
Synthesis for Multi-Objective Stochastic Games:

An Application to Autonomous Urban Driving

Taolue Chen, Marta Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche

Department of Computer Science, University of Oxford, United Kingdom

Abstract. We study strategy synthesis for stochastic two-player games
with multiple objectives expressed as a conjunction of LTL and expected
total reward goals. For stopping games, the strategies are constructed
from the Pareto frontiers that we compute via value iteration. Since, in
general, infinite memory is required for deterministic winning strategies
in such games, our construction takes advantage of randomised mem-
ory updates in order to provide compact strategies. We implement our
methods in PRISM-games, a model checker for stochastic multi-player
games, and present a case study motivated by the DARPA Urban Chal-
lenge, illustrating how our methods can be used to synthesise strategies
for high-level control of autonomous vehicles.

1 Introduction

The increasing reliance on sensor-enabled smart devices in a variety of appli-
cations, for example, autonomous parking and driving, medical devices, and
communication technology, has called for software quality assurance technolo-
gies for the development of their embedded software controllers. To that end,
techniques such as formal verification, validation and synthesis from specifica-
tions have been advocated, see e.g. [17, 3]. One advantage of synthesis is that
it guarantees correctness of the controllers by construction. This technique has
been successfully demonstrated for LTL (linear temporal logic) specifications in
robotic control and urban driving [19, 21], where it can be used to synthesise
controllers that maximise the probability of the system behaving according to
its specification, which is expressed as an LTL formula. As a natural continua-
tion of the aforementioned studies, one may wish to synthesise controllers that
satisfy several objectives simultaneously. These objectives might be LTL formu-
lae with certain probabilities, or a broader range of quantitative, reward-based
specifications. Such multi-objective specifications enable the designers to choose
the best controller for the given application by exploiting the Pareto trade-offs
between objectives, such as increasing the probability of reaching a goal, while
at the same time reducing the probability of entering an unsafe state or keeping
the expected value of some reward function above a given value.

The majority of research in (discrete) controller synthesis from LTL specifica-
tions has centred on modelling in the setting of Markov chains or Markov decision
processes (MDPs). In this paper, we focus on stochastic two-player games, which

generalise MDPs, and which provide a natural view of the system (represented
as Player 1) playing a game against an adversarial environment (Player 2). In
the setting of multi-objective stochastic games, several challenges for controller
synthesis need to be overcome that we address in this paper. Firstly, the games
are not determined, and thus determinacy cannot be leveraged by the synthesis
algorithms. Secondly, the winning strategies for such games require both mem-
ory and randomisation; previous work has shown that the number of different
probability distributions required by the winning strategy may be exponential
or even infinite, and so one needs to adopt a representation of strategies which
allows us to encode such distributions using finitely many memory elements.

Modelling via multi-objective stochastic games is well suited to navigation
problems, such as urban driving, where the environment makes choices to which
the system has to react by selecting appropriate responses that, for example,
avoid obstacles or minimise the likelihood of accidents. The choices of the envi-
ronment can be nondeterministic, but can also be modelled probabilistically, e.g.
where statistical observations about certain hazards are available. In addition to
probabilities, one can also annotate the model with rewards, to evaluate vari-
ous quantities by means of expectations. For instance, we can model a trade-off
between the probability p of the car reaching a certain position without an acci-
dent, and the expected quality r of the roads it drives over to get there. While
both (p, r) = (0.9, 4) and (p′, r′) = (0.8, 5) might be achievable, the combination
(p′′, r′′) = (0.9, 5) could be unattainable by any controller, since (p, r) and (p′, r′)
are already Pareto optimal.

In this paper we extend the results of [9], where verification techniques for
multi-objective stochastic games were proposed. We focus here on quantitative
multi-objective conjunctions for stochastic two-player games, where each prop-
erty in the conjunction can be either an LTL formula or a reward function. We
formulate a value iteration method to compute an approximation of the Pareto
frontiers for exploring the trade-offs between different controllers and show how
to construct control strategies. We also develop a prototype implementation as
an extension of PRISM-games [7] using the Parma Polyhedra Library [1], and
apply it to a case study of urban driving inspired by the 2007 DARPA Urban
Challenge [11]. We construct and evaluate strategies for autonomous driving
based on OpenStreetMap [16] data for a number of English villages.

Contributions. The paper makes the following contributions:

– We show how to solve stopping games with conjunctions of LTL objectives
by reduction to reachability reward objectives.

– We formulate and implement algorithms for computing Pareto frontiers for
reachability games using value iteration.

– We construct strategies from the results of the value iteration algorithm and
evaluate their respective trade-offs.

– We present a case study of urban driving demonstrating all of the above.

Related work. Multi-objective optimisation has been applied in the context
of formal verification, mainly for MDPs and (non-stochastic) games, where it

is usually referred to as multidimensional optimisation. For MDPs, [5, 2] intro-
duced multiple discounted objectives and multiple long-run objectives, respec-
tively, whereas [13] studied the problem of Boolean combinations of quantitative
ω-regular objectives, which were extended in [15] with total rewards. In the set-
ting of non-stochastic games, multidimensional energy games were introduced,
including their complexity and the strategy synthesis problem [4, 14, 6, 18]. In [8]
stochastic games, where the objective of Player 1 is to achieve the expectation of
an objective function “precisely p”, were introduced. This problem is a special
case of the problem that we study.

Our case study is inspired by the DARPA Urban Challenge [11], whose guide-
lines and technical evaluation criteria we use, and particularly the report by the
winning team, which encourages the use of formal verification of urban driving
systems [17]. Team Caltech suggested the use of temporal logic synthesis for
high level planning [3]. This was later formulated for MDPs and LTL goals for
autonomous vehicles in adversarial environments (pedestrians crossing a street)
[19]. Receding horizon control [20] and incremental approaches [21] have been
suggested to alleviate the computational complexity by leveraging structure spe-
cific to the autonomous control problems.

2 Preliminaries

Given a vector x ∈ R
n
≥0 and a scalar z ∈ R, we write xi for the i-th component

of x where 1 ≤ i ≤ n, and x+z for the vector (x1 +z, . . . , xn +z). Moreover, the

dot product of vectors x and y is defined by x · y
def

=
∑n

i=1 xi · yi and the sum of

two sets of vectors X, Y ⊆ R
n
≥0 is defined by X + Y

def

= {x + y | x ∈ X, y ∈ Y }.

Given a set X ⊆ R
n
≥0, we define the downward closure of X as dwc(X)

def

= {y |

∃x . x ∈ X and y ≤ x}, and its convex hull as conv(X)
def

= {x | ∃x1, x2 ∈ X, α ∈
[0, 1] . x = αx1 + (1 − α)x2}.

A discrete probability distribution over a (countable) set S is a function µ :
S → [0, 1] such that

∑

s∈S µ(s) = 1. We write D(S) for the set of all discrete

distributions over S. Let supp(µ)
def

= {s ∈ S | µ(s) > 0} be the support of µ ∈
D(S). A distribution µ ∈ D(S) is a Dirac distribution if µ(s) = 1 for some
s ∈ S. Sometimes we identify a Dirac distribution µ with the unique element in
supp(µ). We represent a distribution µ ∈ D(S) on a set S = {s1, . . . , sn} as a
map [s1 7→ µ(s1), . . . , sn 7→ µ(sn)] ∈ D(S), and we usually omit the elements of
S outside supp(µ) to simplify the presentation.

Definition 1 (Stochastic two-player game). A stochastic two-player game
(called game henceforth) is a tuple G = 〈S, (S�, S♦, S©), ∆〉, where

– S is a countable set of states partitioned into sets S�, S♦, and S©; and

– ∆ : S × S → [0, 1] is a transition function such that ∆(〈s, t〉) ∈ {0, 1} if
s ∈ S� ∪ S♦, and

∑

t∈S ∆(〈s, t〉) = 1 if s ∈ S©.

S� and S♦ represent the sets of states controlled by players Player 1 and
Player 2, respectively, while S© is the set of stochastic states. For a state s ∈ S,

the set of successor states is denoted by ∆(s)
def

= {t ∈ S | ∆(〈s, t〉)>0}. We
assume that ∆(s) 6= ∅ for all s ∈ S. Moreover, we denote a set of terminal states

Term
def

= {s ∈ S | ∆(〈s, t〉)=1 iff s = t}.
An infinite path λ of a stochastic game G is an infinite sequence s0s1 . . . of

states such that si+1 ∈ ∆(si) for all i ≥ 0. A finite path is a finite such sequence.
For a finite or infinite path λ we write len(λ) for the number of states in the
path. For i < len(λ) we write λi to refer to the i-th state si of λ, and we denote

the suffix of the path λ starting at position i by λi def

= sisi+1 For a finite path
λ = s0s1 . . . sn we write last(λ) for the last state of the path, i.e., last(λ) = sn.
We write ΩG,s for the set of infinite paths starting in state s.

Strategy. In this paper we use an alternative formulation of strategies [2] that
generalises the concept of strategy automata [12].

Definition 2. A strategy of Player 1 in a game G = 〈S, (S�, S♦, S©), ∆〉 is a
tuple π = 〈M, πu, πn, α〉, where:

– M is a countable set of memory elements,
– πu : M× S → D(M) is a memory update function,
– πn : S� × M → D(S) is a next move function s.t. πn(s, m)[s′]>0 only if

s′∈∆(s),
– α : S → D(M) defines for each state of G an initial memory distribution

A strategy σ for Player 2 is defined in an analogous manner. We denote the set
of all strategies for Player 1 and Player 2 by Π and Σ, respectively.

A strategy is memoryless if |M| = 1. We say that a strategy requires finite
memory if |M| < ∞ and infinite memory if |M| = ∞. We also classify the
strategies based on the use of randomisation. A strategy π = 〈M, πu, πn, α〉 is
pure if πu, πn, and α map to Dirac distributions; deterministic update if πu and
α map to Dirac distributions, while πn maps to an arbitrary distributions; and
stochastic update where πu, πn, and α can map to arbitrary distributions.

Markov chain induced by strategy pairs. Given a game G with initial state
distribution ς ∈ D(S), a Player 1 strategy π = 〈M1, πu, πn, α1〉 and a Player 2

strategy σ = 〈M2, σu, σn, α2〉 induce a countable Markov chain G(ς, π, σ) =
〈S′, (∅, ∅, S′), ∆′〉 with initial state distribution ς(π, σ) ∈ D(S′), where

– S′ = S ×M1 ×M2,
– ∆′ : S′ × S′→[0, 1] is such that for all (s, m1, m2), (s

′, m′
1, m

′
2) ∈ S′ we have

(〈(s, m1, m2), (s
′, m′

1, m
′
2)〉) 7→

πn(s, m1)[s
′] · πu(m1, s

′)[m′
1] · σu(m2, s

′)[m′
2] if s ∈ S�

σn(s, m2)[s
′] · πu(m1, s

′)[m′
1] · σu(m2, s

′)[m′
2] if s ∈ S♦

∆(〈s, s′〉) · πu(m1, s
′)[m′

1] · σu(m2, s
′)[m′

2] if s ∈ S©,

– ς(π, σ) : S′ → [0, 1] is defined such that for all (s, m1, m2) ∈ S′ we have that
ς(π, σ)[s, m1, m2] = ς[s] · α1(s)[m1] · α2(s)[m2].

Probability measure. A stochastic game G together with a strategy pair
(π, σ) ∈ Π × Σ and a starting state s induces a (possibly infinite) Markov
chain on the game. We define the probability measure over the set of paths ΩG,s

and a strategy pair (π, σ) in the following way. The basic open sets of ΩG,s are

the cylinder sets Cyl(λ)
def

= λ · Sω for every finite path λ = s0s1 . . . sk of G, and

the probability assigned to Cyl(λ) equals
∏k

i=0 ∆(〈si, si+1〉)·pi(s0, . . . , si), where
pi(λ) = π(λ) if last(λ) ∈ S�, pi = σ(λ) if last(λ) ∈ S♦ and 1 otherwise. This def-
inition induces a probability measure on the algebra of cylinder sets, which can
be extended to a unique probability measure Prπ,σ

G,s on the σ-algebra generated
by these sets. The expected value of a measurable function f : Sω→R ∪ {∞}

under a strategy pair (π, σ) ∈ Π × Σ is defined as E
π,σ
G,s [f]

def

=
∫

f dPrπ,σ
G,s . We

say that a game G is a stopping game if for every pair of strategies π and σ a
terminal state is reached with probability 1.

Winning objectives. In this paper we study objectives which are conjunctions
of LTL and expected total reward goals. This section provides definitions of these
concepts, as well as that of Pareto frontiers representing the possible trade-offs.

LTL. To specify the LTL goals, we use the following standard notation:

Ξ ::= T | ¬Ξ | Ξ1 ∧ Ξ2 | XΞ | Ξ1 U Ξ2,

where T ⊆ S. Given a path λ and a LTL formula Ξ, we define λ |= Ξ as:

λ |= T ⇔ λ0 ∈ T
λ |= ¬Ξ ⇔ λ 6|= Ξ
λ |= Ξ1 ∧ Ξ2 ⇔ λ |= Ξ1 and λ |= Ξ2

λ |= XΞ ⇔ λ1 |= Ξ
λ |= Ξ1 U Ξ2 ⇔ λi |= Ξ2 for some i ∈ N0

and λj |= Ξ1 for 0 ≤ j < i .

Operators FΞ
def

= S U Ξ and GΞ
def

= ¬F¬Ξ have their usual meaning. We use a
formula and the set of paths satisfying the formula interchangeably, e.g. the set
of paths reaching a state in T ⊆ S is denoted by FT = {ω ∈ ΩG | ∃i . ωi ∈ T }.

Expected total reward. To specify the reward goals, we define a (k-dimensional)
reward function r : S → R

k
≥0, which for each state s of the game G assigns a

reward vector r(s) ∈ R
k
≥0. We define a vector of total reward random variables

rew(r) as rew(r)(λ)
def

=
∑

j≥0 r(λj) for any path λ. Under a fixed strategy pair
(π, σ) for both players, the expected total reward is the expected value of the
total reward random variable, i.e.,

E
π,σ
G,s [rew(r)] =

∫

ΩG,s

rew(r) dPrπ,σ
G,s .

We require the expected total rewards to be bounded. Hence, due to the self-
loops in terminal states, in particular we require r(s) = 0 for all s ∈ Term.

Conjunctive queries. A conjunctive query (CQ) is a tuple of LTL formulae,
reward functions, and their respective lower bounds,

ϕ = (Ξ, r, v) = ((Ξ1, . . . , Ξm), (r1, . . . , rn−m), (v1, . . . , vm, vm+1, . . . , vn)),

where m is the number of LTL objectives, n−m is the number of expected total
reward objectives, vi ∈ [0, 1] for 1 ≤ i ≤ m and vi ∈ R for m + 1 ≤ i ≤ n, Ξi is
an LTL formula, and ri is a reward function. We call v the target vector of the
CQ. Additionally, we define a reward conjunctive query (rCQ) to be a CQ with
m = 0. Player 1 achieves a CQ ϕ at state s if there exists a strategy π ∈ Π such
that, for any strategy σ ∈ Σ of Player 2, it holds that

m
∧

i=1

(Prπ,σ
G,s (Ξi) ≥ vi) ∧

n
∧

i=m+1

(Eπ,σ
G,s [rew(r)i−m] ≥ vi).

Pareto frontiers. A Pareto frontier for objectives Ξ and r is a set of points
P ⊆ R

n such that for any p ∈ P the following hold:

(a) for all ε > 0 the query (Ξ, r, p − ε) is achievable, and
(b) for all ε > 0 the query (Ξ, r, p + ε) is not achievable.

Given ε > 0, an ε-approximation of the Pareto frontier P is a set of points Q
satisfying that for any q ∈ Q there is a point p ∈ P such that ‖p− q‖ ≤ ε, and
for every p ∈ P there is a vector q ∈ Q such that ‖p− q‖ ≤ ε, where ‖ · ‖ is the
Manhattan distance of two points in R.

3 Computing the Pareto Frontiers

We now turn our attention to the computation of Pareto frontiers for the states
of the game, which will be required for the strategy construction. First, we recall
from our work in [9] how to compute them for rCQs, and then extend this by
showing how a stopping game G with a general CQ ϕ can be reduced to a
stopping game G′ with a rCQ ϕ′, such that there exists a strategy for Player 1

in G to satisfy ϕ if and only if there is a strategy for Player 1 in G′ to satisfy ϕ′.

Value iteration. To compute the successive approximations of the Pareto fron-
tiers we iteratively apply the functional from the theorem below. For stopping
games this is guaranteed to compute an ε-approximation of the Pareto frontiers.

Theorem 1 (Pareto frontier approximation). For a stopping game G and
a rCQ ϕ = (r, v), an ε−approximation of the Pareto frontiers for all states can

be computed in k = |S|+ ⌈|S| · ln(ε·(n·M)−1)
ln(1−δ) ⌉ iterations of the operator F : (S →

P(Rn
≥0)) → (S → P(Rn

≥0)) defined by

F (X)(s)
def

=

dwc(conv(
⋃

t∈∆(s) Xt)+r(s)) if s ∈ S�

dwc(
⋂

t∈∆(s) Xt+r(s)) if s ∈ S♦

dwc(
∑

t∈∆(s)∆(〈s, t〉) × Xt+r(s)) if s ∈ S©,

where initially X0
s

def

= {x ∈ R
n
≥0 |x ≤ r(s)} for all s ∈ S, M = |S| ·

maxs∈S,i ri(s)
δ

for δ = p
|S|
min, and pmin is the smallest positive probability in G.

Xk−1

t1

Xk−1

t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(a) Player 1 state s∈S� .

Xk−1

t1

Xk−1

t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(b) Player 2 state s∈S♦ .

Xk−1

t1

Xk−1

t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(c) Stochastic state s∈S©.
∆(〈s, t1〉) = ∆(〈s, t2〉) = 1

2
.

Fig. 1. Illustration of value iteration operations for rCQs. We plot the polytopes of s

and its successors t1 and t2 on the same graph. The reward at s is r(s) = (0, 0.1) and
∆(s) = {t1, t2}. The dashed (green) polytope is the result before adding the reward,
which is shown in the dash-dotted (red) polytope.

The value iteration computes a sequence of polytopes Xk
s for each state s

that converges to the Pareto frontiers. It starts with the bottom element ⊥ : S →

P(Rn
≥0) defined by ⊥(s)

def

= X0
s . The operations in the operator F are illustrated

in Figure 1. We assume that the expected reward for the game is bounded under
any pair of strategies, which in particular implies that, for any terminal state
t ∈ Term, r(t) = 0.

Strategy iteration. We use the sets Xk computed using the above iteration to
obtain the memory elements of the stochastic update strategy (see Section 4).
Thus, the iteration performed above can be regarded as a strategy iteration
algorithm: it generates strategies that are optimal for achieving the goal in k
steps (initially k = 1). After performing another iteration, we obtain the optimal
strategy for k+1 steps, etc. Since all rewards are non-negative, F is monotone, i.e.
Xk

s ⊆ Xk+1
s for all states s, and thus in every step the strategy either improves

or it has converged to the optimal one. The strategy iteration can be performed
either until the objective vector v is in Xk

s0
, or until it is within the required

accuracy determined by the stopping criterion.

LTL to expected reward. We present a reduction from LTL objectives to
expected total reward objectives for stopping games. The reduction is based
on a similar reduction for Markov decision processes ([10, 13]) which relies on
constructing a deterministic Rabin automaton for each LTL formula and then
building their product with the game G. As the game G is stopping, almost all
runs reach some terminal state with a positive probability. Hence, it is sufficient
to analyse the outcomes of the formulae in the terminal states of the product
game in order to establish whether the runs ending in them satisfy the formula.

Definition 3 (Rabin automaton). A deterministic Rabin automaton is a tu-
ple 〈Q, Σ, τ, q0, ((L1, R1), . . . , (Lj , Rj))〉, where Q are the states of the automaton
with initial state q0 ∈ Q, Σ = S is the alphabet, τ : Q × Σ → Q is a transition
function and Ll, Rl ⊆ Q are Rabin pairs.

Theorem 2 (LTL to expected reward). Given a stopping game G, a state
s and a CQ ϕ = ((Ξ1, . . . , Ξm), (r1 . . . rn−m), v), there exists a game G′, a state

s′, and a rCQ ϕ′ = ((r′1 . . . r′n), v) such that there is a Player 1 strategy to satisfy
ϕ in s of G if and only if there is a Player 1 strategy to satisfy ϕ′ in s′ of G′.

For each LTL formula Ξi, we construct a deterministic Rabin automaton
Ai = 〈Qi, Σi, τi, q

0
i , ((L1

i , R
1
i), . . . , (L

j
i , R

j
i))〉 with Σi = S, such that any path λ

satisfies Ξi iff λ is accepted by Ai. W.l.o.g. we assume each DRA is complete.
We index elements of tuples by subscripts, e.g., for a tuple s′ = (s, q0), s′0 = s

and s′1 = q0. Given a stopping game G = 〈S, (S�, S♦, S©), ∆〉 and DRAs Ai for
1 ≤ i ≤ m, we construct a stopping game G′ = 〈S′, (S′

�
, S′

♦, S′
©), ∆′〉, where:

– S′ = S×Q1×· · ·×Qm∪{term}, S′
= {s′ ∈ S′ | s′0 ∈ S#} for # ∈ {�, ♦, ◦};

– for states s′, t′ ∈ S′, using T ′ def

= {t′ ∈ S′ | t′0 ∈ Term},

∆′(s′, t′) =

∆(s′0, t
′
0) if s′ 6∈ T ′ and ∀ . 1 ≤ i ≤ m, τi(s

′
i, t

′
0) = t′i

1 if s′ ∈ T ′ ∪ {term} and t′ = term

0 otherwise;

– the initial state is s′ ∈ S′ s.t. s′0 = s and, for all 1 ≤ i ≤ m, τi(q
0
i , s) = s′i.

The new multi-objective query is ϕ′ = ((r′1, . . . , r
′
n), (v1, . . . , vn)), where each

r′i for 1 ≤ i ≤ m is defined as

r′i(s
′) =

{

1 if s′ ∈ T ′ and s′0
ω

is accepted by Ai with initial state s′i
0 otherwise,

and for m + 1 ≤ i ≤ n, r′i(s
′) = ri−m(s′0) for s′ 6= term and r′i(term) = 0, i.e.,

the reward functions of ϕ for m + 1 ≤ i ≤ n stay unchanged with respect to
S. Correctness follows by the standard argument of one-to-one correspondence
between strategies in G′ and G for both players, see e.g. [15].

4 Strategy Synthesis

In this section we present a construction of the strategy for Player 1, which, given
a stopping game G, the sets Xk computed using the iteration from Section 3,
and a state s, achieves the rCQ ϕ = (r, v), where v ∈ Xk

s . The resulting strategy
uses random updates on its memory elements to ensure that at every step the
expected total reward is kept above the target vector v. The assumption that
the game G is stopping implies that G terminates with probability 1, and thus
the target vector is achieved. Note that the stochastic memory update is crucial
to provide a compact representation of the strategy, as our previous work has
demonstrated the need for exponential (Proposition 3 in [8]), or even infinite
(Theorem 2 in [9]) memory if the strategy is only allowed to use randomisation
in Player 1 states.

We denote the set of vertices (corner points) of a polytope X as Cnr(X).
The strategy π = 〈M, πu, πn, α〉 is defined as follows.

– M =
⋃

t′∈S′{(t′, p) |p ∈ Cnr(Xk
t′)}.

– πu((t′, p), u) = [(u′, qu′

0) 7→ βu
0 , . . . , (u′, qu′

l) 7→ βu
l], where t′, u′ ∈ S′ such

that t′0 = t, u′
0 = u for t, u ∈ S, and such that ∆′(t′, u′) > 0 (note that

because DRAs are deterministic, such u′ is unique), and where for all 0 ≤
i ≤ l, qu′

i ∈ Cnr(Xk
u′), βu

i ∈ [0, 1], and
∑

i βu
i = 1, such that

• for t′ ∈ S′
�
∪ S′

♦ we have
∑

i βu
i · qu′

i ≥ p − r′(t),

• for t′ ∈ S′
©, qu′

i and βu
i have to be chosen together with the respective

values qv′

i , and βv
i assigned by πu((t′, p), v) for the remaining successors

v ∈ S \ {u} of t, so that they satisfy

∆(t, u) ·
∑

i

βu
i · qu′

i +
∑

v∈S\{u}

∆(t, v) ·
∑

i

βv
i · qv′

i ≥ p − r′(t′),

which ensures that the expected total reward is kept larger than the
current memory element.

– πn(t, (t′, p)) = [u 7→ 1] for some u ∈ S such that ∆′(t′, u′) > 0 (where u′ ∈ S′,
u′

0 = u), and for all 0 ≤ i ≤ l there exist qu′

i ∈ Cnr(Xk
u′), βu

i ∈ [0, 1], such

that
∑

i βu
i = 1 and

∑

i βu
i · qu′

i ≥ p − r′(t′).

– α(s) = [(s′, qs′

0) 7→ βs
0 , . . . , (s

′, qs′

l) 7→ βs
l], where s′ is the respective initial

state of G′, and qs′

i ∈ Cnr(Xk
s′), βs

i ∈ [0, 1] (for all 0 ≤ i ≤ l), and
∑

i βs
i = 1

such that
∑

i βs
i · qs′

i ≥ v′.

Note that, for all u′ ∈ S′, it is always possible to choose l ≤ n, i.e. the number
of points qu′

i and respective coefficients βu
i may be less than the number of

objectives. Also, the points qt′

i can indeed be picked from Xk
t′ because they exist

both in Xk−1
t′ , and Xk

t′ ⊇ Xk−1
t′ due to the monotonicity of F .

Theorem 3. The strategy constructed above achieves the expectation for the
total reward functions which is greater than or equal to v for the rCQ ϕ.

The proof follows the structure from [8], establishing, by induction on the
length of finite prefixes, that the expectation of the vector held in memory is
always between the target vector v and the expected total reward.

5 Case Study

We implement a prototype multi-objective strategy synthesis engine in PRISM-
games, a model checking and synthesis tool for stochastic games [7], and present
a case study applying our value iteration and strategy synthesis methods to per-
form control tasks. Our case study is motivated by the DARPA Urban Challenge
2007 (henceforth referred to as the Challenge), a competition for autonomous
cars to navigate safely and effectively in an urban setting [11]. In the Challenge,
cars were exposed to a set of traffic situations, and had to plan routes, avoid
hazards, and cope with the presence of other vehicles.

Hazard Abbreviation λ Reaction Accident Probability

Pedestrian p 0.05 Brake 0.01
Honk 0.04
Change Lane 0.03

Jam j 0.1 Honk 0.01
U-Turn 0.02

Obstacle o 0.02 Change Lane 0.02
U-Turn 0.02

Table 1. Model parameters for our prototype.

5.1 Problem Setting

We identify desired functions of vehicle controllers from the Challenge, and model
a scenario of a car driving through a map imported from OpenStreetMap [16].

We model the problem as a two-player stochastic game, where Player 1 rep-
resents the car navigating through the map and Player 2 represents the envi-
ronment. The game setting allows us to model the nondeterministic, adversarial
nature of hazards selected by the environment, and the car’s reaction to each
hazard is represented by Player 1 strategy. Probabilities are used to model the
relative likelihood of events in a given road segment and between different road
segments, and are understood to be the parameters obtained from statistical
observations; for example, certain road types are more prone to accidents. Fi-
nally, considering multiple objectives enables the exploration of trade-offs when
constructing controllers.

Each road segment is modelled as part of a stochastic game between the
environment (Player 2) that selects from a set of available hazards, and the car
(Player 1) that selects reactions to the hazards, as well as making route selection
(steering) decisions. Hazards occur with certain probabilities depending on the
properties of the road segment the car is on, and each reaction the car takes is
only successful with a given probability. We also model other parameters of the
road, e.g. we use rewards for road quality. In our autonomous driving scenario,
we consider three types of hazards with the corresponding reactions the car can
take (see Table 1). These hazards, as well as the reactions, are chosen according
to the Challenge event guidelines and technical evaluation criteria [11].

5.2 Model

We model the road network as a directed graph G = (V, E), where each edge
e ∈ E represents a road segment, see Figure 2(a). To each edge e ∈ E, we
associate a subgame Ge, parameterised by the properties of the corresponding
road segment (e.g., length, quality, number of lanes).

An example illustrating a subgame Ge is shown in Figure 3. The states have
labels of the form 〈s, e〉; when the context is clear, we simply use s. In state s0, a
set of at most two hazards is selected probabilistically, from which Player 2 can
then choose. To each hazard h ∈ {p, j, o} we associate a tuning parameter λ, and

let the probability of a set of hazards {h1, h2} be ph1h2

def

= tanh(λ1λ2len(e))/k,

f

e

f1

f2

einit

efinal

(a) Map of Charlton-on-Otmoor,
UK, with overlaid graph (only par-
tially shown).

〈s0, einit〉
.
.
.

〈sink, einit〉

Geinit

〈s0, e〉
.
.
.

〈sink, e〉
Ge

〈s0, f2〉
.
.
.

〈sink, f2〉

Gf2

〈s0, f1〉
.
.
.

〈sink, f1〉

Gf1

〈s0, f〉
.
.
.

〈sink, f〉

Gf

〈s0, efinal〉
.
.
.

〈sink, efinal〉

Gefinal

U
-t

u
rn

(b) Connection of subgames. All roads that are
not one ways have U-turn connections, but only
one is shown for the sake of clarity. The dashed
arrow abstracts several intermediate subgames.

Fig. 2. Illustrating the graph G = (V, E) and the corresponding subgame connections.

where len(e) is the length of the road corresponding to e in meters, and k = 6
is the number of sets of hazards.1 For a single hazard h, ph is defined similarly,
and the empty set of hazards is chosen with the residual probability pnone. The
parameters for our prototype model are given in Table 1.

Once a set of possible hazards is chosen in s0, and Player 2 has selected a
specific one in s1, s2 and s3, Player 1 must select an appropriate reaction in s4,
s5 and s6. Then the game enters either the terminal accident state “acc”, or a
Player 1 state “sink”, where the next edge can be chosen. If the reaction is not
appropriate in the given road segment (e.g., changing lane in a single lane road),
a “violation” terminal is entered with probability 1 (not shown in Figure 3).

From the subgames Ge and the graph G a game G is constructed that connects
the games Ge as shown in Figure 2(b). In a local sink, e.g. 〈sink, e〉, Player 1 makes
the decision as to which edge to go to next and enters the corresponding local
initial state, e.g. 〈s0, f1〉. Also, in a U-turn, the subgame Gf of the reverse edge f
of e is entered at its initial state, e.g. 〈s0, f〉. If a road segment does not have any
successors, or is the goal, the local sink for the corresponding game is made into
a terminal state. Note that the above construction results in a stopping game.

5.3 Objectives

We study three objectives for the autonomous driving scenario. Formally, we
consider the CQ ϕ = ((FT1, G¬T2), (r), (v1 , v2, v3)), where T1 = {〈s0, efinal〉},
T2 = {〈acc, e〉 | e ∈ E}, and r is a reward function explained below.

1 The use of the sigmoid tanh achieves a valid probability distribution independently of
the road length, while the weights λ tune the relative frequency of hazard occurrence.

s0

〈s0, e〉

s1

s4

jam

acc

s′0

〈s0, f〉

s2

s5pedestrian

acc

s3

s6

obstacle

acc

sink

pj

pjp

honk
U-turn

brake honk
change
lane1

100 2

100

1

100

4

100

3

100

2

100

2

100

poppp

pnone

poj

po

U-turn
change
lane

Fig. 3. Subgame Ge with reverse edge f of e. The reward in sink is rval(e)len(e).
Hazards and reactions are indicated as annotations.

Target location reachability. From the initial location, reach a target at a
particular orientation with probability v1, i.e. achieve Prπ,σ

G,〈s0,einit〉
(FT1) ≥

v1. Note that the orientation of the car is implicit, as two-way streets are
modelled as separate edges. On a high level, reachability at a correct orien-
tation is a primary goal also in the Challenge.

Accident avoidance. Achieve a probability v2 to never make an accident, that
is, achieve Prπ,σ

G,〈s0,einit〉
(G¬T2) ≥ v2. Note that a traffic rule violation, rep-

resented by the “violation” state is not considered an accident. This safety
goal represents the other primary goal of the Challenge.

Road quality. Achieve a certain road quality v3 over the duration of driving,
i.e. achieve E

π,σ
G,〈s0,einit〉

[rew((r))] ≥ v3. The road quality is determined ac-

cording to the road type and length extracted from the map data. Hence,
each edge e is assigned a value rval(e), and the reward function r is defined

by r(〈e, sink〉)
def

= rval(e) · len(e). In the Challenge, cars must be able to
navigate over different road types, and select adequate roads.

5.4 Implementation

We now give the details of our prototype implementation, focusing on how to
make the computation of strategies achieving CQs more efficient. Since the sets
Cnr(Xk

s) can be represented as convex polytopes, we use the Parma Polyhedra
Library [1] to perform the value iteration operations.

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(a) Iteration 10

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(b) Iteration 20

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(c) Iteration 40

Reach
Goal

Avoid Accident
R

o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(d) Iteration 150

Fig. 4. Successive (under-)approximations of the Pareto frontier in 〈s0, einit〉 of G for
Charlton-on-Otmoor, UK.

Gauss-Seidel update. Optionally, in-place updates can be used when computing
Xk+1 from Xk. That is, when Xk+1

s is computed from Xk, the result is stored in
the same memory location as Xk

s . Subsequently, if Xk+1
t is computed for t 6= t,

and s ∈ ∆(t), then Xk+1
s is used instead of Xk

s . Correctness of this method, also
called Gauss-Seidel update, follows from the monotonicity of the functional F
from Theorem 1.

Dynamic Accuracy Adaptation. During value iteration, |Cnr(Xk
s)| may increase

exponentially with k. To mitigate this, for each step k, we fix a baseline accuracy
ak ≫ 1, and round down each coordinate i of each corner of Xk

s to a multiple of
Mi

ak
, where Mi is of the same order of magnitude as the maximum reward in di-

mension i. The resulting polytopes are denoted by X̃k
s . Note that we must round

down in order to maintain safe under-approximations of the Pareto frontiers.2

Starting from a0, we dynamically increase the accuracy ak by some factor
λ > 1 after Nk steps, while at the same time increasing the number Nk of
steps until the next increase by the same factor λ. In the long run, this yields

an additive increase in the accuracy of a0(λ−1)
N0

per step. With this approach,
we obtain under-approximations of the Pareto frontiers with a small number
of points that are gradually refined by allowing more points in the polytopes.

2 C.f. the induction hypothesis in the proof of Theorem 1, see [9].

4.5

ti
m

e
p
e
r

it
e
ra

ti
o
n

[m
in

]

a
c
c
u
ra

c
y

1
/
a

k

m
a
x

#
p
o
in

ts
in

a
n
y

p
o
ly

to
p
e

iteration k

time p. iter

max # pts
accuracy

0.5

1

1.5

2

2.5

3

3.5

4

50

100

100 150

200

200 250

300

300 350

400

400 450

0.005

0.01

0.015

0.02

Fig. 5. Performance indicators for Charlton-on-Otmoor, cf. Figure 4. Note the changes
in the number of points and time to complete an iteration as the accuracy changes.

Note that, while Xk
s ⊆ F (Xk)(s), it is no longer true that Xk

s ⊆ X̃ ′, where
X ′ = F (Xk)(s). Therefore we use X̃k+1

s ∪ X̃k
s to preserve monotonicity.

Stopping criterion. Given a rCQ ϕ = (r, v), a strategy which achieves v is
sufficient, even if the Pareto frontier contains a point w > v. It is therefore
possible to terminate value iteration prematurely after iteration k, and yet apply
the strategy construction in Section 4 to achieve any points in the polytopes Xk

s .

5.5 Results

In this section we present the experimental results of the case study, which are
computed using the CQ ϕ from Section 5.3.

Value Iteration. We visualise the results of the value iteration, providing the
intuition behind the trade-offs involved. In Figure 4 we show the polytopes com-
puted for the initial state of the game for Charlton-on-Otmoor for several values
of k. Rounding decreases the number of corner points, and Gauss-Seidel updates
increase the convergence speed, albeit not the time per iteration. In Figure 5 we
show performance indicators of the value iteration of Figure 4.

Strategy Evaluation. For v = (0.7, 0.7, 6.0), we evaluate the constructed strategy
π for an adversary σ that picks hazards uniformly at random, build the induced
Markov chain G(π, σ, [〈s0, einit〉 7→ 1]), and illustrate the resulting strategies for
two villages in the UK in Figure 6. In Figure 6(b), one can observe that roads are
picked that do not lead towards the goal. This is due to the strategy achieving a
point on (or below) the Pareto frontier representing a trade-off between the three
objectives, as opposed to maintaining a hard constraint of having to reach the

(a) Charlton-on-Otmoor: 43
edges in G, 501 states in G.

(b) Islip: 125 edges in G, 1527 states in
G.

Fig. 6. Resulting strategies for the target vector (0.7, 0.7, 6.0). The start and the goal
are shown by a plus (+) and a cross (×) respectively. The thickness of the lines repre-
sents the expected proportion of trip time spent on the respective road by the car.

goal. Moreover, since maximising road quality is traded off against other goals,
it may be suboptimal to take roads several times to improve the expectation
while possibly incurring accidents and violations.

6 Conclusion

In this paper we have provided the first application of multi-objective stochastic
two-player games. We have proposed algorithms for strategy synthesis and ex-
tended the approach to support important classes of LTL objectives. To evaluate
the applicability of our techniques, we have developed a prototype implementa-
tion of the algorithms in the PRISM-games model checker and conducted a case
study, synthesising and evaluating strategies for autonomous urban driving using
real map data. There are many directions for future work, including extending
the approach to support minimisation of the reward functions, application to
assume-guarantee synthesis, and handling more complex multi-objective queries
(e.g., combinations of conjunctions and disjunctions of objectives).

Acknowledgments. The authors thank Vojtěch Forejt, Mateusz Ujma and Klaus
Dräger for helpful discussions and comments. The authors are partially sup-
ported by ERC Advanced Grant VERIWARE, the Institute for the Future of
Computing at the Oxford Martin School, EPSRC grant EP/F001096, and the
German Academic Exchange Service (DAAD).

References

1. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program., 72(1-2):3–21, 2008.

2. T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two views on
multiple mean-payoff objectives in Markov decision processes. In LICS, pages 33–
42, 2011.

3. M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray. Autonomous driving
in urban environments: approaches, lessons and challenges. Phil. Trans. R. Soc.

A, 368(1928):4649–4672, 2010.
4. K. Chatterjee, L. Doyen, T. A. Henzinger, and J. F. Raskin. Generalized mean-

payoff and energy games. In FSTTCS, volume 8 of LIPIcs, pages 505–516, 2010.
5. K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision processes with

multiple objectives. In STACS, volume 3884 of LNCS, pages 325–336, 2006.
6. K. Chatterjee, M. Randour, and J. F. Raskin. Strategy synthesis for multi-

dimensional quantitative objectives. In CONCUR, volume 7454 of LNCS, pages
115–131, 2012.

7. T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games:
A model checker for stochastic multi-player games. In TACAS, volume 7795 of
LNCS, pages 185–191, 2013.

8. T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, A. Trivedi, and M. Ummels.
Playing stochastic games precisely. In CONCUR, volume 7454 of LNCS, pages
348–363, 2012.

9. T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochastic
games with multiple objectives. In MFCS, 2013. (accepted).

10. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events.
IEEE Trans. Autom. Control, 43(10):1399–1418, 1998.

11. DARPA. Urban Challenge, 2007. [Online; accessed 8-March-2013].
12. S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed

to win infinite games? In LICS, pages 99–110, 1997.
13. K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-objective

model checking of Markov decision processes. LMCS, 4(4), 2008.
14. U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba. Energy games in multiweighted

automata. In ICTAC, volume 6916 of LNCS, pages 95–115, 2011.
15. V. Forejt, M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative

multi-objective verification for probabilistic systems. In TACAS, volume 6605 of
LNCS, pages 112–127, 2011.

16. OpenStreetMap, 2013. [Online; accessed 8-March-2013].
17. C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,

D. Duggins, T. Galatali, C. Geyer, et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. J. Field Robot., 25(8):425–466, 2008.

18. Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and J. F.
Raskin. The complexity of multi-mean-payoff and multi-energy games. CoRR,
abs/1209.3234, 2012.

19. T. Wongpiromsarn and E. Frazzoli. Control of probabilistic systems under dy-
namic, partially known environments with temporal logic specifications. In CDC,
pages 7644–7651, 2012.

20. T. Wongpiromsarn, U. Topcu, and Murray R. M. Receding horizon temporal logic
planning. IEEE Trans. Automat. Contr., 57(11):2817–2830, 2012.

21. T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus. Incremental
synthesis of control policies for heterogeneous multi-agent systems with linear tem-
poral logic specification. In ICRA, 2013. (accepted).

