
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018 1

Resource-Performance Trade-off Analysis for
Mobile Robots

Morteza Lahijanian1, Maria Svorenova1, Akshay A. Morye2, Brian Yeomans2, Dushyant Rao2, Ingmar Posner2,
Paul Newman2, Hadas Kress-Gazit3, and Marta Kwiatkowska1

Abstract— The design of mobile autonomous robots is chal-
lenging due to the limited on-board resources such as process-
ing power and energy. A promising approach is to generate
intelligent schedules that reduce the resource consumption while
maintaining best performance, or more interestingly, to trade
off reduced resource consumption for a slightly lower but still
acceptable level of performance. In this paper, we provide a
framework that is automatic and quantitative to aid designers
in exploring such resource-performance trade-offs and finding
schedules for mobile robots, guided by questions such as “what
is the minimum resource budget required to achieve a given
level of performance?” The framework is based on a quantitative
multi-objective verification technique which, for a collection of
possibly conflicting objectives, produces the Pareto front that
contains all the achievable optimal trade-offs. The designer then
selects a specific Pareto point based on the resource constraints
and desired performance level, and a correct-by-construction
schedule that meets those constraints is automatically generated.
We demonstrate the efficacy of this framework on several robotic
scenarios in both simulations and experiments.

Index Terms—Optimization and Optimal Control, Planning,
Scheduling and Coordination, Formal Methods in Robotics and
Automation, Autonomous Vehicle Navigation.

I. INTRODUCTION

MOBILE robotics is a fast growing field with a broad
range of applications such as home appliance, aerial

vehicles, and space exploration. The main feature that makes
these robots very attractive from the application perspective is
their ability to operate remotely with some level of autonomy.
The very same factors, however, introduce a challenge from
the design angle due to the limited on-board resources such
as processing power and energy source. For example, the
Curiosity Mars rover operates on a CPU with less computa-
tional power than a today’s typical smartphone CPU, resulting
in slow movements and limited capabilities of the rover. In
drones, the weight and the capacity of the on-board battery
directly influences the robot’s ability to stay airborne.

Manuscript received: Sep., 10, 2017; Revised Dec., 22, 2017; Accepted
Jan., 19, 2018.

This paper was recommended for publication by Editor Dezhen Song upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by by EPSRC Mobile Autonomy Program Grant EP/M019918/1.

1Authors are with Dept. of Computer Science, University of Oxford,
Oxford, UK {firstname.lastname}@cs.ox.ac.uk

2Authors are with Oxford Robotics Institute, University of Ox-
ford, Oxford, UK {akshay, brian, dushyantr, ingmar,
pnewman}@robots.ox.ac.uk

3Author is with Dept. of Mechanical Engineering, Cornell University,
Ithaca, NY hadaskg@cornell.edu

Digital Object Identifier (DOI): see top of this page.

Free
8%Misc

8%

Control
13%

Planning
17% Perception

17%

Localisation
25%

Odometry
13%

CPU Resource Allocation

Localisation OFF 
Localisation BOOTING 
Localisation ON

Fig. 1: ARC Q14 robot pictured performing autonomy in Utah, USA,
as part of the EPSRC Program Grant EP/M019918/1. The pie chart is
an example representation of per-module CPU usage on a Compulab
uSVR C3555 CPU.

Mobile autonomy is enabled through several modules such
as localization, perception and planning. Localization and
perception modules provide information about the robot’s lo-
cation and surroundings, respectively, and the planning module
generates a trajectory. Most mobile robots treat these modules
as separate processes, which are run simultaneously, and
often continuously, for best performance. These algorithms are
complex and consume computational resources in addition to
the energy cost of the robot’s motion (motors). An example
of CPU usage by the modules for a mobile ground robot
is shown in Fig. 1. By intelligently scheduling the modules
[1], it may be possible to reduce the resource consumption
while maintaining best performance. More interestingly, it
may be possible to trade off reduced resource consumption
for a slightly lower but still acceptable level of performance.
Examples include switching localization on and off to save
energy or restricting the continuous calls of the planner to
free resources for other modules. One issue with this ap-
proach is that the objectives, i.e., to reduce resource usage
and to improve performance, are naturally competing, and
by optimizing for one objective, the values for the other
may become suboptimal. For instance, by turning localization
off throughout the trajectory, energy consumption may be
minimized, but at the same time, probability of collision may
be increased. On the other hand, keeping localization on for
the duration can lead to excessive energy usage.

The aim of this work is to provide a framework to aid the
designers in exploring such resource-performance trade-offs
and finding schedules for mobile robots, guided by questions
such as “given a resource budget, what guarantees can be
provided on achievable performance?” and, more interestingly,
“what is the minimum resource budget required to achieve
a given level of performance?”. To this end, we exploit a
technique from formal methods known as quantitative multi-



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

objective verification and controller synthesis [2], [3], which,
for a given scenario and a set of quantitative objectives, e.g.,
constraints on computation power, time, energy, or probability
of collisions, produces the so-called Pareto front, a set of
Pareto optimal points that represents all the optimal trade-offs
that are achievable. The designer then selects a specific Pareto
point based on the resource constraints and desired perfor-
mance level, and a correct-by-construction schedule that meets
those constraints is automatically generated. In this paper, we
particularly focus on scheduling the localization module and
illustrate the potential of the framework on a generic resource
cost function in conjunction with two performance criteria of
safety and target-reachability but emphasize that the technique
is not limited to this module and is general.

Multi-objective techniques have been studied for proba-
bilistic models endowed with costs such as energy or time.
Off-the-shelf tools exist to support Pareto front computation
[4], [5], but are limited to discrete models such as Markov
decision processes (MDP). The challenge here, therefore, is
to adapt the techniques to the space of robotic systems,
where both time and space are continuous domains, while
also capturing the uncertainty that the autonomy modules
must deal with. We thus propose a novel abstraction method,
which considers noise in both the robot dynamics and its
sensors. Given a set of control laws, the method obtains a
discretization of the continuous robot motion as an MDP.
We lift the robot’s resource consumption to a cost on this
MDP, and through the multi-objective techniques, we compute
the Pareto front that encodes all optimal trade-offs between
the resource requirements and the task-related performance
guarantees. Having this set available to the designer, they have
the freedom to choose a Pareto point based on their design
criteria. For the selected point, we generate a schedule. We
demonstrate the efficacy of this framework on several robotic
scenarios with various dynamics and resources.

Summarizing, the main contributions of this work are:
(1) a general framework for the exploration of resource-
performance trade-offs in mobile robotics based on multi-
objective optimization with various (possibly conflicting) ob-
jectives, (2) a discretization of the robot dynamics that enables
reduction to the multi-objective problem, and (3) illustration of
the benefits and efficacy of the framework in both simulation
and experiments of complex robotic scenarios.

II. LITERATURE REVIEW

Most existing resource allocation works in robotics focus on
single objective problems, namely optimization for quality of
service or energy. Examples include [6] in wireless systems,
[7] in multi-robot localization, and [1] in perception. Such
problems usually involve scheduling sensor usage, and the
typical performance criterion is the “goodness” of the state
estimation, e.g., [8], [9]. Apart from [10], where computation
is offloaded to the cloud to improve performance, trade-off
analysis between resource and performance objectives through
scheduling autonomy modules has been little studied. Our
framework not only performs such analysis, but it also allows
multiple objectives for various resources, e.g., energy, time,

and computation power, and performance criteria, e.g., safety
and target reachability.

Since mobile robots are increasingly often employed in
safety- and performance-critical situations, techniques from
formal methods that offer high-level temporal logic planning
[11], correct-by-construction controller synthesis [12] and per-
formance guarantees [13], [14] have been gaining attention.
However, these are task specific and lack the generality and
flexibility of the proposed framework, which enables system-
atic exploration of trade-offs.

Trade-off analysis techniques have been studied in verifi-
cation, mostly from the theoretical perspective, and include
quantiles and multi-objective methods. Quantiles can express
the cost-utility ratio but not the Pareto front [15]. Multi-
objective (or multi-criteria) optimization has been extensively
studied in operations research and stochastic control [16].
More recently, techniques that combine high-level temporal
logic specifications with multi-objective optimization have
been formulated for discrete probabilistic models, including
probabilistic [2], [17] and expected total reward [3], [18]
properties. They have been employed, e.g., to analyze human-
in-the-loop [19] and specification revision [20] problems. The
works [21], [22] consider budget constraint problems.

III. PROBLEM FORMULATION

The focus of this work is an optimal trade-off analysis
between a robot’s resource usage and its task guarantees
through the use of a localization module. We consider robot
dynamics (plant model) given by:

ẋ = f(x,u,w), (1)

where x ∈ X ⊆ Rnx is the state of the robotic system,
u ∈ U ⊆ Rnu is the control input, w ∈ Rnw is the pro-
cess (motion or input) noise given by a normal distribution
N (0,Qw) with zero mean and covariance Qw ∈ Rnw×nw , and
f ∶X×U×Rnw → Rnx is a continuous integrable function that
describes the evolution of the robot in the space. The robot is
equipped with two sets of sensors that enable the measurement
of its state, e.g., odometry and high-accuracy localization
sensors. The first set (odometry) uses a negligible amount
of resources but provides inaccurate noisy measurements. By
deploying the second set, referred to as the localization module
or simply localization, additional information is obtained, and
the measurements are more accurate at a higher resource cost.

Let A = {astart, aboot, aon, aoff} denote the set of all possible
localization module actions (status). Action astart sends a
signal to start the localization, and it takes time Tboot ∈ R≥0
for it to turn on. The action aboot refers to the booting status
during Tboot. Action aon indicates that localization is on, and
aoff turns it off. The resulting measurement model is:

z =
⎧⎪⎪⎨⎪⎪⎩

hod(x,vod) if a ∈ {astart, aboot, aoff},
hlo(x,vlo) if a = aon,

(2)

where z ∈ Z ⊆ Rnz is the state measurement, and vod, vlo ∈
Rnv are the measurement noise terms under the first and
second set of sensors (odometry and localization), respectively.
In high accuracy mode, the noise is given by vlo ∼ N (0,Qv),



LAHIJANIAN et al.: RESOURCE-PERFORMANCE TRADE-OFF ANALYSIS FOR MOBILE ROBOTS 3

where covariance Qv ∈ Rnv×nv , whereas in low accuracy
mode, no restriction is imposed on vod.

The robot moves in an environment (workspace) W ⊂ RnW ,
where nW ∈ {2,3}, with a set of obstacles WO and a target
region WG. Colliding with an obstacle constitutes failure;
hence, the robot’s task is to avoid obstacles and reach the target
by following a precomputed reference trajectory ϕ. We assume
that ϕ is given as a sequence of waypoints ϕ = (x̃1, . . . , x̃∣ϕ∣),
where x̃i ∈ X , and the initial state of the robot is x̃0. The
robot is equipped with an on-board controller that generates a
sequence of control laws in order to follow ϕ (see Sec. IV-A).

We assume that, when the localization module is used, i.e.,
a = aon, the i-th control law drives the robot to a proximity
of waypoint x̃i (see Sec. IV-A). When the robot turns its
localization off, it may deviate from ϕ due to imprecise mea-
surements. Therefore, even if ϕ is an obstacle-free trajectory,
by turning off the localization module, there is a probability
that the robot may collide with an obstacle or may not reach
the target (formally defined in Sec. IV-C).

The aim is, given ϕ, to schedule the use of localization
over time in a way that optimizes the trade-off between the
robot’s resource usage and its task guarantees. Let ς denote a
localization schedule, which simply speaking, indicates which
localization action the robot needs to apply at any given time
(see Sec. IV-B). The resource consumption of the robot under
schedule ς is the sum of the resources required for it to run
the localization module and the resources consumed by the
rest of the system. To allow the inclusion of different types
of resources, e.g., computational power, time, or energy, we
define a general cost function c ∶ X × U × A → R≥0 (see
Sec. IV-C1). The formal problem definition is then as follows.

Problem 1: Given a mobile robot model as in (1) and (2)
in an environment W with a set of obstacles WO and a target
WG, a reference trajectory ϕ with its corresponding control
laws, and resource cost function c, compute a localization
schedule ς such that

● the expected cumulative resource cost is minimized,
● the probability of collision is minimized, and
● the probability of reaching the target is maximized.

These objectives may be competing, and there may not exist
a localization schedule that globally optimizes all of them. In
this work, we are interested in the set of all optimal trade-offs
between the objectives, which introduces an additional level of
complexity to the problem. Another major challenge is dealing
with a continuous robotic system with noisy measurements,
i.e., partial observability (POMDP). This leads to reasoning
in belief space, which is generally a computationally infeasi-
ble domain [23]. We propose a framework to address these
challenges in two steps. First, we overcome the complexity of
belief space through a suitable finite abstraction and then use
formal techniques to generate the set of all optimal trade-offs
between the objectives.

This framework is general in that its structure is independent
of the choices of objectives. It can also handle multiple
resource cost functions. Here, we present the concrete design
of the two steps of the framework for the particular choices in
Problem 1 but note that, in addition to more objectives, it can

also be adapted to schedule other modules such as perception
or different motors.

IV. SYSTEM DESCRIPTION

Due to both process and measurement noise, robot’s motion
is stochastic, and its exact state cannot be known. They,
however, can be described as probability distributions. The
probability distribution of xt at time t ∈ R≥0 is referred to as
the belief of xt, denoted by bt, and given by

xt ∼ bt = Px(xt ∣ xt0 , ut0∶t, zt0∶t, at0∶t), (3)

where Px denotes the (conditional) probability density func-
tion of x, xt0 is the initial state, and ut0∶t, zt0∶t, and at0∶t are
the sequences of control inputs, measurements, and statuses of
the localization used from t0 to t. We denote the belief space
containing all possible beliefs by B, i.e., ∀t, bt ∈ B.

A. Control Laws

Recall that, starting from the initial position x̃0, the robot
follows reference trajectory ϕ = (x̃1, . . . , x̃∣ϕ∣) using a series
of control laws. For 1 ≤ i ≤ ∣ϕ∣, control law ũi = (gi, ξi)
consists of a feedback controller gi ∶ B → U designed to
drive the robot towards x̃i and a termination rule (trigger)
ξi that indicates when to terminate the execution of gi. We
assume that, when localization is on, gi is able to stabilize the
state belief b around waypoint x̃i. The construction of such
a controller for robotic systems is detailed in [23]. In short,
gi is generally a concatenation of two controllers: reachability
and stabilizer. The reachability controller drives the system to a
neighborhood of x̃i, and then the stabilizer controller stabilizes
b to a predefined belief b̃i that corresponds to x̃i. This
stabilization is typically achieved by an LQG controller on the
linearized dynamics around x̃i and defining b̃i = N (x̃i,Qx̃i),
where Qx̃i is the steady-state covariance given by steady-
state Kalman filter (solution to an algebraic Riccati equation
[24]). Note that the convergence to b̃i is guaranteed if the
linearized dynamics are controllable and observable [24]. For
a full discussion on the construction of such controllers for
various systems, including nonholonomic systems, see [23].
When localization is off, gi uses only the reachability part of
the controller.

Let ∆ti be the duration that it takes the reachability con-
troller to move the robot from x̃i−1 to (a neighborhood of)
x̃i under localization on. We design the trigger ξi to fire, i.e.,
ξi = 1, when the belief of the robot state converges to b̃i if
the localization is on (ε-convergence is required to ensure the
trigger fires in finite time, i.e., ∣bt − b̃i∣ < ε). In turn, if the
localization is not on, the robot applies gi for the duration of
∆ti. Formally,

ξi =
⎧⎪⎪⎨⎪⎪⎩

1<ε(∣bt − b̃i∣) if a = aon,

δ(t − (ti−1 +∆ti)) if a ∈ {astart, aboot, aoff},
(4)

where 1 and δ are the Indicator and Dirac delta functions, re-
spectively, and ti−1 is the time mark of the initialization of ũi.
Furthermore, ε = (εmean, εvar) ∈ R2

>0, and for bt = N (x̂t,Qxt),
where x̂t and Qxt are the state estimate and covariance at time



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

t, the indicator function 1<ε(∣bt − b̃i∣) = 1 if ∣x̂t − x̃i∣ < εmean

and ∣Qxt
−Qx̃i

∣ < εvar; otherwise 0. Here, a suitable matrix
norm is the max-entry norm. From trajectory ϕ, hence, the
following series of control laws that enable the robot to follow
ϕ is obtained:

ϕ = (x̃1, . . . , x̃∣ϕ∣) ⇒ u = (ũ1, . . . , ũ∣ϕ∣). (5)

B. Localization Schedule

The robot makes a decision on the use of its localization
based on its belief bt. This decision is referred to as the
localization schedule. Let D(⋅) denote the set of all probability
distributions over a given set. Localization schedule is a
function ς ∶ B→ D(A) that assigns to a belief bt a probability
distribution over the localization actions in A.

In this work, we assume that the localization decisions are
made right before applying each control law ũi. In other
words, the granularity of the localization decisions corresponds
to the waypoints in ϕ, which is user-defined. Therefore, given
a reference trajectory ϕ and a localization schedule ς , the
induced robot trajectory can be described by a sequence of
state beliefs:

bt0
(at0 ∶t1 ,ũ1)ÐÐÐÐÐÐ→ bt1

(at1 ∶t2 ,ũ2)ÐÐÐÐÐÐ→ . . .
(at∣ϕ∣−1 ∶t∣ϕ∣ ,ũ∣ϕ∣)ÐÐÐÐÐÐÐÐÐ→ bt∣ϕ∣ , (6)

where the localization action of ati is assigned according to the
probability distribution ς(bti) over A. Note that it is possible
for the localization to become active during the execution of
ũi if ati−1 = aboot. That means that, at some point between ti−1
and ti, booting is complete. At this point, the measurements
become more accurate, and ũi drives the robot’s belief to b̃i.

We assume that, without loss of generality, the localization
is initially on. Therefore, in Problem 1, we are interested in
computing a feasible schedule, in which it holds that: the first
action applied by the schedule is aon or aoff ; every action
astart is immediately preceded by aoff ; every action aboot is
immediately preceded by astart or aboot; if astart is used at
time point ti, i ≥ 1, then action aboot is used at all time points
ti+1, . . . , tj such that tj−ti < Tboot ≤ tj+1−ti; and every action
aon is immediately preceded by aboot or aon.

C. Objectives

1) Resource Consumption: One of the objectives that in-
fluences the choice of ς is the resource consumption. Let
c ∶ X × U × A → R≥0 denote a resource consumption
function, which represents the amount of resources used by the
robotic system given its state, control input, and localization
action. An example of such resource cost is the amount of
computations required by different system modules (including
localization). We are interested in the total expected resource
cost under ς denoted by Ecost(ς).

Let bt denote the expected belief, where expectation is taken
over observations, i.e.,

bt = EZ(bt ∣ xt0 , at0∶t) = Px(xt ∣ xt0 , ut0∶t, at0∶t), (7)

where EZ is the expectation over domain Z. Then, given the
localization action at and control ut, the expected cost at time

t is given by

EX(c(xt,ut, at)) = ∫
X
c(xt,ut, at)bt dxt, (8)

where EX is the expectation over domain X . The total
expected cost for the whole trajectory under ς is

Ecost(ς) = ∫
t∣ϕ∣

t0
∑
at∈A

ς(bt)(at)EX(c(xt,ut, at))dt, (9)

where ς(bt)(at) is the probability of choosing action at.
2) Task Performance: The task objectives of obstacle avoid-

ance and target reachability need to be reasoned about proba-
bilistically by using expected beliefs. Given that all collisions
with obstacles are terminal, the fragments of the beliefs that
are in collision remain in obstacles as bt evolves. Hence, the
probability of collision along ϕ under ς is

Pcoll(ς) = Prob(xt0∶t∣ϕ∣ ∈XO) = ∫
XO

bt∣ϕ∣ dxt∣ϕ∣ , (10)

where XO ⊂ X is the set of states that correspond to the
obstacles in WO. Similarly, the probability that the robot is in
the target region at the end of the trajectory execution is

Ptarg(ς) = Prob(xt∣ϕ∣ ∈XG) = ∫
XG

bt∣ϕ∣ dxt∣ϕ∣ , (11)

where XG ⊂X is the set of states corresponding to target WG.

V. SOLUTION METHOD

Here, we detail our abstraction method for the robotic
system in Problem 1 and the reduction of the problem to a
multi-objective optimization over an MDP.

A. Abstraction

1) Belief Space Discretization: Recall that, due to motion
and observation noise, the robot has to base its localization
schedule on state beliefs. These beliefs are generally hard to
reason about because they are continuous in both time and
space. One of the novelties of this work is a discretization
method that reduces the complexity of this reasoning from
continuous to a discrete, finite space. Since Problem 1 requires
reasoning about the behavior of the system in expectation
(see (9)-(11)), we focus on the expected beliefs. The key
observation is that localization decisions are only made right
before applying each control law, and there is only a finite
number of control laws (waypoints) and localization actions.
Hence, the number of belief states that the robot has to make
a decision on is, in turn, finite.

Technically, the robot’s belief evolves sequentially based on
the applied control law and localization action in each step as
shown in (6). Initially, the belief is bt0 = N (x̃0,Qx0). For
1 ≤ i ≤ ∣ϕ∣ and action ati−1 given according to ς(bti−1) for the
time window [ti−1, ti), the (expected) belief at ti is:

bti =
⎧⎪⎪⎨⎪⎪⎩

Px(xti ∣ bti−1 , ũi, aon) if at−i = aon,

Px(xti ∣ bti−1 , ũi, aoff) if at−i ≠ aon,
(12)

where at−i is the final status of the localization in [ti−1, ti).
Therefore, a discrete belief graph in the form of a tree (a
directed graph with no cycles) that captures all the expected



LAHIJANIAN et al.: RESOURCE-PERFORMANCE TRADE-OFF ANALYSIS FOR MOBILE ROBOTS 5

beliefs at the localization decision points can be constructed.
The nodes of the graph are the beliefs bti , at which the
localization schedule is called, and each edge corresponds to
a localization action and directs to the next belief.

It is important to note that, in addition to preserving the
history of collisions, bti is dependent on the history of the
applied actions. In other words, bti is unique to the sequence
of applied localization actions up to ti. For simplicity of
presentation, we do not project this history in the notation
of beliefs, but it is reflected in the graph (tree) by only one
incoming edge for each belief node. This results in a state
explosion in the belief graph. That is, the total number of nodes
is exponential in the length of ϕ, i.e., O(∣A∣∣ϕ∣). We drastically
reduce this size (to quadratic in ∣ϕ∣) by distinguishing between
the collision-free and in-collision parts of the belief nodes
(similar to [25]) as described below.

2) MDP Construction: Recall that the robot converges to
b̃i when at−i−1 = aon. This is trivially conditioned on the fact
that the robot’s trajectory is collision-free. Let b̄ti denote
the collision-free part of bti , i.e., the truncated probability
distribution of xti over X −XO:

b̄t = Px(xt ∣ xt0 , ut0∶t, at0∶t, xt ∉XO). (13)

Then, b̄ti = b̃i (up to precision ε) when at−i = aon. This means
that, every time the localization is turned on, the truncated
collision-free belief b̄ti of the robot becomes a pre-computed
distribution, resulting in an independence from the history of
the applied localization actions unlike bti . This can be viewed
as a pruning technique, resulting in a lower number of unique
b̄ti beliefs, i.e., lower number of unique nodes in the graph.
Let b̄ji , 0 ≤ j ≤ i, denote the collision-free belief at time ti
with the most recent localization action aon at time tj , i.e.,
at−j = aon and at ≠ aon for all tj < t < ti. The sequential
evolution of the collision-free beliefs becomes:

{ b̄ii = b̃i if at−i = aon,

b̄ji = Px(xti ∣ b̄ji−1, ũi, aoff , xti ∉XO) if at−i ≠ aon.
(14)

Unlike (12), the above evolution is not deterministic; rather, it
is probabilistic. That is, under each localization action, there is
a probability associated with the transition from one collision-
free belief to the next, and the remaining probability mass
is assigned to the collision with an obstacle. Therefore, by
reasoning over b̄ji instead of bti , the belief graph can be
greatly reduced in size at the cost of introducing probabilistic
transitions. This probabilistic model is, in fact, an MDP
(defined below) with a state structure as in Fig. 2.

An MDP is a tuple M = (S, sinit,Act,P ), where S is a
finite set of states, sinit ∈ S is the initial state, Act is a finite set
of actions, and P ∶ S ×Act→ D(S) is a (partial) probabilistic
transition function. A cost function for MDP M is a (partial)
function C ∶ S × Act → R≥0 such that C(s, a) is defined iff
P (s, a) is defined.

The construction of the MDP for the evolution of the robot
is as follows. The state space S consists of states of the form
sji , for 0 ≤ i ≤ ∣ϕ∣, 0 ≤ j ≤ i, that correspond to beliefs
b̄ji , where sii indicates that the robot’s belief is b̃i, and s00 is
the initial belief. In addition, S includes states scoll, starg, sfree,
which correspond to the robot being in collision, target, and

⋯ ⋯

⋯

⋯ ⋯

⋯

⋯

⋯

⋯

⋯

sfree

s22

s01

aoff

asbo

aon

s12

s2∣ϕ∣

s11s00 smm

s1∣ϕ∣

s
∣ϕ∣
∣ϕ∣

s0∣ϕ∣

s02

scoll

starg

Fig. 2: Structure of the abstraction MDP.

free space, respectively. The set of MDP actions is Act =
{aoff , aon, asbo}, where asbo represents the sequence of actions
needed to fully activate localization, which begins with astart,
continues with aboot, and ends with aon.

The transition probabilities for states sji are computed as
follows. For actions aon and aoff , the values can be computed
by evolving b̄ji according to (14). In practice, techniques such
as Kalman Filter or Particle Filter can be employed to compute
these evolutions as well as their corresponding transition
probabilities. A similar computation can be performed for
action asbo by considering Tboot. That is, these transition
probabilities can be obtained by combining the previously
computed probabilities of action aoff for the duration of Tboot

followed by the evolution of the resulting belief with aon.
Once the computations for all sji states are complete, the
probabilities of being in the target region or in the free space
for states with i = ∣ϕ∣ are calculated.

The MDP cost C at state sji under a ∈ Act is the expected
resource usage by the robot starting from belief b̄ji at time
point ti to the next time point ti+1 under the corresponding
localization action. Formally,

C(sji , a) = ∫
ti+1

ti
EX(c(xt,ut, at))dt, (15)

where EX(c(xt,ut, at)) is given by (8), xti ∼ b̄ji , and at ∈ A
corresponds to the MDP action a ∈ Act.

The size of the state space of this MDP is quadratic in
the length of ϕ, i.e., ∣S∣ = (∣ϕ∣ + 2)(∣ϕ∣ + 1)/2 + 3, and
there are at most two actions per state. The implementation
of the algorithm can be made parallel by constructing the
diagonal levels of the triangle-shaped state space in Fig. 2
independently, gaining a speed-up of O(∣ϕ∣).

B. Problem Reduction

A policy for MDP M is a function π ∶ S → D(Act) that
associates every state with a distribution according to which
the next action is chosen. From the above construction of the
MDPM and definition of its action asbo, it follows that every
feasible localization schedule for the robot corresponds to a
policy for M, and vice versa, every policy π of M implies a
feasible localization schedule ςπ defined as ςπ(bti) = π(s

j
i ).

Thus, Ecost, Pcoll, and Ptarg in (9)-(11) for the robot become
the following over M:

Ecost(ςπ) = Eπ(
∣ϕ∣−1
∑
k=0

C(sk, ak))), (16)



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Pcoll(ςπ) = Pπ(scoll), (17)
Ptarg(ςπ) = Pπ(starg), (18)

where ak is picked according to π(sk), and Eπ and Pπ(s)
denote the expectation over the paths ofM and the probability
of reaching state s under policy π, respectively. Problem 1,
hence, reduces to a multi-objective optimization problem over
M, where the goal is to construct a policy that minimizes (16)
and (17) and maximizes (18).

As mentioned in Sec. III, however, there may not exist a
policy that globally optimizes all three objectives. Hence, we
are interested in the set of all optimal trade-offs between the
objectives, known as the Pareto front. Let Y ⊆ R × [0,1]2 be
the set of all achievable values for the three objectives. Point
y = (yEcost , yPcoll

, yPtarg) ∈ Y is Pareto optimal if there does
not exist y′ = (y′Ecost

, y′Pcoll
, y′Ptarg

) ∈ Y such that yEcost ≥ y′Ecost
,

yPcoll
≥ y′Pcoll

, yPtarg ≤ y′Ptarg
, and y ≠ y′. Pareto front of Y is

the set of all Pareto optimal points in Y .
There exist algorithms and off-the-shelf tools, e.g., [4],

that solve the above multi-objective problem for MDPs and
construct the Pareto front through a value iteration proce-
dure [3]. Given a Pareto point, the algorithms generate the
corresponding policy using linear programming [2], [18]. The
complexity of this algorithm is polynomial in the size of
the MDP. We first construct the Pareto front using these
algorithms. Then, by the choice of the designer, we generate
the desired policy, i.e., localization schedule.

We note that the obtained localization schedule for the con-
tinuous system with trajectory ϕ is optimal with respect to the
user-provided waypoints, a discretization of the continuous ref-
erence trajectory. As this discretization is refined, the obtained
optimality approaches the true one in the continuous domain.
Furthermore, there are two possible sources of approximation
in the MDP abstraction. One is rooted in the ε-convergence of
the beliefs under aon and their presentation as a single MDP
state. For sufficiently small ε, this approximation becomes
negligible. The other approximation arises in the computations
of the transition probabilities and costs of the MDP [23].

VI. EXPERIMENTAL RESULTS

We demonstrate the efficacy of the method in two case
studies. We first consider a robot with energy as a resource cost
in simulations, and then we show a similar analysis on ARC
Q14 planetary rover and deploy it with the obtained schedules
in an experimental setup. More case studies, including an
application in hardware design, can be found in [26].

A. Second-Order Unicycle

Setup: We considered a mobile robot with (second-order)
unicycle dynamics given by ẋ1 = v cos θ, ẋ2 = v sin θ, where
x1, x2 indicate the position, v is the speed, and θ is the heading
angle of the robot. The control inputs are the acceleration v̇ =
u1, and angular velocity θ̇ = u2. We corrupted the dynamics
by motion noise w ∼ N (0, σ2

wI), where σw = 0.01, and I is
the identity matrix. The robot measurements were modeled as
z = x+v⋆, where sensor noise v⋆ ∼ N (0, σ2

⋆I) for ⋆ ∈ {od, lo},
σod = 0.2, σlo = 0.03.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

'op

'na

'wi

Fig. 3: Workspace of the unicycle robot. Obstacle and target regions
are shown in black and green, respectively. The waypoints of ϕop,
ϕna, and ϕwi are depicted as dark blue dots.

6500

7000

0.8

7500

8000

8500

9000

9500

E
ne

rg
y

10000

0.85

10500

11000

11500

0.9

Pareto Front

p(Target)

0.120.95 0.1

p(Collision)

0.080.061 0.040.020

Fig. 4: Visualization of the Pareto front with its projections onto two
planes for the unicycle robot on ϕwi. Vertices are shown in red.

We focused on trade-off analysis of the performance ob-
jectives, i.e., collision avoidance and target reaching, and
energy consumption as the resource objective. The energy
consumption model was taken from [1], where the localization
module uses a camera and an algorithm to process the images.
The power demand of the module was 8 W when active, and
it required time 5 s and energy 40 J to boot. The remaining
power consumption for the robot was approximated as 42 W.

We considered a workspace with several obstacles and a
target region, and three reference trajectories as depicted in
Fig. 3. The trajectories were: ϕop through open space with 26
waypoints; ϕna between narrow obstacles with 27 waypoints;
ϕwi winding around obstacles with 39 waypoints. To enable
reachability and belief stabilization, we designed a feedback
controller using dynamic feedback linearization (DFL) and
LQG. Fig. 3 depicts the robot trajectories under no noise.

Pareto Fronts: We constructed an MDP for each reference
trajectory according to the abstraction algorithm in Sec. V-A
by using a Particle Filter. They consisted of 656, 708, and
1 488 state-action pairs for ϕop, ϕna, and ϕwi respectively. We

TABLE I: Pareto front for the unicycle on ϕwi. Only the vertices
with Ptarg ≥ 0.97 are listed. For comparison, values for ςoff , ςon, and
localization energy EenL are also shown. EenT is total energy.

P. Pt Ptarg Pcoll EenT EenL EenT, EenL saved over ςon

1 1.000 0.000 11316 1011 66.1% 81.1%

2 0.998 0.002 10633 876 68.1% 83.6%

3 0.994 0.006 9297 540 72.1% 89.9%

4 0.970 0.032 8325 340 75.0% 93.6%

5 (ςoff ) 0.835 0.099 6642 0 80.1% 100.0%

ςon 1.000 0.000 33354 5337



LAHIJANIAN et al.: RESOURCE-PERFORMANCE TRADE-OFF ANALYSIS FOR MOBILE ROBOTS 7

(a) Open trajectory ϕop. (b) Narrow trajectory ϕna. (c) Winding trajectory ϕwi.

Fig. 5: Sample trajectories under two localization schedules. In left images of (a)-(c), the performance guarantees are Ptarg = 1 and Pcoll = 0.
In right images of (a)-(c), the guarantees are Ptarg = 0.86 and Pcoll = 0 for ϕop and Ptarg = 0.97 and Pcoll = 0.03 for ϕna and ϕwi.

then computed the Pareto front for each reference trajectory
using PRISM-games [5]. In Fig. 4, we show the convex Pareto
front (surface) for ϕwi. In Table I, we present the vertices of
this surface with Ptarg ≥ 0.97 and compare their values against
those of the schedule ςon, which keeps the localization on at all
times. Every point on the surface of Pareto front corresponds
to a particular optimal trade-off between the three objectives,
and there exists a localization schedule that achieves it.

In all cases, the localization schedule ςon is not Pareto
optimal because there exist localization schedules that have
the same probabilistic guarantees as ςon, i.e., Ptarg = 1 and
Pcoll = 0, while saving energy by turning localization off. On
the other hand, the localization schedule ςoff , which keeps
the localization off at all times, is Pareto optimal in all
three cases because it minimizes the energy consumption. The
performance guarantees under ςoff , however, are not desirable,
i.e., Ptarg and Pcoll are 0.86 and 0 for ϕop, 0.77 and 0.09 for
ϕna, and 0.83 and 0.10 for ϕwi, respectively. Generally, Pareto-
optimal schedules save 60-80% of total energy and 72-100%
of localization energy compared to ςon.

Localization Schedules: For each reference trajectory, we
generated schedules for two Pareto points using PRISM [4].
We simulated 500 sample robot trajectories under each local-
ization schedule and Fig. 5 depicts 100 of them. The first set
of schedules correspond to the Pareto points with Ptarg = 1 and
Pcoll = 0 (left images). To ensure that the target is reached with
probability 1 and minimum energy, these schedules turn on
localization only at the critical waypoints: near obstacles and
right before the target. The second set of schedules correspond
to ςoff for ϕop and Pareto points with Ptarg = 0.97 and
Pcoll = 0.03 for ϕna and ϕwi. These schedules trade off the
performance by a small percentage to save energy. As shown
in the right image of Fig. 5a, ςoff keeps localization off for
the entire trajectory ϕop, resulting in missing the target 14%
of times in trade-off for 79% gain in energy. For ϕna and ϕwi,
the schedules turn on the localization only at two extremely
critical points; one very close to an obstacle and one before
the target. These schedules trade off 3% loss in performance to
gain 73-75% in energy. In all simulations, the obtained values
for the three objectives were within 3% of the corresponding
Pareto point values, validating the framework.

B. Rover Experiments

Setup: The robotic platform used in this experimental case
study is ARC Q14 planetary rover shown in Fig. 1. It is

designed to mimic the configuration and specification found
on rovers deployed for planetary exploration. The rover has
4 wheels and 8 motors with max speed of 0.5 m/s (see
[1] for full spec). We used Dub4 [27] as the high accuracy
localization module, while low accuracy measurements were
obtained using Visual Odometry. The energy consumption
model was taken from [1] that studied this rover platform.

We modeled the motion of the rover as the unicycle
in Sec. VI-A with constrained speed, angular velocity, and
acceleration. We used the same DFL as above to linearize
the dynamics and employed receding horizon controller for
reachability and Kalman Filter for state estimation. We es-
timated motion and measurement noise as N (0, σ2I) with
σw = σod = 0.1 and σlo = 0.01. The robot’s task was to
navigate from an entrance to exit door of a meeting room.
It was first driven by a human, during which the localization
module automatically extracted waypoints (see Fig. 6a).

Pareto Front: We computed the Pareto front for this
scenario by first generating the abstraction MDP and then
applying our multi-objective algorithm. We considered the
same objectives as in Sec.VI-A; the vertices of the Pareto front
are shown in Table II. In this case study, both ςon and ςoff are
Pareto optimal; one gives rise to the highest Ptarg and the other
results in smallest total energy EenT. Note that it is possible
to save 18-32% in EenT by sacrificing only 0.5-5% in Ptarg.

Robot Deployment: We deployed the robot under ςon and
ς3. Fig. 6a-b show the robot’s trajectories, localization status
in blue, yellow, and purple, state estimate in orange, and the
projection of the belief’s variance onto 2-D in gray. The robot
itself is shown as black-edged rectangles along the trajectory.
As evident in these figures, under ςon, the robot is always safe
because it is able to stay within a very close proximity of
ϕ at all times. Under ς3, the robot uses its localization only
at the very beginning and for the last two waypoints. The
use of localization at the beginning sets the robot’s trajectory
and belief on the right path. Once localization is turned off,
the uncertainty in the robot’s belief grows, but the robot is
still able to continue with the path without deviating too far
from it thanks to its initial localization. Once the robot is
near a point that is dangerously close to an obstacle, and ϕ
requires sharp maneuvers, ς3 turns on localization to reduce
robot’s uncertainty and enable it to perform the maneuvers.
Note that, once the localization is turned back on, on account
of the increased uncertainty, the robot is required to make a
sharper turn than under ςon to be able to reach the target. The



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Robot trajectory under ςon. (b) Robot trajectory under ς3. (c) Simulation trajectories under ς3.

Fig. 6: Robot trajectories in experiments and simulations. The waypoints are shown as light blue dots in (a). The blue, yellow, and purple
trajectory segments indicate localization status aoff , astart and aboot, and aon, respectively. In (a) and (b), robot’s belief is shown in orange
(state estimate) and gray (projection of variance), and robot’s orientation by black-edged boxes. Under ςon, the performance guarantees are
Ptarg = 1 and Pcoll = 0 while they are Ptarg = 0.99 and Pcoll = 0.01 for ς3 in trade-off for 24% reduction in EenT.

TABLE II: Pareto front for the planetary rover. For comparison, we
list the energy savings of Pareto-optimal schedules against ςon.

P. Pt Ptarg Pcoll EenT EenL EenT, EenL saved

1 0.500 0.000 6156 508 30.0% 65.3%

2 (ςon) 1.000 0.000 8792 1465 0.0% 0.0%

3 (ς3) 0.990 0.010 6713 651 23.6% 55.6%

4 0.995 0.005 7215 814 17.9% 44.4%

5 (ςoff ) 0.443 0.005 4806 0 45.3% 100.0%

6 0.955 0.045 5970 325 32.1% 77.8%

framework is aware of such uncertainties; therefore, under ς3,
the performance guarantee is reduced by 1% to save 24% in
energy in comparison to ςon, resulting in an elongation of the
battery life. Fig. 6c shows 50 trajectories of the center of the
robot obtained in simulations prior to the rover deployment.

VII. FINAL REMARKS AND FUTURE WORK

In this work, we proposed a general framework for explo-
ration of performance-resource trade-offs and demonstrated its
efficacy in robot design. The framework can be adapted to
schedule other modules such as perception, different motors,
or various localization modules. The future work directions
include performance-resource trade-off analysis for: more
complex cost measures such as long-run average cost; sys-
tems with delayed measurements; a combination of modules,
e.g., localization and perception, and, ultimately, localization,
perception and planning.

REFERENCES

[1] P. Ondruska, C. Gurau, L. Marchegiani, C. H. Tong, and I. Posner,
“Scheduled perception for energy-efficient path following,” in ICRA,
2015, pp. 4799–4806.

[2] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis, “Multi-
objective model checking of Markov decision processes,” in TACAS,
2007, pp. 50–65.

[3] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for proba-
bilistic model checking,” in ATVA, 2012, pp. 317–332.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV, 2011, pp. 585–591.

[5] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,
“PRISM-games: A model checker for stochastic multi-player games,”
in TACAS, 2013, pp. 185–191.

[6] R. Madan, S. P. Boyd, and S. Lall, “Fast algorithms for resource
allocation in wireless cellular networks,” in IEEE/ACM Trans. Netw.,
vol. 18, Jun. 2010, pp. 973–984.

[7] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed max-
imum a posteriori estimation for multi-robot cooperative localization,”
in ICRA, 2009, pp. 1402–1409.

[8] A. I. Mourikis and S. I. Roumeliotis, “Optimal sensor scheduling for
resource-constrained localization of mobile robot formations,” IEEE
Trans. on Rob., vol. 22, no. 5, pp. 917–931, 2006.

[9] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251 – 260, 2006.

[10] J. Salmern-Garca, P. igo Blasco, F. D. del Ro, and D. Cagigas-Muiz,
“A tradeoff analysis of a cloud-based robot navigation assistant using
stereo image processing,” IEEE Trans. on Aut. Sci. and Eng., vol. 12,
no. 2, pp. 444–454, April 2015.

[11] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in ICRA, 2007, pp. 3116–3121.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in HSCC, 2010.

[13] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. Andersson,
“Automatic deployment of autonomous cars in a robotic urban-like
environment (RULE),” in ICRA, 2009, pp. 2055–2060.

[14] R. Luna, M. Lahijanian, M. Moll, and L. E. Kavraki, “Asymptotically
optimal stochastic motion planning with temporal goals,” in WAFR,
2014, pp. 335–352.

[15] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner, “Energy-utility
analysis for resilient systems using probabilistic model checking,” in
PETRI NETS, 2014, pp. 20–39.

[16] J. Climaco, Multicriteria Analysis. Springer, 1997.
[17] E. M. Hahn, V. Hashemi, H. Hermanns, M. Lahijanian, and A. Turrini,

“Multi-objective robust strategy synthesis for interval Markov decision
processes,” in QEST. Springer, 2017, pp. 207–223.

[18] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Quanti-
tative multi-objective verification for probabilistic systems,” in TACAS,
2011, pp. 112–127.

[19] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu, “Synthesis of human-
in-the-loop control protocols for autonomous systems,” IEEE Trans. on
Aut. Sci. and Eng., vol. 13, no. 2, pp. 450–462, 2016.

[20] M. Lahijanian and M. Kwiatkowska, “Specification revision for Markov
decision processes with optimal trade-off,” in CDC. IEEE, 2016, pp.
7411–7418.

[21] K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Controller synthesis
with budget constraints,” in HSCC, 2008, pp. 72–86.

[22] E. Tesarova, M. Svorenova, J. Barnat, and I. Cerna, “Optimal observation
mode scheduling for systems under temporal constraints,” in ACC, 2016,
pp. 1099–1104.

[23] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, vol. 33, no. 2, pp. 268–304, 2014.

[24] D. Bertsekas, Dynamic programming and optimal control. Cambridge,
MA: Athena Scientific, 2007, vol. 3rd edn.

[25] S. Patil, J. Van Den Berg, and R. Alterovitz, “Estimating probability of
collision for safe motion planning under gaussian motion and sensing
uncertainty,” in Int. Conf. on Rob. and Aut. IEEE, 2012, pp. 3238–3244.

[26] M. Lahijanian, M. Svorenova, , A. A. Morye, B. Yeomans, D. Rao,
I. Posner, P. Newman, H. Kress-Gazit, and M. Kwiatkowska,
“Resource-performance trade-off analysis for mobile robot design,”
arXiv:1609.04888 [cs.RO], 2017, https://arxiv.org/abs/1609.04888.

[27] C. Linegar, W. Churchill, and P. Newman, “Made to measure: Bespoke
landmarks for 24-hour, all-weather localisation with a camera,” in Int.
Conf. on Rob. and Aut. IEEE, May 2016, pp. 787–794.

https://arxiv.org/abs/1609.04888

	Introduction
	Literature Review
	Problem formulation
	System Description
	Control Laws
	Localization Schedule
	Objectives
	Resource Consumption
	Task Performance


	Solution Method
	Abstraction
	Belief Space Discretization
	MDP Construction

	Problem Reduction

	Experimental Results
	Second-Order Unicycle
	Rover Experiments

	Final Remarks and Future Work
	References

