional iteration vector of size nmax doubles, which is required to hold the

sub-MVPs during an iteration.

Consider the plot for the Polling(k = 17) system. The total number of

MTBDD levels, ltotal , for this model is 23 (see Table 5.1). Initially, for lb = 1,

the required memory is above 120MB. In this case, lsm = ltotal − 1 = 22, and

therefore the resulting CTMC storage consists of the sparse storage of four

large submatrices. Model structure is not exploited in this case. Increasing

the parameter lb typically increases the memory required for the top-layer

block sparse storage. However, in this case, there is also a decrease in the

memory required to store the submatrices at the bottom layer. Increasing lb
to 16 decreases the memory to below 1MB. From this point on the memory in

the plot increases with an increase in the number of levels, in particular as the

parameter lb approaches the total number of MTBDD levels, ltotal . In these

cases the top-layer block storage dominates the overall memory. Similar

behaviours are observed for the Kanban and FMS plots except that the

changes in these plots are relatively slow due to a larger ltotal (see Table 5.1).

The time per iteration properties of the modified offset-labelled MTBDDs

are plotted in Figure 5.6(b) against the parameter lb. Consider again the

plot for the Polling system. The time per iteration for the polling CTMC
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fluctuates until it reaches the minimum of 3.2 seconds. The time from this

point on increases as the number of block levels lb approaches ltotal . We note

similar behaviours in the Kanban and FMS plots except that the fluctuations

in these plots last longer due to a larger ltotal .

We now summarise our findings from these experiments. We observe

that, for all three examples, the minimum and maximum values of lb result

in very high memory usage. This is unsurprising since, in these extreme cases,

the sparse matrix storage for either the bottom or top layers, respectively,

constitutes almost the whole of the data structure. In these cases, none

of the regularity and compactness of MTBDDs is exploited, and hence the

memory usage is high. However, we see that, for values of lb in the middle of

this range, we can easily find a compromise between storage for the top and

bottom layers which gives a dramatic drop in memory. For times per iteration

(Figure 5.6(b)), we see that there are some fluctuations as lb is varied and a

consistent increase as it reaches its maximum. Overall, though, the variations

in time are not as significant as for the memory. Based on these statistics,

we adopt the heuristic lb = 0.6× ltotal for the in-core implementation of the

modified offset-labelled MTBDD data structure.

Finally, note that, since the original offset-labelled MTBDDs employ the

pseudo Gauss-Seidel method, the parameter lb also governs the number of

iterations for the solution process to converge. Typically, an increase in the

value of lb causes a decrease in the number of iterations. However, the number

of iterations for the modified offset-labelled MTBDDs are independent of the

parameter lb, for it can employ the standard Gauss-Seidel iterative method.

5.4.2 Speed of Numerical Solution

We now compare the solution based on the modified offset-labelled MTBDD

data structure against the implementations of the original offset-labelled

FMS(k = 7) Kanban(k = 5) Polling(k = 17)

ltotal 55 48 23

Table 5.1: The total number of levels, ltotal , for the three CTMCs
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Model k States a/n Time/iter. (secs) Iterations Total time (secs)
(n) Sparse MTBDD Two-layer PGS GS Sparse MTBDD Two-layer

(GS) (PGS) (GS) (GS) (PGS) (GS)

6 537,768 7.8 0.3 0.72 0.50 1,027 812 244 739 406
7 1,639,440 8.3 1.1 3.44 1.61 1,207 966 1,063 4,152 1,555

FMS 8 4,459,455 8.6 3.2 11.8 4.68 1,392 1,125 3,600 16,426 5,265
9 11,058,190 8.9 – 37.7 12.3 1,581 1,287 – 59,604 15,830
10 25,397,658 9.2 – 100 29.2 1,775 1,454 – 177,500 42,457
4 454,475 8.8 0.3 0.52 0.44 414 323 96.9 215 142

Kanban 5 2,546,432 9.6 1.8 3.13 2.71 590 461 830 1,847 1,249
6 11,261,376 10.3 – 15.9 12.9 794 622 – 12,625 8,024
15 737,280 8.3 0.5 0.69 0.62 179 32 16.0 124 19.8
16 1,572,864 8.8 1.1 1.57 1.45 196 33 36.3 308 47.9

Polling 17 3,342,336 9.3 2.4 3.78 3.23 213 34 81.6 805 110
system 18 7,077,888 9.8 5.5 8.11 7.17 229 34 187 1,857 244

19 14,942,208 10.3 – 19.3 16.3 255 35 – 4,922 571
20 31,457,280 10.8 – – 36.8 – 36 – – 1,325

Table 5.2: Timing results: A comparison with existing implementations

MTBDDs (as implemented in PRISM version 1.3.1) and an explicit method.

For the explicit implementation, we use the compact MSR scheme to store the

CTMC. Table 5.2 reports timing results for these implementations. Results

for the compact MSR based explicit method are reported under “Sparse”.

Results for the original and the modified offset-labelled MTBDD data struc-

ture are listed under “MTBDD” and “Two-layer” respectively. In each case,

we use the most efficient numerical solution method available, i.e. Gauss-

Seidel for the compact MSR and the modified offset-labelled MTBDDs, and

Pseudo Gauss-Seidel for the original offset-labelled MTBDDS.

The first four columns in Table 5.2 give details of each CTMC used, its

size n (reachable states) and average number of non-zeros per row (a/n).

Column 2 gives the values for the model parameter k, see Appendix B for

details. For each implementation, we give the average time per iteration,

the number of iterations and the total time. Columns 5 − 7 and columns

10−12 list time per iteration and total times for the three solution methods.

The number of iterations for the original offset-labelled MTBDDs (PGS) are

enumerated in column 8, and for the other two solutions (GS) are listed in

column 9. For pseudo Gauss-Seidel, the number of iterations is dependent

on the number of blocks the CTMC matrix is decomposed into. The number

of Gauss-Seidel iterations for a particular model remains unchanged.
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Figure 5.7: Times per iteration results plotted against number of states

To give a better indication of the trends in these statistics of Table 5.2, for

the two symbolic methods we plot time per iteration and total time against

the number of states in Figures 5.7 and Figure 5.8, respectively. Dashed

lines are used to draw the results for the original offset-labelled MTBDDs,

and are tagged “MTBDD”. The results for modified offset-labelled MTBDDs

are drawn in solid lines and are tagged with “Two-layer”. For these plots we

have collected results on a machine with an equivalent CPU (440MHz) but

with more RAM (5GB), in order to illustrate trends over a larger range of

state spaces.

Our first observation in Table 5.2 is that the average time per iteration

for the modified offset-labelled MTBDDs presents an improvement over the

original MTBDD implementation. The principal reason for this is that the

former approach is based on the array-based storage, and therefore, it avoids

the traversal of MTBDD nodes in the middle layer of the data structure. This

also means that the modified approach behaves more like a sparse storage

based method and provides a much more consistent performance across the

three examples. This is obvious in Figure 5.7, where all three plots show an

equal time per iteration against the number of states, i.e. the three time plots

are on the same line. Original offset-labelled MTBDDs, on the other hand,
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Figure 5.8: Total times plotted against number of states

are more reliant on structure in the CTMCs and, therefore, their performance

varies across the three models; see dashed lines in Figure 5.7 where the time

results against the number of states for all three models have different slopes.

The FMS model is the least structured among the three case studies which

equates for its higher times; Polling is the fastest because it is the most

structured model among the three. Consequently, the FMS model shows

greater improvements between the two symbolic approaches; the run times

for the modified data structure (for large models) are at least three times

faster than the original offset-labelled MTBDDs. We also note, in Figure 5.8

and in Table 5.2, that the total solution times for the modified offset-labelled

MTBDDs show an even more impressive improvement. This is due to the

fact that Gauss-Seidel typically requires a smaller number of iterations to

converge compared to the pseudo Gauss-Seidel method.

Making a comparison with sparse matrices, we see in Table 5.2 that the

solution times for the modified offset-labelled MTBDDs are now much closer

than the times for MTBDDs were previously. We also note that the modified

approach can handle CTMCs approximately an order of magnitude larger

than sparse matrices, due to the relatively compact memory requirements.

Furthermore, it can also be applied to slightly larger CTMCs than MTBDDs

105



5 - Improving Offset-Labelled MTBDDs 5.4 Experimental Results: In-Core

can. This is because its implementation uses two bytes for each element of

the diagonal vector, instead of eight bytes, exploiting the small number of

distinct values.

We comment on the use of a sparse storage scheme for the explicit solu-

tion. The compact MSR implementation is significantly more compact than

other sparse schemes; see Table 3.1 on Page 44. It typically provides faster

solution times over other schemes due to better caching and high memory

I/O. The time results for the modified offset-labelled MTBDDs are, in fact,

comparable with the explicit methods based on other storage schemes; see

e.g. sparse results for these case studies listed on the PRISM web page [Pri],

or [Par02].

5.4.3 Memory Consumption

In this section, we consider memory requirements in more detail. For both the

original and the modified offset-labelled MTBDDs, the memory requirements

consist of the matrix, the diagonal vector, the iteration vector (n doubles),

and the vector X̃ (see Section 3.1 and 4.2). The storage for iteration vector is,

in fact, independent of the approach used, and is thus not considered in our

analysis. We also ignore here the storage for the diagonal vector, although

the original offset-labelled MTBDD uses 8 bytes to store each entry of the

diagonal vector while the modified data structure uses 2 bytes. Obviously,

the memory for the matrix depends heavily on the data structure used. The

vector X̃ is also affected since its size nmax is equal to the largest matrix block

used, which is governed by the choice of lb. To explain this more clearly, in

Figure 5.9, we plot memory usage against number of states. Figure 5.9(a)

shows memory for the matrix alone, and Figure 5.9(b) shows memory for the

matrix and X̃ vector combined.

Our first observation, in Figure 5.9(a), is that the increase in memory

for the modified data structure (Two-layer) over the original data structure

(MTBDD) is reasonably small. The increase in explicit storage due to the

condition lb + lsm = ltotal is balanced by the use of the more efficient compact

MSR format. Furthermore, when we consider the memory for matrix and

vector combined in Figure 5.9(b), we see that the modified data structure

actually requires less memory for large CTMCs. This is because we are able

to select a larger value of lb, making the maximum block size smaller, i.e. re-
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Figure 5.9: Memory usage plotted against number of states
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ducing nmax . For FMS (k = 13), for example, the total memory requirements

(matrix and vector) for the modified and the original MTBDDs are 35MB

and 71MB, respectively. It is interesting to mention here that the standard

MSR format for this FMS model requires nearly 27GB to store the CTMC

matrix.

5.5 Experimental Results: Out-of-core

We have developed an out-of-core implementation, where the modified offset-

labelled MTBDD storage of the matrix is kept in RAM, as before, but (itera-

tion and diagonal) vectors are stored on disk and retrieved as required. This

idea has been described previously in Chapter 4, where an out-of-core version

of the original offset-labelled MTBDD-based numerical solution was imple-

mented in similar fashion. In this section, we analyse this modified symbolic

out-of-core implementation. We use the same case studies as in the previous

section. These results show that using out-of-core instead of in-core storage

for the vectors allows significantly larger models to be solved on a standard

workstation. The largest model we solved using the in-core implementation

was the Polling system with 31 million states. Taking out-of-core approach,

we successfully solve a CTMC with over 384 million states.

In Section 5.5.1, we analyse the memory and time properties of the out-

of-core implementation against a range of values for the number of block

levels lb. From this analysis, as before, we derive a heuristic for a priori

selection of this parameter. We present the numerical solution times for

the modified data structure in Section 5.5.2. These results are compared

with the original offset-labelled MTBDDs and an explicit sparse out-of-core

implementation. To demonstrate the scalability of the out-of-core method,

in Section 5.5.3, we present results of the out-of-core implementation on a

more powerful workstation. Finally, in Section 5.5.4, we propose some future

work to improve the performance of the symbolic out-of-core method.

5.5.1 A Good Choice for the Parameter lb

An MTBDD comprises a total number of levels ltotal . The modified offset-

labelled MTBDD data structure comprises two layers of symbolic sparse
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Figure 5.10: Timing results: A comparison of out-of-core methods

storage. The size of the top layer of the data structure is governed by the

parameter lb, and the bottom layer is determined by the parameter lsm ,

with an additional condition lb + lsm = ltotal . This condition is asserted

to implement the standard Gauss-Seidel iterative method. We know that

selection of this parameter lb determines lsm and controls the size of the top

and bottom layers of the two offset-labelled MTBDD data structures. For

the out-of-core solution, the parameter lb also influences the amount of disk

I/O the process has to perform. This parameter, hence, plays a crucial role in

obtaining performance from the out-of-core solution. A heuristic to a priori

select the parameter lb for the in-core solution based on the modified data

structure was derived in Section 5.4.1. In this section, we seek a heuristic

to select lb for the out-of-core solution. As before, we search for a heuristic

which provides good performance, although determining the optimal value

for lb is likely to be expensive or infeasible.

In Figure 5.10, we illustrate the total in-core memory requirement and

time per iteration for the symbolic out-of-core solution based on the modified

offset-labelled MTBDD CTMC storage. The figure plots these results against

a range of values for the number of top-layer levels lb, for the three CTMCs,

one from each case study. The total in-core memory includes storage for the

off-diagonal matrix, and for the diagonal and iteration vector blocks.

We first explain the memory characteristics of the out-of-core solution,

shown in Figure 5.10(a). Our first observation in the figure is that the three
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CTMCs depict similar patterns. As expected, increasing lb decreases the

amount of total memory required by the process. There is an increase in the

total memory as the parameter lb approaches ltotal (for the values of ltotal , see

Table 5.1 on Page 102; see also Figure 5.6). This behaviour, however, is not

illustrated in Figure 5.10(a) because the memory properties are plotted for

the maximum value lb = 35, for the reasons which will be apparent in the

next paragraph.

The time per iteration properties for the out-of-core implementation are

plotted in Figure 5.10(b) against the parameter lb. The three CTMCs show

similar behaviour, i.e. the time per iteration increases as the number of block

levels lb for a CTMC approaches (the values close to) its respective number

of total levels, ltotal . The reasons are two-fold. Firstly, increasing lb (for the

values close to ltotal) may cause an increase in the memory required to store

the CTMC; see Figure 5.6. Secondly, an increase in lb increases the amount

of disk I/O the process has to perform because the iteration vector is read 2lb

times from disk. The solution times for the values of lb close to the respective

ltotal were relatively very large. For these reasons, in Figure 5.10, we have

not plotted the memory and time properties for larger values (close to ltotal)

of lb.

We conclude this section as follows. For the in-core implementation of

the modified offset-labelled MTBDD data structure, we adopted the heuristic

lb = 0.6 × ltotal . For the out-of-core implementation, however, this heuristic

results in a high amount of disk I/O. A low value for the parameter lb cannot

be selected because the resulting data structure will require large memory for

the bottom layer storage. We select lb = 0.4 × ltotal to compromise between

memory and time. This heuristic assumes that sufficient memory is available

to store all of the required data structures. The solution times reported in the

next sections are collected using this heuristic. However, for larger models, we

manually select values for the parameter lb if the heuristic results in a memory

which is larger than the available RAM. A more involved heuristic can also

be devised which takes into consideration the amount of RAM allocated to

the solution process (or the RAM available in a workstation).
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Model k States a/n Time (sec. per iter.) Iterations

(n) Sparse MTBDD Two-layer PGS GS

FMS 6 537,768 7.8 1.1 1.3 1.0 1027 812

7 1,639,440 8.3 3.8 3.2 3.4 1207 966

8 4,459,455 8.6 10.7 10.4 9.6 1392 1125

9 11,058,190 8.9 51.8 35.9 26.2 1581 1287

10 25,397,658 9.2 146 142 182 1775 1454

11 54,682,992 9.5 374 708 788 1972 1624

12 111,414,940 9.7 – 1,554 2319 2174 1798

13 216 427 680 9.9 – 3,428 6086 2379 1977

Kanban 4 454,475 8.8 1.0 1.3 0.6 414 323

system 5 2,546,432 9.6 6.0 4.5 4.0 590 461

6 11,261,376 10.3 68.6 22.6 21 794 622

7 41,644,800 10.8 283 143 120 1022 802

8 133,865,325 11.3 – 601 558 1151 999

9 384,392,800 11.6 – – 2049 – 1211

Polling 15 737,280 8.3 1.2 0.8 0.9 179 32

system 16 1,572,864 8.8 2.9 2.0 2.1 196 33

17 3,342,336 9.3 6.4 4.6 4.6 213 34

18 7,077,888 9.8 20.4 10.5 10.7 229 34

19 14,942,208 10.3 71 23.8 25.1 255 35

20 31,457,280 10.8 162 52 79.1 271 36

21 66,060,288 11.3 359 177 212 340 36

22 138,412,032 11.8 – 374 449 353 37

23 289,406,976 12.3 – – 1518 – 38

Table 5.3: Comparing solution times for the out-of-core methods

5.5.2 Speed of the Numerical Solution

We now present timing results for the modified symbolic out-of-core method.

We compare this method with the symbolic out-of-core method of Chapter 4

which stores CTMCs using original offset-labelled MTBDDs, and with the

complete out-of-core method of Chapter 3. The three methods share the

fact that they all provide remedy for both the matrix and vector storage.

Table 5.3 reports these results. Results for the solution based on the original

and the modified MTBDDs are listed under “MTBDD” and “Two-layer”

respectively. Results for the complete out-of-core method are reported under

“Sparse”. In each case, we use the most efficient numerical solution method

available. The iterative methods were tested for the convergence criterion

given by Equation (2.16) for ε = 10−6.

The first four columns in Table 5.3 report the model statistics. Columns

5−7 list times per iteration for the three methods. The number of iterations
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Figure 5.11: Out-of-core total times plotted against number of states

for the methods are reported in column 8−9. The symbolic method based on

the original offset-labelled MTBDDs uses the pseudo Gauss-Seidel (PGS), the

other two out-of-core methods use the Gauss-Seidel method. Total times for

the solution can be calculated using the times per iteration and the number

of iterations.

Comparing with the complete out-of-core method, we see in Table 5.3,

that the modified offset-labelled MTBDD times for the Kanban and Polling

systems are typically twice as fast as the explicit method. Note also that

the modified approach can handle larger CTMCs than the explicit method.

This is due to the fact that the explicit out-of-core approach is limited by

the disk memory available with a workstation (in this case, 6GB). Finally,

we note that the explicit method provides relatively faster solution times

for the FMS CTMCs. We are already aware of the reasons for this: that

FMS is relatively less structured, requires larger MTBDD for its storage,

and therefore requires relatively more work from a symbolic method. The

explicit method, on the other hand, performs consistently across the three

models.

We now concentrate on comparing the two symbolic methods. As for

the in-core implementations, to give a better indication of the trends for the
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two methods in Table 5.3, we plot total solution times against the number

of states in Figure 5.11. As in Figure 5.8, dashed lines are used to draw

the results for the original offset-labelled MTBDDs, and are tagged with

“MTBDD”, while the results for modified offset-labelled MTBDDs are drawn

in solid lines and are tagged with “Two-layer”.

Our first observation in Figure 5.11 is that the modified symbolic method

provides faster solutions for Polling and Kanban systems, i.e. for these two

models, the dashed lines are above the solid lines. For FMS system, for

model sizes of up to 50 million states, the modified offset-labelled MTBDD

data structure provides faster speeds than the original offset-labelled MTB-

DDs. The performance however declines afterwards (see the plots). This

is explained as follows; see also Section 5.5.1. For the out-of-core solution

(modified offset-labelled MTBDD), selecting a larger value for lb increases the

disk I/O and consequently imposes a time overhead on the solution process.

Unfortunately, selecting a lower value for lb has an associated cost in that

it results in an increased storage for the bottom layer of the data structure.

This amount of resulting memory may not be available with a workstation.

This effect is not as significant for structured models and hence Polling and

Kanban systems perform well. For FMS, which is less structured and requires

a larger MTBDD, the in-core memory requirement of the solution process

(for larger models) approaches the RAM limits of the workstation. Conse-

quently, it slows down the solution speed. To investigate this further, in

Section 5.5.3, we present results from the out-of-core implementation of the

modified symbolic out-of-core method on a workstation with larger RAM.

5.5.3 Scalability of the Out-of-Core Solution

In Table 5.4, we present timing results for the symbolic out-of-core solution

(modified offset-labelled MTBDDs) on a more powerful workstation, an Intel

Pentium 4, 2.80GHz CPU machine running Linux with 512 KB cache, 1GB

RAM, and a 60GB SCSI local disk. As before, the first four columns in

the table list the model statistics. The next three columns list the time per

iteration, total time and the number of iterations. The purpose of presenting

these results is to demonstrate the scalability of the symbolic out-of-core

solution, and to further investigate its behaviour. We use machine2 to refer

to this faster workstation and use machine1 to refer to the workstation used

113



5 - Improving Offset-Labelled MTBDDs 5.5 Experimental Results: Out-of-core

Model k States a/n Times Iterations

(n) Per iteration Total

(seconds) (hr:min:sec)

FMS 6 537,768 7.8 0.18 2:27 812

7 1,639,440 8.3 0.75 12:05 966

8 4,459,455 8.6 1.6 30:00 1125

9 11,058,190 8.9 7.4 2:38:44 1287

10 25,397,658 9.2 17.4 7:01:40 1454

11 54,682,992 9.5 51.6 23:16:39 1624

12 111,414,940 9.7 170 84:54:20 1798

13 216 427 680 9.9 327 179:34:39 1977

14 403,259,040 10.03 1984 – > 50

15 724,284,864 10.18 6312 – > 50

Kanban 4 454,475 8.8 0.1 33 323

system 5 2,546,432 9.6 0.8 6:09 461

6 11,261,376 10.3 5.0 51:50 622

7 41,644,800 10.8 18.9 4:12:38 802

8 133,865,325 11.3 139 38:34:21 999

9 384,392,800 11.6 407 136:54:37 1211

10 1,005,927,208 11.97 1424 566:49:52 1433

Polling 15 737,280 8.3 0.1 4 32

system 16 1,572,864 8.8 0.3 10 33

17 3,342,336 9.3 0.9 31 34

18 7,077,888 9.8 2.1 1:12 34

19 14,942,208 10.3 4.6 2:41 35

20 31,457,280 10.8 10.1 6:04 36

21 66,060,288 11.3 22.8 13:41 36

22 138,412,032 11.8 143 1:28:11 37

23 289,406,976 12.3 264 2:47:12 38

24 603,979,776 12.8 460 4:51:20 38

25 1,258,291,200 13.3 1226 13.16:54 39

Table 5.4: Improved Symbolic out-of-core solution method on machine2

earlier in this chapter (440MHz, 512MB RAM, 6GB disk).

Our first observation in Table 5.4 is that it is now possible to solve even

larger models. We successfully solve a Kanban system with over 1 billion

states (in under 24 days), and a Polling system with over 1.2 billion states

(in under 14 hours). Note also that it is now feasible to solve even larger

FMS systems (724 million states). Our second observation is that the com-

putations can be performed much faster. For example the solution of the

FMS system (k = 13) which would have taken over 139 days (see Table 5.3)

on machine1, took under 8 days to converge on machine2.

The above results are, of course, to be expected since we are now running

on a more powerful hardware. However, we also make the following important
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Figure 5.12: Comparing out-of-core times for the two machines
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observation. Comparing the results for machine2 (Table 5.4) with the results

for machine1 (Table 5.3), we note that the out-of-core times for larger models

on machine2 are on average 10 to 20 times faster than the times on machine1,

although the CPU speeds’ ratio for the two workstations is only 7 (2800/440).

See, for instance, the results for the FMS system (k = 13) which demonstrate

a more than 18-fold increase in solution speed. To investigate this further,

we plot timing results for the two workstations in Figure 5.12. The times per

iteration for the three models are plotted against the number of states. The

plots with dashed lines are drawn for machine1 and these are marked “slow”.

To improve visibility, the plots are drawn in both linear and logarithmic

scales. For smaller models, in all three case studies, we observe a linear

increase in time per iteration against the number of states. However, as the

models grow larger, near the end of the plots (towards the right), we note

a steep increase in time for all three case studies. The increase in times

is particularly rapid for the FMS system. The two machines show similar

patterns, albeit with some offset in the number of states, i.e. the patterns

in the plots are similar but these are shifted towards right for machine2.

These patterns are more obvious for the plots in the logarithmic scale. These

findings are explained as follows.

For an increase in the model sizes, there is a proportional increase in the

computational and space requirements of the solution. This increase in the

process requirement is typically linear. However, as the memory required by

the process approaches the RAM limits of the workstation, the respective

increase in solution time is no longer linear in the model size (number of

states). For these reasons, using a workstation with larger RAM results in

relatively faster speeds for the solution of larger models.

For the symbolic out-of-core method, the required memory can be de-

creased by selecting a larger value for lb. This does not help however, be-

cause increasing lb causes an increase in the amount of disk I/O (see also

Section 5.5.1). Note that increasing lb also increases storage required for the

top layer, albeit to a lesser extent. These observations are equally valid for

all three case studies. The FMS model is less structured and therefore is

affected the most. We conclude here with a final note that the symbolic out-

of-core solution based on modified offset-labelled MTBDD CTMC storage

scales well to more powerful workstations.
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5.5.4 Proposed Improvements

In this section we propose some modifications to the symbolic out-of-core

method which will possibly improve its performance. We know that the

modified offset-labelled MTBDD data structure has two parameters, lb and

lsm , where lb + lsm = ltotal . Selecting a value for lb also determines lsm . The

parameter lb governs the amount of memory required for the top and bottom

layers of the storage, as well as the amount of disk I/O. It also determines

nmax , the size of the largest vector block to be kept in RAM. In Tables 5.3

and 5.4, we note that for larger models, the speed of the solution is relatively

poor compared to the speed for the smaller models. Note the speeds for the

FMS models in particular. This is because, in these cases, the selected value

of lb requires a large amount of disk I/O and hence significantly decreases the

solution speed. A smaller value for lb cannot be selected because it increases

lsm , which consequently increases the storage requirements for CTMC matrix

above the amount of the available RAM (see Section 5.5.1).

We note that this unfortunate situation arises because the storage re-

quirements and the disk I/O are dependent on each other, i.e. a decrease in

the storage for the solution process causes a decrease in its speed and vice

versa. In fact, it is possible to separate the two issues, i.e. to separate disk

I/O from the parameter lb. Let us define an additional parameter ld, such

that ld < lb. This parameter ld will be used to decompose the vector into

blocks and therefore will now govern the value of nmax , as well as the amount

of disk I/O. The parameter lb determines the top-layer decomposition of the

CTMC matrix and hence will only control the size of storage for the top layer

of the data structure.

We believe that these modifications to the symbolic out-of-core method

will result in substantial improvements in its performance. Note that the

parameter ld controls nmax , and therefore selecting smaller values for ld will

result in larger values for nmax .
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CHAPTER

SIX

Conclusions

Our aim in this thesis was to develop efficient techniques for the steady-state

analysis of large continuous time Markov chains on a single, contemporary

workstation. Earlier work in this context has focused on implicit and parallel

explicit solutions. We considered the out-of-core approach and applied it to

both implicit and explicit methods.

6.1 Epitome and Assessment

The state space explosion problem has been a major hurdle in the progress of

the steady-state analysis of large CTMCs. Much research is focused on the

development of methods and data structures which can minimise the space

and time requirements of this process. During the last decade, some progress

has been made, beginning with the solution of a 15 million state system on a

workstation with 128MB RAM, with no assumption on its structure [DS97,

DS98a]. This approach was parallelised in 1999 [KH99, Kno99], leading to

the solution of a CTMC with 724 million states on a 26-node dual-processor

cluster [BH01]. Another direction taken to combat the state space explosion

problem has been the development of implicit methods which rely on ex-

ploiting structure and regularity in the CTMCs. These included Kronecker

methods [Pla85, Don94, Kem96, CT96, BCDK97, FPS98], Matrix Diagrams

[CM99, Min00, Min01], and the offset-labelled MTBDDs [Par02, KNP04b].

A number of solution techniques had been devised by the late 1990s to cope
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with the matrix storage problems. However, explicit storage of the solution

vector(s) hindered further progress for both implicit and explicit methods,

even for parallel and distributed techniques.

In Chapter 3, we introduced the complete out-of-core solution method.

The method relaxed the size limitation on the explicit solution methods,

caused by the need for the in-core, explicit storage of the probability vector.

It makes no assumptions about the structure of the matrix, and hence can

be applied to CTMCs in general. The method employed the compact MSR

sparse storage format which itself was a contribution of this work. The

scheme offers a 30% memory saving over current sparse storage schemes, and

it can be used with in-core, out-of-core or with distributed iterative numerical

solutions of CTMCs.

In Chapter 4, we introduced the symbolic out-of-core method. Two im-

plementations of the symbolic method were described and compared using

experimental results. The symbolic method also relaxed the limitations for

the implicit methods, which was caused by the need to store the probability

vector in-core, explicitly. It was demonstrated that the symbolic method can

be used to solve models as large as 216 million states on a workstation with

512MB RAM. Even larger models can be solved by decomposing the vector

into a larger number of blocks, i.e. by reducing the in-core memory require-

ment for the solution process. Since equivalent implicit approaches require

an iteration vector of size proportional to the state space, the largest model

these techniques can solve on equivalent hardware is of size 60 million states.

We analysed the symbolic out-of-core method in detail and presented a speed

comparison with the explicit methods. Notes on improving performance of

the solution method were also outlined in Section 4.3.1.

In Chapter 5, we presented modifications to the offset-labelled MTBDD

data structure and addressed one of its main deficiencies by presenting an

efficient implementation of the Gauss-Seidel method. We gave experimental

results from its implementation, compared them to existing MTBDD-based

implementations and showed that the modified data structure improves the

time and memory properties of its predecessor. We also presented results

from an out-of-core version of the modified offset-labelled MTBDDs, and

demonstrated solutions of very large CTMCs. Finally, we gave suggestions

for how to improve the performance of the out-of-core solution method.
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In summary, the aim of this thesis was to extend the size of the mod-

els which can be analysed on a contemporary workstation. The techniques

presented in this thesis, we believe, have successfully achieved this aim. We

used a workstation of modest specifications for our implementations and ex-

perimental analysis. We demonstrated solutions of models with up to 384

millions states and 4 billion transitions on this workstation. Furthermore, on

a more powerful workstation, we analysed models as large as 1.2 billion states

and 16 billion transitions. Using any of the existing alternative techniques,

analysis of models of such sizes on a single contemporary workstation is not

possible.

Secondly, work on the integration of our developed techniques into the

tool PRISM is in process. The improved offset-labelled MTBDD and com-

pact MSR data structures have been integrated into the official development

branch of PRISM and will be included in the next public release. The out-

of-core solution methods will be integrated into PRISM in the future.

6.2 Future Research

We envisage a number of possibilities for future development of the work

presented in this thesis. Two major directions can be taken in this context.

Firstly, work can be carried out to improve the performance of the techniques

introduced in this thesis. Secondly, these techniques can be applied to other

domains, e.g. the techniques can be augmented by their parallelisation or can

be extended to other modelling formalisms.

We first discuss ideas for how to improve the performance of our tech-

niques. In Sections 4.3.1 and 5.5.4, we have already presented some sug-

gestions to enhance the performance of the symbolic out-of-core method.

However, in general, the out-of-core algorithms presented in this thesis suffer

from the problems associated with the sparsity structure of the CTMC mod-

els, for it causes either of the two Compute and Disk-IO processes to wait

while one is busy performing its computation. Further research is required

to find out better out-of-core algorithms that adapt to the sparsity structure,

and are capable of enjoying regular and balanced file I/O.

Another area for improvements lies in the optimisations for the out-of-

core implementations at the level of the operating system. The out-of-core
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algorithms may be implemented with two threads instead of two processes.

This can enhance solution speeds because threads share a single address

space and communication at this level is typically faster. Secondly, mapping

the disk memory onto the process address space (memory-mapped I/O) will

also increase the solution speed because the standard I/O requires additional

time to copy data buffers from the kernel space to the user space. Thirdly,

using facilities at the kernel level of the operating system (e.g using a larger

size for disk blocks) to ensure lower time for disk seek operations will also

improve the solution speed for the out-of-core methods. Finally, redundant

arrays of independent disks (RAID) can also be used to increase the disk

throughput. Analogous to the distributed computers, which mainly provide

compute power and larger memories, RAIDs deliver high disk throughput by

connecting disks in parallel.

We now consider applications of our techniques to other domains in the

performance analysis. A first possibility in this direction exists in generali-

sation of our storage and out-of-core techniques to other numerical compu-

tation problems, such as the transient analysis of CTMCs and the analysis

of both DTMCs and MDPs. The computations involved in such analyses

are also based on matrix-vector product (MVP) operation, which is the core

operation for the steady-state CTMC analysis. Secondly, the out-of-core

techniques, both explicit and symbolic, can be used to implement Krylov

subspace methods which are also based on multiple MVP operations. We

know from Section 2.4 that Krylov methods provide typically faster conver-

gence but are limited because they require storage for a large number of

iteration vectors.

The Kronecker approach provides a space-efficient representation of a

Markov chain. Representations based on such an approach have increasingly

gained popularity. These methods, however, still require explicit (in-core)

storage of the solution vector. The idea of a symbolic out-of-core technique

is a promising one, and is equally applicable to Kronecker methods, i.e. the

out-of-core storage of the iteration vector can provide an improvement.

Probably the most important extension of our work is its integration

with parallel and distributed approaches. In this context, we first consider

the complete out-of-core method of Chapter 3 which is the most generally

applicable technique (because it does not assume structure in the models).
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Distributing a certain iterative computation such as Jacobi to a cluster of

workstations means very high communication costs, especially if the link

available on the distributed architecture is not fast. Out-of-core methods

which store the matrix onto disk and keep the probability vector in main

memory have already been parallelised. A distributed implementation of the

complete out-of-core method will enable very large models to be solved on

clusters of modest sizes by reducing the main memory (RAM) requirements.

Furthermore, we believe that it will improve the overall performance for the

distributed out-of-core methods because this approach provides computa-

tional work to overlap with the idle time during interprocessor communica-

tions.

The improved offset-labelled MTBDD data structure introduced in Chap-

ter 5 provides a direct access to blocks of a CTMC matrix, as well as to its

individual matrix rows. Essentially, this combines, in a single data structure,

both the compactness of the symbolic representations and the flexibility of

sparse schemes. The data structure, hence, constitutes an ideal basis for a

distributed implementation. Initial work in this direction [KPZM04] which

reports a dual-processor shared memory implementation of the improved

offset-labelled MTBDD data structure is promising. Further work can be

carried out to extend this approach to the fully distributed case. Based on

this data structure, a distributed implementation of the symbolic out-of-core

method will further extend the size of the models which can be analysed.

6.3 Conclusion

We set out out to develop out-of-core techniques for the steady-state solu-

tion of large CTMCs as a means to extend the size of solvable models on a

single workstation. We successfully achieve this aim and are able to solve

models over an order of magnitude larger than possible previously. Since the

techniques, both symbolic and explicit, presented in this thesis are suitable

for block based methods, these can be easily augmented with parallel and

distributed techniques.

The so-called implicit and structural (or modular) decomposition ap-

proaches have also shown significant developments, particularly, in the past

few years. We have demonstrated the effectiveness of such an approach
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(offset-labelled MTBDDs) in this thesis.

An increasing trend in the area of distributed and grid computing has

been observed. Major developments have been made in the area of commu-

nication technologies, both in software and hardware. Disk technology has

also benefited from the introduction of RAIDs.

In the future, we anticipate that a combination of parallel and out-of-core

techniques will play an important role in the analysis of large CTMCs.
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APPENDIX

A

The PRISM Tool

In this appendix, we give a brief overview of the PRISM tool [KNP02a,

KNP04a]. PRISM, the Probabilistic Symbolic Model Checker, is a tool for

analysing probabilistic systems. It supports three types of models: discrete

time Markov chains, continuous time Markov chains and Markov decision

processes. BDDs and MTBDDs are the basic underlying data structures

of PRISM. For the numerical solution phase, however, it provides three en-

gines: one using conventional MTBDDs, one based on in-core sparse iterative

methods, and a third which uses offset-labelled MTBDDs. Further infor-

mation about the PRISM tool can be obtained from the PRISM website

(http://www.cs.bham.ac.uk/˜dxp/prism/), including the user guide, source

code of the tool, relevant papers and details of over thirty case studies.
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APPENDIX

B

Case Studies

We have benchmarked implementations of the techniques presented in this

thesis using three CTMC case studies. These are: the flexible manufacturing

system of [CT93], the Kanban manufacturing system of [CT96] and the cyclic

server polling system of [IT90]. We often abbreviate the names of these

case studies to “FMS”, “Kanban” and “Polling”, respectively. These three

examples have been widely used as benchmarks, both for explicit and implicit

techniques, see for example [Kno99, BH01, DS98a, CM99, Cia01b, KNP04b].

The case studies have been generated using version 1.3.1 of the PRISM

tool [KNP04a]. We are grateful to Gethin Norman for developing these case

studies for our benchmarks. We give a brief description of the three case

studies in the following sections.

B.1 Cyclic Server Polling System

The cyclic server polling system, a CTMC model, was presented by Ibe and

Trivedi in [IT90]. The Polling system consists of k stations or queues and

a server. The server polls the stations in a cycle to determine if there are

any jobs in the station for processing. The number of states in the CTMC

increases with an increase in the number of stations.
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B.2 Kanban Manufacturing System

Ciardo and Tilgner presented a CTMC model, the Kanban manufacturing

system, in [CT96], and used it to benchmark their Kronecker-based solution

of CTMCs. The Kanban model comprises four machines. The model param-

eter k represents the maximum number of jobs that may be in a machine at

one time.

B.3 Flexible Manufacturing System (FMS)

In [CT93], Ciardo and Tilgner presented the flexible manufacturing system

(FMS) model to benchmark their decomposition approach for the solution

of large stochastic reward nets (SRNs), a class of Markovian stochastic Petri

nets [Mol82]. The FMS model comprises three machines which process dif-

ferent types of parts. One of the machines may also be used to assemble

two parts into a new part. The total number of parts in the system is kept

constant. The model parameter k denotes the maximum number of parts

which each machine can handle.
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