
SYMBOLIC IMPLEMENTATION

OF MODEL-CHECKING

PROBABILISTIC TIMED AUTOMATA

by

FUZHI WANG

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

The University of Birmingham

September 2006

Abstract

In this thesis, we present symbolic implementation techniques for model checking prob-

abilistic timed automata as models for systems, for example, communication networks

and randomised distributed algorithms. Given a system model as probabilistic timed au-

tomata and a specification, such as, “a leader will be elected within 5 time units with

probability 0.999” and “the message can be successfully delivered within 3 time units with

probability 0.985”, a probabilistic real-time model checker can automatically verify if the

model satisfies the specification. Motivated by the success of symbolic approaches to both

non-probabilistic real-time model checking and untimed probabilistic model checking, we

present a symbolic implementation of model checking for probabilistic timed automata,

which is based on the data structure called Multi-terminal Binary Decision Diagrams

(MTBDDs). Our MTBDD-based symbolic implementation is generic with respect to the

support of the real-time information. Two data structures representing the real-time

information are supported, Difference Bound Matrices (DBMs) and Difference Decision

Diagrams (DDDs). We develop explicit and symbolic implementations of model check-

ing for probabilistic timed automata, focusing on probabilistic reachability properties.

The explicit implementation concerns both forward and backward generation of the zone

graph, where the latter results in non-convex zones in the case of calculating the minimum

probability. The symbolic implementation is of the forward exploration and is built on

the PRISM software. We evaluate the performance of the implementation on several real-

world protocol case studies. The thesis demonstrates that model checking for probabilistic

timed automata is feasible in practice and can be efficient on some real-world protocols.

We conclude that to ensure efficiency of the implementation of the backward approach,

support for efficient manipulation of non-convex zones and canonicity are important.

Acknowledgments

I am grateful to my supervisor Prof. Kwiatkowska for helpful comments and suggestions

that have made me progress. Special thanks go to Gethin Norman, David Parker and

Jeremy Sproston for their help during my studies. I would also like to thank Gethin

Norman for taking the time to read and comment on an early draft of this thesis. I would

like to thank Mark Ryan and Hayo Thielecke who gave me helpful feedback and comments

on my research. I would also like to acknowledge the authors of the DDD library, Jesper

Møller, Jakob Lichtenberg, Henrik Hulgaard and Henrik Reif Andersen, for letting us

use their DDD implementation. Thanks must also go to the School of Computer Science

at the university of Birmingham and Overseas Research Students Award Scheme (ORS)

for funding my studies. Finally, I would like to thank my wife and my parents for their

patience and support throughout.

Contents

1 Introduction 1

2 Review of Related Work 6

2.1 Formal Verification . 6

2.2 Model Checking . 7

2.2.1 Temporal Logic . 7

2.2.2 State Explosion Problem . 8

2.3 Symbolic Model Checking . 9

2.4 Model Checking Untimed Probabilistic Systems 9

2.4.1 Probabilistic Model Checker - ETMCC 10

2.4.2 Probabilistic Model Checker - PRISM 10

2.5 Model Checking Non-probabilistic Timed Systems 11

2.5.1 Real-time Model Checker - UPPAAL 12

2.5.2 Real-time Model Checker - KRONOS 12

2.6 Model Checking Probabilistic Timed Systems 13

3 Preliminaries 16

3.1 General Notations . 16

3.1.1 Clocks and Zones . 16

3.2 Probability . 19

3.2.1 Discrete Probability Distributions 19

4 Model Checking for Timed Automata and Probabilistic Systems 20

4.1 Model Checking Non-probabilistic Timed Systems 20

4.1.1 Labeled Timed Transition System 20

4.1.2 Timed Automata . 21

4.1.3 Timed Computation Tree Logic (TCTL) 24

4.1.4 Symbolic States and Operations . 26

4.1.5 Model Checking for Timed Systems 27

4.2 Model Checking for Untimed Probabilistic Systems 33

4.2.1 Markov Decision Processes . 33

4.2.2 Probabilistic Computation Tree Logic (PCTL) 35

4.3 Data Structures . 37

4.3.1 Data Structures for Encoding Timing Information 37

4.3.2 Data Structure for Encoding Probability Information 51

5 Model Checking for Probabilistic Timed Automata 55

5.1 Labelled Timed Probabilistic Systems . 55

5.2 Probabilistic Timed Automata . 56

5.2.1 Syntax of Probabilistic Timed Automata 56

5.2.2 Semantics of Probabilistic Timed Automata 58

5.2.3 Parallel Composition . 59

5.3 Probabilistic Timed Computation Tree Logic

(PTCTL) . 60

5.4 Algorithms for Model Checking Probabilistic Timed Automata 62

5.4.1 The Forward Algorithm . 63

5.4.2 The Backward Algorithms . 66

6 Explicit Implementation of the Forward Exploration Algorithm 74

6.1 Implementation . 74

6.1.1 Explicit Construction of the Model 75

6.1.2 Explicit Implementation of the Forward Algorithm 77

6.1.3 Model Checking For Reachability Properties 79

6.2 Experimental Results . 79

6.3 Summary . 82

7 Explicit Implementation of the Backward Exploration Algorithm 85

7.1 Implementation . 86

7.1.1 Explicit Implementation of the Backward Algorithm 86

7.2 Experimental Results . 87

7.2.1 Maximum Probabilistic Reachability 89

7.2.2 Minimum Probabilistic Reachability 92

7.2.3 Causes of Memory Exhaustion . 94

7.3 Summary . 106

8 Symbolic Implementation of the Forward Exploration Algorithm 111

8.1 Symbolic Implementation of Model Checking Probabilistic Timed Automata

with MTBDDs . 112

8.1.1 Symbolic Representation of PTAs with MTBDDs 112

8.1.2 Forward Implementation . 119

8.1.3 Symbolic Model Checking of the Generated MDP 120

8.1.4 Experimental Results . 123

8.1.5 Discussion . 130

8.2 Kronecker-based Model Construction . 134

8.2.1 Synthesis with the Kronecker-based Model Construction 141

8.2.2 Experimental Results . 146

8.3 Summary . 149

9 Conclusions 155

9.1 Summary and Evaluation . 155

9.2 Conclusions and Discussion of Future Work 157

9.2.1 Consideration of Symbolic Implementation of the Backward Algo-

rithm . 158

9.2.2 How to Achieve DDD-based Operation Normalise 159

9.2.3 Consideration of Merging of DDDs and MTBDDs 160

A Model Checker for The Probabilistic Timed Automata 163

A.1 Tool Overview . 163

A.2 Case Studies . 164

A.2.1 CSMA/CD . 164

A.2.2 IEEE 1394 FireWire Root Contention 165

A.2.3 Milner’s Scheduler with Only One Clock 165

A.3 Model Description Language for One Case Study 166

A.4 Computations of the Minimum Probability for Example 5.3 166

List of Figures

4.1 A simple timed automaton example . 23

4.2 An example of regions . 28

4.3 The on-the-fly forward reachability algorithm 31

4.4 Non-convex union of regions example . 32

4.5 Two DBMs representing the non-convex union of regions in Figure 4.4 . . . 40

4.6 A ordered DDD representing the non-convex union of regions in Figure 4.4 46

4.7 The dpost operation . 50

4.8 The post operation . 50

4.9 The dpre operation . 51

4.10 A matrix and its MTBDD encoding . 53

4.11 Reduced MTBDD representing the matrix in Figure 4.10 53

5.1 Probabilistic timed automaton example . 58

5.2 The Forward algorithm . 64

5.3 Zone graph obtained via the forward exploration of the PTA in Figure 5.1 67

5.4 The PRISM description of the Figure 5.3 67

5.5 The MaxUntil algorithm . 69

5.6 The pre1 algorithm . 70

5.7 The MaxU≥1 algorithm . 70

5.8 The MaxV≥1 algorithm . 71

5.9 Zone graph obtained via the maximum probability backward exploration

of the PTA in Figure 5.1 . 72

6.1 The textual description of the PTA in Figure 5.1 76

6.2 Forward probabilistic reachability algorithm 78

7.1 Backward probabilistic reachability algorithm 88

7.2 The MaxV≥1 algorithm . 89

7.3 TheMaxU≥1 algorithm . 90

7.4 The pre1 algorithm . 91

7.5 DDD ordering example . 94

7.6 DDD ordering example . 95

7.7 DDD domain example . 97

7.8 DDD union example: single DDD-1 . 98

7.9 DDD union example: single DDD-2 . 99

7.10 DDD union example: single DDD-3 . 99

7.11 DDD union example: single DDD-4 . 100

7.12 DDD union example . 100

7.13 DDD example: before existential quantification 101

7.14 DDD example: after existential quantification 102

7.15 DDD example: before path reduce . 104

7.16 DDD example: after path reduce . 105

8.1 Transition relation of Figure 5.1 in MTBDD 118

8.2 The MTBDD version of the forward probabilistic reachability algorithm . . 121

8.3 DDD ordering for CSMA with deadline 1000 131

8.4 DDD ordering for CSMA with deadline 1200 132

8.5 The MTBDD version of the forward probabilistic reachability algorithm

adapted according to [DKN02] . 135

8.6 A textual description of the PTA in Figure 5.1 144

8.7 The textual description of the timing information for the PTA in Figure 5.1 145

8.8 The construction of typed variable . 147

9.1 A example of a subgraph of a timed automaton with one distribution . . . 159

9.2 A example of sub zone graph with two non-deterministic choices corre-

sponding to Figure 9.1 . 160

A.1 The model checker for probabilistic timed automata 164

A.2 The textual description of the abstract model of FireWire 167

A.3 The textual description of the timing information for the abstract model

of FireWire . 168

A.4 The property . 169

A.5 Calculation steps for the minimum probability of Example 5.3 169

A.6 Calculation steps for the minimum probability of Example 5.3 170

A.7 Calculation steps for the minimum probability of Example 5.3 171

A.8 The PTA for model of Milner’s scheduler 172

A.9 The PTA for the abstract model of FireWire 172

A.10 The PTA node for the full model of FireWire 172

A.11 The PTA wire for the full model of FireWire 173

A.12 The PTA medium for the model of CSMA/CD 173

A.13 The PTA sender for the model of CSMA/CD 174

List of Tables

4.1 PRISM procedure . 37

4.2 Uniform basic operations . 39

6.1 Verification of the abstract model Ip
1 with wire delay set to 360 ns 83

6.2 Verification of the full model Implp with wire delay set to 360 ns 84

7.1 Verification maximum probability of the abstract model Ip
1 with wire delay

set to 360 ns . 107

7.2 Verification maximum probability of the full model Implp with wire delay

set to 360 ns . 108

7.3 Verification maximum probability of the full CSMA/CD model (backoff=1) 108

7.4 Verification minimum probability of the abstract model Ip
1 with wire delay

set to 360 ns (min) . 109

7.5 Verification minimum probability of the full model CSMA/CD (backoff=1) 110

8.1 Time consumption of the full model Implp with wire delay set to 360 ns . . 123

8.2 Time consumption of the full CSMA/CD model (max, backoff=1) 124

8.3 Memory consumption of the full model Implp with wire delay set to 360 ns 125

8.4 Memory consumption of the full model CSMA (max, backoff=1) 126

8.5 Memory comparison for verifying CSMA with/without Kronos adaptation 136

8.6 Memory comparison for verifying FireWire with/without Kronos adapta-

tion . 137

8.7 Time comparison for verifying CSMA with/without Kronos adaptation . . 138

8.8 Time comparison for verifying FireWire with/without Kronos adaptation . 139

8.9 Memory comparison for verifying CSMA with/without Kronecker 149

8.10 Memory comparison for verifying FireWire with/without Kronecker 150

8.11 Time comparison for verifying CSMA with/without Kronecker 151

8.12 Time comparison for verifying FireWire with/without Kronecker 152

8.13 Memory comparison for verifying Milner’s scheduler with/without Kronecker153

8.14 Time comparison for verifying Milner’s scheduler with/without Kronecker . 153

Chapter 1

Introduction

Embedded computer-based systems have been used increasingly in nearly every aspect

of modern life. In safety-critical applications, it could result in disasters, for example,

financial or even loss of human life if such systems fail. Traditional methods of checking

such a system satisfying its requirements, for example, techniques based on testing and

simulation, are often inadequate to detect errors, especially in highly concurrent designs.

As embedded systems become more pervasive and complex, verification and analysis tools

are desirable during the design stage. Much effort has been taken to advance techniques

to automatically verify the correctness of these systems.

Correctness is relative to what the system is supposed to do and such requirements

are written in natural language in traditional methods. However, descriptions in natural

language are often ambiguous. A formal language with mathematical precision is desirable

in order to avoid the ambiguities. In verification, formal methods have been put into

practice. A successful application of formal verification in computer science is model

checking, which is due to the fact that the method is fully automatic. There are two core

elements in model checking. Firstly, a formal description with well-defined semantics for

the systems and desired properties must be given. Secondly, an algorithmic method can

be applied to reason about formal statements. In model checking, the systems are often

modeled as kinds of transition systems and the properties are specified as kind of logic

formulae.

Embedded systems, especially safety-critical systems often exhibit both stochastic and

1 - Introduction 2

timing behaviour because the environment with which the systems interact is stochas-

tic and time-changing in nature. Communication networks and randomised distributed

algorithms are two real-life examples. Besides the correctness properties, we are also

interested in verification of the performance and reliability properties. These kinds of

properties contain information about both probability and timing, such as,“a leader will

be elected within 5 time units with probability 0.999”.

Since the introduction of model checking [CE82, QS82], it has been extended to real-

timed systems [ACD90, AH91, UPP, KRO] and probabilistic systems [HJ94, PRI]. How-

ever, model checking for probabilistic real-time systems is still largely in the theoretical

phase. In [KNSS99], a method is proposed for dealing with probabilistic timed automata

which have both probabilistic and timed behaviours. The properties are specified in logic

Probabilistic Timed Computation Tree Logic (PTCTL) [KNSS99]. However, the com-

plexity of the verification algorithms for such systems is too high because they are based

on constructing the region graph [AD94] which is exponential in both the number of clocks

and the length of the clock constraints used in the model and the specification. Optimised

algorithms such as the forward reachability analysis [KNSS02] and backward reachabil-

ity analysis [KNS00, KNS03b] have been proposed. These algorithms have the potential

to reduce the high complexity of model checking for probabilistic timed automata as

demonstrated by an implementation of forward reachability in [DKN02, DKN04]. The

forward reachability algorithm can reduce the complexity when constructing quotient of

the region graph by performing forward search to construct the zone graph which is often

smaller than the region graph, although the worst case complexity is same. One drawback

of the forward reachability is that it can only obtain an upper bound of the maximum

probability of reaching a set of target states [KNSS02]. However, by using the backward

reachability algorithm [KNS00, KNS03b], both the exact maximum and minimum prob-

ability of reaching the target set can be obtained. Furthermore, the backward approach

can be applied to verify full PTCTL.

Although algorithms have been proposed for analysing real-time probabilistic sys-

tems, they have not been implemented within a single software tool. One difficulty for

implementing model checking algorithms for them is that both probability and timing

1 - Introduction 3

information have to treated simultaneously and existing symbolic data structure based

on Binary Decision Diagrams (BDDs) [Bry86] could not handle both timed transitions

and probability distributions at the same time. Case studies such as that in [DKN02],

which combines KRONOS [KRO] and PRISM [PRI] to verify IEEE-1394 Root Contention

Protocol, is not a fully symbolic implementation and moreover, can be inefficient as it

requires model transformation via textual files. First, a set of states and probabilistic

transitions among them reached before a deadline starting from the source state is calcu-

lated by using KRONOS [KRO]. Then, the resulting probabilistic model is written in a

textual file and input into PRISM and probabilistic analysis is performed by PRISM. The

analysis could be more efficient if the two steps could be implemented in a single symbolic

tool. Since probabilistic real-time systems contain information about both real-time and

probability values, we have to deal with them at the same time if we want to efficiently

perform analysis of real-time probabilistic systems. In the case of model checking for non-

probabilistic real-time systems, the time is modelled as clocks ranging over the domain

of reals, which means the state space is infinite. Region graph techniques [AD94] reduce

the infinite time space to finite state space and symbolic methods are applied to handle

real-time information. Similarly, in the case of model checking for probabilistic systems,

symbolic methods are adapted to handle the probability information. However, current

symbolic approaches can not represent real-time information and probability values in a

single framework. Thus, developing a symbolic approach that can symbolically represent

both real-time information and probability values at the same time has been set as the

goal of this thesis.

Main Contributions of the Thesis

Base on algorithms proposed in [KNS00, KNSS02, KNS03b], an explicit implementation

of the forward and the backward algorithms for model checking of probabilistic timed au-

tomata is presented and experimentally evaluated. Bottlenecks are identified for each of

them. A symbolic implementation for the efficient model checking of probabilistic reacha-

bility for probabilistic timed automata via the forward algorithm is presented. A symbolic

representation is developed using Multi-terminal Binary Decision Diagrams (MTBDDs)

1 - Introduction 4

[CFM+93] as the underlying representation of the finite-state graph, which is generic since

the underlying representation of the timing information could be any of existing symbolic

data structures for timing. Two data structures are experimentally evaluated, namely

Difference Bound Matrices (DBMs) [Dil89] and Difference Decision Diagrams (DDDs)

[MLAH99c]. Performance of the symbolic implementation is compared to the symbolic

approach based on digital clocks [KNS03a]. Using three case studies, FireWire root con-

tention protocol (the Tree Identify Protocol of the IEEE 1394 High Performance Serial

Bus modelled in [SV99], IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with

Collision Detection) protocol [NSY92] and Milner’s scheduler [Mil89], we conclude that

symbolic model checking for real-world case studies is feasible, but the efficiency depends

on regularity, the model size and the length of constants. We identify the main contribu-

tion to the performance slow-down for both of the algorithm and the data structure in the

case of the calculating the minimum probability using the backward approach. Finding

a data structure with support for both non-convex zones and canonicity is a challenging

future research direction. All source code developed as part of this thesis is available from

[PTA].

Other Publications Except for the DDD [ML98] library and some function calls from

PRISM, all the implementations described in this thesis and in [KNSW04] and [WK05]

are entirely the work of the author. Some of the work in this thesis has previously

been published in jointly authored papers. In [KNSW04], an early version of the explicit

implementation of the backward algorithm was presented, which is included in Chapter

7, and this version is developed using Java and C programming language by the author.

The design of the data structure and the model description language used in Chapters

6, 7 and 8 are entirely the work of the author. An early symbolic version of the algorithm

in Chapter 8 was published in [WK05], which presented results for the symbolic imple-

mentation based on Multi-Terminal Binary Decision Diagrams (MTBDDs) [CFM+93] .

Layout of the Thesis

Chapter 2 gives information on formal verification and technical review of related work.

Chapters 4 and 5 present background information on model checking non-probabilistic

1 - Introduction 5

timed systems, untimed probabilistic systems and probabilistic timed automata and in-

formation on symbolic representation of timing information and probability matrices.

Chapters 6 to 8 discuss our implementation, in explicit and symbolic form. Experimental

results and evaluation on selected case studies are given in each chapter. In Chapters

6 and 7, we consider the implementation of model checking for probabilistic timed au-

tomata via the forward and backward algorithms respectively, in an explicit form. A novel

symbolic implementation of the forward approach is given in Chapter 8, where compari-

son between symbolic implementation and the approaches presented in [DKN02, DKN04]

is given. Chapter 9 concludes with a critical evaluation of the work of this thesis and

suggestion for future direction.

Chapter 2

Review of Related Work

In this chapter we present an overview of the established approaches to formal system

verification and summarise the work from the literature which is closely related to the

topic of this thesis. We start with the two dominant formal verification approaches in

Section 2.1. Section 2.2 gives an overview of model checking. An overview of symbolic

model checking is given in Section 2.3. Sections 2.4, 2.5 and 2.6 contain an overview of

model checking for probabilistic systems, timed systems and probabilistic timed systems,

respectively.

2.1 Formal Verification

There are two dominant approaches to formal verification [CWA+96] of software and

systems, theorem proving [Cha73, Duf91] and model checking [WVF95, CES86, CGP99,

BBF+01]. In theorem proving, the system model and system specification to be proved

are described in terms of mathematical statements. The process of verification is about

proving theorems of the system. The proof must show that the statement of the theorem

can be formally derived from axioms using inference rules. In general, this process is

semi-automatic and the user must be expert in logic, in that he must guide the process of

verification. However, theorem proving is more powerful because it can deal with infinite

state space. The other formal verification is model checking. Unlike theorem proving, the

process of model checking is completely automatic.

2 - Review of Related Work 7

2.2 Model Checking

Model checking is basically an exhaustive graph search technique that checks whether a

state machine satisfies certain properties. Model checking comes in two varieties according

to the the way the properties are expressed. In automata-theoretic approach, both the

system and the specification are described in automata. And questions about systems

and their specifications, such as satisfiability of specification and correctness of systems,

can be reduced to questions about emptiness and containment of automata.

In temporal-logic model checking, the system is modelled as an automaton, while the

specification is described in a temporal logic. The question of satisfiability is to determine

whether or not the system satisfies a property specified in temporal logic. In other words,

the basic technique of model checking is to model the system by a finite state automaton

and use a model checking algorithm to verify whether the automaton has the properties

expressed in temporal logic.

2.2.1 Temporal Logic

Temporal logic is a form of logic especially appropriate for statements and reasoning

about behaviours of order in time. Although first-order logic is rather expressive and can

express events of order in time, it is not intuitive since it explicitly uses variables to refer

to objects. Temporal logic was invented to suppress explicit first-order variables so as to

formalise natural language sentences about events in time by using modal adverbs like

“possible” and “always”. Temporal logics come in two varieties: linear and branching. In

linear temporal logic (LTL) [Pnu77, Var95], formulae are interpreted over infinite words,

while in branching temporal logics, for example, Computation Tree Logic (CTL) [CE82],

formulae are interpret over infinite trees. According to linear or branching logic, the

algorithms of model checking come into LTL and CTL model checking, respectively. There

are different types of properties, and each type of property matches or corresponds to

a particular type of temporal formula. Among these properties, the safety property,

the liveness property and reachability property[Lam77] are most useful when analysing

systems. Informally, a safety property specifies that “bad things” do not happen on all

executions of a system, a liveness property specifies that “good thing” eventually happen

2 - Review of Related Work 8

on all executions of a system and a reachability property specifies that a set of states can

be reachable from initial states. In terms of verifying reachability properties, there are two

kinds of approaches, the forward and backward approaches [LV93a, LV93b]. Informally,

the forward algorithm starts in the initial state and computes the set of successors in

the reachability graph, it terminates when the intersection of reachable states with the

intended state is non-empty. The backward algorithm starts in a final state and computes

the set of predecessors in the reachability graph. It terminates when the intersection of

reachable states with the initial state is non-empty.

2.2.2 State Explosion Problem

Model checking techniques suffer from a well-known problem - the state-explosion prob-

lem. This problem is caused when the size of the state space generated becomes so

large that it is impossible to represent it in the computer memory given current memory

configuration of computers.

To cope with the problem of state explosion encountered in model checking, there have

been a number of verification techniques developed for dealing with the state explosion

problem, for example, symbolic methods which are based on Binary Decision Diagram or

its variants [CFM+93], abstraction [CGL94, DT98], partitioning [BCL91], partial order

reduction [WW96, GKPP95], on-the-fly [BTY97a] and symmetry [CGP99].

Model checking algorithms can be classified according to two criteria.

The first criterion concerns the basic information unit that the algorithm deals with.

Enumerative algorithms reason in terms of single states which are represented explicitly

during the search of the state-space. Symbolic algorithms reason in terms of sets of states,

which are represented implicitly by means of predicates.

The second criterion concerns the time during which the state-space is actually gen-

erated. In so called on-the-fly algorithms, states are computed and stored on demand,

while in other algorithms, the whole state-space has to be generated a priori.

Both symbolic and on-the-fly algorithms have often been proved useful in practice in

tackling the state-explosion problem.

2 - Review of Related Work 9

2.3 Symbolic Model Checking

The early model checkers used explicit analysis techniques to enumerate the states of

the system. This explicit methods was subject to the well-known problem of the state-

explosion as the state space that has to be explicitly represented may increase exponen-

tially, especially in the case of parallel composition of a system which consists of a number

of modules acting concurrently. Several techniques of model abstraction and state-space

reduction have been developed to address the state-explosion problem. These techniques

can be adopted to reduce the state space, but they may cause some loss of information.

This may be unacceptable, for example when safety properties are verified. One of the

most successful approaches that can allow a larger state space to be explored is symbolic

model checking. Symbolic model checking is first introduced with the work of McMillan

[BCM+90, McM93], in which a data structure called Binary Decision Diagrams (BDDs)

[Bry86] is used to implicitly represent the set of states and the transition relation be-

tween states. BDDs were popularised by the work of Bryant [Bry86], who developed a

set of efficient algorithms for manipulating the data structure introduced in the work of

[Lee59, Ake78] by placing ordering on them. Since the work of [BCM+90, McM93], sym-

bolic model checking is used to refer to a technique used in model checking to implicitly

represent and manipulate the states and the transition relation of a system.

Although the techniques of model checking were oriented toward the verification of

hardware circuits [BC95, CGH+93, BCL+94], they have been extended and applied to

probabilistic systems and timed systems, for which corresponding symbolic data structures

have also been developed.

2.4 Model Checking Untimed Probabilistic Systems

Formal verification based on temporal logic has been successfully extended to the verifi-

cation problems of probabilistic systems. Early works in this field were focusing on the

verification of qualitative properties. These included work of [CY88] which considered

models of two types, Discrete-Time Markov Chains (DTMCs) and Markov decision pro-

cesses (MDPs). The verification of quantitative properties is more involved than that of

2 - Review of Related Work 10

qualitative properties since the exact probability has to be computed for a given property

in addition to the satisfaction of that property. In the work of [HJ94], the temporal logic

PCTL was introduced for the verification of DTMCs. The verification of quantitative

properties for MDPs was considered in [CY90, BdA95, BK98]. In recent years much

progress has been made concerning model checking probabilistic systems which are mod-

elled as variants of Markov Chains. Tools such as PRISM (Probabilistic Symbolic Model

Checker) [PRI, KNP00, KNP01] have been developed and applied to several real-world

case studies. Other tools include ETMCC [HKMKS00], CASPA [KSW04] and MRMC

(Markov Reward Model Checker) [KKZ05].

2.4.1 Probabilistic Model Checker - ETMCC

ETMCC [HKMKS00] is developed jointly by the Stochastic Modeling and Verification

group at the University of Erlangen-Nürnberg, Germany, and the Formal Methods group

at the University of Twente, the Netherlands. ETMCC is the first implementation of a

model checker for Discrete-Time Markov Chains (DTMCs) and Continuous-Time Markov

Chains (CTMCs). It uses numerical methods to model check PCTL [HJ94] and CSL

[ASSB96, BKH99a] formulas respectively for DTMCs and CTMCs. The current version

of ETMCC comes along with an experimental model checking engine supporting ver-

ification techniques to check action based CSL (aCSL) [RDN90] requirements against

action-labelled continuous time Markov chains.

2.4.2 Probabilistic Model Checker - PRISM

PRISM [PRI, KNP00, KNP01], which is a tool designed for the analysis of probabilistic

systems, is a probabilistic model checker being developed at the University of Birming-

ham. PRISM has been used to analyse several real-world case studies [PRI]. There are

three different types of probabilistic models that PRISM can support directly: Discrete-

Time Markov Chains (DTMCs), Markov decision processes (MDPs) and Continuous-Time

Markov Chains (CTMCs). Here we are only interested in model checking MDPs because

the semantics of probabilistic timed automata takes the form of MDPs. The PRISM

model checker accepts a simple, module-based system description language. The tool

2 - Review of Related Work 11

translates the system description into the appropriate model and then computes the set

of reachable states. The model can then be analysed against a given specification. In

the case of MDPs, this the tool supports PCTL [BK98, BdA95] model checking. PRISM

supports three different model checking engines: one symbolic using MTBDDs (Multi-

Terminal Binary Decision Diagrams); one based on sparse matrix techniques; and one

hybrid engine which combines both symbolic and sparse approaches.

2.5 Model Checking Non-probabilistic Timed Sys-

tems

The techniques presented above are suited for the verification of systems where only causal

relations of time are important. There are some applications where it is desirable to

consider quantitative aspects of timing behaviour. However, this problem becomes more

difficult when we consider real-time model checking. As it was noted in [DT98], there

are three factors which are affecting the size of the state space. The state space under

consideration grows exponentially not only with the number of concurrent components,

but with the number of clocks and the length of the clock constraints used in the model

and the specification as well.

In the last few years, model checking has been successfully implemented for non-

probabilistic real-time systems which are modelled as timed automata [AD94] and a

number of tools for automatic verification of systems have emerged [UPP, KRO, HYT];

these tools have by now reached a state, where they are mature enough for application

on realistic case studies [JWK+96].

There are different formalisms for modelling timed systems, among which, timed au-

tomata which were proposed by Alur and Dill [AD94], are one of the most successful

formalisms for the description of timed systems. A timed automaton is an ordinary au-

tomaton extended with real-valued clocks, which increase at the same rate as time. Clock

values are usually assumed to be nonnegative real. Unlike traditional model checking

which is performed on finite state automata, timed automata have infinite state space

because of the real value of the clocks. Since clocks are real-valued, the state space of

2 - Review of Related Work 12

timed automata is infinite. Much of the work on model checking timed automata is fo-

cused on using a finite representation for the infinite state space. All of them are based

on the decidability of region techniques [AD94], in which the decidable result is obtained

by the definition of regions, an finite partition on the infinite state space. However, model

checking algorithms usually work on zones instead of regions because the region technique

is not feasible due to its exponential characteristics. Zones, which are unions of regions,

are an alternative way to obtain a finite representation for the infinite state space.

2.5.1 Real-time Model Checker - UPPAAL

UPPAAL is a tool suite for validation and verification of real-time systems modelled

as networks of timed automata extended with data variables. UPPAAL consists of three

main parts: a graphical user interface, a simulator and a model-checker engine. Modelling

can be done in the graphical user interface. The simulator is helpful when debugging de-

sign errors because it can run interactively to check whether the system works as intended

and generate traces. The verifier checks for simple invariants and reachability properties

for efficiency reasons. Other properties may be checked by using test automata or sys-

tems decorated with debugging information [LPY97b]. UPPAAL implements the forward

search algorithm in which the state space is explored in a breadth-first manner. It also

uses on-the-fly verification combined with a symbolic technique, reducing the verification

problem to that of solving simple constraints systems. The computation of clock con-

straints is aided with the data structure known as Difference Bound Matrices (DBMs)

[BY04]. The non-convex zones are stored and manipulated in the data structure called

Clock Difference Diagrams (CDDs) [BLP+99].

2.5.2 Real-time Model Checker - KRONOS

KRONOS is a tool which implements a model checking algorithm for the timed temporal

logic TCTL [ACD93], a timed extension of CTL [CGP99, HR00]. KRONOS implements

both the forward and backward algorithms [DY95]. It allows one to express and verify

not only reachability properties but liveness properties as well. The system is modelled as

a set of concurrently operating timed auotmata. KRONOS supports verification based on

2 - Review of Related Work 13

both the region and simulation graphs [BTY97b]. To improve the exploration of the state

space, KRONOS also implements an on-the-fly technique. In this approach, a symbolic

graph called a simulation graph is constructed. The computation of clock constraints is

also aided with the DBM data structure.

2.6 Model Checking Probabilistic Timed Systems

Existing tools such as UPPAAL [UPP], KRONOS [KRO] and HyTech [HYT] can verify

timing properties against models based on timed automata [AD94]. However, they do not

provide probabilistic analysis, which is useful, for example, when calculating the likelihood

of a certain behaviour or predicting systems’ performance is needed.

Although the tool PRISM [PRI] provides the functionality to analyse probabilistic

temporal properties of the system models, it cannot deal with dense-timed systems di-

rectly.

In [ACD91b], Alur, Courcoubetis and Dill presented a model-checking algorithm for

probabilistic real-time systems; their specification was based on deterministic timed au-

tomata. This work was extended in the work of Moura and Pinto [MP02], where they

allowed nondeterministic timed automata to be used to specify properties of probabilistic

real-time systems.

In [ACD91a], Alur, Courcoubetis and Dill presented a model-checking algorithm for

verification of TCTL formulae of probabilistic real-time systems. All these works, [ACD91b],

[ACD91a] and [MP02], were restricted to the verification of qualitative properties.

In [BCHG+97], a method for analysing the stochastic and timing properties of systems

was proposed, which is achieved by the combination of the tool Verus [CCMM95] and

the algorithm proposed in the paper. Although the work of [BCHG+97] was based on

MTBDDs and could verify a subset of PCTL, it was not real-time but in the realm of

discrete time. This was similar to the work of [HGCC99], which only supported DTMC

models.

In [Bea03], Beauquier proposed a model of probabilistic timed automata which was

similar to the model used in this thesis. The model in [Bea03] differs in that it allows dif-

ferent enabling conditions for edges related to a certain action and it uses Bûchi conditions

2 - Review of Related Work 14

as accepting conditions.

In [HM05], Dang and Zhang also proposed a model of probabilistic timed automata.

However, they use Duration Calculus as the specification notation.

There are two, non-symbolic, methods for dense-time probabilistic timed automata:

the forward exploration algorithm implemented in [DKN02, DKN04], and the experimen-

tal implementation of the backward exploration algorithm implemented in [KNSW04].

The forward method is not guaranteed to produce exact reachability probabilities [KNSS02],

but only requires simple operations; on the other hand, backward analysis can produce

exact probabilities and be applied to full Probabilistic Timed Computation Tree Logic

(PTCTL) [KNSS02] but at a cost of higher computational complexity. The method of

[DKN02, DKN04], which combines KRONOS [BDM+98] and PRISM [PRI] to verify the

IEEE-1394 Root Contention Protocol, requires three steps: firstly, a set of states and

probabilistic transitions among them reachable from the source state before the deadline

is calculated using KRONOS [BDM+98]; secondly, the result is translated into a PRISM

model description which is input into PRISM and, finally, probabilistic analysis is per-

formed. This method could be inefficient because it can generate large files that have to

be parsed by PRISM. Our experimental implementation of [KNSW04] suffers from the

same problem, as it performs a translation into the PRISM modelling language.

Although PRISM has been able to support modelling systems using discrete time, it

is infeasible for some cases. For example, because events can only occur at integer time

values, some problems like bounded delay [CGP99] cannot be solved correctly.

The most commonly used data structure for representing timing information in real-

time verification tools [BDM+98, LPY97b] is Difference Bound Matrices (DBMs) [CGP99,

BY04]. A number of BDD-like data structures, e.g. Clock Difference Diagrams (CDDs)

[LPWY99, BLP+99], Difference Decision Diagrams (DDDs) [MLAH99d, MLAH99c, MLAH99a,

ML98] and Clock-Restriction Diagram (CRDs) [Wan03], have been proposed for use in

verifying real-time systems, but not yet extended to the probabilistic case. MTBDDs have

been successfully applied in model checking of probabilistic systems, and also probabilistic

timed automata and timed systems with digital clocks [KNPS06]. Recently, MTBDDs

have also been applied to real-time systems [SB03]. Although the approach in [SB03]

2 - Review of Related Work 15

uses a single data structure MTBDDs to represent both timing and discrete information

in order to leverage well-known techniques for BDDs or MTBDDs, it involves SAT-based

analysis.

Chapter 3

Preliminaries

3.1 General Notations

Throughout this thesis, the Boolean, reals, non-negative reals, integers and naturals are

written as B, R, R
+, Z and N, respectively. We use variables such as x, y, z, δ, t ranging

over R, c and d ranging over Z and i, j, k ranging over N. We use the symbol ∞ for

infinity.

Let U and V denote sets. The set operations of intersection, union, complementation

and set difference are denoted U ∩ V , U ∪ V , Ū and U \ V . We use the symbol ∅ for the

empty set. Set inclusion and strict inclusion are denoted by U ⊆ V and U ⊂ V . We write

x ∈ U if x is a member of set U , and x /∈ U if x is not a member of set U . We use the

symbol Z∞ for Z ∪ {∞}. The symbol ⊲⊳ is such that ⊲⊳∈ {<,≤,=, >,≥}. The symbol &

is such that &∈{≥, >} and the symbol . is such that .∈{≤, <}.

Logical conjunction, disjunction, negation, implication and bi-implication are written

as ∧, ∨, ¬, ⇒ and ⇔.

Let AP be a fixed finite set of atomic propositions.

3.1.1 Clocks and Zones

Let X = {x1, . . . , xn} be a set of variables in R
+. We call these variables clocks.

Definition 3.1.1 (Clock valuation) Given a set of clocks X , clock valuation is a function

3 - Preliminaries 17

v : X 7→ R
+ that assigns a non-negative real value v(x) to each clock x ∈ X .

The set of all clock valuations is denoted by R
+
X . For X ⊆ X , v[X := 0] is the clock

valuation v1 such that ∀x ∈ X.v1(x) = 0 and ∀x /∈ X.v1(x) = v(x). For δ ∈ R
+, v[X + δ]

is the clock valuation v2 such that ∀x ∈ X .v2(x) = v(x) + δ and δ · v is the valuation v3

such that ∀x ∈ X .v3(x) = δ · v(x). The clock valuation v satisfies x ⊲⊳ c if v(x) ⊲⊳ c, v

satisfies x−y ⊲⊳ c if v(x) − v(y) ⊲⊳ c, where ⊲⊳=< or ≤.

The set of zones of X , written Zones(X), is defined inductively by the syntax:

ζ ::= x ⊲⊳ c | x−y ⊲⊳ c | ¬ζ | ζ ∨ ζ

where x, y ∈ X , c ∈ Z and ⊲⊳=< or ≤. As usual, ζ1∧ζ2 = ¬(¬ζ1 ∨ ¬ζ2). An atomic zone

on X involves only one or two clocks, which take the form x ⊲⊳ c or x − y ⊲⊳ c where

x, y ∈ X , c ∈ Z and ⊲⊳=< or ≤.

The complementation of an atomic zone

• x ⊲⊳ c is −x⊲̄⊳(−c) or

• x−y ⊲⊳ c is y−x⊲̄⊳(−c)

where ⊲̄⊳ =≤ or < if ⊲⊳=< or ≤ respectively.

The clock valuation v satisfies the zone ζ , written v ⊳ ζ , if and only if ζ resolves to

true after substituting each clock x ∈ X with the corresponding clock value v(x) from v.

Intuitively, the semantics of a zone is the set of clock valuations (subset of R
+
X) which

satisfy the zone. This enables us to use the above syntax for zones interchangeably with

semantic, set-theoretic operations.

Let ζ1 and ζ2 denote zones. The zone operations of intersection, union, complementa-

tion and set difference are denoted ζ1∩ζ2, ζ1∪ζ2, ζ̄1 and ζ1\ζ2. Zones difference is defined

via complementation as: ζ1 \ ζ2 = ζ1 ∩ ζ̄2. The test for inclusion ζ1 ⊆ ζ2 is equivalent to

ζ1 \ ζ2 = ∅.

Note that more than one zone may represent the same set of clock valuations. We

henceforth consider only canonical zones, which are zones for which the constraints are

as “tight” as possible.

3 - Preliminaries 18

A zone ζ is called convex if for all v1, v2 ⊳ ζ , for any 0 < δ < 1, δ · v1 + (1 − δ) · v2 ⊳ ζ .

For example, atomic zones are convex. For any valid convex zone ζ ∈ Zones(X), there

exists a O(|X |3) algorithm to compute the canonical zone of ζ [Dil89].

If ζ is non-convex then it can be written as ζ1∪· · ·∪ ζk, where ζ1, . . . , ζk are all convex

[Tri98].

Operations on zones

Definition 3.1.2 (c-equivalence) Given c ∈ N, two clock valuations v and v′ are called

c-equivalent if:

• for any clock x, either v(x) = v′(x), or v(x) > c and v′(x) > c

• for any pair of clocks x, y, either v(x) − v(y) = v′(x) − v′(y), or |v(x) − v(y)| > c

and |v′(x) − v′(y)| > c

Given a zone ζ , close(ζ, c) is defined as the greatest zone ζ ′ ⊇ ζ , such that for all v′ ⊳ζ ′

there exists v ⊳ ζ and v, v′ are c-equivalent.

We require the following classical operations on zones [HNSY92, Tri98]. For zones

ζ, ζ ′ ∈ Zones(X) and subset a of clocks X ⊆ X , let:

ζ/X
def
= {v | ∃v′ ⊳ ζ.∀x ∈ X.v(x) = v′(x)}

ւ ζ
def
= {v | ∃t ≥ 0.v+t ⊳ ζ}

ր ζ
def
= {v | ∃t ≥ 0.v−t ⊳ ζ}

ւζ′ ζ
def
=

{

v | ∃t ≥ 0.
(

v+t ⊳ ζ ∧ ∀t′ ≤ t. (v+t′ ⊳ ζ∨ζ ′)
)}

[X := 0]ζ
def
= {v | v[X := 0] ⊳ ζ}

ζ [X := 0]
def
= {v[X := 0] | v ⊳ ζ} .

The zone ζ/X can be obtained by performing existential quantification on clocks in X from

zone ζ . The zone ւ ζ contains the clock valuations that can, by increasing all clocks with

a same value, reach a clock valuation in ζ . The zone ր ζ contains the clock valuations

that can, be reachable from a clock valuation in ζ by increasing all clocks with a same

value. The zone ւζ′ ζ contains the clock valuations that can, by increasing all clocks

3 - Preliminaries 19

with a same value, reach a clock valuation in ζ and remain in ζ ′ until ζ is reached. The

zone [X := 0]ζ contains the clock valuations which result in a clock valuation in ζ when

the clocks in X are reset to 0. The zone ζ [X := 0] contains the clock valuations which

are obtained from clock valuations in ζ by resetting the clocks in X to 0.

The following results [Tri98] can be used to define ζ [X := 0] and [X := 0]ζ through

ζ/X :

ζ [X := 0]
def
= ζ/X ∩

(

∧

x∈X

(x = 0)
)

[X := 0]ζ
def
=

(

ζ ∩ (
∧

x∈X

(x = 0)
)

/X

3.2 Probability

3.2.1 Discrete Probability Distributions

A (discrete probability) distribution over a finite set Q is a function µ : Q → [0, 1] such

that
∑

q∈Q µ(q) = 1. Let support(µ) be the subset of Q such that q ∈ support(µ) if and

only if µ(q) > 0. Given Q′ ⊆ Q, we let µ(Q′) =
∑

q∈Q′ µ(q). For any q ∈ Q, the point

distribution µq denotes the distribution which assigns probability 1 to q. For a possibly

uncountable set Q∞, let Dist(Q∞) be the set of distributions over finite subsets of Q∞.

Chapter 4

Model Checking for Timed

Automata and Probabilistic Systems

In this chapter, we present an overview of the model checking techniques that have been

developed for timed automata and probabilistic systems. Section 4.1 covers model check-

ing for non-probabilistic timed systems. Section 4.2 introduces model checking for untimed

probabilistic systems. Finally, the data structures used in this thesis are introduced in

Section 4.3.

4.1 Model Checking Non-probabilistic Timed Sys-

tems

When analysing real-time aspects of systems, the idea is first to model a system using

timed automata [AD94]. Then a model checker is used to check both timed and untimed

reachability properties, i.e. if a certain set of states is reachable or not. In this section, we

define timed automata and briefly describe some techniques used in their model checking.

4.1.1 Labeled Timed Transition System

Definition 4.1.1 A Labelled timed system is a tuple LTTS = (S, s̄, L,Act , T) where:

• S is the (possible infinite) set of states;

4 - Model checking for Timed Automata 21

• s̄ ∈ S is the initial state;

• L : S → 2AP is a labelling function;

• Act is the set of actions;

• T ⊆ S × (Act ∪ R
+) × S is the transition relation.

A labeled timed transition system LTTS is any graph with two types of labeled edges,

discrete and time edges. Discrete edges are labeled with labels of the Act (i.e. T ⊆

S ×Act× S). Time edges are labeled in R
+ (i.e. T ⊆ S × R

+ × S).

We use s
δ
→ s′ to denote a transition where δ ∈ {R

+ ∪ Act} is a lable which denotes

the duration or an action of a transition between s and s′. A path of a LTTS is an infinite

sequence of transitions s0
δ0→ s1

δ1→ s2 · · · where either δi ≥ 0 or δi ∈ Act. We denote by

Path(s) the set of paths starting in the state s ∈ S in the LTTS.

For any path

ω = s0
δ0−→ s1

δ1−→ s2
δ2−→ · · ·

of a labeled timed transition system, the duration up to the n+1th state of ω, denoted

Dω(n+1), equals
∑n

i=0 ti where ti = δi if δi ∈ R
+ or ti = 0 if δi ∈ Act .

Definition 4.1.2 A path of a labelled timed transition system LTTS is divergent if and

only if for any t ∈ R
+, there exists j ∈ N such that Dω(j)>t.

We denote by Pathdiv(s) the set of divergent paths starting in the state s ∈ S in the

LTTS.

Definition 4.1.3 A labelled timed transition systems LTTS is non-zeno if and only if

there are non-divergent paths for each state.

4.1.2 Timed Automata

A timed automaton is an ordinary automaton extended with real-valued clocks, which

increase at the same rate as time.

4 - Model checking for Timed Automata 22

Definition 4.1.4 (Timed automaton) A timed automaton is a tuple TA = (L,L, l,Act ,X , I, T)

which contains:

• a finite set L of nodes,

• a function L : L → 2AP assigning to each node of the automaton the set of atomic

propositions that are true in that node,

• a start node l ∈ L,

• a finite set Act of action,

• a finite set X of clocks,

• a function I : L→ Zones(X) assigning to each node an invariant condition,

• a transition relation T ⊆ L × Zones(X) × Act ×X × L that describes the edges of

the automaton, which consists of a source node, an enabling condition called guard,

an action label, a set of clocks to be reset and a target node

Definition 4.1.5 An edge of TA is a tuple of the form (l, g,X, l′) where g ∈ Zones(X)

is the guard.

There are two types of clock constraints: invariants labelling nodes, and guards la-

belling transitions. Each node of the timed automaton is labelled with an invariant, a

Boolean condition on the clocks stating how long the system can stay in that node; tran-

sitions are labelled with actions and Boolean conditions called guards stating whether the

action can be taken, and the set of clocks whose value is to be reset.

Figure 4.1 shows a simple timed automaton. Action labels are omitted. The example

can be used to control the door opening or closing. If the door is in the state of closing

and a control button is pressed, the door will be opened. Once the door is opened, it will

stay open for 2 to 3 time units, then the door will close. There is no constraint on node

‘close’. The constraint ‘x < 3’ on node ‘open’ is an invariant. The ‘true’ guard denotes

the fact that the button can be pressed at any time. The constraint ‘x > 2’ is a guard.

4 - Model checking for Timed Automata 23

close
open
 x<3

true; x:=0

x>2; x:=0

Figure 4.1: A simple timed automaton example

Semantics of Timed Automata

The semantics of a timed automata can be given in terms of labeled timed transition

system.

Definition 4.1.6 Let TA = (L,L, l, Act,X , I, T) be a timed automaton. The semantics

of TA is defined as the labeled timed transition system

LTTSTA = (S, s̄,L′,Act , T ′) where:

• S ⊆ L× R
+ and (l, v) ∈ S if and only if v ⊳ I(l);

• s̄ = (l, 0);

• ((l, v), δ, (l′, v′)) ∈ T ′ if and only if one of the following conditions holds:

time transitions: there exists δ′ ∈ R
+, such that v + δ′ ⊳ I(l) for all 0 ≤ δ′ ≤ δ,

discrete transitions: there exists an edge e = (l, g,X, l′) such that v ⊳ g, v′ ⊳ I(l′) and

v′ = v[X := 0].

• L′(l, v) = L(l) for any (l, v) ∈ S and δ ∈ R
+ ∪ Act.

We say that TA is non-zeno if and only if LTTSTA is non-zeno.

A position of a path ω ∈ Path(s) is a pair (i, δ) consisting of a nonnegative integer

i and a nonnegative real δ. The duration from the beginning of a path ω up to position

(i, δ) is denoted as Dω(i) + δ. The state at position (i, δ) of ω is ω(i, δ). For convenience,

the state s at position (i, δ) of ω is also denoted as a pair of the form (l, v), where the

first element is a node and the second element is a valuation of all of the clocks with the

value at position (i, δ). The initial state is s0 = (l, 0).

4 - Model checking for Timed Automata 24

A state of the LTTSTA is a pair (l, v) where l ∈ L is a node of TA and v is a clock

valuation. The underlying model of timed automata takes the form of classical labelled

transition systems enhanced with information about time. Since the clock values range

over R
+, there are infinitely many states in the transition system because clock valuations

are part of states. In other words, the model of a timed automaton is an infinite state

transition graph. The system starts its execution with all clocks set to 0. The automaton

may only stay in a node, letting time pass, if the clocks satisfy the invariant. When a

guard is satisfied, the corresponding transition can be taken. Additionally, a set of clocks

can be reset to 0 when automaton executes a discrete transition. Note that the fact that

clocks are real-valued means that the transition system is generally infinite state, and that

the real-valued durations of time that may elapse from a state means that the transition

system is generally infinitely branching.

We consider model checking over divergent paths only.

4.1.3 Timed Computation Tree Logic (TCTL)

TCTL employs a set of formula clocks, Z, disjoint from the clocks X of the timed au-

tomaton. Formula clocks are assigned values by a formula clock valuation E : Z → R,

which uses the notation for clock valuations in the standard way.

Definition 4.1.7 The syntax of TCTL [HNSY92] is defined as follows:

φ ::= p
∣

∣ x+ c ≤ y + d
∣

∣ ¬φ
∣

∣ φ ∨ φ
∣

∣ z.φ
∣

∣ ∀[φ1 U φ2]
∣

∣ ∃[φ1 U φ2]

where p ∈ AP , x, y, z ∈ X ∪ Z are clocks, ⊲⊳∈ {≤, <} and c, d ∈ N.

The logic TCTL can express timing constraints and includes the reset quantifier z.φ, used

to reset the clock z so that φ is evaluated from a state at which z = 0.

Definition 4.1.8 Let LTTSTA = (S, s̄,L′,Act , T ′) be a labelled timed transition system.

For any state s ∈ S and formula clock valuation E , the satisfaction relation s, E |=φ is

4 - Model checking for Timed Automata 25

defined inductively as follows:

s, E |= true

s, E |= a ⇔ a ∈ L(s)

s, E |=¬φ ⇔ s, E 6|=φ

s, E |=φ1 ∨ φ2 ⇔ s, E |=φ1 or s, E |=φ2

s, E |= z.φ ⇔ s, E [z := 0] |=φ

s, E |=∃[φ1U φ2] ⇔ there exists a path ω ∈ Pathdiv(s) there exists a position (i, t)

of ω such that ω(i, t), E + Dω(i) + t |= φ2, and

for all j < i, we have:

ω(j, t), E + Dω(j) + t |= φ1 ∨ φ2

and for j = i and t′ < t we have:

ω(j, t′), E + Dω(j) + t′ |= φ1 ∨ φ2.

s, E |=∀[φ1U φ2] ⇔ for all paths ω ∈ Pathdiv(s) there exists a position (i, t)

of ω such that ω(i, t), E + Dω(i) + t |= φ2, and

for all j < i, we have:

ω(j, t), E + Dω(j) + t |= φ1 ∨ φ2

and for j = i and t′ < t we have:

ω(j, t′), E + Dω(j) + t′ |= φ1 ∨ φ2.

In TCTL, we can express properties such as: “the leader will be elected within 8 time

units”, which is represented as the TCTL formula z.∀[true U (leader ∧ (z < 8))].

4 - Model checking for Timed Automata 26

4.1.4 Symbolic States and Operations

A set of states of a LTTSTA is called a symbolic state which is denoted as (l, ζ) where l

is the node of timed automata TA and ζ is the zone. We assume all states of a symbolic

state U are associated with the same node.

Given a symbolic state U = (l, ζ) where ζ is a convex zone, c ∈ N, we generalise the

close operation on zones to symbolic states:

close(U, c)
def
= (l, close(ζ, c))

In this thesis, we define:

until(ζ ′, ζ)
def
= ւζ′ ζ

z.(U)
def
= (l, [X := 0]ζ) where U = (l, ζ)

Given symbolic states U = (l, ζ ′) and V = (l, ζ), the operation ւζ′ ζ on zones can also

be generalised to symbolic states:

tpreU(V)
def
= {(l, until(ζ ′, ζ))} where U = (l, ζ ′) and V = (l, ζ).

Let U be a symbolic state, e an edge of TA and c a natural number constant. We define

the following operations on U :

time−succ(U)
def
= {s′|∃s ∈ U, δ ∈ R.s

δ
→ s′}

time−pred(U)
def
= {s|∃s′ ∈ U, δ ∈ R.s

δ
→ s′}

disc−succ(e, U)
def
= {s′|∃s ∈ U.s

e
→ s′}

disc−pred(e, U)
def
= {s|∃s′ ∈ U.s

e
→ s′}

post(e, U, c)
def
= close(time−succ(disc−succ(e, U)), c)

pre(e, U)
def
= disc−pred(e, time−pred(U))

The operation time−succ(U) computes symbolic state that can be reachable by staying

at the same node as U and by increasing the clocks with same value. The symbolic state

4 - Model checking for Timed Automata 27

computed by operation time−pred(U) is that can reach U by staying at the same node

as U and increasing the clocks with same value. The operation disc−succ(U) is used for

computing the symbolic state reachable from U by taking a discrete transition edge e.

The result of the operation disc−pred(U) is the symbolic state that can reach U by taking

a discrete transition edge e. The symbolic state computed by operation post(e, U, c) which

applies both operations of disc−succ and time−succ is called successor state. The symbolic

state computed by operation pre(e, U, c) which applies both operations of disc−pred and

time−pred is called predecessor state.

Given a timed automaton TA = (L,L, l,Act ,X , I, T), symbolic states (l, ζ) and (l′, ζ ′)

and an edge e = (l, g,X, l′), the following results [Tri98] can be used to implement the

post and pre operations using basic operations on zones.

time−succ((l, ζ))
def
= (l,ր ζ ∩ I(l))

time−pred((l, ζ))
def
= (l,ւ ζ ∩ I(l))

disc−succ(e, (l, ζ))
def
= (l′, (ζ ∩ g[X := 0]) ∩ I(l′))

disc−pred(e, (l′, ζ ′))
def
= (l, [X := 0]ζ ′ ∩ g ∩ I(l))

4.1.5 Model Checking for Timed Systems

We will give here a short introduction to the ideas of the region and the zone techniques

for timed automata. These will be used to generate finite-state quotient representations

of timed automata.

The Region Graph Technique

The region graph technique [AD94] is due to the work of Alur and Dill. The method

specifies how the infinite space of clock valuations can be partitioned into a finite set of

equivalence classes which are called clock regions.

4 - Model checking for Timed Automata 28

Region Equivalence The key idea behind clock regions is to define an equivalence

relation, which is recalled briefly below.

For any δ ∈ R, fr(δ) denotes the fractional part of δ, and intg(δ) denotes the integral

part of δ; that is, δ = intg(δ) + fr(δ). For each clock x ∈ X , let C ∈ N be the

smallest constant which is greater than or equal to the absolute value |c| of every constant

c ∈ Z appearing in an invariant or a guard. The equivalence relation between two clock

valuations v(x) and v′(x) is defined as:

• For all x ∈ X , either intg(v(x)) and intg(v′(x)) are the same, or both v(x) and v′(x)

are greater than C

• For all x, y ∈ X , v(x) ≤ C and v(y) ≤ C and fr(v(x)) ≤ fr(v(y)) iff fr(v′(x)) ≤

fr(v′(y))

• For all x ∈ X , v(x) ≤ C and fr(v(x)) = 0 iff fr(v′(x)) = 0

-
0

x

y

6

q

q q

q

q q

1

1

2

�
�

�
�

�
�

�
�

�
�

Figure 4.2: An example of regions

Figure 4.2 shows the partitioning of clock valuations for two clocks x and y, with cx = 1

and cy = 2. There are a total of 28 regions: 6 corner points (i.e. x = 0, y = 2), 14 open

segments (i.e. 0 < x < 1, y = 2) and 8 open regions (i.e. 0 < x < 1, 0 < y < 1, x < y).

4 - Model checking for Timed Automata 29

The Zone Technique

Model checking algorithms can work directly on the region technique to decide properties.

However, the region technique is often not feasible because, although a finite graph is

obtained by this technique, it still suffers from the state explosion problem. The number

of the equivalence classes grows exponentially with the number of clocks and the length

of the clock constraints used in the model and the specification. Zones are an alternative

way to obtain a finite representation for the infinite state space. Zones are a coarser

partitioning of the clock valuations; formally, zones are unions of regions.

On-the-fly Reachability Analysis

Much of the research concerned with model checking timed automata has been focused on

forward approach which is capable for the reachability analysis [BBF+01]. The forward

reachability approach is defined as follows: given a set of target states, determine whether

a target state of a system is reachable from the initial state.

The reachability analysis is very important because, firstly, many properties such as safety

properties are expressed as reachability or non-reachability of a certain set of states, and

secondly, other classes of properties are also based on the same concept. The key idea

behind reachability analysis is to construct a reachability graph which is much coarser

than the region graph because only discrete transitions are explicit; the timed transitions

are implicit and they are encoded inside the nodes of a reachability graph.

Algorithms [ACD93] are based on the notion of region graphs, in which the full reacha-

bility graph is constructed for a given automaton before the properties are checked directly

on the reachability graph. However, it is inefficient to construct the whole reachability

graph if the goal of verification is only to verify simple properties such as safety properties.

It has been pointed out in [YPD94] that the simple logical properties such as safety or

time bounded properties can be verified without constructing the whole reachability graph

of a timed system. In the case of model checking timed automata, most of the existing

algorithms are now using on-the-fly techniques. Here, ‘on-the-fly’ means that, instead of

searching the whole reachability graph, the model checking algorithm will terminate as

soon as the answer is obtained. These on-the-fly techniques are implemented in tools such

4 - Model checking for Timed Automata 30

as KRONOS [BDM+98, DOTY95] and UPPAAL [BLL+98, LPY97b].

The Forward Reachability Algorithm

Figure 4.3 shows the on-the-fly forward reachability algorithm [BY04], where (l0, ζ0) is

the initial state with clocks set to 0 and (lt, ζt) is the set of target states. The algorithm

will return answer “YES” if the target state can be reached from initial state. Lines 1-2

initialise the set Passed and Wait, which are used to store the set of symbolic states for

those already explored and those waiting to be explored, respectively. Lines 3-12 generate

the states. The “on-the-fly” means that the algorithm terminates as soon as possible when

it finds the answer (Line 6). Line 4 takes a state from the set Wait, which is moved to

the set Passed (Line 9). Line 10 calculates the next state by the post operation. If the

newly found state has not been explored before, it is put into the set Wait in Line 11.

Finally, line 15 returns answer “NO” if no positive answer is obtained.

Data Structures Based on Zone Techniques

Due to the successful symbolic encoding methods, for example by using Binary Decision

Diagrams (BDDs) [Bry86] to represent sets of states and relations between states as pred-

icates over Boolean variables, it is possible to verify systems with a very large number

of states [BCM+90]. However, these symbolic methods do not easily generalise to real-

time systems [ACD93] because such systems use dense real-valued variables to model time.

It has been pointed out in [MHA02] that, to solve the reachability problem for a timed

system, there are two key problems that have to be addressed. One problem is how to

represent the infinite state space R of a timed system, and the other problem is how to

perform the basic operations (resetting clocks, advancing time, etc.) on this representa-

tion to compute the reachable state space.

A Difference Bound Matrix (DBM) [Dil89, LLPY97, CGP99] is a data structure which

represents convex sets of regions (convex union of regions which is also called a zone).

However, a set containing non-convex zones that are apart from each other cannot be

4 - Model checking for Timed Automata 31

OnTheF lyForward((l0, ζ0), (lt, ζt))

1. Passed := ∅

2. Wait := {(l0, ζ0)}

3. while Wait 6= ∅

4. take (l, ζ) from Wait

5. if (l = lt) ∧ (ζ ∩ ζt 6= ∅)

6. return “YES”

7. end if

8. if not ζ ⊆ ζ ′ for all (l, ζ ′) ∈ Passed

9. add (l, ζ) to Passed

10. for all edges e = (l, g,X, l′) such that (l′, ζ ′) = post(e, (l, ζ))

11. add (l′, ζ ′) to Wait

12. end for

13. end if

14. end while

15. return “NO”

Figure 4.3: The on-the-fly forward reachability algorithm

4 - Model checking for Timed Automata 32

efficiently represented. Using DBMs, non-convex unions of zones may be represented by

a list of DBMs, each representing one zone of the union. This representation is inefficient

because the number of DBMs will become very large as the number of non-convex zones

increases. In particular, this representation increases the computational complexity of the

check for zone inclusion, which is expensive O(n4).

-
0

x

y

6

q q q

q q

1 2

1

�
�

�
�

�

�
�

�
�

�

Figure 4.4: Non-convex union of regions example

Figure 4.4 shows a non-convex union of regions which includes the areas of the two

triangles.

To efficiently represent both convex and non-convex regions, other data structures

called Clock Difference Diagrams (CDDs) [LPWY99, BLP+99], Clock-Restriction Dia-

gram (CRDs) [Wan03] and and Difference Decision Diagrams (DDDs) [MLAH99b, MLAH99d,

MLAH99c, MLAH99a, ML98] have been proposed. Of these, only DDDs are open source.

In this thesis, we only consider two data structures for the representation of timing

information: DBMs and DDDs. More information about these data structures is given in

Section 4.3.

4 - Model checking for Timed Automata 33

4.2 Model Checking for Untimed Probabilistic Sys-

tems

The need for probabilistic modelling has been advocated in several papers. Probability

enables the modelling of phenomena related to reliability and performance. Verification

of quality of service through model checking has already been applied to real-world case

studies. For reliability and performance analysis, there are two kinds of models, discrete

and continuous. In the case of the discrete models, several models of distributed prob-

abilistic systems are based on Markov decision processes [BdA95, BK98] or on closely

related formalisms.

Traditional model checking involves verifying properties of labelled state transition

systems. In the case of probabilistic model checking, however, the models also incorporate

information about the likelihood of transitions occurring between states.

In this section, we first briefly overview some basic concepts relating to Markov decision

processes which will serve as semantics of probabilistic timed automata.

4.2.1 Markov Decision Processes

Nondeterminism is not only useful for modelling concurrency but also useful when the

exact probability of a transition is not known, or when it is known but not considered

relevant. A Markov decision process (MDP) allows one to describe both nondeterministic

and probabilistic behaviour. It also allows us to describe the behaviour of a number of

probabilistic systems operating in parallel.

Definition 4.2.1 An MDP is a tuple (S, s, Steps, L) where:

• S is a set of states,

• s ∈ S is the initial state,

• a transition function Steps : S → 2Dist(S) assigning each state s ∈ S to a finite, non-

empty subset of Dist(S),

• a labelling function L : S → 2AP assigning to each state the set of atomic propositions

that are true in that state.

4 - Model checking for Timed Automata 34

For a given state s ∈ S, Steps(s) is a set of nondeterministic choices available in that

state. Each nondeterministic choice is a probability distribution.

A path in the MDP is a non-empty finite or infinite sequence of transitions ω = s0
µ1
→

s1
µ2
→ s2 . . . where si ∈ S, µi+1 ∈ Steps(si) and µi+1(si+1) > 0 for all i ≥ 0. For a path ω

and i ∈ N, we denote by ω(i) the (i+1)th state of ω, and by last(ω) the last state of ω if ω

is finite. The sets of all finite and infinite paths starting in state s are denoted Pathfin(s)

and Path ful(s), respectively. Because of the introduction of nondeterminism, both the

nondeterministic and probabilistic choices have to be resolved when a path of an MDP

is traced. The nondeterministic choices are assumed to be made by an adversary (also

known as a ‘scheduler’ or ‘policy’), which selects a choice based on the history of choices

made so far. Formally, an adversary A is a function mapping every finite path ωfin of the

MDP onto a distribution A(ωfin) ∈ Steps(last(ωfin)). We denote by PathA
s the subset

of paths from s which corresponds to adversary A. The set of all adversaries for a given

MDP M is denoted AdvM. The sets of all finite and infinite paths starting in state s

under an adversary A is denoted PathA
fin(s) and PathA

ful(s), respectively. To reason about

the probabilistic behaviour of the MDP under an adversary A, we need to determine the

probability with which certain paths are taken. This is achieved by defining, for each

state s ∈ S, a probability measure ProbA
s over PathA

ful(s). More precisely, for an MDP

(S, s, Steps, L) and state s ∈ S, under a given adversary A, the behaviour of the MDP is

purely probabilistic and can be given by a transition probabilistic matrix PA
s over finite

paths which is defined as below. For two finite paths ωfin , ω
′
fin ∈ PathA

fin(s):

PA
s (ωfin , ω

′
fin) =







µ(s′) if ω′
fin is of the form ωfin

µ
−→ s′ and A(ωfin) = µ

0 otherwise,

and LA
s (ωfin) = L(last(ωfin)) for each ωfin ∈ PathA

fin(s). We can define a probability

measure ProbA
s over PathA

ful(s) using the construction given in [BK98].

Probabilistic Reachability

Definition 4.2.2 Let PS = (S, s, Steps, L) be an Markov decision processes. Then the

reachability probability with which a set F ⊆ S of target states, can be reached from a

4 - Model checking for Timed Automata 35

state s ∈ S, for an adversary A ∈ AdvPS, is:

ProbReachA(s, F)
def
= ProbA

s {ω ∈ PathA
ful | ω(0) = s& ∃i ∈ N . ω(i) ∈ F} .

Furthermore, the maximal and minimal reachability probabilities are defined respectively

as

MaxProbReachPS(s, F)
def
= sup

A∈AdvPS

ProbReachA(s, F)

MinProbReachPS(s, F)
def
= inf

A∈AdvPS

ProbReachA(s, F)

4.2.2 Probabilistic Computation Tree Logic (PCTL)

To write specifications of MDPs, we use the logic PCTL. The syntax of PCTL is as follows:

φ ::= true
∣

∣ a
∣

∣ ¬φ
∣

∣ φ ∧ φ
∣

∣ P⊲⊳ p[φ U φ]
∣

∣ P⊲⊳ p[φ V φ]

where a is an atomic proposition, ⊲⊳∈{≤, <,≥, >}, p ∈ [0, 1].

The meaning of a state s satisfying the formula P⊲⊳ p[ψ] is that the probability of a

path from s satisfying ψ is in the range ⊲⊳ p for all adversaries.

We use the abbreviation ⋄φ for true U φ inside PCTL formula. For example, the

formula for probabilistic reacahbility is defined as:

P⊲⊳ p[♦φ]
def
= P⊲⊳ p[true U φ]

.

We use formula P&p[♦φ] for specifying minimum probabilistic reachability and formula

P.p[♦φ] for specifying maximum probabilistic reachability.

PCTL can be used to express properties such as: ‘with probability less than 0.94, a

leader is elected’, which is represented as the formula P<0.94[♦ elected], where elected is

an atomic proposition labelling the state of elected leader.

Definition 4.2.3 Let M = (S, s, Steps , L) be a labelled MDP. For any state s ∈ S , the

4 - Model checking for Timed Automata 36

satisfaction relation s |=φ is defined inductively as follows:

s |= true for all s ∈ S

s |= a ⇔ a ∈ L(s)

s |=¬φ ⇔ s 6|=φ

s |=φ1 ∧ φ2 ⇔ s |=φ1 and s |=φ2

s |=P⊲⊳ p[ψ] ⇔ pA
s (ψ) ⊲⊳ p for all A ∈ AdvM

where for any adversary A ∈ AdvM:

pA
s (ψ)

def
= ProbA

s ({ω ∈ PathA
s | ω |=ψ})

and for any path ω ∈ Pathful:

ω |=φ1 U φ2 ⇔ ∃i ∈ N.(ω(i) |=φ2 and ∀j < i . ω(j) |=φ1)

ω |=φ1 V φ2 ⇔ ∀i ∈ N.(∀j < i.(ω(j) 6|=φ1 ⇒ ω(i) |=φ2))

PCTL Model Checking The model checking algorithm for PCTL over MDPs takes

as input a labelled MDP (S, s̄, Steps , L) and a PCTL formula ψ and returns the set of

states Sat(ψ) ⊆ S of states satisfying the formula.

For the formula P⊲⊳ p[ψ], it need to determine whether pA
s (ψ) satisfies the bound ⊲⊳ p for

all adversaries A. This is done by computing either the minimum or maximum probability

over all adversaries, depending on whether the relational operator ⊲⊳ defines an upper or

lower bound. If ⊲⊳ is ≤ or <, then:

Sat(P⊲⊳ p[ψ]) = {s ∈ S | pmax
s (ψ) ⊲⊳ p}

and if ⊲⊳ is ≥ or >, then:

Sat(P⊲⊳ p[ψ]) = {s ∈ S | pmin
s (ψ) ⊲⊳ p}

4 - Model checking for Timed Automata 37

where:

pmax
s (ψ)

def
= sup

A∈AdvM

[pA
s (ψ)]

pmin
s (ψ)

def
= inf

A∈AdvM

[pA
s (ψ)] .

In this thesis, we use PRISM as the model checker for PCTL against MDPs. Table

4.1 lists the main procedures in PRISM used by our software tool.

Table 4.1: PRISM procedure

PRISM Procedure Description

PRISM.parseModelFile parse a PTA model

PRISM.parsePropertiesFile parse a PCTL formulae

PRISM.buildModel return an MTBDD representation of parsed model

PRISM.modelCheck return maximum probability for a PCTL

formula of P.p[♦φ] against an given model

4.3 Data Structures

In this section, we introduce data structures used in this thesis for representing both

timing information and probability distributions.

4.3.1 Data Structures for Encoding Timing Information

To solve the reachability problem for a timed system, one issue that has to be addressed

is how to represent the infinite state space R of a timed system. Two data structures

are discussed here, and especially their common principles, the main differences in their

implementation choices, and the trade offs made. The first data structure considered is

the Difference Bound Matrices (DBMs), whereas the second is the Difference Decision

Diagrams (DDDs).

The two data structures have some common features. For example, both assume a

special clock x0 whose value is always zero. Recall that there are two kinds of constraints

4 - Model checking for Timed Automata 38

encountered in regions. One of them is the constraint that involves only one clock, and

the other is that representing bounds on the differences between two different clocks. For

constraints involving only one clock, these constraints can also be represented as bounds

on the difference between two clock values through using the special clock x0 whose value

is always zero. For example, X is a set of clocks and for xi ∈ X, xi < c (c is a integer)

is expressed as xi − x0 < c, while c < xi as x0 − xi < c. Thus, the constraints can be

uniformly represented as the difference between two of clocks.

To solve the reachability problem for a timed system, the other issue that has to be

addressed is how to perform the basic verification operations (resetting clocks, advancing

time, etc.) on this representation to compute the reachable state space. The perspec-

tives to be considered about the data structures are: operations on them, canonicity,

computational complexity, space consumption and ordering sensitivity.

Although the two data structures considered here for representing timed information

provide different solutions for representing timing constraints, both provide representation

for continuous timing data, as well as operations for manipulating clock advance and

resetting. They differ in their space consumption, computational complexity, canonicity

and ordering sensitivity.

Below we describe Difference Bound Matrices and Difference Decision Diagrams and

their implementation of corresponding basic operations. Table 4.2 gives the uniform basic

operations used in this thesis.

Other uniform operations, such as Emptiness, Inclusion, Exists, Equivalence and

Normalise are also described below. In this thesis, these uniform operations are also

extended to the symbolic states if it would not cause any confusion. We will also abuse

“()” for enclosing a state or a symbolic state. An enumeration of set elements is enclosed

in “{ }”.

Difference Bound Matrices

Difference Bound Matrices are a data structure that can efficiently represent sets of ad-

jacent regions (convex union of adjacent regions). A DBM is actually a square matrix

whose elements represent bounds on the difference between two clock values. For a set of n

4 - Model checking for Timed Automata 39

Table 4.2: Uniform basic operations

Uniform Operation Basic Zone Operation

T imeSuccessors ր ζ

T imePredecessors ւ ζ

ResetClocks
(

∧

x∈Y

(x = 0)
)

FreeClocks ζ/Y

until ւζ′ ζ

Conjunction ∩

Disjunction ∪

Complement ζ̄

clocks {x1, · · · , xn}, using the special clock x0 whose value is always zero, the constraints

over these clocks can be encoded as a (n + 1) × (n + 1) square matrix D whose indices

range over the interval [0..n] and whose elements belong to the pair (Z∞, ⊲⊳), where ⊲⊳ is

either “<” or “≤”. In DBMs, “<” and “≤” are ordered such that “<” < “≤”. Z are

ordered as normal, and ∀d ∈ Z, d < ∞. For two pairs D1 = (d1, ⊲⊳1) and D2 = (d2, ⊲⊳2),

we denote min(D1, D2) = (min(d1, d2), min(⊲⊳1, ⊲⊳2)) where d1, d2 ∈ Z∞ and ⊲⊳1, ⊲⊳2∈⊲⊳.

The matrix D has the following properties.

• All the elements on the main diagonal have the form (0,≤).

• The elements on the first column of D encode the upper bounds of the clocks. That is,

if xi − x0 ⊲⊳ c appears in the constraint, then Di0 is the pair (c, ⊲⊳); otherwise it is (∞,

<).

• The elements on the first row of D encode the lower bounds of the clocks. If x0 −xi ⊲⊳ c

appears in the constraint, D0i is (c, ⊲⊳); otherwise it is (0,≤).

• Other elements Dij (i-th row and j-th column) are the pairs (c, ⊲⊳) which encode the

constraint xi − xj ⊲⊳ c. If there is no explicit constraint on the difference between xi and

xj in the conjunction, the element Dij is set to (∞, <).

In DBMs, an element corresponds to an atomic zone. An element of pair (∞, <) is

called trivial element, an element of pair rather than (∞, <) is called non-trivial element.

4 - Model checking for Timed Automata 40

D1 =











(0,≤) (0,≤) (0,≤)

(1,≤) (0,≤) (∞, <)

(1,≤) (0,≤) (0,≤)











D2 =











(0,≤) (−1,≤) (0,≤)

(2,≤) (0,≤) (∞, <)

(1,≤) (−1,≤) (0,≤)











Figure 4.5: Two DBMs representing the non-convex union of regions in Figure 4.4

A DBM cannot directly represent non-convex unions of regions or zones. In practice,

they can be represented through using lists of DBMs.

Canonicity

A canonical data structure makes testing of functional properties, for example, equivalence

straightforward. In this subsection, we discuss the canonicity properties and alternative

way to check equivalence if the data structure does not have a canonical form.

Every region or zone (convex union of regions) can be represented by a DBM. How-

ever, many different DBMs can represent the same clock zone because some difference

constraints between two different clocks do not appear explicitly and some of the bounds

may not be tight enough. Although there are more than one DBM representing the same

zone, there exists a unique matrix, called the canonical DBM, that encodes the same

zone and whose elements are tightest. The canonical DBM can be obtained by applying

the Floyd-Warshall’s algorithm [CLR90]. A canonical representative has two important

properties, namely it guarantees the existence of the following:

• a simple method for determining whether a conjunction of zones has a solution, and

• a simple method for checking whether two matrices represent the same zone.

However, because DBMs cannot directly represent non-convex unions of regions, which

are actually represented through using lists of DBMs in practice, it is inefficient to check

whether two sets of regions or lists of regions are same when the number of DBMs for

representing the timing information becomes very large. The tool KRONOS uses some

heuristics to check whether the union of two DBM’s is indeed a DBM, but such heuristics

are computationally expensive.

4 - Model checking for Timed Automata 41

Complexity

In general, the cost of operations on a n×n matrix for a DBM would have time-complexity

O(n2) where n is the number of clocks. However, certain operations such as time successor

require a DBM in canonical form. This canonical form is computed by applying Floyd-

Warshall’s algorithm [CLR90]. Computation of this canonical form is the most costly

operation on DBMs with time-complexity O(n3) where n is the number of clocks.

Ordering Sensitiveness

A DBM is just a matrix. There is no assumption about ordering on this matrix, and thus

ordering does not have any effect on DBM.

Space Consumption

For a single DBM, the size of the DBM is bounded. Each DBM encoding convex con-

straints requires O(n2) memory space, where n is the number of clocks including the

extra clock. As a DBM is just a data structure for representing adjacent regions, there

is no sharing between DBMs. Thus, the total space required is O(k × n2) where k is the

number of the DBMs. However, the method [LLPY97] can be used to reduce the memory

requirement. Figure 4.5 shows the use of 2 DBMs to represent the non-convex unions of

regions in Figure 4.4 which requires 18 matrix elements in DBMs.

Operations

In the following, we assume that D is a list of DBMs, D1, D2 and D3 are DBMs,

x̄ = (x0, x1, . . . , xn) is a set of n + 1 clocks and Dij,D1ij and D2ij are elements at row i

and column j in the matrices.

Conjunction(D1, D2). Given two DBMsD1 andD2, D3=Conjunction(D1, D2) is such

that for all 0 ≤ i, j ≤ n, D3ij = min(D1ij , D2ij).

T imeSuccessors(D1). This operation requires a DBM in a canonical representative

form. As time elapses, clock differences remain the same, since all clocks increase at

4 - Model checking for Timed Automata 42

the same rate. Lower bounds do not change either since there are no decreasing clocks.

Upper bounds have to be pushed to infinity, since an arbitrary period of time may pass.

Recall that the elements on the first column encode the upper bounds on each clock.

Thus, the only elements that need to be changed are those on the first column of the

matrix: D1ij = (∞, <) if j = 0.

ResetClocks(D1, xi, d). Resetting a clock to d can be implemented by changing elements

below in the matrix D1:

D1ij = (∞, <) if i 6= j

D1ji = (∞, <) if i 6= j

D1i0 = (−d,≤)

D0i = (d,≤)

FreeClocks(D1, xi). A free clock can be implemented by changing elements below in

the matrix D1:

D1ij = (∞, <) if i 6= j

D1ji = (∞, <) if i 6= j

D1i0 = (0,≤)

D0i = (∞, <)

T imePredecessors(D1). This operation requires a DBM in a canonical representative

form. Recall that the elements on the first row encode the lower bounds on each clock.

Thus, the only elements that need to be changed are those on the first row of the matrix:

D1ij = (0,≤) if i = 0. The meaning of this operation is to push the lower bounds to 0.

Disjunction(D1, D2). The disjunction of two DBMs is not necessarily a DBM, since

the disjunction of two constraints can be non-convex. In practice, the disjunction of two

DBMs is represented as a list of DBMs.

Complement(D1). The complement of a DBM is a list of DBMs D1, . . . , Dk; each Dx

is the complement of a non-trivial element of Dxi,j, for 1 ≤ x ≤ k.

4 - Model checking for Timed Automata 43

Emptiness(D1). For a single DBM, the empty set check can be done through checking

its diagonal elements in its canonical form; it returns true if D1i,j is (≤, 0), and otherwise

false. For a list of DBMs, the empty set check can be done through checking each DBM

on the list.

Inclusion(D1, D2). For two single DBMs in canonical form, the operation returns true

ifD1i,j is less than or equal toD2i,j for any i, j, otherwise false. For two lists of DBMs, the

set inclusion testing is reduced to checking Emptiness(Conjunction(Complement(D1), D2)).

Equivalence(D1, D2). For two single-DBMs, the equivalence check can be done through

first bringing them into canonical forms and then checking each corresponding element

in both matrices. For two lists of DBMs, it is reduced to checking set inclusion in both

directions.

Normalise(D1, k). In forward search, the algorithm does not always terminate. The

Normalise operator ensures the termination of forward search. It can be computed

from the canonical form of D1 by setting D1i,j = (∞, <) if value(D1i,j) > k or setting

D1i,j = (−k,<) if value(D1i,j) < −k.

Exists(xi, D1). The Exists operator removes all clock constraints related to clock xi.

It can be computed from D1 simply by removing i-th and i-th row and column from D1.

until(ζ1, ζ2) The DBM-based until(ζ1, ζ2) operation needed in the backward algorithm

can be computed using the result from [Tri98], in which the until operation gives the set

that can reach ζ2 via ζ1 by letting time pass:

until(ζ1, ζ2) = ζ1 ∩ (ւ ζ2) \ (ւ ((ւ ζ2 \ (ζ1 ∪ ζ2)))

assuming ζ2 is convex.

If the second argument of until is non-convex, a more general result showing that until

is union-distributive on its second argument can be exploited as follows: until(ζ1, ζ2∪ζ
′
2) =

until(ζ1, ζ2) ∪ until(ζ1, ζ
′
2) assuming both ζ2 and ζ ′2 is convex.

4 - Model checking for Timed Automata 44

However, in order to compute until (also tpre), two complementations are required be-

cause the set difference operation is computed through complementation. Unfortunately,

complementation is an expensive operation and causes the generation of non-convex zones.

Difference Decision Diagrams

The data structure called Difference Decision Diagrams (DDDs) is a symbolic data struc-

ture designed to efficiently represent both convex and non-convex unions of zones, called

Difference Constraint Expressions (DCEs). DDDs are based on Binary Decision Diagrams

(BDDs). Like BDDs, a DDD is also a Directed Acyclic Graph (DAG) due to sharing of

isomorphic sub-graphs. The vertex set contains two terminals 0 and 1 of out-degree zero,

and a set of non-terminal vertices of out-degree two. A non-terminal vertex v corresponds

to an integer- or real-valued difference constraint expression between two clocks. A non-

terminal vertex v in DDDs is a tuple (v(x), v(y), v(op), v(constant)) where v(x) and v(y)

are variables ranging over R, v(op) ∈ {<,≤} and v(constant) ∈ Z. Unlike in a BDD,

the same pair of clocks can appear more than once along the path in a DDD. A path in

a DDD is a finite sequence of edges. A path corresponds to a conjunction of difference

constraints that is called a Difference Constraint System (DCS) in DDDs. A DCS corre-

sponds to a DBM. A DDD contains a representation of DBMs as a special case. A path

that ends with true or false is called a 1-path or 0-path respectively. A path is feasible

if and only if the corresponding Difference Constraint System (a DBM) has a solution.

If the Difference Constraint System has no solution, the path is infeasible. Unlike BDD,

both 0- and 1-paths can be feasible or infeasible because the difference constraints can

interact with each other along the path.

A DBM has no requirement for ordering. However, DDDs require ordering. In DDDs,

the total ordering of both two single clocks and two pairs of different clocks complies to

the following:

• Assuming that the variables x1, · · · , xn can be ordered.

• Two pairs of variables, which are ordered such that (xi, xj) < (yi, yj) if and only if

xj < yj or (xj = yj and xi < yi)

4 - Model checking for Timed Automata 45

We say the ordering on pairs of variables (xi, xj) of a vertex in a DDD is normalised if

xi > xj .

We assume that n variables x1, . . . , xn have the following ordering: x1 < x2 < · · · < xn,

where xi ∈ R
+ and 1 ≤ i ≤ n. The n variables can have at most n(n − 1)/2 pairs of

normalised ordering of the form (xi, xj), which are ordered as follows:

(x2, x1) < (x3, x1) < (x4, x1) < . . . (xn, x1) <

(x3, x2) < (x4, x2) < . . . (xn, x2) <
...

(xn−1, xn−2) <

(xn, xn−1)

In DDDs, the ordering of two non-terminal vertices u and v is defined according to

the following:

• The “<” < “≤”.

• u(constant) and v(constant) are ordered as in Z.

• u < v if (u(x), u(y)) and (v(x), v(y)) are normalised and (u(x), u(y)) < (v(x), v(y))

and u(op) < v(op) and u(constant) < v(constant).

In DDDs, all non-terminal vertices are less than the terminal vertices 0 and 1.

Canonicity

Like BDDs, DDDs can be ordered and reduced. In DDDs, there are two kinds of re-

ductions that can be used: local reduction and path reduction. The path-reduced DDD

is also called a semi-canonical form of DDDs, which is obtained by removing the infea-

sible paths. A semi-canonical form of DDDs is sufficient for deciding satisfiability and

tautology. However, both local reduction and path reduction on DDDs do not provide a

canonical representation of difference constraint expressions. In other words, there is no

canonical form for DDDs. Although DDDs cannot be brought into canonical from, DDDs

support BDD-like function (Apply) for testing of bi-implication that can be used to test

equivalence. Given two DDDs, if the result of bi-implication is always true or tautology

after applying the path reduction then this means the two DDDs are equivalent.

4 - Model checking for Timed Automata 46

x-z <0

x-z <=1

x-z <=2

y-z <0y-z <0

y-z <=1y-z <=1

y-x <0y-x <= -1

1

Figure 4.6: A ordered DDD representing the non-convex union of regions in Figure 4.4

4 - Model checking for Timed Automata 47

Complexity

The worst-case running time for some most important algorithms in DDDs is PSPACE-

complete.

Ordering Sensitiveness

Like BDDs, DDDs are also sensitive to ordering. Similarly to BDDs, the structure of

DDDs will change if two levels of DDDs are swapped. Figure 4.6, which is the DDD

representation of the non-convex unions of regions in Figure 4.4, shows a DDD using of

variables ordering of z < x < y.

Space Consumption

For DDDs, the size is not bounded by the number of variables because there can be

arbitrarily many tests on the same pair of variables. Similarly to BDDs sharing of sub-

structures, a DDD representation of a union of zones is likely to be much smaller than the

explicit DBM-list representation. Figure 4.6, the DDD representation of the non-convex

unions of regions in Figure 4.4, requires 10 DDD nodes.

Operations

The algorithms for the DDD data structure are similar to those of Binary Decision Di-

agrams (BDDs). DDDs support a BDD-like function (Apply) that can be instantiated

to yield all common Boolean operations. Similarly to BDDs, all operations assume that

DDDs are ordered. However, it is expensive (the computational complexity for it is

PSPACE-complete) to construct and maintain a data structure for operations such as

time successor and clock reset.

Below we list the DDD operations. In the following, we assume that D, D1 and D2

are DDDs, x, y, z are real variables, the value of z is always zero and c is a constant.

• Function Creates(x, c, ⊲⊳) returns the DDD representing x ⊲⊳ c.

• Function Not(D1) returns the complementation of a DDD.

4 - Model checking for Timed Automata 48

• Function Applying(op,D1, D2) returns the DDD representing D1 op D2 if op is a

binary operation, for example, ‘|’ and ‘&’, which are for operations ‘or’ and ‘and’ on

sets; or return the true or false if op is a logic operation, for example, ⇔, ⇒ etc.

• Function Exists(x,D) returns the DDD by performing the existential quantification

on the real variable x.

• Function PathReduce(D) returns the DDD by removing the infeasible paths.

Below we list the operations needed for the model checking algorithms through oper-

ations on DDDs.

Conjunction(D1, D2). Intersection of two DDDs is computed by Applying(∧, D1, D2).

T imeSuccessors(D1). The direct version of this operation in DDD involves two addi-

tional variables and requirement of calling Exists. For the consideration of performance,

the T imeSuccessors operator in DDDs can be implemented by transforming a DDD into

a DBM, then applying the corresponding T imeSuccessors operation for DBMs and finally

transforming back to DDDs.

ResetClocks(D1, x, c). This operation is computed by

Applying(∧,Exists(x,D1),Creates(x, c,=)).

FreeClocks(D1, x). This operation is computed by Exists(x,D1).

T imePredecessors(D1). This operation is computed by

Applying(∧,Exists(z,D1),Creates(z, 0,≥)).

Disjunction(D1, D2). The union of two DDDs is computed by:

Applying(∨, D1, D2).

Complement(D1). Complementing is a straitforward DDD operation Not(D1).

Emptiness(D). This operation is computed by Applying(⇔,PathReduce(D), 0).

4 - Model checking for Timed Automata 49

Inclusion(D1, D2). The set inclusion testing is computed by:

Applying(⇒, D1, D2).

Equivalence(D1, D2). DDD has no canonical from. DDDs support BDD-like function

(Apply) for testing of bi-implication that can be used to test equivalence. It is computed

by Applying(&,Applying(⇒,D1,D2),Applying(⇒,D2,D1)).

Normalise(D1, k). Although the forward search algorithm does not always terminate,

it has the nice property that is the zones generated are convex. A convex zone in DDDs

has only one path which corresponds to a DBM. The Normalise operator in DDD can

be implemented by transforming a DDD into a DBM, then applying the corresponding

operation for DBMs and finally transforming back to DDDs.

Exists(x,D1). This is obtained by DDD’s operation Exists(x,D1).

Implementation of until(ζ ′, ζ) in DDDs. By introducing an extra clock z, which

is alway zero, the formula for until(ζ ′, ζ) can be transformed into: until(ζ ′, ζ)=∃z′.(ζ ∧

(z′ ≤ z) ∧ ∀z′′.((z′ ≤ z′′ ≤ z) ⇒ (ζ ∨ ζ ′)[z′′/z]))[z′/z]. In the implementation of tpre

in DDDs, z′ and z′′ can be treated as two extra clocks which can then be eliminated by

existential quantification. As the BDD-like data structure is very sensitive to the number

of variables and the variables’ ordering, introducing two extra clocks z′ and z′′ means a

further increase of the domain of DDDs. Using duality between universal and existential

quantification, i.e.: ∀x.φ = ¬∃x.¬φ, the above formula can be further transformed into:

until(ζ ′, ζ)=∃z′.(ζ∧(z′ ≤ z)∧¬(∃z′′.(¬((z′ ≤ z′′ ≤ z) ⇒ (ζ∨ζ ′))[z′′/z])))[z′/z]. Hence, the

until(ζ ′, ζ) operation can be performed in terms of logical operations of complementation,

set union and existential quantification.

Operations for Post and Pre

Having introduced the basic operations on DBMs and DDDs, we can now define the

operations needed to implement the forward and backward search algorithms.

4 - Model checking for Timed Automata 50

dpost((s, ζ), e, k)

1. φ1 = Conjunction(Is, ζ)

2. φ2 = Conjunction(φ1, g)

3. φ3 = FreeClock(φ2, X)

4. φ4 = ResetClock(φ3, X)

5. φ5 = Conjunction(φ4, I
′
s)

6. ζ ′ = Normalise(φ5, k)

7. if Emptiness(ζ ′) = false

8. return (s′, ζ ′)

9. else

10. return ∅

Figure 4.7: The dpost operation

post((s, ζ), e, k)

1. φ1 = T imeSuccessor(ζ)

2. return dpost((s, φ1), e, k)

Figure 4.8: The post operation

post((s, ζ), e, k). Let e denote a transition from the current node s to s′ with enabling

clock constraints g and reset clocks in set X, and let (s, ζ) denote the current state and

its invariant Is, s
′ next node and I ′s be its invariant, where k is the maximal constant

appearing in the system or specification.

The operation dpost that computes the set of states reachable from (s, ζ) via the

discrete transition e is shown in Figure 4.7, which is the implementation of operation

disc−succ(e, (l, ζ)) described in Section 4.1.4.

dpre((s′, ζ ′), e). Let e denote a transition from the current node s to s′ with enabling

clock constraints g and reset clocks in set X, and let (s, ζ) denote the current state and

its invariant Is, s
′ next node and I ′s be its invariant.

4 - Model checking for Timed Automata 51

dpre((s′, ζ ′), e)

1. φ1 = ResetClock(ζ ′, X)

2. φ2 = FreeClock(φ1, X)

3. φ3 = Conjunction(φ3, g)

4. ζ = Conjunction(Is, φ3)

5. if Emptiness(ζ) = false

6. return (s, ζ)

7. else

8. return ∅

Figure 4.9: The dpre operation

The operation dpre that computes the set of states that can reach (s′, ζ ′) via the

discrete transition e is shown in Figure 4.9, which is the implementation of operation

disc−pred(e, (l′, ζ ′)) described in Section 4.1.4.

4.3.2 Data Structure for Encoding Probability Information

Multi-terminal Binary Decision Diagrams (MTBDDs) [CFM+93] are an extension of

BDDs. MTBDDs extend BDDs by allowing them to represent functions which can take

any value, not just 0 or 1. In other words, BDDs can have only two terminals, while

MTBDDs can have more than two terminals. In the case of analysis of probabilistic prop-

erties of systems, numerical computation is required. BDDs are in fact a special case of

MTBDDs. An MTBDD is a DAG (Directed Acyclic Graph). Like BDDs, the vertices

of the graph are called nodes. There are two kinds of nodes in an MTBDD, the non-

terminal nodes and terminal nodes. As in BDDs, a non-terminal node is labelled with

a single variable and each non-terminal node has exactly two children. However, unlike

BDDs, the terminal node which has no children is labelled by a real number. MTBDDs

can be reduced to canonical form by imposing ordering among nodes. However, similarly

to BDDs, the size of MTBDDs is extremely sensitive to the ordering of its variables.

In Markov decision processes (MDPs), the probability distributions of transitions are

4 - Model checking for Timed Automata 52

defined as vectors and matrices. One of the most interesting applications of an MTBDD

is its ability to represent both vectors and matrices. As far as numerical computation

is concerned, MTBDDs support methods for implementing standard matrix operations,

such as scalar multiplication, matrix addition and matrix multiplication. First, consider

how to use an MTBDD to encode a vector. Given a real-valued vector of length 2n, an

MTBDD encoding can be obtained by mapping to reals from vector’s indices which are

encoded into n Boolean variables. A vector v of length 2n is a mapping from indices to

reals, where v(i) ∈ R and 0 ≤ i ≤ 2n−1. We use enc : {0, . . . , 2n−1} → B
n to denote the

vector’s indices which are encoded into n Boolean variables. We use fv[x = enc(i)] = v(i)

for 0 ≤ i ≤ 2n−1 to represent a vector v. The idea to use a MTBDD to encode a vector

can be extended to matrices. A 2n by 2n matrix can be treated as 2n × 2n vectors. Thus,

a 2n by 2n matrix can be encoded by using 2n Boolean variables, n of which encode row

indices and n of which encode column indices. If the size of the vectors and matrices is

not the power of two, we can still use the method above to encode a MTBDD simply by

padding vectors or matrices with extra elements which are set to 0. A 2n × 2n matrix

M is denoted as fM[x = enc(i), y = enc(j)] = M(i, j) for 0 ≤ i, j ≤ 2n−1. Figure

4.10 and 4.11 show an example of a matrix and its corresponding reduced MTBDD. The

example is a 4 × 4 matrix, so we can use two row Boolean variables (x1, x2) and two

column ones (y1, y2) to encode the corresponding MTBDD. For example, if the Boolean

value of variables (x1, x2) and (y1, y2) is (0,1) and (0,0) respectively, then this means the

row index is 1 and column index is 0. This corresponds to the matrix entry (1,0)=2.

Below we list the BDD and MTBDD operations needed for the symbolic algorithm

introduced in Chapter 8. In the following, we assume M is an MTBDD, and x, y, z are

the Boolean vectors which correspond to the MTBDD variables for row, column and

non-deterministic choice in an MDP matrix.

• Function Apply(op,M1,M2) returns the MTBDD representing M1 op M2 where

op is a binary operation over reals (e.g. +,−,×,÷, etc). In this thesis, we use

operations × and + for operations op (× and +) when two MTBDDs operate

over the reals. We use operations ∨, ∧ and \ for operations ‘or’, ‘and’ and

‘difference’ on sets when M1 and M2 are BDDs.

4 - Model checking for Timed Automata 53

M =















0 4 0 3

2 0 0 3

0 0 0 3

0 0 2 0















x1 y1 x2 y2 Entry in M

0 0 0 1 (0,1)=4

0 1 0 1 (0,3)=3

0 0 1 0 (1,0)=2

0 1 1 1 (1,3)=3

1 1 0 1 (2,3)=3

1 1 1 0 (3,2)=2

Figure 4.10: A matrix and its MTBDD encoding

x1

y1 y1

x2

y2

x2

y2 y2

423

Figure 4.11: Reduced MTBDD representing the matrix in Figure 4.10

4 - Model checking for Timed Automata 54

• Function Threshold(M, >, 0) returns the BDD by replacing each terminal node

with 1 if and only if its value is greater than 0.

• Function ThereExists(x,M) returns the MTBDD by performing existential quan-

tification on the the Boolean vector x.

• Function ReplaceVars(M, y, x) returns the MTBDD by replacing the Boolean

vector y with x.

Chapter 5

Model Checking for Probabilistic

Timed Automata

In this chapter, we present an overview of the model checking algorithms that have been

developed for probabilistic timed automata. These algorithms form the basis of the imple-

mentation study in this thesis. We introduce the model of probabilistic timed automata

in Section 5.2. The logic Probabilistic Timed Computation Tree Logic (PTCTL) is de-

scribed in Section 5.3. Section 5.4 presents algorithms for model checking for probabilistic

timed automata.

5.1 Labelled Timed Probabilistic Systems

Below we recall labelled timed probabilistic systems which is an extension of Markov deci-

sion processes.

Definition 5.1.1 A Labelled timed probabilistic system is a tuple LTPS = (S, s̄, L,Act , Steps)

where:

• S is the (possible infinite) set of states;

• s̄ ∈ S is the initial state;

• L : S → 2AP is a labelling function;

5 - Model checking for Probabilistic Timed Automata 56

• Act is the set of actions;

• Steps ⊆ S × (Act ∪R
+)×Dist(S) is the probabilistic transition relation, such that,

if (s, t, µ) ∈ Steps for any t ∈ R
+, then µ is a point distribution.

As for Markov decision processes, we can introduce paths and adversaries for la-

belled timed probabilistic systems. As in real-time systems, we restrict attention to

time-divergent adversaries so that unrealisable behaviour (i.e. corresponding to time not

advancing beyond a bound) is disregarded during analysis. For any path

ω = s0
t0,µ0
−−−→ s1

t1,µ1
−−−→ s2

t2,µ2
−−−→ · · ·

of a timed probabilistic system, the duration up to the n+1th state of ω, denoted Dω(n+1),

equals
∑n

i=0 ti. We say that a path ω is divergent if for any t ∈ R
+, there exists j ∈ N

such that Dω(j)>t.

Definition 5.1.2 An adversary A of a labelled timed probabilistic system LTPS is diver-

gent if and only if for each state s of LTPS the probability under ProbA
s of the divergent

paths of PathA
ful(s) is 1. Let AdvLTPS be the set of divergent adversaries of LTPS.

A restriction imposed on timed probabilistic systems is that of non-zenoness , which

stipulates that there does not exist a state from which time cannot diverge, as this situ-

ation is considered to be a modelling error.

Definition 5.1.3 A labelled timed probabilistic systems LTPS is non-zeno if and only if

there exists a divergent adversary of LTPS.

5.2 Probabilistic Timed Automata

Probabilistic timed automata are an extension of both timed automata and Markov de-

cision processes.

5.2.1 Syntax of Probabilistic Timed Automata

Definition 5.2.1 (Probabilistic timed automaton) A probabilistic timed automaton [KNSS02]

is a tuple PTA = (L,L, l, Act,X , inv, prob) which contains:

5 - Model checking for Probabilistic Timed Automata 57

• a finite set L of nodes,

• a function L : L → 2AP assigning to each node of the automaton the set of atomic

propositions that are true in that node,

• a start node l ∈ L,

• a finite set Act of action labels,

• a finite set X of clocks,

• a function inv : L → Zones(X) assigning to each node an invariant condition,

• a probabilistic transition relation prob ⊆ L×Zones(X)×Act×Dist(2X ×L) which

consists of a source node, an enabling condition, an action label, and a set of prob-

ability distributions p which assigns probability to pairs of the form (X, l′) for a set

of clocks X to be reset and target node l′.

Definition 5.2.2 An edge of PTA generated by (l, g, p) ∈ prob is a tuple of the form

(l, g, p,X, l′) such that p(X, l′) > 0. Let edges(l, g, p) be the set of edges generated by

(l, g, p), and let edges =
⋃

(l,g,p)∈prob edges(l, g, p).

The definition of probabilistic timed automata is similar to that of timed automata.

There are two types of clock constraints: invariants labelling nodes, and guards labelling

transitions. Each node of a timed automaton is labelled with an invariant, a Boolean

condition on the clocks stating how long the system can stay in that node. Transitions

are labelled with actions, Boolean conditions called guards stating whether the action can

be taken, and the set of clocks whose value is to be reset. The only difference between

probabilistic timed automata and timed automata is that edges in probabilistic timed

automata are generalised to discrete probability distributions. And one requirement on

the edges is that the guard must be same for all of the edges if they belong to a discrete

probability distribution.

Figure 5.1 shows a simple probabilistic timed automaton where the actions are omitted.

The example can be used to control the door opening or closing. If the door is in the

closed state and a control button is pressed, the door will be opened with probability 0.99

5 - Model checking for Probabilistic Timed Automata 58

close

true; x:=0;
 0.01

open
 x<3

true; x:=0;
 0.99

x>2; x:=0;
 0.995

x>2; x:=0;
 0.005

Figure 5.1: Probabilistic timed automaton example

or stay closed with probability 0.01 when it is faulty. Once the door is opened, it will

stay opened for 2 to 3 time units, then it will close with probability 0.995 or remain open

after which it will repeatedly try to close.

5.2.2 Semantics of Probabilistic Timed Automata

The semantics of a probabilistic timed automaton is defined in terms of labelled timed

probabilistic system.

Definition 5.2.3 Let PTA = (L,L, l, Act,X , inv, prob) be a probabilistic timed automa-

ton. The semantics of PTA is defined as the labelled timed probabilistic system

LTPSPTA = (S, s̄,L′,Act , Steps) where:

• S ⊆ L× R
+ and (l, v) ∈ S if and only if v ⊳ inv(l);

• ((l, v), t, µ) ∈ Steps if and only if one of the following conditions holds:

time transitions: t ≥ 0, µ=µ(l,v+t) and v+t′ ⊳ inv(l) for all 0 ≤ t′ ≤ t

discrete transitions: t = 0 and there exists (l, g, p) ∈ prob such that v ⊳ g, for any

(X, l′) ∈ support(p) we have (l′, v[X := 0]) ∈ S, and for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′);

• L′(l, v) = L(l) for any (l, v) ∈ S.

5 - Model checking for Probabilistic Timed Automata 59

We say that PTA is non-zeno if and only if LTPSPTA is non-zeno.

The definition of LTPS is close correspondence to Markov decision processes. The sys-

tem starts its execution with all clocks set to 0. The values of all the clocks increase at the

same rate as time. At any point in time, if the clocks satisfy the invariant the automaton

can stay in a node and let time pass. When a guard is satisfied, a discrete transition can

be taken. However, the choice of the next node of the automaton is now both probabilistic

and nondeterministic. Discrete transitions are instantaneous and consist of the following

two steps which resolve nondeterminism and probability in succession: as soon as the sys-

tem makes a nondeterministic choice among the set of distributions, then supposing that

the probability distribution p ∈ Dist(2X × L) is chosen, the system then makes a proba-

bilistic transition according to p. When the automaton executes a discrete transition, a

set of clocks can additionally be reset to 0. We use (l, g, p) for a probability distribution

which could be chosen at node l associated with the guard condition g according to p.

The set of probabilistic branches of (l, g, p) is denoted edges(l, g, p).

5.2.3 Parallel Composition

The parallel composition of several interacting sub-components is often useful to define

complex systems.

Let PTA1 = (L1,L1, l1, Act1,X1, inv1, prob1) and PTA2 = (L2,L2, l2, Act2,X2, inv2, prob2)

Definition 5.2.4 [KNS03a] The parallel composition of two probabilistic timed automata

PTA1 and PTA2, where X1 ∩ X2 = ∅, is the probabilistic timed automaton

PTA1‖PTA2 = (L1 × L2,L1 ∪ L2, (l1, l2), Act1 ∪ Act2,X1 ∪ X2, I, prob)

where inv(l, l′) = inv1(l) ∧ inv2(l
′) for all (l, l′) ∈ L1 × L2 and ((l1, l2), g, σ, p) ∈ prob

if and only if one of the following conditions holds:

1. σ ∈ Act1 \ Act2 and there exists (l1, g1, σ1, p1) ∈ prob1 such that p = p1

2. σ ∈ Act2 \ Act1 and there exists (l2, g2, σ2, p2) ∈ prob2 such that p = p2

5 - Model checking for Probabilistic Timed Automata 60

3. σ ∈ Act1 ∩ Act2 and there exists (l1, g1, σ1, p1) ∈ prob1 and (l2, g2, σ2, p2) ∈ prob2

such that g = g1 ∧ g2 and p = p1 ⊗ p2

where for any l1 ∈ L1, X1 ⊆ X1, l2 ∈ L2, X2 ⊆ X2, we let p1 ⊗ p2(X1 ∪ X2, (l1, l2)) =

p1(X1, l1) · p2(X2, l2).

Condition 3 specifies that the requirement for the labels is that they must be the same

name so that two or more automata can synchronise if and only if they have the same

synchronisation labels and both their guard conditions are fulfilled.

5.3 Probabilistic Timed Computation Tree Logic

(PTCTL)

We now describe the probabilistic real-time logic - Probabilistic Timed Computation Tree

Logic (PTCTL) which can be used to specify properties of probabilistic timed automata.

PTCTL is a combination of two extensions of the branching-time temporal logic CTL,

the real-time temporal logic TCTL [HNSY92] discussed in Section 4.1.3 and the proba-

bilistic temporal logic PCTL discussed in Section 4.2.2. PTCTL is obtained by enhancing

TCTL with the probabilistic operator P⊲⊳ p[·] from PCTL.

As in TCTL, PTCTL employs a set of formula clocks, Z, disjoint from the clocks X

of the PTA. Formula clocks are assigned values by a formula clock valuation E : Z → R,

which uses the notation for clock valuations in the standard way.

Definition 5.3.1 The syntax of PTCTL is defined as follows:

φ ::= a
∣

∣ ζ
∣

∣ ¬φ
∣

∣ φ ∧ φ
∣

∣ z.φ
∣

∣ P⊲⊳ p[φ U φ]
∣

∣ P⊲⊳ p[φ V φ]

where a ∈ AP , ζ ∈ Zones(X ∪ Z), z ∈ Z, ⊲⊳∈{≤, <,>,≥} and p ∈ [0, 1].

Note that the values of system clocks in X and formula clocks in Z can be obtained from

a state and a formula clock valuation, respectively. Take a particular ζ ∈ Zones(X ∪ Z),

and consider the syntactic interpretation of ζ as a conjunction of constraints. Then, given

a state (l, ν) and a formula clock valuation E , we denote by ζ [(l, ν), E] the Boolean value

5 - Model checking for Probabilistic Timed Automata 61

obtained by replacing each occurrence of a system clock x ∈ X in ζ by ν(x), and of a

formula clock z ∈ Z in ζ by E(z).

Similarly, we use the abbreviation ⋄φ for true U φ inside PTCTL formula.

In PTCTL, we can express properties such as:

“with probability 0.95 or greater, the leader could be elected within 8 time units”, which

is represented as the PTCTL formula z.P≥0.95[♦(z < 8)].

Definition 5.3.2 Let M = (S, s̄, L,Act ,D, Steps) be a labelled timed probabilistic system.

For any state s of M, formula clock valuation E , and PTCTL formula φ, the satisfaction

relation s, E |=φ is defined inductively as follows:

s, E |= true for all s and E

s, E |= a ⇔ a ∈ L(s)

s, E |= ζ ⇔ ζ [s, E] = true

s, E |=φ1 ∧ φ2 ⇔ s, E |=φ1 and s, E |=φ2

s, E |=¬φ ⇔ s, E 6|=φ

s, E |= z.φ ⇔ s, E [z := 0] |=φ

s, E |=P⊲⊳ p[φ1 U φ2] ⇔ pA
s,E(φ1 U φ2) ⊲⊳ p for all A ∈ AdvM

s, E |=P⊲⊳ p[φ1 V φ2] ⇔ pA
s,E(φ1 V φ2) ⊲⊳ p for all A ∈ AdvM

where for any adversary A ∈ AdvM and for any path ω ∈ Path :

pA
s,E(φ1 U φ2) = ProbA

s ({ω ∈ PathA
ful(s) | ω, E |=φ1 U φ2})

5 - Model checking for Probabilistic Timed Automata 62

ω, E |=φ1 U φ2 ⇔ there exist i ∈ N, t ∈ R such that

ω(i, t), E + Dω(i) + t |= φ2, and

for all j < i, we have:

ω(j, t), E + Dω(j) + t |= φ1 ∨ φ2

and for j = i and t′ < t we have:

ω(j, t′), E + Dω(j) + t′ |= φ1 ∨ φ2 .

pA
s,E(φ1 V φ2) = ProbA

s ({ω ∈ PathA
ful(s) | ω, E |=φ1 V φ2})

ω, E |=φ1 V φ2 ⇔ for all i ∈ N, t ∈ R such that if

for all j ≤ i, t′ ∈ R such that j = i

implies t′ < t we have:

ω(j, t′), E + Dω(j) + t′ 6|= φ1 ∧ φ2

then ω(i, t), E + Dω(i) + t |=φ2.

5.4 Algorithms for Model Checking Probabilistic Timed

Automata

In [KNSS99], a method is proposed for dealing with probabilistic timed automata which

have both probabilistic and timed behaviours. However, the complexity of this algorithm

is too high when verifying such systems because it is based on constructing the region

graph [AD94]. One advantage of the method is that it can establish the correctness of

a probabilistic timed automaton model against any properties expressible in PTCTL.

Optimised algorithms such as the forward reachability analysis [KNSS02] and backward

5 - Model checking for Probabilistic Timed Automata 63

reachability analysis [KNS00, KNS03b] have been proposed. These algorithms have the

potential to reduce the high complexity of model checking for probabilistic timed automata

as demonstrated by an implementation of forward reachability in [DKN02, DKN04]. The

forward reachability algorithm can reduce the complexity when constructing quotient of

the region graph by performing forward search to construct the zone graph which is often

smaller than the region graph, although the worst case complexity is same. One drawback

of the forward reachability is that it can only obtain an upper bound of the maximum

probability of reaching a set of target states [KNSS02]. However, by using the backward

reachability algorithm [KNS00, KNS03b], both the exact maximum and minimum prob-

ability of reaching the target set can be obtained. Furthermore, the backward approach

can be applied to verify full PTCTL.

One successful method applied to model checking for non-probabilistic timed systems

is the on-the-fly technique. However, on-the-fly cannot be applied to model checking

probabilistic timed systems. The reason is that we have to traverse the whole state space

in order to calculate the probability information.

As in the non-probabilistic real-time reachability case, our finite state model derived

from the probabilistic timed automaton is obtained, not by the region construction, but

by forward or backward search through the infinite-state space of probabilistic timed au-

tomaton. Once this has been done, probabilistic reachability analysis is then performed on

the finite-state model through computation of probabilities using classical model checking

algorithms for Markov decision processes based on linear programming.

The following sections describe how to obtain a finite state model as a Markov decision

process by performing the forward or backward reachability analysis.

5.4.1 The Forward Algorithm

Figure 5.2 shows a modified algorithm of forward reachability from [KNSS02]. The pur-

pose of the modification is to make the algorithm more readable as the original one does

not make the construction of the probabilistic edges explicit.

The algorithm accepts two arguments: the initial symbolic state and the target set of

nodes. A symbolic state takes the form of (l, ζ) where l is a node in the given probabilistic

5 - Model checking for Probabilistic Timed Automata 64

ForwardReachability((l, ζ0), R)

1. c := MaxConstant

2. ResultSet := ∅

3. TargetSet := ∅

4. Edges := ∅

5. FrontSet := {Normalise(T imeSuccessors((l, ζ0)), c)}

6. repeat

7. choose(l, ζ) ∈ FrontSet

8. if l ∈ R then TargetSet := TargetSet ∪ {(l, ζ)}

9. else

10. for each e ∈ edges(l, g, p) do

11. let (l′, ζ ′) := post(e, (l, ζ), c)

12. if ζ ′ 6= ∅ and (l′, ζ ′) 6∈ Z then

13. FrontSet := FrontSet ∪ {(l′, ζ ′)}

14. Edges := Edges ∪ {((l, ζ), e, (l′, ζ ′))}

15. end if

16. end for each

17. end if

18. ResultSet := ResultSet ∪ {(l, ζ)}

19. until FrontSet = ∅

20. return ResultSet, TargetSet, Edges

Figure 5.2: The Forward algorithm

5 - Model checking for Probabilistic Timed Automata 65

timed automaton and ζ is a zone. Line 1 assigns the maximum constant appearing in the

model to a variable c. Lines 2-5 of the algorithm initialise the set ResultSet, Edges and

the set TargetSet to the empty set and the set FrontSet to include the initial symbolic

state whose zone part is obtained by setting all clock values to zero. The set ResultSet

is used to store those symbolic states which have been explored, the set TargetSet to

store symbolic states whose node part belongs to target set R, the set Edges to store

the probabilistic transitions between symbolic states, and the set FrontSet to store those

symbolic states whose successors may need to be explored. Lines 6-19 of the algorithm

repeat taking a symbolic state (l, ζ) from FrontSet until FrontSet is empty. While

FrontSet is non-empty, it means that there are reachable symbolic states for which the

successor states may not have been explored. In such a case, the statements within the

body of the repeat until loop are executed. This involves taking a symbolic state (l, ζ)

from FrontSet and adding it to ResultSet. If its node part is a member of the target set

R, then it is added to the set TargetSet. Otherwise,it takes each successor independently

of the symbolic state (l, ζ) and looks to see if it is in ResultSet: if the successor has already

been in ResultSet, do nothing; otherwise, place it in FrontSet and construct probabilistic

edge using current symbolic state and this successor and add to Edges (Lines 13-14).

Given a probabilistic timed automaton PTA = (L,L, l,Act ,X , I, prob), initial sym-

bolic state and the target set R ∈ L, the portion of the state space that is generated by the

ForwardReachability algorithm takes the form of a Markov decision process. The sym-

bolic states in set ResultSet form the states of the Markov decision process and the edges

between a symbolic state and its successor symbolic state are used to define the required

probabilistic transitions. Once this has been done, conventional probabilistic reachabil-

ity analysis is then performed on the finite-state MDP model through computation of

probabilities using linear programming.

From the algorithm in Figure 5.2, we observe that a symbolic state (l, ζ) is to be

added to two different sets, the set FrontSet and the set ResultSet. This can be made

more efficient by adding each symbolic state once in an explicit implementation: the set

of FrontSet and ResultSet do not need to be stored separately and could be realised

efficiently by using one common data structure, such as a list.

5 - Model checking for Probabilistic Timed Automata 66

The algorithm in Figure 5.2 is quite similar to the forward algorithm for the non-

probabilistic timed systems discussed earlier Section 4.3. The states in the probabilistic

systems generated by this algorithm have the form of a pair (l, ζ), where l is the node and

ζ is the zone. However, unlike reachability analysis in non-probabilistic timed systems,

there are three differences:

• The on-the-fly technique can not be applied, and the whole state space has to be

traversed in order to construct an MDP model over zones.

• Edges between generated symbolic states need to be constructed.

• In the non-probabilistic case, if we have two symbolic states, for example, (l, ζ1) and

(l, ζ2), and one of them is a subset of the other, that is, they contain the same discrete

parts and one continuous part is a subset of the other, one only needs to store the

union of both, that is (l, ζ1∪ζ2) instead of two separate states. However, in the case

of probabilistic timed automata, we have to distinguish two sets of generated states

even if one of them is a subset of the other. In other words, we have to store many

small sets of states separately instead of simply their union.

Example 5.1 We use the simple door control example of Figure 5.1 and assume the

initial node is close. We consider the property P<0.9[♦open] which states that whether

the maximal probability to reach node open from the initial state is 0.9. Figure 5.3

shows the zone graph obtained via the forward exploration algorithm in Figure 5.2. By

using an integer variable s1 ranging over [0,1], where s1 = 0 encodes the symbolic state

(close, x ≥ 0) and s1 = 1 encodes the symbolic state (open, 0 ≤ x < 3), the zone graph

in Figure 5.3, which is an MDPs over zones, can be translated into the PRISM language

shown in Figure 5.4. Using PRISM software, we obtain the probability of this property

is 1.

5.4.2 The Backward Algorithms

As pointed out in [KNSS99], the maximum probability of reaching the target set, when

computed by the forward reachability algorithm in Figure 5.2, is an upper bound on the

5 - Model checking for Probabilistic Timed Automata 67

openclose

0.99

x ≥ 0 0 ≤ x < 3

0.01

Figure 5.3: Zone graph obtained via the forward exploration of the PTA in Figure 5.1

nondeterministic

module M1

s1 : [0..1] init 0;

[] (s1 = 0) → 0.01 : (s′1 = 0) + 0.99 : (s′1 = 1);

endmodule

Figure 5.4: The PRISM description of the Figure 5.3

5 - Model checking for Probabilistic Timed Automata 68

actual maximum probability of the probabilistic timed automaton reaching the target set.

However, by using the backward algorithm of [KNS00] the exact maximum probability of

reaching the target set can be obtained. Furthermore, the exact minimum probability of

reaching the target set can be obtained using backward algorithm of [KNS03b]. However,

compared with forward algorithm, the backward algorithms can produce exact proba-

bilities and be applied to full Probabilistic Timed Computation Tree Logic (PTCTL)

[KNSS02] but at a cost of higher computational complexity. The computation complex-

ity of minimum probability is even higher than that of backward maximum probability

due to the constraint on universal time divergent adversaries over paths [KNS03b]. For

computing maximum probability, the constraint on time divergent adversaries oner paths

can be safely remove because we only consider finite paths which can alway be safely en-

panded to time divergent infinite paths. This cannot be applied to the case of minimum

probability because the probability can be different between under divergent adversaries

and under non-divergent adversaries.

Next we describe these algorithms which are the subject of our implementation.

The Maximum Probability Backward Algorithm Figure 5.5 shows the algorithm

MaxUntil [KNS03b] used to compute the exact maximum probability of reaching the tar-

get set V via set U . Actually, the algorithm MaxUntil proceeds through the computation

of least fixpoint [CGP99] starting with the set of symbolic states satisfying formula V

and iteratively computing larger sets of symbolic states through backward graph search

by first computing predecessor states and then keep those in set U by set intersection

operations. Because during backward search not all edges will be detected [KNS00], the

edge set needs to be extended and this is done by explicitly considering all the relevant

intersections of symbolic states and induced edges. Two symbolic states are relevant if

and only if the intersection of their zone part is not empty and they have the same node

part. The nodes in result set Z are used to define the states of a Markov decision process

and the edges in result set E(l,g,p) are used to define the generated probabilistic transitions

which are induced by probability distribution (l, g, p). Each edge in E(l,g,p) takes the form

of (z, (X, l′), y), where z and y are symbolic states and X is the set of clocks to be reset

when p is chosen.

5 - Model checking for Probabilistic Timed Automata 69

MaxUntil(U, V)

1. Z := tpre
U∪V

(V)

2. for (l, g, p) ∈ prob

3. E(l,g,p) := ∅

4. end for

5. repeat

6. Y := Z

7. for y ∈ Y ∧ (l, g, p) ∈ prob ∧ e = (l, g, p(X, l′)) ∈ edges(l, g, p)

8. z := U ∩ dpre(e, tpre
U∪V

(y))

9. if (z 6= ∅) ∧ (z 6∈ tpre
U∪V

(V))

10. Z := Z ∪ z

11. E(l,g,p) := E(l,g,p) ∪ {(z, (X, l′), y)}

12. for (z̄, (X̄, l̄′), ȳ) ∈ E(l,g,p)

13. if (z ∩ z̄ 6= ∅) ∧ (X, l′) 6= (X̄, l̄′) ∧ (z ∩ z̄ 6∈ tpre
U∪V

(V)))

14. Z := Z ∪ (z ∩ z̄)

15. end if

16. end for

17. end if

18. end for

19. until Z = Y

20. construct PS = (Z, Steps) where (z, ρ) ∈ Steps if and only if

there exists (l, g, p) ∈ prob and E ⊆ E(l,g,p) such that

– z ∈ {z′ | (z′, e, z′′) ∈ E}

– (z′, e, z′′) ∈ E ⇒ z′ ⊇ z

– (z′1, e, z
′) 6= (z′2, e

′, z′′) ∈ E ⇒ e 6= e′

– E is maximal

– ρ(z′) =
∑

{| p(X, l′) | (z, (X, l′), z′) ∈ E |} ∀z′ ∈ Z

21. return
⋃

{tpreU∨V (z) | z ∈ Z ∧ pmax
z (♦ tpreU∨V (V)) & λ}

Figure 5.5: The MaxUntil algorithm

5 - Model checking for Probabilistic Timed Automata 70

pre1(U, V)

1. Y := ∅

2. for(l, g, p) ∈ prob

3. Y0 := true

4. Y1 := ∅

5. for e ∈ edges(l, g, p)

6. Y0 := dpre(e, U) ∩ Y0

7. Y1 := dpre(e, V) ∪ Y1

8. end for

9. Y := (Y0 ∩ Y1) ∪ Y

10. end for

11. return Y

Figure 5.6: The pre1 algorithm

MaxU≥1(U, V)

1. Z0 := true

2. repeat

3. Y0 := Z0

4. Z1 := ∅

5. repeat

6. Y1 := Z1

7. Z1 := V ∪ (U ∩ pre1(Y0, Y1))

8. Z1 := Z1 ∪ tpreU∪V
(Y0 ∩ Y1)

9. until Z1 = Y1

10. Z0 := Z1

11. until Z0 = Y0

12. return Z0

Figure 5.7: The MaxU≥1 algorithm

5 - Model checking for Probabilistic Timed Automata 71

MaxV≥1(c, U, V)

1. Z := true

2. repeat

3. X := Z

4. Z := V ∩ z.MaxU≥1(X, (U ∩X) ∪ {z > c})

5. until Z = X

6. return Z

Figure 5.8: The MaxV≥1 algorithm

The algorithm accepts two parameters: the symbolic sets U and V . Lines 1-4 initialise

both the result set and edge set with the empty set. Lines 5-19 perform the fixed point

calculation as described above. Line 8 generates the symbolic states by the tpre first and

then dpre operation and keeps those that are included in the set U . Lines 12-16 generate

relevant states. Line 20 constructs the probabilistic system PS using the probabilistic

edges of the probabilistic timed automaton and the computed edge sets. The states of

PS are the symbolic states generated by the previous steps (Lines 1-19) of the algorithm,

and the probabilistic transition relation of PS is constructed by grouping the graph edges

generated by the same probabilistic edge of the probabilistic timed automaton under

study. Finally, in line 21, the maximum probability of reaching tpreU∨V (V) is computed

for each z ∈ Z. Note that z 6= ∅ means if and only if z encodes at least one state and

formula clock valuation pair.

Example 5.2 We still consider the property P>0.9[♦open], but this time we are using

the backward algorithm. Figure 5.9 shows the zone graph obtained via the maximum

backward exploration of the simple door control example of Figure 5.1, where the initial

node is close. We obtain the probability of this property is 1 after the graph is translated

into PRISM language and checked using PRISM software.

The Minimum Probability Backward Algorithm When computing minimum prob-

ability, due to the constraint on universal time divergent adversaries over paths, techniques

5 - Model checking for Probabilistic Timed Automata 72

openclose

0.99

x ≥ 0 0 ≤ x < 3

0.01

Figure 5.9: Zone graph obtained via the maximum probability backward exploration of

the PTA in Figure 5.1

which are based on Propostions 5.4.1- 5.4.3 [KNS03b] are introduced in order to avoid

the universal time divergent adversaries over paths.

Proposition 5.4.3 is based on [HNSY92] where it is shown that verifying φ ∀U ψ (‘all

divergent paths satisfy φ U ψ’) reduces to computing the fixpoint:

lgp Y.
(

ψ ∨ ¬z.
(

¬Y ∃U (¬(φ∨Y) ∨ (z>c))
))

(5.1)

for any c ∈ N greater than 0. The important point is that the universal quantification

over paths has been replaced by an existential quantification, combined with a constraint

enforcing that more than c time units must elapse repeatedly.

Proposition 5.4.1 pmin
s,E (U U V) = 1 − pmax

s,E (¬U V ¬V)

Proposition 5.4.2 pmax
s,E (¬U V ¬V) = pmax

s,E (¬V U P≥1[¬U V ¬V])

Proposition 5.4.3 P≥1(¬U V ¬V) = νX.(¬V ∧ z.¬P<1[X U ((X ∧ ¬U) ∨ {z > c}])

Propositions 5.4.1-5.4.3 in [KNS03b] give the way to compute the set of symbolic states

satisfying z.P>p[U U V], which is given by the following set of symbolic states:

{true} \MaxUntil(¬V,MaxV≥1(c,¬U,¬V)).

Combined with the algorithm in Figure 5.5, algorithms in Figure 5.6, 5.7 and 5.8 are

used to compute the exact minimum probability of reaching the target set.

The intuition of the algorithm pre1(U, V) in Figure 5.6 is to calculate the set of states

which could reach states in both sets V and U of states via a single discrete transition

5 - Model checking for Probabilistic Timed Automata 73

but is restricted to those that can reach from set U only with probability one, which is

ensured in Line 6 by set conjunction on all branching of same distribution.

The algorithm MaxU≥1(U, V) in Figure 5.7 computes the set that can reach set V via

set U with maximum probability one. It contains a double fixpoint which is implemented

as two nested loops. This algorithm is based on [dAKN+00], but with the consideration

of timed transitions in Line 8. The intuition of the algorithm in Figure 5.7 is to calculate

the set of states which could reach states in states of set V via set U , but only via U

with probability one. The outer loop computes the set of states Z0 which is initially

set to the whole state space, and will contain the final set of states as required when

this algorithm terminates. In each iteration of the outer loop, states which cannot reach

U with probability one are removed; this is achieved by the inner loop which calls the

algorithm in Figure 5.6.

The algorithm MaxV≥1(U, V) in Figure 5.8 is a greatest fixpoint [CGP99] calculation

which will return the set of states that satisfy U V V with maximum probability one.

The parameter c can be any integer value. Because MaxV≥1 contains MaxU≥1, it means

that the computation of MaxV≥1 has 3 nested fixpoints which is implemented by 3 nested

loops.

Example 5.3 We consider the property P>p[♦open], which is to calculate the mini-

mum probability of reaching open given the model in 5.1 and close is the initial node.

Here the set U is {true} and the set V is {open}. In order to compute {(true)} \

MaxUntil(¬V,MaxV≥1(c,¬U,¬V)), we first compute MaxV≥1(c, {false}, {(close)}) be-

cause ¬{true} = {false} and ¬{(open)} = {(close)}. The details on the computations

of the set of symbolic states S satisfying

MaxV≥1(c, {false}, {(close)}) is given in Appendix A.4. The returning set of symbolic

states S is {(close)}. Next we compute the set of symbolic states satisfying

MaxUntil({(close)}, {(close)}), which only returns {(close)}. As the {(true)}\{(close)} =

{(open)}, it means that the minimum probability of this property is 0 because there is no

initial node found in the resulting set of symbolic states.

Chapter 6

Explicit Implementation of the

Forward Exploration Algorithm

The forward reachability was first implemented using KRONOS [KRO] and PRISM in

[DKN02, DKN04]. In this chapter we consider an explicit implementation of the forward

algorithm. This means we do not exploit the mechanism of or benefit from symbolic tech-

niques. We use explicit data structures such as an adjacency list or array to store the set

of states, and there is no sharing among them. Although we are aware that this is subject

to the well-known problem of state-space explosion, the purpose of this implementation

is, firstly, to provide a prototype implementation for use on case studies, and, secondly,

to identify the possible bottlenecks of the problem of model checking probabilistic timed

automata via the forward algorithm. This chapter begins with the implementation of

the forward algorithm in an explicit manner described in Section 6.1. In Section 6.2, we

present experimental results obtained from the explicit version.

6.1 Implementation

The implementation that we have developed first reads in a model of a probabilistic timed

automaton from a file which is in the textual notation described in Section 6.1.1. Then

the information about nodes and the transition relation between the nodes, as well as

the discrete probability, are parsed and the product model is constructed and stored in a

6 - Explicit forward approach 75

temporary data structure. Next, the graph searcher implementing the forward reachability

algorithm analyses the product automaton starting from the initial node until all of the

reachable states are found. Meanwhile, the reachable states are used to generate the

model which takes the form of an MDP. Finally, the specification which is dependent on

what state we want to reach is expressed in PCTL and the resulting model are translated

into the PRISM input language, and then are handed over to the PRISM model checker

to perform probability calculations.

6.1.1 Explicit Construction of the Model

The first step to model check a PTA is to construct an internal representation of the model.

This involves explicitly enumerating the nodes to build the product model of the system

if the system consists of more than one module as defined in Section 5.2.3. The explicit

method proceeds through a breadth-first search of the nodes of the PTA modules. We start

with the initial set of nodes, enumerating all possible combined transitions (synchronised

or independent) as defined in Section 5.2.3, and compute all the nodes which could be

reached via a single transition. Then we enumerate each of the newly found reachable

nodes in the previous iterations to find out all the transitions and their corresponding

reachable nodes. The iterated searching continues until there are no new reachable nodes.

Input Language for the PTA Model. Before describing our explicit implementation

approach, a simple example of our language for modelling a probabilistic timed system is

given in Figure 6.1. This notation is based on the non-deterministic guarded command

language of [LPY97a] extended with probabilities. The textual description of a proba-

bilistic timed system consists of a list of nodes. Except the last node which is closed with

“*” instead of }, each node is enclosed in { } and includes its name and invariant. If a

node is labelled with the keyword “init”, this means that the node is a start node. Un-

derneath each node, there are transitions. For each transition, we have the target node’s

name followed by a guard condition, the list of reset clocks and probability. Transitions

are grouped together if they belong to the same distribution. Any line which begins with

the character “#” is a comment and is ignored by the parser.

6 - Explicit forward approach 76

#comments

{

init

node close; true

[

tran close; true; x=0; 0.01

tran open; true; x=0; 0.99

]

}

{

node open; x<3

[

tran open; x>2; x=0; 0.005

tran close; x>2; x=0; 0.995

]

*

Figure 6.1: The textual description of the PTA in Figure 5.1

6 - Explicit forward approach 77

As mentioned in Chapter 5, the parallel composition of several interacting sub-components

is often useful when defining complex systems. However, in order to support such a parallel

composition of modelling, both the notation for describing the systems and the program

that inputs its textual description have to be expanded. Instead of reading one single

model file, the program will accept a set of files, each containing a single probabilistic

timed automaton described in the above language. However, if there is synchronisation

between any two automata, the textual representation of transitions should be modified

to represent this. Below we describe how to expand the notation by adding additional

labels to transition commands. Note that the components of each transition are the same

as those of non-synchronised transitions and thus do not need to change. The only modi-

fication is the addition a synchronisation action before the keyword “tran” in both model

files for which synchronisation is needed. The actions must be the same name as defined in

Section 5.2.3 so that two or more automata can synchronise on the same synchronisation

actions.

6.1.2 Explicit Implementation of the Forward Algorithm

In this section we describe the explicit implementation, which is given in Figure 6.2,

of the forward algorithm in Figure 5.2. The algorithm takes four parameters: a list of

files for model description (modelDescription), max constant appearing in the model

(MaxConst), the initial node (initialStates) and target node (targetStates). Line 1

constructs the product model from the text files of our input language in the format given

above. Lines 2-4 initialise the result set of reachable states with the initial states. Lines

5-15 generate the finite-state graph in the form of a Markov decision process, where each

generated state is obtained by iterating the post operation in line 9. The edges of the

graph are inherited from the constructed model, for example, carrying the same discrete

probability distribution, and stored in the current processed states in line 11. Line 12

appends the newly found states to the tail of the result set for further exploration. Finally,

line 16 writes the resulting MDP and the reachability property as a PCTL formula in the

form of the PRISM input language.

6 - Explicit forward approach 78

ForwardModelChecking(modelDescription,MaxConst, initialStates, targetStates)

1. M := constructModel(modelDescription)

2. ResultList := ∅

3. ResultList.append(initialStates)

4. index2FrontList := 0;

5. while (index2FrontList < ResultList.size())

6. currentState := ResultList.get(index2FrontList,M)

7. index2FrontList+ +

8. for each e ∈ getTransitionOfPTA(currentState,M)

9. nextState := currentState.post(e,MaxConst)

10. if ResultList.notIn(nextState) == True

11. currentState.addTransition(e, nextState)

12. ResultList.append(nextState)

13. end if

14. end for each

15. endwhile

16. return WriteAsPrism(ResultList, initialStates, targetStates)

Figure 6.2: Forward probabilistic reachability algorithm

6 - Explicit forward approach 79

6.1.3 Model Checking For Reachability Properties

The reachability checking is very easy in our explicit method. We just hand over the

generated resulting output of the forward implementation to PRISM, which then computes

the maximum probabilities. The issue of integration with the PRISM software system is

to be addressed in our symbolic approach for the implementation in Chapter 8.

6.2 Experimental Results

We have implemented the explicit forward reachability algorithm in Java and applied it

to some case studies. The timing information is represented as DBMs. All case studies in

this thesis, including in this and the following chapters, are performed on a Linux machine

(Kernel 2.4.18) with configuration of 2792 MHz CPU and 1 Gigabyte of memory. The

time units are seconds.

In Table 6.1 and Table 6.2, we present results for two case studies, the abstract and full

model of FireWire root contention protocol (the Tree Identify Protocol of the IEEE 1394

High Performance Serial Bus modelled in [SV99]). The abstract model contains only one

module, whereas the full model consists of four sub-components modelled as probabilistic

timed automata composed in parallel see appendix A.2.

In the tables in this and the following chapters, “-” denotes that the data is not

attempted and “*” that the data is not available because the memory capability of PRISM

is exceeded. The probability values are omitted since they all agree with those calculated

previously by other methods [DKN02, KNS03a, DKN04].

In both cases, the property verified is the minimum probability that, from the initial

state, a leader (root) is chosen before the deadline is reached. The algorithm can only

compute an upper bound on the maximum probability. The minimum probability is

obtained by, firstly, observing that the probability to reach the leader being elected is

one. Secondly, a modification of the original model is made: a node is added to the model

and a transition from the node labelled with leader elected to the new node, and the

enabling condition for the new transition is when the global clock reading is greater than

the deadline. Finally we take one minus the calculated maximum probability for the new

6 - Explicit forward approach 80

node from the initial node. A proof that this is what the required minimum probability

is given in [KNS03a].

For the case studies, we give the size of the MDP (number of states generated), the

time spent on generating the MDP via the forward algorithm, the time for constructing the

MDP from the textual file of the PRISM input language and the time for model checking

the property. In Table 6.1 and Table 6.2, the first column gives different parameters for

the deadline; the second column is for the size of MDP and the remaining columns are for

the time spent on verification, which includes three sub-columns for time spent on forward

exploration to generate the reachable graph in a textual file, model construction using

PRISM from textual files and model checking probabilistic reachability using PRISM.

From the table for these examples, we see that model checking is very fast, which is

due to the efficiency of the symbolic approach adopted by PRISM and because the size

of MDP are small. The time for the generation of the reachable graph for both models

increases steadily for small values of deadline. However, it would increase greatly for

larger deadline. For example, an increase from the deadline 10000 to 20000 in the case of

the full model, results in more than a 5-fold increase in the time spent on the generation

of the reachable graph and a 4-fold increase in the number of states. This increase in

time is explained as follows. One characteristic of the forward algorithm is that each

newly generated symbolic state has to be compared with previously generated ones. The

function to compare two symbolic states consists of two steps: one for comparison of

the discrete parts and the other for timing information which is represented as DBMs.

The dominant factor of comparing symbolic states are determinated by the comparison

of DBMs because, firstly, one drawback of our DBM implementation is that there is no

hash function for quickly locating the same DBM, and secondly, the cost of comparison

operation on a n× n matrix for DBMs would have time-complexity O(n2).

The process of constructing the MDP from the textual file uses more time than the

other parts of the verification process. Both cases show that the time spent on model

construction increases as the number of the generated states increases. When the number

of states is small, for example, less than 2000, the construction time increases steadily.

However, it increases sharply when the number of states is more than 6500. This would

6 - Explicit forward approach 81

further worsen, as shown in the case of the full model, where the process of construction

would fail because PRISM runs out of the memory when the number of states is as high

as 96592.

The fact that PRISM runs out of memory during the model construction shown in

Table 6.2 is due to the following factors. Firstly, the generated MDP in the form of the

PRISM input language does not take any account of the structure information contained

in the states. Secondly, the model has 96592 states and more than 60000 lines of tran-

sitions. It is known that PRISM can deal with as many as 1013 states if the model is

expressed in such a way that the structure is exploited within the corresponding symbolic

representation in MTBDDs, which is not addressed in this chapter, see Chapter 8. Our

explicit approach is divided into two steps. However, the second step could be merged

with the first one by directly constructing the MDP in the form of an MTBDDs as done

in the PRISM model checker. This justifies our motivation to adopt a symbolic technique

and implement the full process in a single software tool.

Discussion The other papers concerning the forward probabilistic reachability imple-

mentation are [DKN02, KNS03a, DKN04]. [DKN02], which was using KRONOS [KRO]

for the generation of the reachable graph, only contains the test results for the abstract

model of FireWire. In [KNS03a], HYTECH [HYT] was used to generate the reachable

graph, but it also included the results for the full model of FireWire using the digital

clock semantics. Both papers show a similar pattern for the abstract model of FireWire,

that is, the number of states of the generated reachable graph grows when the value of the

deadline increases. Although [DKN04] includes the verification results for the full model

of FireWire, the difference from our case studies is that our experiment presents more

results concerning the time spent on the model construction from the generated reachable

graph into MTBDD representation using PRISM and shows that large generated reach-

able graph without any reduction would cause PRISM to fail during model construction

phase. One contribution of [DKN02, DKN04] is that the authors proposed an encoding

method to reduce the number of the transitions between symbolic states in order to ex-

ploit the structural information among those symbolic states having same discrete parts.

In Chapter 8, we will describe how this idea can be adapted into our symbolic imple-

6 - Explicit forward approach 82

mentation and discuss the adaptation. Another method adopted by [DKN04] is using

bi-simulation to further reduce the size of generated reachable graph which is not covered

by out work. Finally, we remark that the explicit approach to construct the product model

used in this chapter is known to be inefficient and infeasible for large models. However,

we are interested in the process and implementation of the forward state exploration and

construction of the MDP, rather than the process construction of the models for PTA,

which is to be addressed in our symbolic approach in Chapter 8.

6.3 Summary

The explicit implementation of the forward algorithm can be summarised as follows.

Although the results are based on two examples, the implementation demonstrates that

forward model checking of maximum probabilistic reachability for probabilistic timed

automata is feasible for small examples. If the generated MDP model contains many

states and transitions without considering the reduction of the state space, the use of

intermediate textual files to store the descriptions of zone graph can cause PRISM to run

out of memory because of the size of the MTBDDs.

6 - Explicit forward approach 83

Table 6.1: Verification of the abstract model Ip
1 with wire delay set to 360 ns

Deadline States Time(Explicit)

Forward Construct. M.C.

2000 64 0.151 0.094 0.009

2500 88 0.182 0.141 0.012

3000 88 0.184 0.140 0.011

3500 124 0.243 0.234 0.013

4000 162 0.270 0.433 0.016

4500 159 0.274 0.418 0.016

5000 208 0.328 0.676 0.019

5500 244 0.367 0.910 0.020

6000 253 0.376 0.973 0.022

7000 348 0.454 2.152 0.025

8000 438 0.525 3.371 0.030

9000 506 0.601 4.567 0.033

10000 609 0.710 7.402 0.043

20000 2124 2.944 117.724 0.128

30000 4546 9.953 612.743 0.296

40000 7851 23.691 1853.573 1.546

50000 12094 48.485 4992.301 2.760

60000 17231 86.477 11245.264 1.367

70000 23305 141.767 - -

80000 30251 227.807 - -

6 - Explicit forward approach 84

Table 6.2: Verification of the full model Implp with wire delay set to 360 ns

Deadline States Time(Explicit)

Forward Construct. M.C.

2000 951 5.583 15.020 0.050

2500 1415 8.671 37.799 0.067

3000 1425 8.768 38.125 0.067

3500 2092 12.960 95.042 0.106

4000 2803 17.480 170.284 0.140

4500 2799 18.036 168.851 0.147

5000 3725 24.155 301.363 0.175

5500 4432 28.989 475.884 0.228

6000 4675 31.052 528.828 0.255

7000 6545 45.309 1044.781 0.347

8000 8437 60.079 1963.446 0.447

9000 9879 72.999 2687.657 0.558

10000 11988 91.097 3987.859 0.709

20000 44335 490.927 75078.248 4.181

30000 96592 1551.899 * -

40000 168514 3820.440 * -

Chapter 7

Explicit Implementation of the

Backward Exploration Algorithm

In this chapter we still consider an explicit implementation, but now for the implementa-

tion of the backward algorithm for the first time (a preliminary version was reported in

[KNSW04]). As in the previous chapter, the purpose of this implementation is to provide

a proof-of-concept implementation and identify the possible bottlenecks of the problem of

model checking for probabilistic timed automata via the backward algorithm. We again

use explicit data structures such as an adjacency list or array to store the set of states

and there is no sharing among them as before. There are two goals we aim to achieve

when applying the backward algorithms. One is to obtain the exact maximum probability,

as opposed to just an upper bound, and the other is to obtain the minimum probabil-

ity. However, when we turn to model checking the property of the minimum probabilistic

reachability via the backward algorithm, we discover that non-convex zones are commonly

encountered during the calculation. Difference Bound Matrices (DBMs) have no native

support for non-convex zones. One data structure which supports non-convex zones is

Difference Decision Diagrams (DDDs) which has been made available for us to use and

is provided as a C library. We have implemented the explicit backward reachability algo-

rithm in both Java and the C programming language using two representations of timing

information as DBMs and DDDs. The Java version uses DBMs while the C version uses

DDDs for representing the timing information.

7 - Explicit backward approach 86

This chapter starts with the description of the implementation of the backward algo-

rithm in an explicit manner in Section 7.1. The results are presented in Section 7.2.

7.1 Implementation

Firstly, as in the previous chapter describing the explicit implementation of the forward

algorithm, our explicit implementation of the backward algorithm reads in a model of a

probabilistic timed automaton from one or more files in the notation described in Section

6.1. Secondly, the same method is applied to parse the model files and store the model in

a temporary data structure. Then the tool decides which algorithm to call for calculating

the maximum or the minimum probability according to the command line arguments.

Next, the backward algorithm is used to generate the model in the form of an MDP,

which is translated into the PRISM input language. Finally, model checking is performed

using PRISM on the property against the generated model .

7.1.1 Explicit Implementation of the Backward Algorithm

The implementation of the backward maximum probability algorithm in Figure 5.5 for

generating the reachable graph is given in Figure 7.1. It accepts three parameters: the

model M and two set of symbolic states U and V stored as lists. Line 1 creates the union

of sets U and V . Lines 2-3 initialise the result set with timed predecessor of the set V .

Line 5 sets the index value to 0. Lines 6-29 generate the finite-state graph, the states of

which are obtained in lines 10-14 and lines 17-27. The states generated in lines 10-14 are

obtained by first iterating timed and discrete predecessor operations, and then removing

those are not in set U . Lines 17-27 calculate the relevant states by set conjunction

operation on states newly obtained in line 10-14 and states explored so far. The edges

between states are added at the same time when the states are generated. Line 30 writes

the result in the form of the PRISM input language.

The implementation of the MaxV≥1 algorithm in Figure 5.8 is given in Figure 7.2.

It accepts the following parameters: the integer value c, and two set of symbolic states

U and V stored as lists. Line 1 initialises the result set to true. Line 2 initialises the

7 - Explicit backward approach 87

temporary set X to the empty set. Lines 3-9 contain the loop for computing the greatest

fixpoint. Inside the loop, the sets X and U will be enhanced with zone {z ≥ 0} in lines

5 and 6. Line 7 invokes the MaxU≥1. The states generated in Line 8 are obtained by

firstly, computing z.φ where φ is the result of MaxU≥1 in Line 7 through performing the

conjunction of result of Line 7 and set {z = 0} and removing the atomic zone involving

clock z, and secondly, removing those not in set V from result of previous step. Finally,

Line 10 returns the result set Z.

The implementation of the MaxU≥1 algorithm in Figure 5.7 is given in Figure 7.3. It

accepts two set of symbolic states U and V stored as lists. Line 1 gets the union of sets

U and V . Line 2 initialises result set Z0 to set V . Line 3 initialises set Y0 to empty one.

Line 4-16 is the two nested loops for the computation of double fixpoint. Note that the

first iteration of both inner and outer loops will always return set equal to V , thus the

implementation can be speeded up by initialising both sets Z0 and Z1 to set V , which is

reflected in Lines 2 and 6. Lines 10 and 12 compute the discrete and time predecessor

states, by calling pre1 and tpre algorithm, respectively. Line 17 returns the result set.

The implementation of the pre≥1 algorithm in Figure 5.6 is given in Figure 7.4. It

accepts two set of symbolic states U and V stored as lists. Line 1 initialise the result set

to empty one. The outer loop in Lines 2-10 goes through each distribution in the model

and computes those states can reach set V and set U only with probability one, which is

achieved by inner loop in Lines 5-8. Line 11 returns the result Y .

7.2 Experimental Results

In this section, we provide the experimental results for model checking the property of

maximum and minimum probability of reachability via the backward approach, which are

included in subsection 7.2.1 and 7.2.2 respectively.

We present results for the abstract and full model of FireWire root contention protocol,

as in the previous chapter. We also give results for the IEEE 802.3 CSMA/CD (Carrier

Sense, Multiple Access with Collision Detection) protocol see appendix A.2.

For the case studies, we give the size of the MDP and the time spent on generating

the MDP via the backward algorithm, which are shown in the table under the column

7 - Explicit backward approach 88

BackwardModelChecking(M,StatesListU , StatesListV)

1. StatesListUV = union(StatesListU , StatesListV)

2. StatesListZ = tpre(StatesListUV , StatesListV)

3. StatesList := StatesListZ

5. index := 0;

6. while (index < StatesList.size())

7. currentState := StatesList.get(index,M)

8. index+ +

9. for each e ∈ getTransitionOfPTA(currentState,M)

10. tmpState := dpre(e, tpre(StatesListUV , currentState))

11. preState := conjunct(tmpState, StatesListU)

12. if StatesList.notIn(preState) == True

13. preState.addTransition(e, currentState)

14. StatesList.append(preState)

15. end if

16. idx := 0;

17. while (idx < StatesList.size())

18. tmpState := StatesList.get(idx,M)

19. andState := conjunct(tmpState, preState)

20. for each e2 ∈ getTransitionOfPTA(tmpState,M)

21. tmp2State := StatesList.get(tmpState, e2)

22. StatesList.append(andState)

23. andState.addTransition(e, currentState)

24. andState.addTransition(e2, tmp2State)

25. end for each

26. idx+ +;

27. endwhile

28. end for each

29. endwhile

30. return WriteAsPrism(StatesList, initialStates, targetStates)

Figure 7.1: Backward probabilistic reachability algorithm

7 - Explicit backward approach 89

MaxV≥1(c, StatesListU , StatesListV)

1. StatesListZ := {true}

2. StatesListX := ∅

3. while (StatesListX 6= StatesListZ)

4. StatesListX := StatesListZ

5. StatesListXz
:= conjunct(z ≥ 0, StatesListX)

6. StatesListUXz
:= conjunct(z ≥ 0, conjunct(StatesListU , StatesListX))

7. StatesListZz
:= MaxU≥1(StatesListXz

, disjunct(StatesListUXz
, {z > c}))

8. StatesListZ := conjunct(StatesListV , Exists(z, conjunct(z = 0, StatesListZz
))

9. endwhile

10. return StatesListZ

Figure 7.2: The MaxV≥1 algorithm

labelled “States” and column labelled “Time” respectively. The unit of time is second. In

the tables, the term “DDD” refers to the implementation which uses DDDs and “DBM”

refers to the implementation which uses DBMs for representing the timing information.

For the convenience of comparison, we also list both the results obtained from back-

ward and forward algorithm, which are under the column of “Forward” and “Backward”

respectively.

7.2.1 Maximum Probabilistic Reachability

The abstract and full FireWire models used in this section are same as in the Chapter 6.

The property verified is also same, which is the minimum probability that, from the initial

state, a leader (root) is chosen before the deadline D is reached. Once again, the minimum

probability is calculated by taking one minus the calculated maximum probability to reach

the added node from the initial node by using the same modified model used in previous

chapter. However, one difference from the Chapter 6 is that the algorithm to calculate

the maximum probability here proceeds by the backward search.

The property verified for the CSMA/CD case study is the maximum probability of

7 - Explicit backward approach 90

MaxU≥1(StatesListU , StatesListV)

1. StatesListUV := disjunct(StatesListU , StatesListV)

2. StatesListZ0 := StatesListV

3. StatesListY0 := ∅

4. while (StatesListY0 6= StatesListZ0)

5. StatesListY0 := StatesListZ0

6. StatesListZ1 := StatesListV

7. StatesListY1 := {true}

8. while (StatesListY1 6= StatesListZ1)

9. StatesListY1 := StatesListZ1

10. StatesListtmp := conjunct(StatesListU , pre1(StatesListY0 , StatesListY1)

11. StatesListZ1 := disjunct(StatesListV , StatesListtmp)

12. StatesListtmp := tpre(StatesListUV , conjunct(StatesListY0 , StatesListY1))

13. StatesListZ1 := disjunct(StatesListZ1 , StatesListtmp)

14. endwhile

15. StatesListZ0 := StatesListZ1

16. endwhile

17. return StatesListZ0

Figure 7.3: TheMaxU≥1 algorithm

7 - Explicit backward approach 91

pre1(StatesListU , StatesListV)

1. StatesListY := {false}

2. for each Distribution dist ∈ getDistributionOfPTA(M)

3. StatesListY0 := {true}

4. StatesListY1 := {false}

5. for each e ∈ getTransitionOfPTA(M, dist)

6. StatesListY0 := conjunct(dpre(e, StateListU), StateListY0)

6. StatesListY1 := disjunct(dpre(e, StateListV), StateListY1)

8. endfor

9. StatesListY := disjunct(StatesListY , conjunct(StatesListY0 , StatesListY1))

10. endfor

11. return StatesListY

Figure 7.4: The pre1 algorithm

both stations correctly delivering their packets by the deadline D. In order to compare

the results with those obtained from the forward algorithm, the same model and manner

are used as in the Chapter 6, where the model is modified by adding a node, for which

the maximum probability is calculated from the initial node.

From Table 7.1, we see that the number of states generated in the MDP using the

backward approach is less than that for the forward approach. However, it is not always

the case that the backward approach generates smaller MDPs than the forward approach.

As we can see from Table 7.2, which contains results for verifying the full model of

FireWire, the outcome can be the opposite, in that with the same value of the parameter

(deadline), the number of states in the generated MDP for the backward approach is

greater than that for the forward approach.

In both cases of the abstract and full model of FireWire, the time spent on the back-

ward search was more than the time spent on the forward search with the same value

of the parameter (deadline). This is not surprising because, in the forward approach,

when a new zone is found it is only compared with the list of previously found zones to

7 - Explicit backward approach 92

determine whether it is already explored. The required operation is only zone equality

checking. However, in the backward approach, when a new zone is found, it is not only

compared with the list of previously found zones, but it must also be used to obtain the

relevant zones via the operation of zone conjunction. Then the resulting zones can only

be appended to the list if it is not empty set by performing the zone emptiness checking.

The implementation of the operation of zone emptiness checking is time-consuming in

both DDDs and DBMs. In DBM, it is achieved through bringing the zones into canonical

form. In DDDs, similar methods are adopted and this is achieved through checking that

there exists at least one path which is feasible, as each path in DDDs corresponds to a

DBM. These greatly decrease the performance of the backward traversal approach as the

time spent on zone conjunction and emptiness checking depends on the number of states.

An exception to the above is the case of CSMA/CD, in which the backward approach

generates fewer states and takes less time than the forward approach. One possible reason

behind this case is that the number of states generated from the backward approach is

around one thirtieth of that from the forward approach. In the other two cases, the

difference in size of the generated MDP between the two approaches is around two to

three times.

As the DBM-based version is implemented in Java while the DDD-based is imple-

mented in C, it is not fair to compare the two. However, from the experimental results,

we cannot conclude that the performance of the DDD-based version is better than that

of DBM-based one in terms of time consumption, or vise versa.

7.2.2 Minimum Probabilistic Reachability

Table 7.4 and 7.5 give the results for model checking the minimum probability directly

for the abstract model of FireWire and the full model of CSMA/CD.

Although the property verified for the abstract model of FireWire is the same as in

the section 7.2.1, one difference is that the model used here is the original one, that is, the

model has not been modified with an added node. This is the same for the full model of

CSMA/CD. However, the property verified for CSMA/CD is the minimum probability of

both stations correctly delivering their packets by the deadline D instead of the maximum

7 - Explicit backward approach 93

probability.

From Table 7.4 and Table 7.5, we can see that the generation time using DBMs is

considerably less than that for DDDs.

We notice that the number of states is different between the DDD- and DBM-based

versions. The version based on DBMs generated fewer states than that based on DDDs.

This is because, firstly, one of the characteristics of the backward algorithm is to calculate

the zone conjunction when a new zone is encountered, which means that zones are broken

down into smaller zones. Secondly, when performing the minimum probability model

checking, the zones passed into the algorithm are often non-convex. However, there is

no canonical way to break down non-convex zones into a list of DBMs [Tri98]. In DBM

representation, the non-convex zones are stored as a list of DBMs, which is non-canonical.

On the other hand, in the DDDs representation, the non-convex zones are not broken down

at the beginning of the algorithm. This explains the different number of states generated

by the algorithms.

We have demonstrated the feasibility of our implementation in Table 7.4 and Table

7.5. However, the models used in these two cases are quite small. When we apply

our implementation to the case of the full model of FireWire, it turns out that both

implementations based on DBMs and DDDs perform very badly. The computation for

DBM-based implementation did not terminate for more than 10 hours for small deadlines,

such as 2000; while DDD-based implementation always ran out memory. The reason why

the performance of DBM-based version is poor is that the backward algorithm involves

three nested fixpoint calculations and, within each iteration, zone equality checking has

to be performed. However, for non-convex zones represented as a list of DBMs, the

complexity of this operation is very high as it is achieved via zone complementation and

conjunction.

In Table 7.5, the number labelled with ∗ means that garbage collection occurred and

the data under column “DDD” is collected with good variable ordering on clocks. The

same case study, but with bad variable ordering on clocks, can lead to worse performance

due to higher occurrence of garbage collection or the system running out of memory.

As the results shown in Table 7.5 indicate, even with good variable ordering on clocks

7 - Explicit backward approach 94

1

clk0 - clk3 < -5

clk0 - clk3 < -2

clk0 - clk4 < -5

clk0 - clk4 < -5clk0 - clk4 < -5

clk0 - clk4 < -2

clk0 - clk5 < -11

clk0 - clk4 < -2

clk0 - clk5 < -11

clk0 - clk4 < -2

clk0 - clk5 < -11

clk0 - clk5 < -11

clk0 - clk5 < -11

clk0 - clk5 <= 5 clk1 - clk0 < -3

clk0 - clk5 <= 5clk1 - clk0 < -3

clk0 - clk5 <= 5clk1 - clk0 < -3

clk1 - clk0 < -3

clk1 - clk0 < -3

clk6 - clk0 <= -8

clk7 - clk0 <= 9

clk1 - clk0 < -3 clk1 - clk0 < -3clk2 - clk0 < -3

clk2 - clk0 < -3 clk2 - clk0 < -3

clk1 - clk0 < -3clk1 - clk0 < -3 clk2 - clk0 <= -7

clk2 - clk0 <= -7clk2 - clk0 <= -7

clk0 - clk5 < -11

clk0 - clk5 < -11

clk0 - clk5 <= 5 clk1 - clk0 < -7

clk0 - clk5 <= 5 clk1 - clk0 < -7

clk0 - clk5 <= 5 clk1 - clk0 < -7

clk1 - clk0 < -7

clk1 - clk0 < -7

clk1 - clk0 < -7 clk1 - clk0 < -7clk1 - clk0 < -7clk1 - clk0 < -7 clk0 - clk5 < -11

clk0 - clk5 < -11

clk0 - clk5 <= 5

clk0 - clk5 <= 5

clk0 - clk5 <= 5

Figure 7.5: DDD ordering example

the the DDD-based version performs much worse than the the DBM-based version. Below

we discuss the possible reasons.

7.2.3 Causes of Memory Exhaustion

We notice that besides the high complexity of the backward algorithm, especially the

minimum probabilistic reachability algorithm which involves three nested fixpoint calcu-

lations, our running machine has only one Gigabyte of memory. In the backward algo-

rithm, the tpre operation is a critical operation, especially in the case of computation of

the minimum probability. The DBM-based implementation of the tpre operation contains

double complementation operations. On the other hand, the DDD-based implementation

is memory-intensive because it generates many intermediate nodes. DDDs are proposed

mainly for dealing with the issue that non-convex zones cannot be directly represented by

DBMs. We are interested in understanding why DDDs lead to garbage collection and run

out of memory configuration during performing the minimum probabilistic reachability

algorithm.

For better understanding of DDDs, below we also compare them to BDDs (ordered).

Like BDDs, DDDs can be ordered and are also very sensitive to the ordering of the

variables which label the nodes in the DDDs. Figures 7.5 and 7.6 show that the same

DDD with different orderings can result in structures where one has nearly three times as

many nodes as the other. However, an important difference between the ordered BDDs

and ordered DDDs is that ordered BDDs have a canonical form, while ordered DDDs

7 - Explicit backward approach 95

1

clk1 - clk0 < -7

clk1 - clk0 < -3

clk2 - clk0 <= -7

clk2 - clk0 <= -7

clk2 - clk0 <= -7

clk2 - clk0 < -3

clk3 - clk0 <= 5

clk2 - clk0 < -3

clk5 - clk0 < -5

clk2 - clk0 < -3

clk3 - clk0 <= 2 clk4 - clk0 <= 2clk4 - clk0 <= 5

clk5 - clk0 <= 11

clk7 - clk0 <= 9clk6 - clk0 <= -8

clk3 - clk0 <= 2clk3 - clk0 <= 2 clk3 - clk0 <= 5clk3 - clk0 <= 5

Figure 7.6: DDD ordering example

7 - Explicit backward approach 96

do not. A Boolean variable is used for labelling the nodes of BDDs, while DDD nodes

are labelled by clock difference, which contains a pair of clocks and the upper bounds

between these two clocks. However, it is this differences on the node labelling that incurs

a significant effect on performance in the manipulation of BDD-like data structures.

Our experiments indicate that, besides the lack of canonicity, DDD operations, such

as set union, existential quantification and tpre, are the main culprits for generating large

numbers of nodes. These would lead to memory exhaustion for DDDs usage.

• The domain of DDDs

In BDDs, the length of 1-path is bounded by (n + 1) and the size of a BDD is

bounded by 2n where n is the number of Boolean variables or labelling nodes. In

DDDs, it is different: the length of 1-path can be arbitrarily long because there can

be arbitrarily many tests on the same clock pairs. If we only consider DDDs for

representing the zones, the number of labelling nodes along a 1-path in DDDs is

determined by both the number of clocks and the maximal constant appearing in

the model and the specification, which is bounded by (2C + 1)
1
2
n(n−1) where n is

the number of clocks and C is the maximal constant. Figure 7.7 shows a DDD, one

of whose paths labelled with a dashed line originating at the root node shows that

the difference between clock clk1 and clock clk0 could have the value in the range

[−2, 2].

• The set union in DDDs

Set union on DDDs could reduce the number of DDD nodes in some cases. However,

it could also increase the number of DDD nodes: the more complex non-convex zones

are, the more DDD nodes are needed. For example, Figures 7.8, 7.9, 7.10 and 7.11

show four DDDs, each of which has only one 1-path and only four nodes (actually,

only two nodes for each as the terminal nodes 1 and 0 are shared by all DDDs).

The union of these four DDDs is given as Figure 7.12, which has 18 nodes and 12

paths. This simple union example shows that the number of nodes after union has

doubled and the number of paths could be as many as three times the total of the

original ones. As the number of variables along one 1-path could be exponential, a

DDD after union could also be exponential, which in the worst case could have the

7 - Explicit backward approach 97

1

clk1 - clk0 < -2

clk1 - clk0 < -1

clk2 - clk0 < -3 clk1 - clk0 < 0

clk1 - clk0 < 1

clk3 - clk0 < -4

clk1 - clk0 < 2

clk2 - clk0 < -4clk2 - clk0 < -3

Figure 7.7: DDD domain example

7 - Explicit backward approach 98

1

clk1 - clk0 < -3

clk3 - clk0 <= 2

Figure 7.8: DDD union example: single DDD-1

size of 2(2C+1)
1
2 n(n−1)

.

• Existential quantification

Existential quantification of a variable x in an expression φ, which removes x from

φ, cannot be done by simply removing all terms from φ containing x. We must keep

all the implicit clock differences induced by x among the other variables. Suppose

we are given an expression φ of clock constraints (x − y ≤ 12) ∧ (y − z ≤ −5) and

we want to remove clock y, which is expressed as ∃y.φ, then the resulting expression

is (x − z ≤ 7). The example given reduces the number of clock constraints from

two to one because it it very simple. Below we will give another example which will

increase the number of the clock constraints. Figures 7.13 and 7.14 show two DDDs

corresponding to the constraints before and after existential quantification. The one

after quantification is obtained by removing clock clk4 from the one before.

• Redundant nodes along paths

In BDDs, node variables are unique along BDD paths leading to terminal node true,

and redundant nodes are not allowed along any paths. Unlike BDDs, DDDs have

no canonical form; furthermore, the labelling nodes along the DDD paths leading

to terminal node true could be redundant. In DDDs, both local reduction and path

7 - Explicit backward approach 99

1

clk2 - clk0 < -3

clk4 - clk0 <= 2

Figure 7.9: DDD union example: single DDD-2

1

clk1 - clk0 < -7

clk3 - clk0 <= 5

Figure 7.10: DDD union example: single DDD-3

7 - Explicit backward approach 100

1

clk2 - clk0 <= -7

clk4 - clk0 <= 5

Figure 7.11: DDD union example: single DDD-4

1

clk1 - clk0 < -7

clk1 - clk0 < -3

clk2 - clk0 <= -7clk2 - clk0 <= -7clk2 - clk0 <= -7

clk2 - clk0 < -3 clk3 - clk0 <= 5

clk2 - clk0 < -3

clk2 - clk0 < -3

clk3 - clk0 <= 2 clk4 - clk0 <= 2 clk4 - clk0 <= 5

clk3 - clk0 <= 2 clk3 - clk0 <= 2 clk3 - clk0 <= 5 clk3 - clk0 <= 5

Figure 7.12: DDD union example

7 - Explicit backward approach 101

1

clk2 - clk1 <= 1

clk4 - clk0 <= 0 clk4 - clk0 <= 0

clk4 - clk1 < -3

clk4 - clk1 < -3

clk4 - clk1 <= 0

clk4 - clk3 < 0clk4 - clk3 < 0

clk5 - clk4 < 0

clk4 - clk1 <= 0

clk4 - clk2 <= 0

clk4 - clk3 < 0

clk5 - clk4 <= 10

Figure 7.13: DDD example: before existential quantification

7 - Explicit backward approach 102

1

clk1 - clk0 < 0

clk1 - clk0 <= 3

clk3 - clk0 <= 0

clk3 - clk0 <= 0

clk2 - clk0 < 0

clk3 - clk1 < -3

clk2 - clk1 < -3 clk2 - clk1 < 0

clk2 - clk1 <= 1 clk3 - clk0 <= 0

clk3 - clk0 <= 0 clk3 - clk0 <= 0

clk3 - clk1 < -3

clk3 - clk1 < -3

clk3 - clk1 <= 0

clk5 - clk0 < 0

clk5 - clk1 < 0

clk3 - clk1 <= 0

clk3 - clk2 <= 0

clk5 - clk0 <= 10

clk5 - clk1 <= 10

clk5 - clk2 <= 10

clk3 - clk1 <= 0

Figure 7.14: DDD example: after existential quantification

7 - Explicit backward approach 103

reduce [ML98] are defined, which at some level could remove certain redundant

nodes along paths. However, during operations on DDDs, redundant nodes could

still be generated and it is not possible to remove all the redundant nodes. The

reason that not all the redundant nodes along a path can be removed is because,

although a node could be regarded as redundant along a path, it is not along another

path. The dashed line path originating at the root node in Figure 7.7 shows that,

except for the last node, all other nodes are redundant along that path. However,

these nodes have to be kept because they are not redundant in other paths. As each

path in a DDD can be viewed as a disjunct in the Disjunctive Normal Form (DNF)

representation of the DDD, the semantics of a DDD can be treated as the union of

each path. In other words, it is the union of DDDs that results in the redundant

nodes which could not be totally removed.

Figure 7.15 and Figure 7.16 are two DDDs corresponding to before and after path

reduce.

• The DDD-based tpre operation is obtained in terms of the logical operations of

complementation and set union, or set intersection and existential quantification.

However, when the expression is more complex, keeping and making these clock

differences explicit means introducing many new nodes in DDDs, which could lead

to exponential blow-up.

• The complexity of the tpre operation

The complexity of set union on DDDs is O(|u| |v|), while the complexity of exis-

tential quantification is in the worst case O(2|u| × n3) [ML98]. As the time spent

on existential quantification is the dominating factor, the complexity of tpre is de-

termined by the complexity of existential quantification, where |u| is the number of

nodes in the DDD u and n is the number of clock variables.

7 - Explicit backward approach 104

1

clk1 - clk0 < 0

clk1 - clk0 <= 3

clk3 - clk0 <= 0

clk3 - clk0 <= 0

clk2 - clk0 < 0

clk3 - clk1 < -3

clk2 - clk1 < -3 clk2 - clk1 < 0

clk2 - clk1 <= 1

clk3 - clk0 <= 0

clk3 - clk0 <= 0

clk3 - clk0 <= 0

clk3 - clk1 < -3

clk3 - clk1 < -3

clk3 - clk1 <= 0

clk5 - clk0 < 0

clk5 - clk1 < 0

clk3 - clk1 <= 0

clk3 - clk2 <= 0

clk5 - clk0 <= 10

clk5 - clk1 <= 10

clk5 - clk2 <= 10 clk3 - clk1 <= 0

Figure 7.15: DDD example: before path reduce

7 - Explicit backward approach 105

1

clk1 - clk0 < 0

clk1 - clk0 <= 3

clk3 - clk0 <= 0

clk2 - clk0 < 0

clk2 - clk1 <= 1

clk3 - clk0 <= 0 clk3 - clk0 <= 0

clk3 - clk1 < -3 clk3 - clk1 < -3

clk5 - clk0 < 0 clk5 - clk0 <= 10

Figure 7.16: DDD example: after path reduce

7 - Explicit backward approach 106

7.3 Summary

In conclusion, the explicit implementation of the backward algorithm can be summarised

as follows.

When calculating the maximum probability, the computational complexity of the back-

ward algorithm is much greater than that of the forward algorithm. This extra complexity

is caused by the characteristics of the algorithm by which additional relevant zones have

to be calculated via zone conjunction.

When calculating the minimum probability, both DBM-based and DDD-based imple-

mentations can only deliver results for small models. For larger models, both perform

badly and could fail to deliver results. The experiments also demonstrate that under our

running environment, even with the best variable ordering, DDDs require large memory

configuration for quite small models.

The poor performance in the case of calculating the minimum probability is due to the

high complexity of the algorithm and operations required, especially the tpre operation.

Thus, a suitable data structure for representing and operating on non-convex zones is key

to efficient implementation.

7 - Explicit backward approach 107

Table 7.1: Verification maximum probability of the abstract model Ip
1 with wire delay

set to 360 ns

Deadline Forward Backward

State Time State Time

DDD DBM

2000 64 0.151 25 0.000 0.482

2500 88 0.182 32 1.000 0.261

3000 88 0.184 37 1.000 0.280

3500 124 0.243 42 1.000 0.300

4000 162 0.270 47 1.000 0.323

4500 159 0.274 59 1.000 0.412

5000 208 0.328 66 1.000 0.442

5500 244 0.367 73 1.000 0.474

6000 253 0.376 81 1.000 0.508

7000 348 0.454 107 1.000 0.676

8000 438 0.525 126 1.000 0.811

9000 506 0.601 159 1.000 1.105

10000 609 0.710 183 1.000 1.366

20000 2124 2.944 643 11.000 24.261

30000 4546 9.953 1380 59.000 267.066

40000 7851 23.691 2400 215.000 1726.970

50000 12094 48.485 3714 609.000 9848.939

60000 17231 86.477 5310 1426.000 -

70000 23305 141.767 - - -

80000 30251 227.807 - - -

7 - Explicit backward approach 108

Table 7.2: Verification maximum probability of the full model Implp with wire delay

set to 360 ns

Deadline Forward Backward

State Time State Time

DDD DBM

2000 951 5.583 1218 365.000 381.969

2500 1415 8.671 2363 4071.000 2694.162

3000 1425 8.768 2952 8798.000 5474.705

3500 2092 12.960 3692 19508.000 -

4000 2803 17.480 - - -

4500 2799 18.036 - - -

Table 7.3: Verification maximum probability of the full CSMA/CD model (backoff=1)

Deadline Forward Backward

State Time State Time

DDD DBM

1000 6404 24.145 92 1.000 1.383

1200 9034 39.782 212 2.000 7.793

1400 11771 60.644 332 4.000 20.818

1600 15329 92.919 452 7.000 40.282

1800 19453 137.779 644 8.000 58.730

2000 23468 188.489 758 10.000 61.970

2200 28516 263.348 902 22.000 68.040

2400 34023 353.003 1046 40.000 76.408

2600 39970 467.441 1186 57.000 87.155

2800 45654 591.693 1328 80.000 100.476

3000 52561 756.939 1472 107.000 115.595

7 - Explicit backward approach 109

Table 7.4: Verification minimum probability of the abstract model Ip
1 with wire delay

set to 360 ns (min)

Deadline DBM DDD

States Time States Time

2000 15 3.165 15 2.000

2500 17 2.902 17 2.000

3000 20 3.600 24 2.000

3500 22 3.639 28 2.000

4000 25 3.617 41 2.000

4500 32 3.653 78 2.000

5000 37 3.659 93 2.000

5500 42 3.699 155 3.000

6000 47 3.713 206 4.000

7000 66 3.838 472 37.000

8000 81 3.916 753 186.000

9000 107 4.119 1339 1369.000

10000 126 4.128 1988 4876.000

20000 528 17.874 - -

30000 1206 165.886 - -

7 - Explicit backward approach 110

Table 7.5: Verification minimum probability of the full model CSMA/CD (backoff=1)

Deadline DBM DDD

States Time States Time

1000 391 21.811 47 225.000

1200 439 25.515 95 250.000

1400 487 31.373 143 291.000

1600 535 39.100 191 361.000

1800 641 43.707 307 481.000

2000 763 47.463 679 804.000

2200 923 56.057 1419 1936.000∗

2400 1083 68.606 2417 7008.000∗

2600 1223 82.718 3511 17855.000∗

2800 1383 104.007 4865 43852.000∗

3000 1543 131.009 - -

Chapter 8

Symbolic Implementation of the

Forward Exploration Algorithm

In Chapter 6 and 7, we described an explicit implementation of model checking for prob-

abilistic timed automata. In this chapter, we consider a symbolic implementation. The

implementation is based on Multi-terminal Binary Decision Diagrams (MTBDDs). As

model checking for probabilistic timed automata involves both probabilistic and timing

information, the difficulty is how to efficiently combine the three steps, that is, how to

represent the models, perform the necessary operations to generate MDPs over zones,

and, finally, perform probabilistic analysis against previously generated MDPs in terms

of MTBDDs.

A fundamental issue in symbolic model checking is how to formulate a symbolic repre-

sentation for both the set of states and the transitions between them, and ensure that this

kind of representation admits all the necessary operations which are required to explore

the state space.

The outline of this chapter is as follows. In Section 8.1, symbolic implementation of

the forward algorithm is introduced. In Section 8.2, we consider how to exploit the facility

provided by PRISM to make the model construction feasible and efficient based on our

method. In particular, we consider a model description language which is adapted from

the PRISM language.

8 - Symbolic forward approach 112

8.1 Symbolic Implementation of Model Checking Prob-

abilistic Timed Automata with MTBDDs

In Section 8.1.1, an encoding method to symbolically represent the syntax of probabilistic

timed automata (PTAs) is introduced. We will consider how to use MTBDD functions

to encode transitions of PTAs. In Section 8.1.2, we present an MTBDD-based imple-

mentation of the forward algorithm. In Section 8.1.3, we consider how to model check

MDPs. In Section 8.1.4, we present experimental results for a symbolic implementation

of the forward algorithm based on our method. Experimental results are presented and

compared with those methods based on explicit model construction.

8.1.1 Symbolic Representation of PTAs with MTBDDs

In this section we describe a symbolic encoding method for probabilistic timed automata

based on MTBDDs.

We first discuss possible ways of symbolic implementation of model checking for PTAs

and the reason why we choose MTBDDs as our symbolic representation for the models.

Next we consider how to use MTBDDs to encode PTAs. In Section 8.1.2, we consider the

implementation of the forward algorithm based on our method.

In verifying timed automata, the states usually contain two different parts: the discrete

part and the continuous part. The discrete part is usually finite while the continuous part

is infinite. In addition, the requirements for operations on these two parts are different.

The continuous part requires operations of advancing and resetting clocks. Using DDDs

to encode the set of states and the transition relation between states, all the required

operations on both parts can be obtained by using only the data structure of DDDs.

However, in the case of probabilistic timed automata, we also need to encode the

information about probability distributions in the transition relation, which is not sup-

ported by just using DDDs. In the case of the forward algorithm, one needs to inherit

the probability for generating the probabilistic transition relation between generated sets

of pairs of symbolic states according to the original probabilistic distribution.

Furthermore, there are three problems that need to be dealt with when generating the

8 - Symbolic forward approach 113

probabilistic system representation:

• The size of the state space and number of transitions between the states of the

generated probabilistic system is unknown before the algorithm, which dynamically

generates these states, terminates. In other words, we need a data structure which

could deal with dynamic size of the state space.

• Like non-probabilistic timed systems, the states in the probabilistic systems gener-

ated by this algorithm have the form of a pair (l, ζ), where l encodes the discrete

part and ζ encodes the continuous part. However, when performing reachability

analysis of non-probabilistic timed systems, if we reach two sets of states, for exam-

ple, (l, ζ1) and (l, ζ2), and one of them is a subset of the other, that is, they contain

the same discrete parts and one continuous part is a subset of the other, one only

needs to store the union of both, that is (l, ζ1 ∪ ζ2) instead of two separate states.

However, in the case of probabilistic timed automata, we have to distinguish two

sets of generated states even if one of them is a subset of the other. In other words,

we have to store many small sets of states separately instead of simply their union.

• The guards on clocks and clock resetting associated with the transition relation in

the syntactic models of probabilistic timed automata are different, although the

source and target discrete component could be same. This means that the implicit

way of applying probabilistic transition relation could not be applied, as in the

case of untimed probabilistic model checking. In other words, we can no longer

apply the probabilistic transition relation in one go, but have to apply only one

probabilistic transition each time and explicitly maintain such information in the

generated probabilistic systems.

Thus, there are key problems that have to be addressed in order to use symbolic model

checking for probabilistic timed automata:

• How to define a data structure for representing and manipulating the sets of states

which contains both a discrete part and a continuous part.

• How to define a data structure for representing the timed transition relation between

states.

8 - Symbolic forward approach 114

• How to define a data structure for representing the probabilistic transition relation

between states.

• How to define a data structure for constructing the dynamically generated informa-

tion, states and probabilistic transitions between states.

The explicit implementations in Chapter 6 and 7, MTBDDs are only exploited by

applying PRISM tool in the final step of verification. The following section is addressing

the above problems by using the data structure that is a combination of MTBDDs and

DDDs/DBMs. This is possible since MTBDDs could be treated as functions mapping from

indices to reals. For the final step, once the model has been translated into MTBDDs,

model checking the generated probabilistic system can be achieved via PRISM.

MTBDDs have been successfully applied for symbolic model checking of untimed prob-

abilistic systems [PRI, KNP02], and specifically Markov decision processes (MDPs). One

of the most interesting applications of MTBDDs is their ability to represent both vectors

and matrices. Markov decision processes (MDPs) can be treated as non-square matrices.

The use of MTBDDs for the representation of MDPs has been discussed in [Par02]. Our

motivation is to use MTBDDs for representing both the syntactic models of probabilistic

timed automata and the generated MDP from forward exploration because the underlying

semantics of labelled probabilistic timed transition systems associated with probabilistic

timed automata is a Markov decision process (MDP).

We distinguish two types of models: the syntactic models for probabilistic timed au-

tomata and the generated MDPs models obtained via the forward or backward algorithms.

The former are static and latter are dynamic.

Representation for Syntactic Models We start by considering how to symbolically

represent the syntactic models for probabilistic timed automata using MTBDDs.

For finite untimed probabilistic systems, the method relies on encoding sets of states

as BDDs and the (probabilistic) transition relation between these states using MTBDDs,

which can be done compactly if there is sufficient regularity in the model.

This method can be adapted to represent the syntactic models for probabilistic timed

automata. However, we have to consider the difference in syntax and semantics between

8 - Symbolic forward approach 115

models for finite untimed probabilistic systems and models for probabilistic timed au-

tomata.

Firstly, the complete information for the state space of finite untimed probabilistic

systems is explicitly contained in the models, while only partial information, which con-

sists of the discrete component of the state space, is explicitly contained in the models of

probabilistic timed automata. Secondly, the syntax of models for probabilistic timed au-

tomata additionally contains information about timing of the transitions, which consists

of guards on clock constraints and clock resetting.

Our starting point is to use MTBDDs to represent a single transition (probabilistic

edge) in the syntactic models of probabilistic timed automata.

Recall that each probabilistic edge has the form of the tuple (l, l′, g,X, p) where l is

the current node, l′ is the next node, g is the guard, X is the set of clocks to be reset and p

is the probability value. The edges of the generated reachable graph are derived from the

corresponding edges of probabilistic timed automata. For convenience, we also include

the information about non-deterministic choice, both invariants for current node and next

node into our encoding for edges. Thus, each new probabilistic edge has the form of the

tuple (n, l, inv(l), l′, inv(l′), g,X, p), n is (the encoding of) the non-deterministic choice,

inv(l) is the invariant of the current node, inv(l′) is the invariant of the next node.

The basic idea behind the classical Boolean logarithmic encoding is that 2n elements

of a finite set could be encoded using n bits.

Our method is to use Boolean vectors to encode all the information appearing in a

probabilistic edge. We use separate Boolean vectors which correspond to the discrete

component of the state space, the invariants associated with discrete components, the set

of guards on clocks (clock constraints) and the set of clocks to be reset.

For the systems consisting of more than one module, the Boolean vector encoding the

discrete component, which is finite, is further divided into several groups according to

the structure of the system, for example, the number of subcomponents and values of the

non-clock variables following well-known heuristics established in [dAKN+00, HKN+03],

which groups together those variables that belong to the same module.

Both invariants and guards on clocks appearing in the probabilistic transition are clock

8 - Symbolic forward approach 116

constraints. We store them together. The sets of clock constraints are explicitly stored

as a list, which is a separate data structure from the discrete components. Since the set

of clock constraints is finite, informally, we use a one-to-one function to assign a unique

index to each set of clock constraints and similar logarithmic encoding is applied.

The number of non-deterministic choices in each state is finite and bounded. The

maximum number of non-deterministic choices for all states is determined through parallel

composition, and can therefore be encoded using the logarithmic encoding.

It remains to encode the set X of clocks to be reset. There are a number of issues to

consider when encoding the clock reset operation in the transition relation:

• Recall that each clock x ∈ X could be set to different values and not simply zero.

If we encode each reset in the transition, this means we need two sets of Boolean

BDD variables for it: one for the clock and the other for the value that the clock

should be set to.

• The total number of clocks to be reset appearing in the transition could vary.

Thus, we opt for a simple approach: a Boolean vector is reserved in the transition for

assigning a unique index value to each distinct set X and each set X is explicitly stored

as a list.

We have described informally how to encode the syntactic models of PTAs. First, we

consider formally the encoding of a PTA without non-deterministic choices. In this case,

the syntactic models of PTAs can be treated as a square matrix. Formally, assuming given

an encoding of 2(l+gr) integers into (l + gr) Boolean variables, i.e. a one-to-one function

enc : {0, . . . , 2(l+gr)−1} → IBn, we can represent a 2(l+gr) × 2(l+gr) square matrix, M,

as a mapping from {0, . . . , 2(l+gr)−1} × {0, . . . , 2(l+gr)−1} to R by an MTBDD M over

2(l+gr) variables, (l+gr) of which encode row indices and (l+gr) of which encode column

indices. Using row variables x = (x1, . . . , x(l+gr)) and column variables y = (y1, . . . , y(l+gr)),

we say that M represents M if and only if fM[x = enc(i), y = enc(j)] = M(i, j) for

0 ≤ i, j ≤ 2(l+gr)−1. It is convenient to divide both row and column vectors x and

y into 3 sub-vectors: x = (xl, xgr) and y = (yl, ygr). Here we use l Boolean variables

to encode the set of 2l nodes, gr Boolean variables to encode the set of 2g guards or

8 - Symbolic forward approach 117

clock resettings. We use same number of Boolean varibles (gr) for both guards and

clock resettings in order to reduce the number of required variables. The upper bound

values is the maximum value of the two indices. The interpretation of elements of M

fM[xl = enc(l), xgr = enc(gr), yl = enc(l′), ygr = enc(gr′)] = M(i, j) is as follows: if the

current node is [xl = enc(l)] and guard [ygr = enc(gr)] is satisfied, the transition could be

performed to go to next node [yl = enc(l′)] and the clock in the [ygr = enc(gr′)] is reset.

Then we extend this idea to PTAs with non-deterministic choices between probabilistic

transitions in their nodes. The syntactic models in this case can be treated as a non-square

matrix, and the underlying semantics is an MDP. The idea to use a third index to represent

and encode nondeterministic choice in an MDP representing as an MTBDD was proposed

in [Bai98] and discussed in [Par02]. Formally, assuming that the maximum number of

nondeterministic choices in any node is bounded by 2n and given an encoding of the 2n

into z = (z1, . . . , zn) Boolean variables, i.e. a one-to-one function enc : {0, . . . , 2n−1} →

Bn, we can represent a 2(l+gr) × 2n × 2(l+gr) non-square matrix, M, as a mapping from

{0, . . . , 2(l+gr)−1} × {0, . . . , 2n−1} × {0, . . . , 2(l+gr)−1} to R, by an MTBDD M over

2(l+ gr) + n variables, (l+ gr) of which encode row indices and (l+ gr) of which encode

column indices and n of which encode the indices to nondeterministic choices.

Figure 8.1 is the MTBBD representation for transition relation after applying our

encoding method for probabilistic timed automaton in Figure 5.1. In Figure 8.1, the

MTBDD variables “x”, “y”, “g” and “r” are for source node, target node, guard and

clock resetting, respectively. The second left path represents the probabilistic transition

of going to node open with probability 0.99 from node close at any time and clock x to

be reset.

Representation for Dynamic Models Now we consider how to symbolically repre-

sent the models dynamically generated via the forward algorithms using MTBDDs. For

finite untimed probabilistic systems the potential state space is known in advance of con-

structing the symbolic representation of the model, as it can be deduced from the syntactic

model description.

The difficulty with model checking of PTAs is that the size of the state space is

unknown beforehand, and states (node-zone pairs) are generated dynamically through the

8 - Symbolic forward approach 118

DD

0.050.9950.990.01

rrrr

g ggg

y y

x

Figure 8.1: Transition relation of Figure 5.1 in MTBDD

8 - Symbolic forward approach 119

process of exploration of the zone graph using timed predecessor or successor operations.

The resulting symbolic representation has to be amenable to such dynamic manipulation

of the state space.

Below we describe how to encode the states and probabilistic edges for the generated

MDP via the forward algorithm.

Let us first consider how to encode the state space. Each state in the state space has

the form of a pair (l, ζ) where l ∈ L is the discrete part and ζ ∈ Zones(X) is the zone.

Like the method for encoding the syntactic models of PTAs, we use the same Boolean

vectors to encode the discrete component of the pair and a separate Boolean vector for the

zone part. However, the number of zones, unfortunately, could be infinite when forward

analysis is used. The technique in [BY04] guarantees the termination of the forward

reachability search, which means that a finite set of zones could be obtained. Since the

set of zones is finite, informally, we use a one-to-one function to assign a unique index to

each zone and a logarithmic encoding as above is applied.

After we have encoded the state space, it is easy to derive the encoding for the prob-

abilistic edge for the generated MDP. Each probabilistic edge has the form of the tuple

(n, l, l′, ζ, ζ ′, p), where n is (the encoding of) the non-deterministic choice, l and l′ are the

current and next node, ζ, ζ ′ is the current and next zone and p is the probability value.

8.1.2 Forward Implementation

After presenting our symbolic encoding method for probabilistic timed automata, we

consider the application of our method to the probabilistic reachability algorithms. In

this section we focus on forward probabilistic reachability analysis. Forward probabilistic

reachability has very good properties, that is, all the zones generated are convex and the

generated probability edges of MDPs are directly inherited from the syntactic models of

PTAs.

The algorithm in Figure 8.2 is an MTBDD-based implementation of the algorithm

in Figure 5.2 with respect to our encoding. The algorithm ModelCheckingPTA accepts

three parameters: the model of the probabilistic timed automaton PSPTA, which is an

MTBDD-encoded representation of the syntax of the original probabilistic timed automa-

8 - Symbolic forward approach 120

ton, the initial set of states φinit and the set of target states φtarget. Lines 1-4 deal with

the initialisation: line 1 initialises the generated set of probabilistic transitions with the

empty set, and lines 2-3 assign the initial set to both the front set and the reachable

set. Lines 5-21 generate the finite-state graph, the edges of which are obtained in lines

8-11 by iterating timed and discrete successor operations. Each generated edge has the

form of a tuple (n, l, l′, ζ, ζ ′, p), where n is the encoding of non-deterministic choice, (l, ζ)

corresponds to current symbolic state, (l′, ζ ′) is the next symbolic state in the generated

transition, and p is the probability value. Line 6 constructs a temporary MTBDD with

the information necessary for the timed and discrete successor operations by restricting

to the front set: each path (Line 8) of the temporary MTBDD has the form of a tuple

(n, l, l′, ζ, g,X, p), where l and l′ are the current and next nodes, ζ is the current zone

associated with current node, g is the guard, X is the set of clocks to be reset and p is

the probability. Lines 9.1-9.3 give the MTBDD-based pseudo-code of the construction

of a single probabilistic edge of the generated MDP. Line 9.1 obtains the next zone by

using standard zone successor operation. Line 9.2 uses the technique in [BY04] to obtain

the unique normal form of the next zone and adds it to the list of zones if it is a new

one, and otherwise it returns the unique index to it in the list. Line 9.3 constructs and

returns the probabilistic edge of the generated MDP. Lines 12-19 extract the reachable

states from the generated probabilistic transition set and check whether the fixed point is

reached. Line 20 adds the set of newly generated edges to the old one. Finally, in line 22,

model checking is performed on the resulting finite-state probabilistic system to obtain

the maximum probability of reaching the set of target nodes.

8.1.3 Symbolic Model Checking of the Generated MDP

Having presented techniques to encode the syntactic models of probabilistic timed au-

tomata and to generate the MDP via the forward algorithm with MTBDDs in an efficient

manner, we now consider the problem of model checking PTCTL reachability formulae

against PTAs using the same data structure, which gives a upper bound on maximum

probability.

As we saw in Chapters 6 and 7, the problem of model checking PTCTL formulae for

8 - Symbolic forward approach 121

ModelCheckingPTA(PSPTA, φinit, φtarget)

1. PSMDP := ∅

2. φfrontset := φinit

3. φreach := φinit

4. done := false

5. while (done = false)

6. TmpPS := φfrontset × PSPTA

7. Edges := ∅

8. for each non-zero path (n, l, l′, ζ, g,X, p) ofTmpPS

9.1. ζ ′ = ZoneSuccessor(l, ζ, l′, g,X)

9.2. ζ ′ = AddZone(Normalise(ζ ′, k))

9.3. tr = n × l × ζ × l′ × ζ ′ × p

10. Edges := Edges + tr

11. endfor

12. T01 := Threshold(T, >, 0)

13. φtmp := ThereExists(z,T01)

14. φtmp := ThereExists(x, φtmp)

15. φtmp := ReplaceVars(φtmp, y, x)

16. φreach′ := φreach ∨ φtmp

17. if (φreach = φ′
reach) then done := true

18. φfrontset := φreach′ \ φreach

19. φreach := φreach′

20. PSMDP := PSMDP + Edges

21. endwhile

22. return MaxProbReach(φinit, φtarget, PSMDP)

Figure 8.2: The MTBDD version of the forward probabilistic reachability algorithm

8 - Symbolic forward approach 122

PTAs is reduced to model checking a corresponding PCTL formula, which is translated

from the PTCTL formula on the MDP generated via the forward or backward algorithm.

In Chapters 6 and 7, we have used PRISM to carry out model checking the PCTL

reachability formulae against MDPs. However, there the technique is achieved by first

translating the generated MDP and PCTL reachability formulae into the PRISM input

language, and then calling PRISM via the command interface to perform the remaining

task. In this section we consider reusing the existing algorithms based on MTBDDs.

The MTBDD-based model checking algorithms for PCTL verification for MDPs have

been implemented in PRISM. The model checking algorithms take a formula in the logic

PCTL and a model which is an MDP, and return the set of states which satisfy the

formula.

The requirement of invoking these model checking algorithms is that the models can

be represented as MTBDDs and the parameters of formulae (ie, sets of states) can be

represented as BDDs. We have seen in Section 8.1.1 how the generated MDP model can

be represented as an MTBDD by encoding its state space with Boolean variables. What

has not been discussed so far is how to represent PCTL formulae as required by PRISM

software.

For the reachability properties supported by the forward algorithm, the corresponding

translated until operator in PCTL is P⊲⊳ p[⋄φ], over MDPs, where φ is the target set.

The MTBDD function MaxProbReach (in Figure 8.2), which is implemented in

PRISM for the numerical computation for the PCTL until operator, takes as input an

MTBDD PSMDP representing the transition probability matrix of the MDP, two BDDs,

phiinit and phitarget, representing the sets of states Sat(φ1) and Sat(φ2), respectively, and

returns an MTBDD representing the vector of probabilities for each state, assuming that

Sat(φ) is the function which computes the BDD for the set of states satisfying the formula

φ.

Thus, the problem of representing PCTL formulae is reduced to how to represent two

subformulaes as BDDs, which is already done as the subformulae representing the sets of

states can be represented as an BDD (special case of MTBDDs) with Boolean variables.

8 - Symbolic forward approach 123

8.1.4 Experimental Results

Table 8.1: Time consumption of the full model Implp with wire delay set to 360 ns

Deadline States Time(Explicit) Time(Symbolic)

MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.

2000 951 5.583 15.020 0.050 27.031 0.125 1.101 0.065

2500 1415 8.671 37.799 0.067 57.391 0.136 1.723 0.144

3000 1425 8.768 38.125 0.067 57.830 0.137 1.708 0.146

3500 2092 12.960 95.042 0.106 123.811 0.320 2.681 0.242

4000 2803 17.480 170.284 0.140 220.011 0.291 3.734 0.282

4500 2799 18.036 168.851 0.147 218.481 0.325 3.743 0.322

5000 3725 24.155 301.363 0.175 386.091 0.418 6.700 0.517

5500 4432 28.989 475.884 0.228 543.811 0.614 6.700 0.517

6000 4675 31.052 528.828 0.255 607.936 0.579 7.177 0.568

7000 6545 45.309 1044.781 0.347 1180.776 0.714 11.317 0.743

8000 8437 60.079 1963.446 0.447 1974.860 0.883 16.621 1.016

9000 9879 72.999 2687.657 0.558 2701.027 1.036 20.930 1.043

10000 11988 91.097 3987.859 0.709 - - 32.060 1.545

20000 44335 490.927 75078.248 4.181 - - 238.890 5.800

30000 96592 1551.899 * - - - 922.844 13.436

40000 168514 3820.440 * - - - 2545.692 24.036

The MTBDD-based forward reachability model checking algorithm has been imple-

mented in our software tool using the Java programming language. We have applied this

tool to some case studies. In this section, we present some of the results and assess the

performance of our symbolic implementation and compare it to the explicit implementa-

tion. One property of our symbolic approach is that it is generic, in that it can support

different data structures for timing information. Our implementation can support two

kinds of representation: DBMs and DDDs. We also present results using these two dif-

8 - Symbolic forward approach 124

Table 8.2: Time consumption of the full CSMA/CD model (max, backoff=1)

Deadline States Time(Explicit) Time(Symbolic)

MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.

1000 6404 24.145 943.441 0 475.420 0.003 9.115 0.003

1200 9034 39.782 2094.178 0 948.097 0.003 14.976 0.003

1400 11771 60.644 3581.585 0 1613.910 0.003 22.082 0.003

1600 15329 92.919 6289.276 0 2751.622 0.003 32.620 0.004

1800 19453 137.779 10947.995 0.828 4451.248 1.245 47.311 1.264

2000 23468 188.489 15936.895 1.665 6589.583 2.975 69.739 2.831

2200 28516 263.348 23828.224 3.304 9666.598 5.550 94.787 5.777

2400 34023 353.003 - - 13746.622 9.630 125.467 9.689

2600 39970 467.441 - - 19074.778 14.625 163.256 14.504

2800 45654 591.693 - - 24926.546 20.359 201.990 20.322

3000 52561 756.939 - - 33002.538 27.906 256.135 28.262

ferent representations of the timing information for a comparison between DBMs and

DDDs.

We begin with a comparison between explicit and symbolic implementation. In Table

8.1, Table 8.2, Table 8.3 and Table 8.4, we present results for two case studies: the IEEE

1394 FireWire root contention protocol and the IEEE 802.3 CSMA/CD (Carrier Sense,

Multiple Access with Collision Detection) protocol.

The results obtained from verifying the full model of the FireWire root contention

protocol are shown in Table 8.1 and Table 8.3, which show the time and memory con-

sumption respectively. The property verified is the minimum probability that, from the

initial state, a leader (root) is chosen before the deadline is reached.

Table 8.2 and Table 8.4 include results for the time and memory consumption, re-

spectively, of the CSMA/CD protocol when computing the maximum probability of both

stations correctly delivering their packets by the deadline D.

In the tables, the term “Explicit” refers to the explicit implementation and “MTBDD-

8 - Symbolic forward approach 125

Table 8.3: Memory consumption of the full model Implp with wire delay set to 360 ns

Deadline MDP Nodes MDP Nodes Mem. (Zone)

(Explicit) (Symbolic) DDD DBM

Peak Estimated

2000 1719 3206 46343.66 324.46 143.75

2500 2556 4280 93414.54 492.84 207.75

3000 2585 4401 94993.58 502.61 210.25

3500 3384 5630 184895.18 728.27 299.50

4000 4610 6570 318451.16 977.65 398.75

4500 4476 6430 322968.19 991.48 397.75

5000 5291 7402 546041.32 1311.11 525.25

5500 6003 8857 800000+ 1559.77 623.50

6000 6404 8919 800000+ 1653.37 657.75

7000 8449 11163 800000+ 2317.22 916.25

8000 9818 12543 800000+ 2983.175 1179.25

9000 11856 14511 800000+ 3519.195 1381.75

10000 13126 16211 - - 1673.50

20000 31526 36069 - - 6201.75

30000 - 57990 - - 13534.50

40000 - 78684 - - 23638.00

/DDD” refers to the implementation which uses MTBDDs for encoding the discrete part

and DDDs for timing information; and “MTBDD/DBM” refers to the implementation

which differs from the “MTBDD/DDD” by using DBMs instead of DDDs. The data and

sub-columns under column “Time(Explicit)” are copies of those in Chapter 6. The left-

most column of these tables gives the different deadlines. The second column shows the

number of symbolic states generated via the forward construction. The column “S.F.C.”

refers to the symbolic forward and construction. The column “M.C.” refers to the com-

putation time for model checking the given properties against the MDP model encoded

as an MTBDD. The unit for all columns under “Nodes” is the number of the nodes in the

8 - Symbolic forward approach 126

Table 8.4: Memory consumption of the full model CSMA (max, backoff=1)

Deadline MDP Nodes MDP Nodes Mem. (Zone)

(Explicit) (Symbolic) DDD DBM

Peak Estimated

1000 7457 10805 577832.75 1099.57 399.71

1200 9653 13681 800000+ 1558.76 564.45

1400 11388 16122 800000+ 2039.87 737.11

1600 14110 19446 800000+ 2667.49 962.01

1800 16697 23077 800000+ 3397.76 1223.73

2000 19276 26110 800000+ 4108.15 1478.71

2200 22260 30364 800000+ 5005.77 1800.20

2400 - 34330 - - 2151.37

2600 - 38264 - - 2530.37

2800 - 41497 - - 2894.82

3000 - 45743 - - 3337.11

MTBDD where each node occupies 20 bytes. For memory used for zones, we give them in

terms of those for DBM and DDD. The memory consumption for DBMs is that actually

used. For DDDs, we cannot give the actual memory consumption, and instead give both

the estimated and peak time memory consumption. The column “Estimated” refers to an

estimation of the memory consumption of all zones based on DDDs when algorithm termi-

nates. The column “Peak” refers to the highest value of memory consumption by DDDs

when algorithm terminates. All units for time and memory are seconds and kilobytes.

Here we recall that in order to model check certain properties, the explicit implemen-

tation involves two steps: first, it generates the reachable states, and next it represents

those as a model in the PRISM input language, which is then passed to PRISM to finish

the verification process. In the case of explicit implementation, we give three kinds of

measures of time consumption: the time spent on forward computation of the whole set

of reachable states, the time for construction of the model as MDP in PRISM, and the

time spent on model checking, as well as two kinds of memory usage for discrete and

8 - Symbolic forward approach 127

continuous components. On the other hand, for the symbolic implementation, which is

labeled “MTBDD/DDD” and “MTBDD/DBM”, as they have already been partly inte-

grated with PRISM, the overall checking process does not go through the PRISM input

language: the tool constructs the target MDP models in MTBDDs and directly calls

functions provided by PRISM. Thus, for example, for the symbolic implementation, we

give two kinds of time consumption measures: the time spent on symbolic construction

of the MDP model, which corresponds to the sum of those two times spent in the case

of the explicit one (forward computation and construction), and the time spent on model

checking. For memory usage it is same.

From the tables, we see that the times for model checking are nearly the same for the

three kinds of implementation.

Compared to the explicit implementation, the symbolic implementation based on

DBMs has a significant advantage: the time spent on generating the MDP models is

no longer a problem, since it took 238 seconds to perform both the forward construction

and to generate the MDP in MTBDDs for the full model Implp with deadline 20000 ns,

whilst it took 75708 seconds to generate the MDP model alone for the same deadline with

the explicit version.

The DDD-based symbolic implementation performs worse than the explicit one. It is

slower due to a large number of intermediate DDD nodes being generated, which forces

the DDD run-time library to invoke garbage collection. The main reason behind this is

that DDDs have no canonicity property. The canonicity property of zones is critical to

the model checking, especially for model checking PTAs, because each time a state is

found the algorithm is forced to check whether it has already been processed before. This

is one of the main operations that the algorithm has to perform and many such equality

checks to see if two states are equal are performed. BDDs, which have a canonical form

under a given variable ordering, allow equality checking which is just a simple comparison

of two unique ids of BDDs and there are no temporary nodes which are generated. Since

DDDs have no canonical form, the equality checking on DDDs is realised through checking

whether one DDD is a subset of another in both directions. Furthermore, the operation

of checking membership is based on recursive calls on the nodes along the DDDs. Like

8 - Symbolic forward approach 128

BDD operations, the recursive calls generate some temporary nodes and these temporary

nodes are put in the cache in case other operations need them in the future. Memory for

the generated temporary nodes is only released periodically via garbage collection when

there is no more space for new nodes.

What we can see from the experimental results is that the DBM-based symbolic im-

plementation performs very well. There is no surprise why DBM-based symbolic imple-

mentation does so well in the case of the forward approach. Here we are more interested

in why the DDD implementation is outperformed by DBMs. There are two factors which

lead DBMs to perform well in comparison with DDDs. The first is that DBMs have a

canonical form. Although, in the worst case, the complexity for comparing whether two

DBMs are equal is (n + 1)2 where n is the number of the clocks, in practice it could be

speeded up whenever two elements in the same position of matrices are different. The

second is that, when using DBMs, operations are merely performed on two-dimensional

matrices, the memory is fixed and there is no ordering on them.

As mentioned in Chapter 6, there are other papers concerning the forward implemen-

tation, [DKN02, KNS03a, DKN04]. Among these, only [KNS03a, DKN04] consider the

full model of FireWire, and only [DKN04] gives the information such as time spent on

the construction of the product model. The results from [KNS03a] for the full model of

Firewire is based on digital clocks. The other source of experimental results can be found

on the PRISM website [PRI], where the time spent on the construction of the product

model of FireWire is given for the method used in [KNS03a] and compared with the

results obtained based on digital clocks. In [DKN04], two major reduction techniques

are adopted in order to reduce the size of generated MDP. One is based on the instance

encoding [DKN02, DKN04] and the other is based on bi-simulation. The data used here

for comparison are based on our method using DBMs and the better of [DKN04] and

[PRI]. For example, the instance encoding method has two variants. The performance

of the instance encoding method “instance with relative and absolute compaction” is the

better variant. Below we use “compaction” as an abbreviation for “instance with relative

and absolute compaction”.

We will focus on comparison of our symbolic implementation with results obtained

8 - Symbolic forward approach 129

based on the digital clocks [KNS03a], results based on different reduction techniques

adopted in [DKN04], compaction and bi-simulation. In general, our symbolic method

performs better than both the digital clocks and compaction methods. Although our

symbolic approach and the approach based on digital clocks are MTBDD-based, the

approaches compared are different. Thus, the criteria we used are the total time spent on

the verification and memory consumption for the MTBDD representation of the generated

reachable graph. We observe that our symbolic approach is better than the approach based

on digital clocks in terms of both the time consumption and the memory consumption.

For example, for deadline 10000, our method takes about 32 seconds to perform the

verification, which is 600 times faster than the method of digital clocks which takes about

18944 seconds to finish, and our method generated 16211 nodes which is 80 times fewer

than 1244511 for digital clocks. The increase in value of the deadline parameters will

result in an increase in both the time consumption and memory consumption for both

approaches. However, the digital clocks approach is more affected by this increase. For

example, an increase from the deadline 8000 to 10000 in case of the full model, results

in an increase of 16 seconds in the time spent on verification and an increase of 3500

in the number of generated states using our method, while an increase of 10000 seconds

in the time and an increase of 43453600 in the number of states. This increase in both

time and the number of states for method of digital clocks is explained as follows. In the

digital clocks’ method, the size of the model is determined by the range of the variables,

which are used to encode the state of the model. The bigger value of the variable for the

deadline implies the greater number of states, which hence consumes more verification

time. In contrast to the digital clocks approach, the change of the deadline parameter

will be reflected in the computation of DBMs, but not directly in the size of the generated

reachable graph. Compared with the compaction method, for deadline 40000, our method

takes about 2570 seconds to perform the verification, which is 10.8 times faster than

the compaction method which takes about 27890 seconds to finish. The reason why

the compaction method is not as good is that, although the compaction method can

reduce the size, the main obstacle to verifying the full model against large deadlines is

the time required by PRISM to build the model. The exception is the bi-simulation

8 - Symbolic forward approach 130

method which performs better than ours; for the deadline of 40000 in FireWire, the bi-

simulation method takes about 1309 seconds to perform the verification against reduced

state space of about 10000 states, which is round one time faster than our method which

takes about 2570 seconds against state space of 168514 states. The reason behind why bi-

simulation method performs better is that it can reduce greatly the size of the generated

reachable graph, for deadline 40000 in FireWire, the size of the reduced state space is

less than one sixteenth of the size of the state space generated by our method. However,

the bi-simulation method employs two other tools, KRONOS and CADP [GH02], and

the approach involves the following steps as follows: modify the output from KRONOS

by identifying the states where a leader has been elected after the deadline has passed,

represent the reachability graph in a format suitable for the CADP tool set, use CADP

to construct the bi-simulation quotient, and finally use a translator to obtain the PRISM

language format from the CADP output.

8.1.5 Discussion

Variable Ordering

The MTBDD variable ordering has been discussed in [Par02]. In our symbolic implemen-

tation, we exploited the result of [Par02] concerning the heuristics for determining the

BDD variable ordering. However, we are more interested in the DDD variable ordering in

the forward algorithm. The behaviour of different DDD variable ordering in the backward

algorithm has been described in the Chapter 7, where the zones could be non-convex. Fig-

ure 8.3 and Figure 8.4 show that different variable ordering for DDDs with deadline 1000

and 1200, respectively. The x-axis is for different variable orderings on clocks. There

are a total of 120 (5!) different ordering since the model of CSMA has only five clocks.

The y-axis is for the time spent on the forward exploration. From the figures, we can see

that the forward algorithm is less sensitive to the DDD variable orderings and different

parameters show a similar pattern in terms of the time spent on calculation. The possible

explanation for this is that unlike, in the backward algorithm, the zones encountered in

the forward algorithm are convex. Although the different parameters for deadline show a

similar pattern, increasing the value of the parameter for the deadline will typically result

8 - Symbolic forward approach 131

0 20 40 60 80 100 120
440

460

480

500

520

540

560

Clock ordering

S
ec

on
ds

Time for forward reachability

Figure 8.3: DDD ordering for CSMA with deadline 1000

in an increase in the verification time due to more states which are generated.

Estimation for the Upper Bound for Size of Zones

Below we summarise the main issues that have to be addressed when applying our encod-

ing method:

• Unlike in the case of non-probabilistic timed systems, in which the on-the-fly tech-

nique [BTY97a] could be applied to make search algorithms finish as early as possi-

ble, the forward probabilistic reachability search has to construct the whole reach-

able zone graph in order to obtain the probability value.

• The size of the state space and number of transitions between these states of the gen-

erated probabilistic system is uncertain before the algorithms terminate. Although,

if using the region graph, the size of the state space of a PTA can be established

in advance of the model construction, such an approach is impractical due to the

region graph being exponential in the number of clocks and the maximal constant

appearing in the model.

As a result, we cannot fix the size of the vector of Boolean variables needed to encode

the zone part in advance. Instead, we pre-allocate the vector based on an estimate. One

8 - Symbolic forward approach 132

0 20 40 60 80 100 120
900

950

1000

1050

1100

1150

Clock ordering

S
ec

on
ds

Time for forward reachability

Figure 8.4: DDD ordering for CSMA with deadline 1200

factor that will affect the size of zones is the parameters for the model, such as the largest

constant appearing in the model. An estimation of the size of the zones could be explained

as follows. We pick a value p and s for the parameter of the largest constant and upper

bound of zone size. If the test is successful, then we obtain the real value for the zone

size. Next we fix a step value d and run a few tests for different parameters of the largest

constant starting from value p, and find the corresponding value for real zone size. Based

on the pattern of values (p, d, s), a function can be formulated and used for predicting the

upper bound for the zone size.

Zone Structure

In Section 8.1.1, it is shown that the number of zones increases as the value of the

deadline increases. A simple method is adopted for allocating indices to the encountered

zones. The range of the values for the indices is determined by the total number of zones

to be obtained via the forward algorithm. Such a simple method does not exploit the

potential implicit structural information among states. Furthermore, this could destroy

the regularity of the MTBDDs representing the state space. The successful application of

MTBDDs depends on its compact representation or sharing mechanism. However, in the

8 - Symbolic forward approach 133

case of simple allocation of indices, the continuous component becomes the dominating

factor which overwhelms the discrete component because there is less sharing among the

discrete components as the range for the indices becomes larger. As shown in [DKN02],

there is some sharing among the discrete component which could be exploited to decrease

the number of lines of transitions in the input language of PRISM. The basic idea of

[DKN02] is to figure out the maximum number n of distinct zones for each node and

then relabel each zone by assigning a value in the range of [0, n− 1]. In other words, the

form of the state pair becomes (l, n) where l is the discrete component and n is the new

label for the corresponding zone associated with the discrete component. In this section,

we discuss how this idea can be adapted for our symbolic implementation of the forward

algorithm based on MTBDDs. We first present, informally, how the adaptation could be

implemented. A direct way to achieve this is to apply the relabelling after the forward

search is finished, which is done in [DKN02]. However, this means that the algorithm

will traverse the whole MTBDDs tree representing the generated MDP. The aim of the

adaptation is that it must be efficient. The traversal could be avoided as follows. We

can make the adaptation more efficient by applying the relabelling at the same time as

a new zone is found for the same node instead of through the traversal of the generated

MTBDDs. This could be realised with the help of additional memory for storing the

intermediate information. The requirement for this intermediate information is that it

is minimal in that it should hold sufficient information so that the forward search could

proceed without losing any information. The new form of a state pair contains only labels

for the zones instead of the zones themselves. We need a way to build the link between

the label and the corresponding zone through nodes, thus the minimal information in the

intermediate storage consists of the nodes, the associated zones and the labels.

The original algorithm could be modified as follows. When a zone is found, it is

compared against the set of zones associated with the same discrete component: if the

zone is not previously associated with it, a label value is assigned to the zone and the

zone is added to the zone set associated with the same discrete component; otherwise the

zones set remains unchanged. In both cases the pair of node and label is used as the

representation of symbolic states.

8 - Symbolic forward approach 134

Formally, the transitions in the generated MDP f(n, l, lp, old, oldp) = p are replaced

with f(n, l, lp, new, newp) = p, where f is the function encoding the transition, n is

nondeterministic choice, l and lp denotes the current and next nodes, old and oldp is

current and next zones, and new and newp is the current and next label corresponding

the zones associated with nodes. The intermediate storage can be represented as a func-

tion f(l, new) = old, where l is a node, new is the label and old is the corresponding

zone associated with l. Using the same Boolean encoding within the BDD, the function

f(l, new) = old could be encoded as an MTBDD.

Figure 8.5 gives the new MTBDDs algorithm. Compared with the original MTBDD-

based algorithm in Figure 8.2, the main differences in Figure 8.5 are: an intermediate

storage in MTBDDs is introduced in line 0, and function Label performs the function of

relabelling which assigns a value to the zone associated with the corresponding discrete

component.

The results obtained from verifying the full models of CSMA/CD protocol and FireWire

based on the new implementation are shown in Table 8.5, 8.6, 8.7 and 8.8.

For the purpose of reducing both the memory usage for the generated MDP and the

time spent on model checking, the results are encouraging. However, this is not the case

if we consider the total consumption of both memory and time. From the tables, we

can see that, compared with the original implementation, the new implementation is less

efficient because it uses more memory and time in total. The difference between these two

implementation is that, although less time and memory is used for model checking the

generated MDPs, more time and memory is spent on the construction of the intermediate

data. This is for the same reason as before: the zones are still the dominating factor

which destroys the regularity of the MTBDDs for the representation of the function of

functionf(l, new) = old, which is the mapping between the labels and the zones.

8.2 Kronecker-based Model Construction

In Section 8.1.1, we demonstrated a general encoding method for probabilistic timed

automata by using MTBDDs. We also showed the application of our method to model

checking for PTAs. In Section 8.1.4, we see that our method based on MTBDDs proved

8 - Symbolic forward approach 135

ModelCheckingPTA(PSPTA, φinit, φtarget)

0. Intermedia := ∅

1. PSMDP := ∅

2. φfrontset := Label(Intermedia, φinit)

3. φreach := Label(Intermedia, φinit)

4. done := false

5. while (done = false)

6. TmpPS := φfrontset × PSPTA

7. Edges := ∅

8. for each non-zero path (n, l, l′, ζ, g,X, p) ofTmpPS

9.1. ζ ′ = ZoneSuccessor(l, l′, ζ, g,X)

9.2. ζ ′ = AddZone(Normalise(ζ ′, k))

9.3. φnext = Label(Intermedia, l′, ζ ′)

9.4. tr = n × Label(l, ζ) × φnext × p

9.5. Intermedia = Intermedia + ReplaceVars(φnext, y, x)

10. Edges := Edges + tr

11. endfor

12. T01 := Threshold(T, >, 0)

13. φtmp := ThereExists(z,T01)

14. φtmp := ThereExists(x, φtmp)

15. φtmp := ReplaceVars(φtmp, y, x)

16. φreach′ := φreach ∨ φtmp

17. if (φreach = φ′
reach) then done := true

18. φfrontset := φreach′ \ φreach

19. φreach := φreach′

20. PSMDP := PSMDP + Edges

21. endwhile

22. return MaxProbReach(Label(φinit),Label(φtarget), PSMDP)

Figure 8.5: The MTBDD version of the forward probabilistic reachability algorithm

adapted according to [DKN02]

8 - Symbolic forward approach 136

Deadline PTA nodes Nodes

Kronos-Adaptation

None Yes

MDP temporary MDP

1000 2290 10805 10602 3078

1200 2290 13681 14858 3632

1400 2290 16122 19335 4230

1600 2290 19446 25171 5008

1800 2290 23077 31903 5666

2000 3010 26110 38587 6596

2200 3010 30364 46866 7646

2400 3010 34330 55919 8413

2600 3010 38264 65648 9159

2800 3010 41497 75002 10124

3000 3010 45743 86347 10961

Table 8.5: Memory comparison for verifying CSMA with/without Kronos adaptation

8 - Symbolic forward approach 137

Deadline PTA nodes Nodes

Kronos-Adaptation

None Yes

MDP temporary MDP

2000 7893 3206 1490 2103

2500 7893 4280 2019 2439

3000 7893 4401 2041 2490

3500 8463 5630 2828 3062

4000 8463 6570 3637 3244

4500 8463 6430 3630 3238

5000 9033 7402 4751 3872

5500 9033 8857 5558 4383

6000 9033 8919 5807 4343

7000 9033 11163 7986 5510

8000 9603 12543 10152 6010

9000 9603 14511 11838 6876

10000 14163 16211 14535 8186

20000 9603 36069 51908 17224

30000 9603 57990 112319 27801

40000 9603 78684 195503 39076

Table 8.6: Memory comparison for verifying FireWire with/without Kronos adaptation

8 - Symbolic forward approach 138

Deadline Time

Kronos-Adaptation

None Yes

F.W. MC F.W. MC

1000 9.115 0.003 17.837 0.001

1200 14.976 0.003 31.357 0.002

1400 22.082 0.003 49.341 0.002

1600 32.620 0.004 78.624 0.002

1800 47.311 1.264 123.142 0.328

2000 69.739 2.831 184.135 0.714

2200 94.787 5.777 269.775 1.484

2400 125.467 9.689 383.128 2.680

2600 163.256 14.504 541.738 3.848

2800 201.990 20.322 719.885 5.304

3000 256.135 28.262 954.831 7.268

Table 8.7: Time comparison for verifying CSMA with/without Kronos adaptation

8 - Symbolic forward approach 139

Deadline Time

Kronos-Adaptation

None Yes

F.W. MC F.W. MC

2000 1.101 0.065 1.382 0.035

2500 1.723 0.144 2.048 0.082

3000 1.708 0.146 2.058 0.090

3500 2.681 0.242 3.304 0.135

4000 3.734 0.282 4.702 0.121

4500 3.743 0.322 4.601 0.235

5000 5.374 0.391 6.771 0.169

5500 6.700 0.517 8.397 0.348

6000 7.177 0.568 9.032 0.215

7000 11.317 0.743 14.212 0.297

8000 16.621 1.016 21.040 0.362

9000 20.930 1.043 26.342 0.423

10000 32.060 1.545 39.673 0.562

20000 238.890 5.800 303.099 2.249

30000 922.844 13.436 1210.245 5.199

40000 2545.692 24.036 3494.244 10.652

Table 8.8: Time comparison for verifying FireWire with/without Kronos adaptation

8 - Symbolic forward approach 140

to behave extremely well in terms of the computational complexity compared to the

explicit method. Furthermore, our experimental results of real case studies could also be

performed very efficiently. When we turned our attention to analysis of artificial cases,

for example, in the case of the Milner’s scheduler [Mil89] which we are using to test the

scalability of our method, we witnessed that if the size of the systems to be analysed

is small or medium, the model construction process performs well, but the performance

decreased quickly when the size of the systems grows large. As shown in our paper

[WK05], the explicit method for constructing the product automata is inefficient because

the time to build it increases as the number of nodes increases.

The main cause of this problem is easy to identify and obvious: the method we adopted

is explicit, that is, we explicitly enumerated the nodes to build the product model of the

system which consists of more than one module. The explicit method could be described

informally as follows. Basically, it involves two steps: the first step is based on a kind of

Breadth-First Search of the PTA models, while the second one is just a simple application

of the encoding method. We started with the set of initial nodes, enumerating all the

possible combined transitions (synchronised or asynchronous) and calculating all of the

next nodes which could be reached via a single transition. Then we enumerated each of

the newly found reachable nodes in the previous iterations to find out all the transitions

and their corresponding reachable nodes. The iterated searching continued until there

was no new reachable node found. Finally, we applied our encoding method to the search

result of the set of reachable nodes and transitions among them.

In real life, applications of model checking will always lead to models which contain

huge numbers of states. The inefficiency of explicit methods to construct product models

is well-known because it is often infeasible to enumerate each state and transitions be-

tween states. The Kronecker representation, which was originally introduced in [Pla85],

has been shown to be successful when applied to the model construction of stochastic

systems. The power behind the Kronecker approach is that it is only necessary to store

the small, component matrices and the structure of the expression which combines them.

However, there is very little work concerning the Kronecker-based technique for the model

construction of systems involving real-time clocks.

8 - Symbolic forward approach 141

Although the Kronecker representation has been applied in [BCDK00, KL97, MCD00,

PRI], there is little work for systems involving real-time clocks, for example, the real-time

systems modeled as timed automata. Although the Kronecker-based technique has been

applied to Continuous-Time Markov Chains (CTMCs) [BKH99b], there is no explicit

timing information in those models, for example, real-time clocks and the corresponding

clock constraints appearing in the models.

In this section, we consider a Kronecker-based efficient representation for the PTA

model. Our method to build the PTA model is based on that implemented in the tool

PRISM, which employs the Kronecker representation. The outline of this section is as

follows. Firstly, we describe how to exploit Kronecker-based model construction that

has been implemented in PRISM for our purpose. Secondly, results are presented and

compared with those methods based on explicit model construction.

8.2.1 Synthesis with the Kronecker-based Model Construction

We first recall the PRISM input language. Then we describe our type-based PRISM

language for the model description of probabilistic timed automata. Last we describe the

algorithm, which is synthesised with our symbolic forward algorithm, for the construction

of the typed variables from the MTBDDs model representation.

PRISM Language In the input language of PRISM [PRI], there are two fundamental

elements in the model description language: modules and variables. The system which

is considered here is a composition of n modules M1, . . .Mn. Each module Mi contains

a set of variables V ari; these variables are called local. Each local variable in module

Mi, x ∈ V ari has its own finite range of values range(x). A transition from one state to

another in a module can be made by changing the value of its local variables. A global

transition of the whole model from one global state to another comprises transitions from

one or more of its component modules. Two kinds of global transitions are defined.

One is the asynchronous transition, in which case a single module makes a transition

independently, while the other modules remain unchanged in their current state; the

other is the synchronous transition, which is two or more modules making a transition

8 - Symbolic forward approach 142

simultaneously. The behaviour of each module is defined through a set of commands

which gives the semantics of the transition. The global behaviour of the whole model is

given by the parallel composition of its component modules.

Typed-based Model Description Language Although the encoding method for

PTAs has already been introduced in [WK05], it is not applied to the process of the

model construction. In this part, we describe the model description language which is

based on the PRISM input language for the model type of Markov decision process, on

which the semantics of PTAs is built.

In the PRISM language, the variables are just used to encode the state of the model.

The PRISM input language at present cannot support real-time information encountered

in the transitions of PTAs, such as real-time clocks and real-time clock constraints. How-

ever, we need a way to encode the timing information: the invariants associated with

nodes, clock constraints and clock resets encountered in the transitions of probabilistic

timed automata. The solution is, firstly, to use Boolean variables to encode the index to

each of them and use a separate description for the set of clocks, clock constraints and

clock resettings, and, secondly, to introduce four types for variables and require that all

variables are typed. The four types of variables are nodes, guards, resets and misc. All

variables in a system belong to one of the four types in our language. The name of a

variable has a prefix of “loc”, “guard”, “reset” and “misc” for the type nodes, guards,

resets and misc, respectively. We require the set of variables in each group to be dis-

joint. The variables of the type nodes are only used for encoding the node part of the

discrete component appearing in the PTAs. The variables of the type misc are only used

for encoding the remaining information of the discrete component. The variables of the

type guards and resets are used for encoding the enabling condition (clock constraints)

and clock resets in the transitions of PTA, respectively. We describe our language using

the PTA example in Figure 5.1. Figure 8.6 and Figure 8.7 give its corresponding model

description in our language and the corresponding description language for the encoding

for the timing information.

First, we describe the language introduced for timing information. The description

in Figure 8.7 starts with the list of all clocks appearing in the model and the property

8 - Symbolic forward approach 143

or specification. This is followed by a list of timing constraints for each module. Inside

each module, a list of invariants (set of clock constraints) is declared. Each invariant

corresponds to a node in that module, that is, each invariant is assigned a unique integer

value which is also assigned to the corresponding node. Next is a list of enabling conditions

(set of clock constraints) used in the model. The final component in the module is a list of

clock resets. Similarly to the invariants, a unique integer value is assigned to the element

of the list of the enabling conditions and clock resets.

Second, we introduce the form of a single command of a system module. Our com-

mand bears similarities to those used in the PRISM input language for MDPs, and takes

the following form:

[] g → λ1 : u1 ∧ g1 ∧ r1 + · · ·+ λn : un ∧ gn ∧ rn;

However, the interpretation of the command here is quite different from that of for

normal PRISM command, where the guard is always put at the left hand side of →.

The reason why we use updated variables (primed version of MTBDDs variables) for

both guards and clock resettings is because we need a way to distinguish the possible

nondeterministic choices at certain nodes. Each command consists of two parts which are

separated by the →. On the left hand side of the → is the guard for untimed information.

The guard g is a predicate over all the variables, which include four kinds of variables

defined in the whole model, namely the nodes, misc, guards and reset variables. On the

right hand side, there are one or more updates which modify the values of some or all

of the variables. Each update ui describes a transition which the module can make. A

transition corresponding to updates ui with probability λi can be made if and only if both

guard g and gi are true and the transition sets the set of clocks encoding in the variable

ri, where gi is the enabling condition which involves the clock constraints.

Consider the second command in Figure 8.6 as an example:

[] (loc1 = 1) → 0.005 : (loc′1 = 1) ∧ (guard′1 = 1) ∧ (reset′1 = 1)+

0.995 : (loc′1 = 0) ∧ (guard′1 = 1) ∧ (reset′1 = 1);

The interpretation of the above command is as follows: once the system is at the

8 - Symbolic forward approach 144

nondeterministic

module M1

loc1 : [0..1] init 0;

guard1 : [0..1] init 0;

reset1 : [0..1] init 0;

[] (loc1 = 0) → 0.01 : (loc′1 = 0) ∧ (guard′1 = 0) ∧ (reset′1 = 1)+

0.99 : (loc′1 = 1) ∧ (guard′1 = 0) ∧ (reset′1 = 1);

[] (loc1 = 1) → 0.005 : (loc′1 = 1) ∧ (guard′1 = 1) ∧ (reset′1 = 1)+

0.995 : (loc′1 = 0) ∧ (guard′1 = 1) ∧ (reset′1 = 1);

endmodule

Figure 8.6: A textual description of the PTA in Figure 5.1

current node open (loc1 = 1), and it can remain at the current node open for 2 to 3 time

units (guard is guard′1 = 1 and invariant is x < 3), then it will take a transition either

to node close (loc1 = 0) with probability 0.995 or remains at node open with probability

0.005 and clock x (reset′1 = 1) is to be reset upon the transition being taken.

Algorithm for the Construction of the Typed Variables After the introduction of

the input description language for probabilistic timed automata, we can exploit the built-

in Kronecker mechanism of PRISM for the construction of the product model of PTAs

into an MTBDD representation. However, the MTBDD representation of the product

model differs from that constructed from the explicit method in that the explicit method

uses a single variable for enabling conditions and its primed version for clock resettings,

while the Kronecker-based representation has more than one variable for enabling con-

ditions, namely, one variable for each module for representing a sub-condition. These

sub-conditions work together as conjuncts in order to form an enabling condition of a

transition. Similarly, clock resettings are represented using more than one variable, one

for each module.

Take a single module without nondeterministic choices as an example, in this case,

the syntactic models of PTAs can still be treated as a square matrix. Formally, assuming

8 - Symbolic forward approach 145

< clocks >

x

< /clocks >

< module >

< invariants >

0 − true

1 − x < 3

< /invariants >

< guard >

0 − true

1 − x > 2

< /guard >

< reset >

0 − null

1 − x = 0

< /reset >

< /module >

Figure 8.7: The textual description of the timing information for the PTA in Figure 5.1

8 - Symbolic forward approach 146

given an encoding of 2(l+g+r) integers into (l + g + r) Boolean variables, i.e. a one-to-one

function enc : {0, . . . , 2(l+g+r)−1} → IBn, we can represent a 2(l+g+r) × 2(l+g+r) square

matrix, M, as a mapping from {0, . . . , 2(l+g+r) −1} × {0, . . . , 2(l+g+r) −1} to R by an

MTBDD M over 2(l + g + r) variables, (l + g + r) of which encode row indices and

(l + g + r) of which encode column indices. Using row variables x = (x1, . . . , x(l+g+r))

and column variables y = (y1, . . . , y(l+g+r)), we say that M represents M if and only if

fM[x = enc(i), y = enc(j)] = M(i, j) for 0 ≤ i, j ≤ 2(l+g+r)−1. It is convenient to divide

both row and column vectors x and y into 3 sub-vectors: x = (xl, xg, xr) and y = (yl, yg, yr).

Here we use l Boolean variables to encode the set of 2l nodes, g Boolean variables to encode

the set of 2g guards (clock constraints), and r Boolean variables to encode the set of 2r

clock resettings. The interpretation of elements of M fM[xl = enc(l), xg = enc(g), xr =

enc(r), yl = enc(l′), yg = enc(g′), yr = enc(r′)] = M(i, j) is as follows: if the current node

is [xl = enc(l)] and guard [yg = enc(g′)] is satisfied, the transition could be performed to

go to next node [yl = enc(l′)] and the clock in the [yr = enc(r′)] is reset.

In order to exploit our symbolic forward algorithm, we have to construct the typed

variables of nodes, enabling condition and clock resetting from the MTBBDs paths. Figure

8.8 gives the algorithm for the construction of the typed variables. The algorithm accepts

an MTBDD and recursively traverses the MTBDD path to retrieve the variable value

corresponding to the module. Line 2 constructs the module variable. Lines 3-10 fetch the

index value for module variable according to different type. Lines 11 and 12 recursively

traverse child nodes. Line 14 returns the values of module variables.

8.2.2 Experimental Results

The Kronecker-based model construction and the textual input language for the model

of probabilistic timed automata described in the previous section have been implemented

in our software tool. This section presents the experimental results of some case studies

to which the above techniques have been applied using the tool. The performance of

our symbolic implementation of model construction are assessed and compared to that

of equivalent and explicit approaches. Since the comparison is only meaningful for the

systems containing more than one module, our analysis focuses on this kind of system.

8 - Symbolic forward approach 147

ConstructionOfTypedV ariable(v)

1. if (v is a non-zero terminal vertex)

2. then construct module variable

3. if variable is type of node

4. then fetch index value of sub-node

5. elseif variable is type of guard

6. then fetch index value of sub-guard

7. elseif variable is type of resetting

8. then fetch index value of sub-resetting

9. else fetch index value of sub-misc

10. endif

11. ConstructionOfTypedV ariable(else(v))

12. ConstructionOfTypedV ariable(then(v))

13. endif

14. return value of nodes, guard, resetting, misc

Figure 8.8: The construction of typed variable

8 - Symbolic forward approach 148

With regard to the performance, we list the results for both time and memory consumption

for the generation of the product models.

As before, we present experimental results based on two case studies: the IEEE 1394

FireWire root contention protocol and the IEEE 802.3 CSMA/CD protocol. In addition,

we present results for Milner’s scheduler [Mil89], see Appendix A.2. The models for

FireWire and CSMA/CD are the same as those used in previous chapters. The model for

Milner’s scheduler is that used in [MLAH99c] with only one clock.

The results obtained from verifying the full models of the FireWire root contention

protocol are shown in Table 8.10 and Table 8.12, which are for memory and time con-

sumption respectively. The property verified is the maximum probability that, from the

initial state, a leader (root) is chosen before the deadline is reached.

The results obtained from verifying the full models of CSMA/CD protocol are shown

in Table 8.9 and Table 8.11, which include memory and time consumption respectively

for the CSMA/CD protocol when computing the maximum probability of both stations

correctly delivering their packets by the deadline D.

From the tables, we can see that the model construction based on Kronecker performs

better than the explicit approach. This is because an explicit enumeration of the nodes

is infeasible for larger models. The increase in memory usage for PTAs is caused by two

factors: firstly, we do not exploit structure when encoding the guard and reset, which

are combined into a single guard or reset; and secondly, both guard and reset encoding

depends on the value of the upper bound on the size of the set of zones. The time spent

on model construction is almost the same, and memory usage to store the model of a

PTA is also the same for different parameters for deadlines. This is because the clock

constraints, which are expressed in a separate file for input, are already encoded into

integer values which are indifferent to the size of the clock constraints or values used in

them. From the experimental results, we can see that when the number of modules in

the systems is small the difference between explicit and Kronecker-based approaches is

not great with regard to the time consumption of the model construction. However, the

situation is rather different when the number of modules, the state space of the model

and the transitions between states increase considerably as shown in the artificial example

8 - Symbolic forward approach 149

Deadline Nodes

Explicit Kronecker

PTA MDP PTA MDP

1000 2290 10805 578 11095

1200 2290 13681 578 14142

1400 2290 16122 578 16614

1600 2290 19446 578 20124

1800 2290 23077 578 24013

2000 3010 26110 578 27511

2200 3010 30364 578 31734

2400 3010 34330 578 36244

2600 3010 38264 578 41692

2800 3010 41497 578 45875

3000 3010 45743 578 51408

Table 8.9: Memory comparison for verifying CSMA with/without Kronecker

of Milner’s scheduler. For the explicit approach, it could become infeasible to handle the

process of model construction, but the Kronecker-based approach could still maintain

linear growth in terms of the time consumption on the model construction. The reason

for the linear growth based on Kronecker-based model construction can be explained as

follows. Firstly, each cycle in Milner’s scheduler is very small and contains only two or four

nodes, and hence its corresponding MTBDDs representation is also very small. Secondly,

our method is based on PRISM which adopt efficient MTBDD-based implementation of

Kronecker expression.

8.3 Summary

In summary, we have implemented model checking of probabilistic timed automata via

the forward algorithm in a symbolic way, in which all the steps involved in the verification

8 - Symbolic forward approach 150

Deadline Nodes

Explicit Kronecker

PTA MDP PTA MDP

2000 7893 3206 1408 3473

2500 7893 4280 1408 4597

3000 7893 4401 1408 4674

3500 8463 5630 1408 5922

4000 8463 6570 1408 6758

4500 8463 6430 1408 6701

5000 9033 7402 1408 7829

5500 9033 8857 1408 9324

6000 9033 8919 1408 9348

7000 9033 11163 1408 11672

8000 9603 12543 1408 13014

9000 9603 14511 1408 15016

10000 14163 16211 1408 16895

20000 14163 36069 1408 36953

30000 14163 57990 1408 59272

40000 14163 78684 1408 81307

50000 - - 1408 103179

Table 8.10: Memory comparison for verifying FireWire with/without Kronecker

8 - Symbolic forward approach 151

Deadline Time

Explicit Kronecker

Constr. F.W. MC Constr. F.W. MC

1000 0.123 9.115 0.003 0.043 9.177 0.002

1200 0.123 14.976 0.003 0.036 14.446 0.002

1400 0.115 22.082 0.003 0.035 20.735 0.003

1600 0.121 32.620 0.004 0.035 30.040 0.004

1800 0.119 47.311 1.264 0.035 44.283 1.418

2000 0.120 69.739 2.831 0.035 63.745 2.970

2200 0.124 94.787 5.777 0.035 88.059 5.681

2400 0.128 125.467 9.689 0.036 117.772 9.494

2600 0.121 163.256 14.504 0.035 155.722 14.818

2800 0.126 201.990 20.322 0.036 194.190 20.531

3000 0.121 256.135 28.262 0.035 245.192 27.662

Table 8.11: Time comparison for verifying CSMA with/without Kronecker

8 - Symbolic forward approach 152

Deadline Time

Explicit Kronecker

Constr. F.W. MC Constr. F.W. MC

2000 0.351 1.101 0.065 0.087 1.799 0.069

2500 0.335 1.723 0.144 0.088 2.578 0.180

3000 0.364 1.708 0.146 0.087 2.615 0.181

3500 0.337 2.681 0.242 0.087 3.995 0.253

4000 0.342 3.734 0.282 0.089 5.322 0.322

4500 0.354 3.743 0.322 0.087 5.271 0.357

5000 0.314 5.374 0.391 0.088 7.440 0.372

5500 0.315 6.700 0.517 0.087 9.164 0.500

6000 0.327 7.177 0.568 0.088 9.739 0.588

7000 0.327 11.317 0.743 0.088 14.680 0.716

8000 0.322 16.621 1.016 0.089 20.627 0.903

9000 0.331 20.930 1.043 0.087 25.422 0.990

10000 0.484 32.060 1.545 0.089 36.076 1.487

20000 0.353 238.890 5.800 0.087 252.194 5.205

30000 0.364 922.844 13.436 0.087 945.575 12.564

40000 0.464 2545.692 24.036 0.089 2576.327 23.055

50000 0.365 - - 0.089 5808.306 37.588

Table 8.12: Time comparison for verifying FireWire with/without Kronecker

8 - Symbolic forward approach 153

N cycles Nodes

Explicit Kronecker

PTA MDP PTA MDP

3 1777 1135 342 564

4 5325 3173 584 996

5 12833 7634 886 1530

6 28105 14313 1248 2166

7 58300 29843 1670 2904

8 122861 60424 2151 3744

9 252159 124872 2694 4686

Table 8.13: Memory comparison for verifying Milner’s scheduler with/without Kronecker

N cycles Time

Explicit Kronecker

Constr. Constr.

3 0.192 0.059

4 0.532 0.053

5 1.600 0.058

6 11.528 0.065

7 19.387 0.076

8 71.926 0.085

9 241.336 0.102

Table 8.14: Time comparison for verifying Milner’s scheduler with/without Kronecker

8 - Symbolic forward approach 154

process, the construction of the product model, the forward searching and probabilistic

verification, are based on MTBDDs. This is efficient because, firstly, it avoids explicit con-

struction of the model by directly translating the description of the model into MTBDDs

via the Kronecker expression; secondly, it completes the verification in a single step rather

than invoking several steps via textual files. Furthermore, the implementation is generic

as it can support different data structures for the representation of timing information.

However, our attempt to exploit the structure inside the zones, namely, to adapt the idea

from [DKN02] proved to be a disadvantage compared with that with no such adaptation.

Chapter 9

Conclusions

9.1 Summary and Evaluation

The aim of this work was to develop an efficient model checker for probabilistic timed

automata. We started with an explicit implementation of both forward and backward

algorithm for model checking probabilistic timed automata and identified the bottleneck of

the explicit implementation. Then we investigate how symbolic model checking technique

based on MTBDDs can be exploited to achieve our goal.

Our MTBDD-based symbolic implementation is generic with respect to the support

of the real-timed information. We have shown that two data structures representing the

real-timed information could be supported. Besides the DBMs and DDDs used in our

implementation, other existing data structures, such as CDDs and CRDs which were

invented for storing zones, can also be supported.

Due to the lack of existing symbolic implementations of model checking for prob-

abilistic timed automata, we are concerned with the comparison between our explicit

implementation and symbolic implementation. The comparison is fair in that tests are

carried out on identical examples and operations on zones and under the same running

environments.

In Chapter 6, we presented an explicit implementation for the forward algorithm. We

used the explicit data structure for storing the state space and implemented our own

DBM package for storing zones. However, the real focus of this chapter is to identify the

9 - Conclusions 156

bottleneck. We showed that a dominant bottleneck arises at the last step, that is when

the tool PRISM was applied to construct the generated MDP model from the textual files

in PRISM language into MTBDDs when the generated MDP model is large and contains

many states and transitions.

We continued the analysis of an explicit implementation for the backward algorithm

in Chapter 7. Unlike the forward algorithm, the backward algorithm is more complex

in terms of the computational complexity. In the case of model checking the maximum

probabilistic reachability, the algorithm repeatedly performs zone conjunction operations

in order to detect the missing edges between states. In the case of model checking the

minimum probabilistic reachability, the computation complexity is even worse because it

involves the computation of 3-nested loops and non-convex zones are common during com-

putation. In terms of the equivalence checking of two non-convex zones, neither DBMs

nor DDDs have efficient means of doing this because both of them lack the mechanism to

support the canonicity property. In DBMs, equivalence checking involves the complemen-

tation operation, which again results in non-convex zones, while in DDDs, it is through

set inclusion. In the backward algorithm, the tpre operation is a critical operation, es-

pecially in the case of the computation of the minimum probability. The DBM-based

implementation of the tpre operation contains double complementation operations. On

the other hand, in the DDD-based implementation, it is memory-intensive because it gen-

erates many intermediate nodes. One of the most important lessons we learnt from the

implementation for the backward algorithm is that the backward algorithm, especially the

one for computing the minimum probability, could not be implemented efficiently without

a suitable data structure which not only can efficiently represent non-convex zones via a

canonical form, but has an efficient support of the requirement of the tpre operation as

well.

In Chapter 8, we present a symbolic implementation of the forward algorithm. Com-

pared with the explicit implementation, the symbolic implementation is more efficient

with respect to both time and space consumption. We also showed that DBMs outper-

forms DDDs in the forward algorithm. The reason behind this is that DDDs lack the

canonical form and the operations required generate many intermediate nodes. One limi-

9 - Conclusions 157

tation of the symbolic implementation is that it has not exploited the potential structure

within the zones. We demonstrated that a relabelling approach could result in a smaller

state space in terms of the generated MDP model, but the overall time and space require-

ment is greater than the approach without relabelling. Furthermore, we presented how

the Kronecker-based technique can be combined with the MTBDD-based implementation

to directly construct the probabilistic timed automata into MTBDDs and introduced an

model description language for the probabilistic timed automata based on the PRISM

language. The exploitation of Kronecker-based technique makes the process of model

construction efficient. In terms of the model construction, the Kronecker-based technique

ensures the feasibility of the analysis of extremely large models with a structured pattern.

9.2 Conclusions and Discussion of Future Work

In conclusion, we have successfully demonstrated that the MTBDD-based symbolic imple-

mentation of model checking probabilistic timed automata is feasible in practice and can

be efficient on some real-world protocols. Our MTBDD-based symbolic implementation

is generic with respect to the support of the real-timed information. The exploitation

of MTBDD-based and Kronecker-based techniques could be extended to model checking

non-probabilistic timed systems, for example, timed automata. Similarly to other work

on model checking non-probabilistic timed systems, the conclusion we draw from the

results is that a data structure with the canonical form for representing and operating

non-convex zones is the most important factor. Among all existing data structures sup-

porting non-convex zones in literature, the CRDs [Wan03] seem to have best performance

at the moment, and we conjecture that our implementation would perform better if DBMs

or DDDs was replaced with CRDs. One future research direction is to use our symbolic

implementation and generalise it to the probabilistic hybrid system models.

9 - Conclusions 158

9.2.1 Consideration of Symbolic Implementation of the Back-

ward Algorithm

In Chapter 8, we have symbolically implemented the algorithm for the forward reach-

ability. However, no symbolic implementation of the backward reachability has been

developed in this thesis. In order to efficiently implement the algorithm for the backward

reachability, there are two issues we have to address. One issue is mentioned above, that is

that a suitable data structure which can not only efficiently represent non-convex zones via

a canonical form, but also has an efficient support for the tpre operation. The other issue

is how to efficiently represent the non-deterministic choices dynamically generated from

the backward algorithm. For the forward algorithm, such problem does not arise because

the generated non-deterministic choices are directly derived from the original syntactical

models of PTAs, and there is a one-to-one correspondance between the generated MDP

models and the original PTA models. However, in the case of the backward algorithm,

more than one non-deterministic choice could be generated for each non-deterministic

choice appearing in the original PTA model. In the case of explicit implementation of the

backward algorithm, the construction of non-deterministic choices is done only after all

the reachable symbolic states and transitions among them are generated. However, in the

case of symbolic implementation of the backward algorithm, the non-deterministic choices

are dynamically generated whenever a new transition is encountered. The dynamic nature

of generating non-deterministic choices has two effects on the construction process. One

effect is that the number of the non-deterministic choices is unknown until the algorithm

terminates, which is similar to the number of zones in the case of our symbolic implemen-

tation of the forward algorithm. The other effect is that one has to find an efficient way

to construct the MTBDD variables representing the non-deterministic choices. Figure

9.1 shows a subgraph of a probabilistic timed automaton with one distribution of two

branches, where A, B and C are nodes, p1 and p2 are probability values when transitions

are taken from node A to node B and to node C respectively, and p1 + p2 = 1 (the guard

and clock resetting are omitted). Figure 9.2 shows a subgraph of the zone graph that

could be generated, with two non-deterministically chosen distributions, where zone A1

is derived from node A, zones B1 and B2 are derived from node B and zone C1 is derived

9 - Conclusions 159

B

C

p2

p1

A

Figure 9.1: A example of a subgraph of a timed automaton with one distribution

from node C. In general, if a distribution has n branches, and the number of zones derived

from the i-th branch is bi (if i-th branch does not appear, bi is replaced with 1), 1 ≤ i ≤ n,

the total number of non-deterministic choices for the zone derived from the source node

is b1 × b2 · · · × bi · · · × bn.

9.2.2 How to Achieve DDD-based Operation Normalise

The forward algorithm for the (non-probabilistic) timed systems does not always termi-

nate. Hence, the c-equivalence and its corresponding operation (Normalise) play an

important role to guarantee the termination of the forward reachability search. However,

the operation Normalise is only defined on the DBMs representing the convex zones.

For the forward probabilistic reachability search, each zone obtained is convex, and

can be stored as a single DBM. (A convex zone in DDDs can only have one path, this is

also true for CRDs or CDDs.)

For single-path DDDs, the convex zone can be first transformed into a DBM on which

the operation Normalise can be applied, and then transformed back into a DDD. The

case of CRDs and CDDs can be handled in a similar way.

In the case of using DDDs to represent the generic zones including non-convex zones

encountered during the non-probabilistic forward reachability search, the termination of

9 - Conclusions 160

p2

A1

B1

B2

C1

p1

p1

Figure 9.2: A example of sub zone graph with two non-deterministic choices correspond-

ing to Figure 9.1

the forward algorithm can still be achieved because a DDD can be treated as a union of

DBMs and each DBM corresponds to a path of the DDD. The transformation is done

by first extracting all paths from a DDD and then applying operation Normalise to

each path of the DDD, and finally combining all transformed single-path DDDs together

by disjunction. Although the above approach is feasible, it is inefficient because of the

need to perform transformation between DBMs and DDDs and to enumerate the paths of

DDDs. It is desirable to find a method which could directly operate on DDDs to ensure

termination.

9.2.3 Consideration of Merging of DDDs and MTBDDs

The symbolic method used in Chapter 8 for the forward reachability has a drawback,

that is, the upper bound on the number of the zones encountered has to be estimated

before-hand. One potential solution to this problem is to develop a new data structure

which combines both functionalities of DDDs and MTBDDs.

We recall the issues that are mentioned in Chapter 8 concerning the requirements of

such a data structure.

9 - Conclusions 161

• How to represent and manipulate the sets of states which contain both a discrete

part and a continuous part.

• How to represent the timed transition relation between states.

• How to represent the probabilistic transition relation between states.

• How to construct the dynamically generated information, states and probabilistic

transitions between states.

Two possible solutions exist. One way is to extend MTBDDs and the other is to

extend DDDs. Below we discuss how the questions can be answered one by one for each

method.

For the former, [SB03] proposed a way to apply MTBDDs to real-time systems. The

technique used in [SB03] can address questions in point 1 and 2 above because it uses a

single data structure, MTBDDs, to represent both timing and discrete information, and

it can represent the timed transition relation between states.

The second method is to extend DDDs. Similarly to the solution based on MTBDDs,

this method can address questions in point 1 and 2.

In order to support probabilistic timed systems, what remains to be done is how to

deal with the questions in point 3 and 4.

Although the method in [SB03] has been applied to timed systems, it has not been

applied to the probabilistic timed systems. Because MTBDDs can naturally support real

numbers, the answer to question in point 3 is easy to obtain: we only need to replace the

terminal node with a real number representing the probabilistic value to be taken when

the corresponding timed transition is chosen.

However, since DDDs have only two terminal nodes (true and false or 0 and 1), in

order to support probability, first we must extend DDDs to enable them to have real

values as terminal nodes besides terminal 0 and 1.

Now the only open question left is point 4. As methods based on either MTBDDs

or DDDs will face similar problems, we address this by discuss them together. In the

case of untimed probabilistic systems, a probabilistic transition between any two states is

represented as one path of MTBDDs. In the case of probabilistic timed systems, this is

9 - Conclusions 162

not the case because the states which are dynamically generated could not only be convex

zones, which can be represented as a single-path MTBDD/DDD, but non-convex zones

represented as a multi-path MTBDD/DDD as well. In other words, a state representation

in MTBDDs/DDDs is a DAG (Directed Acyclic Graph) in general. This means that the

probabilistic transitions between such states involve two DAGs. As a result, one has

to consider two issues raised by DAGs appearing in a probabilistic transition. The first

issue is the variable ordering among the unprimed and primed MTBDDs/DDDs variables.

In the case of untimed probabilistic systems, there is a well-known heuristic on variable

ordering which is to alternate the unprimed and primed variables. However, in the case

of probabilistic timed systems, we would conjecture that it is better to put all unprimed

variables before primed ones, or vice versa, to improve efficiency. The reason that this is

more efficient is that performing of the existential quantification operations would cause

fewer changes in MTBDDs/DDDs structure, and as is well known structure changes in

MTBDDs/DDDs would result in bad performance in general.

The second issue is that traditional recursive algorithms cannot be applied in the case

of two DAGs appearing along a probabilistic transition. This means that one needs to

develop new traversal algorithms which can distinguish the DAGs instead of single path of

MTBDDs/DDDs along the probabilistic transitions. Algorithms for matrix multiplication

also have to be developed accordingly.

Appendix A

Model Checker for The Probabilistic

Timed Automata

This appendix gives a brief description of the model checker developed and case studies

used in this thesis. Section A.1 gives a brief overview of the model checker which is using

techniques described in this thesis. A brief description of case studies used in this thesis

is introduced in Section A.2.

A.1 Tool Overview

This section gives a brief overview of the model checker for probabilistic timed automata.

The techniques described in this thesis have been implemented in a software tool. There

are two versions of the tool. One is the explicit implementation and the other is the

symbolic implementation. The tool accepts a model description and a reachability prop-

erty. Two kinds of model description are supported. One is for the explicit version and

the other is for the symbolic version. Depending on the version used, the corresponding

input for models are parsed and approiate algorithms are used for model checking. Figure

A.1 shows the structure of the model checker for probabilistic timed automata. Both

versions are based on the command line interface. The explicit version supports both the

forward and backward algorithms, while the symbolic version supports only the forward

algorithm. The symbolic version is based on MTBDDs for constructing and storage of the

Appendix A - Model Checker for The Probabilistic Timed Automata 164

DBMs/DDDs

Lists MTBDDs

PTA model

Property

Forward/Backward

Model

Construction

Exploration

MDP PCTL

PRISM MDP checker

Results

Figure A.1: The model checker for probabilistic timed automata

PTA syntax and generated MDP models. For the representation of timing information,

the tool supports two kinds of representation: DBMs and DDDs.

A.2 Case Studies

A.2.1 CSMA/CD

CSMA/CD (Carrier Sense Multiple Access / Collision Detection) is the protocol used

in Ethernet networks to make sure that only one station of the network is transmitting

on the network wire at any time. If no transmission is taking place at the time, the

Appendix A - Model Checker for The Probabilistic Timed Automata 165

particular station can transmit. CSMA/CD is a type of contention protocol. When

two stations attempt to transmit data simultaneously a collision occurs. If a collision

is detected by all participating stations, after a random time interval, the stations that

collided attempt to transmit again. If another collision occurs, the time intervals from

which the random waiting time is selected are increased. The property we analysed is the

maximum probability of both stations correctly delivering their packets by the deadline.

The model we consider here is a probabilistic extension of the timed automata model

given in [NSY92]. Models and case studies can be also found in [KNSW04, PRI]. Figure

A.12 and A.13 is the network medium and station PTA for full model of CSMA/CD.

A.2.2 IEEE 1394 FireWire Root Contention

The 1394 High Performance serial bus is used to transport digital video and audio streams

within a multimedia network. In essence, the tree identify process of IEEE 1394 is a leader

election protocol which takes place after a bus reset in the network (i.e. when a node is

added to, or removed from, the network). The protocol of IEEE 1394 is a randomised

leader election algorithm designed for the establishment of a tree topology. If two nodes

contend the leadership (root contention), the contenders resolve the situation by timing

and choosing nondeterministically whether to wait for a long or short time. We have

analysed the following probabilistic aspects of the protocol: the minimum probability

that, from the initial state, a leader (root) is chosen before the deadline is reached. Both

full and abstract models are based on probabilistic I/O automata models presented in

[SV99], and models and case studies can be also found in [DKN02, KNS03a, PRI]. Figure

A.9 is the PTA for abstract model Ip
1of FireWire. Figure A.10 and A.11 is the node and

wire PTA for full model implp of FireWire.

A.2.3 Milner’s Scheduler with Only One Clock

Milner’s scheduler [Mil89] consists of N cycles which are connected in a ring and cooper-

ating on controlling N tasks. The version of Milner’s scheduler with only one clock has

a number of discrete states for each cycle. However, the number of state and transition

of the systems grow exponentially in N . This case is used to test the scalability of our

symbolic method based on Kronecker, compared with the explicit method, to construct

the product model of probabilistic timed automata. We have analysed the following

probabilistic aspects of the protocol: the maximum probability of any two cycles being

concurrent in the task mode. Our model is based on model presented in [MLAH99c]

augmented with probability one for each transition. Figure A.8 is the PTA for model of

Milner’s scheduler.

A.3 Model Description Language for One Case Study

We include an example of the textual language description for one model of our case

studies: the abstract model of FireWire with deadline 1000. Figure A.2 and A.3 give the

description for symbolic version. The property to be checked is given in Figure A.4. The

command to run this example under Linux is as follows:

mytst PRISM ∗ .nm ∗ .pctl.

A.4 Computations of the Minimum Probability for

Example 5.3

Appendix A.5, A.6, A.7 show computations performed for MaxV≥1(2, (false), (close)).

nondeterministic

module M1

// local state

// 0 - startstart

// 1 - faststart

// 2 - slowstart

// 3 - startfast

// 4 - startslow

// 5 - fastfast

// 6 - fastslow

// 7 - slowfast

// 8 - slowslow

// 9 - seldone

// 10 - after

loc : [0..10] init 0;

guard : [0..7] init 0;

reset : [0..3] init 0;

[](loc = 0) → 0.5 : (loc′ = 1) ∧ (guard′ = 0) ∧ (reset′ = 0) + 0.5 : (loc′ = 2) ∧ (guard′ = 0) ∧ (reset′ = 0);

[](loc = 0) → 0.5 : (loc′ = 3) ∧ (guard′ = 0) ∧ (reset′ = 0) + 0.5 : (loc′ = 4) ∧ (guard′ = 0) ∧ (reset′ = 0);

[](loc = 1) → 0.5 : (loc′ = 5) ∧ (guard′ = 0) ∧ (reset′ = 1) + 0.5 : (loc′ = 6) ∧ (guard′ = 0) ∧ (reset′ = 1);

[](loc = 2) → 0.5 : (loc′ = 7) ∧ (guard′ = 0) ∧ (reset′ = 1) + 0.5 : (loc′ = 8) ∧ (guard′ = 0) ∧ (reset′ = 1);

[](loc = 3) → 0.5 : (loc′ = 5) ∧ (guard′ = 0) ∧ (reset′ = 1) + 0.5 : (loc′ = 7) ∧ (guard′ = 0) ∧ (reset′ = 1);

[](loc = 4) → 0.5 : (loc′ = 6) ∧ (guard′ = 0) ∧ (reset′ = 1) + 0.5 : (loc′ = 8) ∧ (guard′ = 0) ∧ (reset′ = 1);

[](loc = 5) → 1 : (loc′ = 0) ∧ (guard′ = 1) ∧ (reset′ = 1);

[](loc = 5) → 1 : (loc′ = 9) ∧ (guard′ = 2) ∧ (reset′ = 2);

[](loc = 6) → 1 : (loc′ = 9) ∧ (guard′ = 3) ∧ (reset′ = 2);

[](loc = 7) → 1 : (loc′ = 9) ∧ (guard′ = 3) ∧ (reset′ = 2);

[](loc = 8) → 1 : (loc′ = 0) ∧ (guard′ = 4) ∧ (reset′ = 1);

[](loc = 8) → 1 : (loc′ = 9) ∧ (guard′ = 3) ∧ (reset′ = 2);

[](loc = 9) → 1 : (loc′ = 10) ∧ (guard′ = 5) ∧ (reset′ = 0);

[](loc = 10) → 1 : (loc′ = 10) ∧ (guard′ = 0) ∧ (reset′ = 0);

endmodule

Figure A.2: The textual description of the abstract model of FireWire

< clocks >

x

a

z

< /clocks >

< module >

< invariants >

0 − x <= 36

1 − x <= 36

2 − x <= 36

3 − x <= 36

4 − x <= 36

5 − x <= 85

6 − x <= 167

7 − x <= 167

8 − x <= 167

9 − a <= 0

10 − true

< /invariants >

< guard >

0 − true

1 − x >= 76

2 − x >= 40

3 − x >= 123

4 − x >= 159

5 − z > 1000, a >= 0

< /guard >

< reset >

0 − null

1 − x = 0

2 − a = 0

< /reset >

< /module >

Figure A.3: The textual description of the timing information for the abstract model of

FireWire

Pmax =?[true U (loc = 10) {“init′′}]

Figure A.4: The property

MaxV≥1(2, {false}, {close})

Z := {true}

repeat

Y := Z

Z := {(close)} ∧ z.MaxU1(Y, (z > 2))

Z := {(close)} ∧ {true}

Z := {(close)}

Y := Z

Z := {(close)} ∧ z.MaxU1(Y, (z > 2))

Z := {(close)} ∧ z.({(close)} ∨ {(open, x < 3 ∧ x − z < 1 ∧ z > 2)})

Z := {(close)} ∧ {{(close)} ∨ {(open)}}

Z := {(close)}

endrepeat

Figure A.5: Calculation steps for the minimum probability of Example 5.3

MaxU≥1({true}, (z > 2))

Z0 := {true}

repeat

Y0 := Z0

Z1 := {(z > 2)}

repeat

Y1 := Z1

Z1 := {(z > 2)} ∨ {true} ∧ pre1(Y0, Y1)

Z1 := {(z > 2)} ∨ {true} ∧ ({(close)} ∨ {(open, 2 < x < 3 ∧ x − z < 3)})

Z1 := Z1 ∨ tpretrue(Y0 ∧ Y1)

Z1 := Z1 ∨ {(close)} ∨ {(open, x < 3 ∧ x − z < 1)}

Z1 := {(close)} ∨ {(open, 2 < x < 3 ∧ x − z < 3)} ∨ {(open, x < 3 ∧ x − z < 1)}

Y1 := Z1

Z1 := {(z > 2)} ∨ {true} ∧ pre1(Y0, Y1)

Z1 := {(z > 2)} ∨ {true} ∧ {(close)} ∨ {(open, 2 < x < 3 ∧ x − z < 3)}

Z1 := Z1 ∨ tpretrue(Y0 ∧ Y1)

Z1 := Z1 ∨ {(close)} ∨ {(close)} ∨ {(open, x < 3)}

Z1 := {(close) ∨ {(open, x < 3)}

Y1 := Z1

Z1 := {(z > 2)} ∨ {true} ∧ pre1(Y0, Y1)

Z1 := {(z > 2)} ∨ {true} ∧ {(close)} ∨ {(open, 2 < x < 3 ∧ x − z < 3)}

Z1 := Z1 ∨ tpretrue(Y0 ∧ Y1)

Z1 := Z1 ∨ {(close)} ∨ {(close)} ∨ {(open, x < 3)}

Z1 := {(close)} ∨ {(open, x < 3)}

endrepeat

Z0 := Z1

Z0 := {(close)} ∨ {(open, x < 3)}

Z0 := {true}

endrepeat

Figure A.6: Calculation steps for the minimum probability of Example 5.3

MaxU≥1((close), (z > 2))

Z0 := {true}

repeat

Y0 := Z0

Z1 := {(z > 2)}

repeat

Y1 := Z1

Z1 := {(z > 2)} ∨ {(close)} ∧ pre1(Y0, Y1)

Z1 := {(z > 2)} ∨ {(close)} ∧ {(close)} ∨ {(open, 2 < x < 3 ∧ x − z < 3)}

Z1 := Z1 ∨ tpre{(close)}∨{(z>2)}(Y0 ∧ Y1)

Z1 := Z1 ∨ {(close)} ∨ {(open, x < 3 ∧ x − z < 1,∧z > 2)}

Z1 := {(close)} ∨ {(open, x < 3 ∧ x − z < 1 ∧ z > 2)}

Y1 := Z1

Z1 := {(z > 2)} ∨ {(close)} ∧ pre1(Y0, Y1)

Z1 := {(z > 2)} ∨ {(close)} ∧ {(close, (z > 2)} ∨ {(open, 2 < x < 3 ∧ x − z < 1 ∧ z > 2)}

Z1 := Z1 ∨ tpre{(close)}∨{(z>2)}(Y0 ∧ Y1)

Z1 := Z1 ∨ {close)} ∨ {(close)} ∨ {(open, x < 3 ∧ x − z < 1 ∧ z > 2)}

Z1 := {(close)} ∨ {(open, x < 3 ∧ x − z < 1 ∧ z > 2)}

endrepeat

Z0 := Z1

Z0 := {(close)} ∨ {(open, x < 3 ∧ x − z < 1 ∧ z > 2)}

endrepeat

Figure A.7: Calculation steps for the minimum probability of Example 5.3

DiCi!

H ≥ Hl

D(imodN) + 1!

H ≤ Hu

H := 0

Ci?

H ≤ Hu

H ≥ Hl

D(imodN)+1!

Figure A.8: The PTA for model of Milner’s scheduler

x≤850

FAST FAST

x≤1670

FAST SLOW

x≤1670

SLOW FAST

x≤1670

SLOW SLOW

DONE

x≤360

START SLOW

x:=0 x:=0 x:=0 x:=0

root2
x≥1230

root1
x≥1230

root1
x≥1230x≥1230root2

x≥400
root1

x≥400

x≤360

x≤360

FAST START

x≤360

START FAST

x≤360

SLOW START

x:=0
x≥1590x≥760

x:=0

START START

root2

Figure A.9: The PTA for the abstract model of FireWire

xi≤1670

REC REQ SLOW

xi≤850

REC REQ FAST

CHILD
childi

urgent
ROOT

REC IDLE
urgenturgent

rec idlei

rec reqi

rec idlei

rec reqi

rec idlei

rec reqi

snd idlei snd idlei

snd acki
xi≥760

snd reqi

xi≥1590

snd reqi
xi≥760

urgent

xi≤850

xi≤1670
REC IDLE SLOW

REC IDLE FAST

SNT RECA ROOT

xi := 0
0.5

xi := 0
0.5

xi := 0
0.5

xi := 0
0.5

rec reqi

snd acki

rooti
rec acki

A CHILD

xi≥1590

ROOT CONT

Figure A.10: The PTA node for the full model of FireWire

y≤delay
REC ACK

y≤delay
REC IDLE

x≤delay
REC IDLE REQ

x≤delay
REC REQ ACK

REC REQ IDLE

x≤delay

x≤delay
REC ACK REQ

x≤delay

rec ackj

rec idlej

REC ACK IDLE

x≤delay

snd idlei

y:=0
snd idlei rec ackj

y:=0
snd reqi

snd reqi

rec ackj

snd acki

rec reqj

snd acki

snd reqi

snd acki

y, x:=0

snd reqi x, y:=0

rec reqj

snd idlei
y:=0

snd idlei

snd reqi

rec idlej

snd reqi, y:=0

snd idlei rec idlej

snd acki

y:=0

rec reqj

REC IDLE ACK EMPTY REC REQ
y≤delay

snd idlei

snd acki

Figure A.11: The PTA wire for the full model of FireWire

true

x ≤ σ

y ≤ σ
y := 0

y:=0 y:=0

y ≥ σ

y:=0

y:=0

true

y:=0

y:=0

y≤σ y≤σ

INIT TRANSMIT

COLLIDE

send2

busy2

y ≥ σ

cd

send1

send2

send1

end1

end2

busy1

Figure A.12: The PTA medium for the model of CSMA/CD

bc:=min{bc+1, bcmax}
xi:=0

xi=backoff

xi:=0

xi=λ

backoff :=RAND(bc)
xi=0

bc:=min{bc+1, bcmax}
xi:=0

xi=backoff
busyi

sendi

sendi

cd

endi

INIT
true

DONE

COLLIDE

TRANSMIT

x ≤ backoff
WAIT

xi = 0

x ≤ λ

Figure A.13: The PTA sender for the model of CSMA/CD

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time

systems. In Proc. Fifth Annual Symposium on Logic in Computer Science,

pages 414–425, 1990.

[ACD91a] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for

probabilistic real-time systems (extended abstract). In Automata, Languages

and Programming, pages 115–126, 1991.

[ACD91b] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Verifying automata

specifications of probabilistic real-time systems. In REX Workshop, pages

28–44, 1991.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in

dense real-time. Information and Computation, 104(1):2–34, 1993.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183–235, 1994.

[AH91] R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A Survey. In

Real Time: Theory in Practice, volume 600, pages 74–106. Springer-Verlag,

1991.

[Ake78] S. Akers. Binary decision diagrams. IEEE Transactions on Computers,

C-27(6):509–516, 1978.

[ASSB96] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-

time markov chains. In Rajeev Alur and Thomas A. Henzinger, editors,

Eighth International Conference on Computer Aided Verification CAV, vol-

ume 1102, pages 269–276, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[Bai98] C. Baier. On algorithmic verification methods for probabilistic systems.

Habilitation thesis, Fakultät für Mathematik & Informatik, Universität

Mannheim, 1998.

[BBF+01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and

P. Schnoebelen. Systems and Software Verification- Model-checking Tech-

niques and Tools. Springer, 2001.

[BC95] Randal E. Bryant and Yirng-An Chen. Verification of arithmetic circuits

with binary moment diagrams. In Design Automation Conference, pages

535–541, 1995.

[BCDK00] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper.

Complexity of memory-efficient kronecker operations with applications to

the solution of markov models. INFORMS J. on Computing, 12(3):203–222,

2000.

[BCHG+97] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and

M. Ryan. Symbolic model checking for probabilistic processes. In P. Degano,

R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. 24th International

Colloquium on Automata, Languages and Programming (ICALP’97), vol-

ume 1256 of LNCS, pages 430–440. Springer, 1997.

[BCL91] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with par-

titioned transition relations. In A. Halaas and P.B. Denyer, editors, Interna-

tional Conference on Very Large Scale Integration, pages 49–58, Edinburgh,

Scotland, 1991. North-Holland.

[BCL+94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Sym-

bolic model checking for sequential circuit verification. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–

424, 1994.

[BCM+90] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang. Symbolic model

checking: 1020 states and beyond. In Proc. 5th Annual IEEE Symposium

on Logic in Computer Science (LICS’90), pages 428–439. IEEE Computer

Society Press, 1990.

[BdA95] Bianco and de Alfaro. Model checking of probabilistic and nondeterminis-

tic systems. FSTTCS: Foundations of Software Technology and Theoretical

Computer Science, 15, 1995.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-

nos: A model-checking tool for real-time systems. In A. J. Hu and M. Y.

Vardi, editors, Proc. 10th International Conference on Computer Aided Ver-

ification, Vancouver, Canada, volume 1427, pages 546–550. Springer-Verlag,

1998.

[Bea03] Danièle Beauquier. On probabilistic timed automata. Theor. Comput. Sci.,

292(1):65–84, 2003.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching

time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[BKH99a] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate

symbolic model checking of continuous-time markov chains. In International

Conference on Concurrency Theory, pages 146–161, 1999.

[BKH99b] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate

symbolic model checking of continuous-time markov chains. In International

Conference on Concurrency Theory, pages 146–161, 1999.

[BLL+98] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise.

New generation of uppaal, 1998.

[BLP+99] Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise,

and Wang Yi. Efficient timed reachability analysis using clock difference

diagrams. In Computer Aided Verification, pages 341–353, 1999.

[Bry86] R. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, 1986.

[BTY97a] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking

for real-time systems. In Proc. 18TH IEEE Real-Time Systems Symposium,

pages 25–34, Los Alamitos, 1997. IEEE CS Press.

[BTY97b] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking

for real-time systems. In RTSS ’97: Proceedings of the 18th IEEE Real-Time

Systems Symposium (RTSS ’97), page 25, Washington, DC, USA, 1997.

IEEE Computer Society.

[BY04] J. Bengtsson and W Yi. Timed automata: Semantics, algorithms and tools.

In 4th Advanced Course on Petri Nets, volume 3098 of LNCS, pages 87–124.

Springer, 2004.

[CCMM95] Sergio Vale Aguiar Campos, Edmund M. Clarke, Wilfredo R. Marrero, and

Marius Minea. Verus: A tool for quantitative analysis of finite-state real-time

systems. In Workshop on Languages, Compilers and Tools for Real-Time

Systems, pages 70–78, 1995.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In Logic of Pro-

grams, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[CFM+93] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-

terminal binary decision diagrams: An efficient data structure for matrix

representation. In Proc. IWLS’93, pages 1–15, 1993. Also available in Formal

Methods in System Design, 10(2/3):149–169, 1997.

[CGH+93] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan,

and L.A. Ness. Verification of the Futurebus+ Cache Coherence Protocol.

In D. Agnew, L. Claesen, and R. Camposano, editors, The Eleventh Interna-

tional Symposium on Computer Hardware Description Languages and their

Applications, pages 5–20, Ottawa, Canada, 1993. Elsevier Science Publishers

B.V., Amsterdam, Netherland.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-

ing and abstraction. ACM Transactions on Programming Languages and

Systems, 16(5):1512–1542, September 1994.

[CGP99] Edmund M. Clarke, Jr. Orna Grumberg, and Doron A. Peled. Model Check-

ing. The MIT Press, 1999.

[Cha73] Chin-Liang Chang. Symbolic logic and mechanical theorem proving. Aca-

demic Press, 1973.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT press, 1990.

[CWA+96] Edmund M. Clarke, Jeannette M. Wing, Rajeev Alur, Rance Cleaveland,

David Dill, Allen Emerson, Stephen Garland, Steven German, John Guttag,

Anthony Hall, Thomas Henzinger, Gerard Holzmann, Cliff Jones, Robert

Kurshan, Nancy Leveson, Kenneth McMillan, J. Moore, Doron Peled, Amir

Pnueli, John Rushby, Natarajan Shankar, Joseph Sifakis, Prasad Sistla,

Bernhard Steffen, Pierre Wolper, Jim Woodcock, and Pamela Zave. Formal

methods: state of the art and future directions. ACM Computing Surveys,

28(4):626–643, 1996.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite

state probabilistic programs. In Proc. 29th Annual Symposium on Foun-

dations of Computer Science (FOCS’88), pages 338–345. IEEE Computer

Society Press, 1988.

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular

events. In M. Paterson, editor, Proc. 17th International Colloquium on

Automata, Languages and Programming (ICALP’90), volume 443 of LNCS,

pages 336–349. Springer, 1990.

[dAKN+00] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-

bolic model checking of concurrent probabilistic processes using MTBDDs

and the Kronecker representation. In S. Graf and M. Schwartzbach, edi-

tors, Proc. 6th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS,

pages 395–410. Springer, 2000.

[Dil89] D. Dill. Timing assumptions and verification of finite-state concurrent sys-

tems. In Proc. Automatic Verification Methods for Finite State Systems,

volume 407 of LNCS, pages 197–212. Springer, 1989.

[DKN02] C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of

the IEEE 1394 root contention protocol with KRONOS and PRISM. In

R. Cleaveland and H. Garavel, editors, Proc. 7th International Workshop on

Formal Methods for Industrial Critical Systems (FMICS’02), volume 66.2 of

Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[DKN04] C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the

IEEE 1394 root contention protocol with KRONOS and PRISM. Inter-

national Journal on Software Tools for Technology Transfer (STTT), 5(2–

3):221–236, 2004.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hy-

brid Systems III: Verification and Control, volume 1066, pages 208–219, Rut-

gers University, New Brunswick, NJ, USA, 22–25 October 1995. Springer.

[DT98] Conrado Daws and Stavros Tripakis. Model checking of real-time reach-

ability properties using abstractions. Lecture Notes in Computer Science,

1384:313–329, 1998.

[Duf91] David A Duffy. Principles of automated theorem proving. Wiley, 1991.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed

automata with kronos. In Proceedings of the 16th IEEE Real-Time Systems

Symposium (RTSS’95), Pisa, Italy, pages 66–75, 1995.

[GH02] H. Garavel and H. Hermanns. On combining functional verification and per-

formance evaluation using cadp. In In FME 2002: International Symposium

of Formal Methods Europe, volume 2391 of LNCS, pages 410–429. Springer,

2002.

[GKPP95] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A par-

tial order approach to branching time logic model checking. In Proceedings

of the Third Israel Symposium on the Theory of Computing and Systems

(ISTCS’95), Tel Aviv, Israel, January 4-6, 1995, 1995.

[HGCC99] V. Hartonas-Garmhausen, S. Campos, and E. Clarke. ProbVerus: Prob-

abilistic symbolic model checking. In J.-P. Katoen, editor, Proc. 5th In-

ternational AMAST Workshop on Real-Time and Probabilistic Systems

(ARTS’99), volume 1601 of LNCS, pages 96–110. Springer, 1999.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and

reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus

Siegle. A markov chain model checker. In Tools and Algorithms for Con-

struction and Analysis of Systems, pages 347–362, 2000.

[HKN+03] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On

the use of MTBDDs for performability analysis and verification of stochastic

systems. Journal of Logic and Algebraic Programming, 56(1-2):23–67, 2003.

[HM05] Dang Van Hung and Zhang Miaomiao. On verification of probabilistic timed

automata against probabilistic duration properties. Technical Report 326,

UNU-IIST, P.O.Box 3058, Macau, 2005.

[HNSY92] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model

Checking for Real-Time Systems. In 7th. Symposium of Logics in Computer

Science, pages 394–406, Santa-Cruz, California, 1992. IEEE Computer Sci-

enty Press.

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: modelling and

reasoning about systems. Cambridge University Press, 2000.

[HYT] HYTECH. HyTech WebSite. http://www-

cad.eecs.berkeley.edu/˜tah/HyTech/.

[JWK+96] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F.

Larsson, P. Pettersson, and W. Yi. Verification of an audio protocol with

bus collision using UPPAAL. In Rajeev Alur and Thomas A. Henzinger,

editors, Proceedings of the Eighth International Conference on Computer

Aided Verification CAV, volume 1102, pages 244–256, New Brunswick, NJ,

USA, / 1996. Springer Verlag.

[KKZ05] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model

checker. In Quantitative Evaluation of Systems (QEST), pages 243–244,

2005.

[KL97] P. Kemper and R. Lubeck. Model checking based on kronecker algebra,

1997.

[KNP00] M. Kwiatkowska, G. Norman, and D. Parker. Verifying randomized dis-

tributed algorithms with prism. In Proc. Workshop on Advances in Verifi-

cation (Wave’2000), July 2000.

[KNP01] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic

model checker. In P. Kemper, editor, Proc. Tools Session of Aachen 2001

International Multiconference on Measurement, Modelling and Evaluation of

Computer-Communication Systems, pages 7–12, September 2001. Available

as Technical Report 760/2001, University of Dortmund.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model

checking with PRISM: A hybrid approach. In J.-P. Katoen and P. Stevens,

editors, Proc. 8th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’02), volume 2280 of LNCS,

pages 52–66. Springer, 2002.

[KNPS06] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance anal-

ysis of probabilistic timed automata using digital clocks. Formal Methods

in System Design, 29:33–78, 2006.

[KNS00] Marta Z Kwiatkowska, Gethin Norman, and Jeremy Sproston. Symbolic

model checking of probabilistic timed automata using backwards reacha-

bility. Technical Report CSR-00-01, University of Birmingham, School of

Computer Science, January 2000.

[KNS03a] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking

of deadline properties in the IEEE 1394 FireWire root contention protocol.

Special Issue of Formal Aspects of Computing, 14:295–318, 2003.

[KNS03b] M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic model checking

for probabilistic timed automata. Technical Report CSR-03-10, School of

Computer Science, University of Birmingham, 2003.

[KNSS99] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic veri-

fication of real-time systems with discrete probability distributions. In J-P.

Katoen, editor, Proc. Proc. Formal Methods for Real-Time and Probabilistic

Systems (ARTS’99), volume 1601 of Lecture Notes in Computer Science,

pages 75–95. Springer, 1999.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic ver-

ification of real-time systems with discrete probability distributions. Theo-

retical Computer Science, 282:101–150, 2002.

[KNSW04] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model

checking for probabilistic timed automata. In Joint Conference on FOR-

MATS and FTRTFT, volume 3253 of LNCS, pages 293–308. Springer, 2004.

[KRO] KRONOS. Kronos WebSite. http://www-

verimag.imag.fr/TEMPORISE/kronos/.

[KSW04] M. Kuntz, M. Siegle, and E. Werner. Symbolic performance and depend-

ability evaluation with the tool CASPA, 2004.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. In IEEE

Transactions on Software Engineering, volume 3. IEEE, 1977.

[Lee59] C. Lee. Representation of switching circuits by binary-decision programs.

Bell System Technical Journal, 38:985–999, 1959.

[LLPY97] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of

real-time systems: Compact data structure and state space reduction. In

Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages

14–24, 1997.

[LPWY99] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock differ-

ence diagrams. Nordic J. of Computing, 6(3):271–298, 1999.

[LPY97a] Kim Guldstrand Larsen, Paul Petterson, and Wang Yi. UPPAAL: Status

developments. In Computer Aided Verification, pages 456–459, 1997.

[LPY97b] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a

nutshell. International Journal on Software Tools for Technology Transfer,

1(1-2):134–152, 1997.

[LV93a] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simula-

tions – part I: untimed systems. In 135, page 35. Centrum voor Wiskunde

en Informatica (CWI), ISSN 0169-118X, 31 1993.

[LV93b] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward sim-

ulations – part II: timing-based systems. In 145, page 36. Centrum voor

Wiskunde en Informatica (CWI), ISSN 0169-118X, 31 1993.

[MCD00] Andrew S. Miner, Gianfranco Ciardo, and Susanna Donatelli. Using the

exact state space of a markov model to compute approximate stationary

measures. In Measurement and Modeling of Computer Systems, pages 207–

216, 2000.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MHA02] Jesper Møller, Henrik Hulgaard, and Henrik Reif Andersen. Symbolic model

checking of timed guarded commands using difference decision diagrams,

July–August 2002.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[ML98] J. Møller and Jakob Lichtenberg. Difference decision diagrams. Master’s

thesis, Department of Information Technology, Technical University of Den-

mark, Building 344, DK-2800 Lyngby, Denmark, August 1998.

[MLAH99a] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference

decision diagrams. In Proceedings 13th International Workshop on Computer

Science Logic, volume 1683 of Lecture Notes in Computer Science, pages

111–125, Madrid, Spain, September 1999.

[MLAH99b] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference deci-

sion diagrams. Technical Report IT-TR-1999-023, Department of Informa-

tion Technology, Technical University of Denmark, Building 344, DK-2800

Lyngby, Denmark, February 1999.

[MLAH99c] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic

model checking of timed systems using difference decision diagrams. In

Workshop on Symbolic Model Checking, volume 23, The IT University of

Copenhagen, Denmark, June 1999.

[MLAH99d] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. On the symbolic

verification of timed systems. Technical Report IT-TR-1999-024, Depart-

ment of Information Technology, Technical University of Denmark, Building

344, DK-2800 Lyngby, Denmark, February 1999.

[MP02] Arnaldo V. Moura and Guilherme A. Pinto. A note on the verification

of automata specifications of probabilistic real-time systems. Inf. Process.

Lett., 82(5):223–228, 2002.

[NSY92] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into

extended automata. In IEEE Transactions on Software Engineering, volume

18(9) of LNCS, pages 794–804. Springer, 1992.

[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic

Systems. PhD thesis, University of Birmingham, 2002.

[Pla85] B. Plateau. On the stochastic structure of parallelism and synchronisation

models for distributed algorithms. In Proc. 1985 ACM SIGMETRICS Con-

ference on Measurement and Modeling of C omputer Systems, volume 13(2)

of Performance Evaluation Review, pages 147–153, 1985.

[Pnu77] A. Pnueli. The temporal logic of programs”. In Proc. 18th IEEE Symp.

foundations of Computer Science, pages 46–57, 1977.

[PRI] PRISM. PRISM WebSite. http://www.cs.bham.ac.uk/˜dxp/prism/.

[PTA] PTAsource. PTA source code WebSite. http://www.cs.bham.ac.uk/˜fxw.

[QS82] J. P. Quielle and J. Sifakis. Specification and verification of concurrent

systems in cesar. In Proc. 5th Int. Symp. in Programming. Springer, 1982.

[RDN90] F.W. Vaandrager R. De Nicola. Actions versus state based logics for tran-

sition systems. In Proc. Ecole de Printemps on Semantics of Concurrency,

volume 469 of LNCS, pages 407–419. Springer, 1990.

[SB03] Sanjit A. Seshia and Randal E. Bryant. A boolean approach to unbounded,

fully symbolic model checking of timed automata. Technical Report CMU-

CS-03-117, Carnegie Mellon University, 2003.

[SV99] M. Stoelinga and F. Vaandrager. Root contention in ieee 1394. In Proc.

5th AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99),

volume 1601 of LNCS, pages 53–74. Springer, 1999.

[Tri98] Stavros Tripakis. The analysis of timed systems in practice. PhD thesis,

University Joseph Fourier, Grenoble, France, December 1998.

[UPP] UPPAAL. UPPAAL WebSite. http://www.docs.uu.se/docs/rtmv/uppaal/.

[Var95] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.

In Banff Higher Order Workshop, pages 238–266, 1995.

[Wan03] Farn Wang. Efficient verification of timed automata with BDD-like data-

structures. In Verification, model checking, and abstract interpretation, vol-

ume 2575 of LNCS, pages 189–205. Springer, 2003.

[WK05] F. Wang and M. Kwiatkowska. An MTBDD-based implementation of for-

ward reachability for probabilistic timed automata. In D. Peled and Y.-K.

Tsay, editors, Proc. 3rd International Symposium on Automated Technol-

ogy for Verification and Analysis (ATVA’05), volume 3707 of LNCS, pages

385–399. Springer, 2005.

[WVF95] Jeannette M. Wing and Mandana Vaziri-Farahani. Model Checking Soft-

ware Systems: A Case Study. In Proceedings of SIGSOFT’95 Third ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pages

128–139, 1995.

[WW96] Bernard Willems and Pierre Wolper. Partial-order methods for model check-

ing: From linear time to branching time. In Logic in Computer Science,

pages 294–303, 1996.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of

real-time communicating systems by constraint-solving. In FORTE, pages

243–258, 1994.

