
CHiPS: Composing Hierarchical Pareto Solutions
for Scalable Planning in Multi-Objective MDPs

Carl Hentges1,2, Matthew Budd1, Andrew Platt1, Bruno Lacerda1, David Parker1 and Nick Hawes1

Abstract— We present a hierarchical planning methodology
for approximating Pareto-optimal policies in Multi-Objective
Markov Decision Process (MOMDP) models. These models
describe missions in which a mobile robot must navigate an
environment and perform actions at specific locations. Our
approach relies on clustering the state space of the full MOMDP
into hierarchical subproblem MOMDPs. We then build the set
of Pareto-optimal policies for these sub-problem MOMDPs,
and treat them as macro-actions in a high-level MOMDP
which selects the policy to use for each of the sub-problems,
as well as the order in which to address them. Our bottom-
up approach synthesises approximations of Pareto-optimal
policies for large problems while providing precise performance
guarantees. We empirically evaluate our method, showing it
achieves substantial scalability gains over a non-hierarchical
approach while preserving high-quality solutions.

I. INTRODUCTION

In robotics applications, it is often necessary to reason
about several, distinct objectives that are critical to a mission’s
success. If the relative importance of these objectives cannot
be determined a priori, then algorithms may instead produce a
Pareto-optimal set of solutions, where each element represents
a solution in which the performance of one objective can
only be improved at the cost of another. However, computing
or approximating the Pareto-optimal set is computationally
expensive. In this paper, we focus on multi-objective sequen-
tial decision-making, in particular the problem of finding
Pareto-optimal policies for multi-objective Markov decision
processes (MOMDPs).

We propose Composing Hierarchical Pareto Solutions
(CHiPS), a novel hierarchical technique that improves the
scalability of planning for multi-objective problems, whilst si-
multaneously delivering high quality solutions. CHiPS targets
common mobile robot problems where a robot must navigate
under uncertainty in order to service target locations, trading
off mission cost (e.g., time or energy) against the reward
obtained by executing service actions. Examples of such
problems include service robotics [1], area disinfection [2],
and space rover planning [3]. In these robotics problems,
states include a spatial component which is used in CHiPS to
subdivide the full (often intractable) multi-objective problem
into (tractable) subproblem MOMDPs. Each subproblem
MOMDP is solved to yield a set of Pareto-optimal policies,
and then each sub-problem policy is used to define an
action in a high-level MOMDP. Solutions to this high-level
MOMDP dictate which Pareto-optimal policy to use for each
subproblem, as well as the order in which subproblems should

1University of Oxford, Oxford, UK.
2Corresponding Author. Email: carl.hentges@eng.ox.ac.uk.

Fig. 1. Visualisation of the wildfire resupply domain in Kosciuszko National
Park featuring 40 NASA GISTEMP v4 stations [4] resupplied based on
proximity to wildfire predictions from historical NASA FIRMS data [5].

be completed. To the best of our knowledge, CHiPS is the
first multi-objective planning method that combines Pareto-
optimal sub-problem policies to solve a larger multi-objective
problem. Furthermore, it does so while maintaining precise
policy values at both levels. This enables the synthesis of
hierarchical policies with precise guarantees on performance.

We evaluate our approach using three problems: an Au-
tonomous Underwater Vehicle (AUV) in a data harvesting
domain and in an offshore wind turbine inspection domain,
and an Autonomous Aerial Vehicle (AAV) in a wildfire
resupply domain (see Figure 1). We demonstrate that CHiPS
substantially improves scalability whilst synthesising high
quality policies.

II. RELATED WORK

Multi-objective decision-making under uncertainty [6], [7]
is highly relevant in robotics, where the inherent uncertainty
of autonomy in the real-world must be tackled, whilst several,
often conflicting, objectives must be managed. Examples
include our proposed AUV data harvesting domain, based
on the (single-objective) work in [8], battery-charge schedul-
ing [1], and resource-performance trade-offs for rovers [9].
Scaling up to realistic applications is one of the crucial
challenges of MOMDP planning, and has been tackled in a
variety of ways. Lacerda et al. proposed a two-stage approach

for approximating Pareto-optimal policies that involve time-
bounded objectives [10]. The first stage optimises simpler,
expected-time objectives, which are then used to prune actions
from the second stage, where the time-bounded objectives
are considered. However, this approach operates on the full
state-action space in the first stage, and its pruning can lead
to highly suboptimal results. Additionally, its applicability is
limited to cost-bounded problem specifications. In contrast,
CHiPS uses a divide-and-conquer approach which provides
better scalability and high quality solutions, and is applicable
to any problem where sub-problems can be clustered.

CHiPS operates on the model of the multi-objective
planning problem, breaking it into several smaller problems
that can be solved using off-the-shelf multi-objective solution
algorithms. An orthogonal approach to increasing scalability
is to focus on the solution algorithm, for example adapting
scalable algorithms such as Monte-Carlo tree search [11],
[12], [13] or heuristic search [14] to the multi-objective
setting. These works could be used within our approach
to approximate Pareto-optimal policies at both high and low
levels. This would further increase the scalability of our
approach, albeit at the cost of potential further suboptimality.

Hierarchies and other forms of abstractions have been
widely used to improve the scalability of single-objective
planning [15], [16]. Our definition of entry and exit locations
(see Section V) mirrors the entrance and exit periphery
in [15], while our subproblem policies parallel the options
framework [16] but focus on spatial sub-MDPs rather than
action sequences. Similar to abstract MDPs [17], our approach
solves subproblems within actions. However, abstract MDPs
use a top-down approach, solving only subproblems relevant
to the higher-level solution, which improves scalability but
sacrifices exact performance guarantees.

The above uses of hierarchy and abstraction in MDPs are
limited to the simpler single-objective case, whereas CHiPS
is one of the very few algorithms to use abstraction in multi-
objective planning. This makes selecting abstract actions more
challenging, as their impact on the performance across all
objectives must be considered. We do this by using multi-
objective solutions at both levels of abstraction.

III. PRELIMINARIES

MDPs are a standard model for planning under uncertainty,
and MOMDPs extend this by supporting a vector of objective
values as opposed to a single reward value. A MOMDP is
a tuple M = ⟨S, s̄, A, T,R⟩, where S is the set of possible
states; s̄ ∈ S is the initial state; A is the set of actions;
T : S×A×S → [0, 1] is the probabilistic transition function;
and R = {R1, . . . , R|R|} is a set of reward functions Rk :
S × A → R≥0. A policy π : S → Dist(A) maps states to
distributions over actions. Given π, we can define the value
function V π

M,R : S → R≥0 for R under π as:

V π
M,R(s) = E

(∞∑
i=0

R(si, ai) | π, s0 = s

)
,

Random variables si, ai represent the i-th state and action
selected, respectively, following π from initial state s.

We consider two types of objective for elements of R.
For a reward objective R ∈ R, the goal is to maximise
V π
M,R(s̄). For cost objectives C ∈ R, the goal is to minimise

V π
M,C(s̄). For both types, we assume that there is a goal

state in the MOMDP which can be reached with probability
1 from any state, and from which no further rewards or costs
can be accumulated. Furthermore, we assume there is a finite
amount of reward that can be accumulated in the MOMDP,
and thus that the value functions are always finite. Note that
we chose to present these definitions of undiscounted reward
maximisation and cost minimisation objectives because they
met our robot mission planning setting more closely. However,
the approach presented in this paper can be straightforwardly
adapted to the commonly used setting of discounted reward
maximisation.

A solution for a MOMDP is a set of Pareto-optimal policies
where each policy represents an optimal compromise between
competing objectives. This set is often called the Pareto front
and contains only undominated policies. Without loss of
generality, we formally describe this in the context of a
vector R containing only reward objectives. We say that
π dominates π′ if V π

M,R(s̄) ≥ V π′

M,R(s̄) for all R ∈ R. π
strictly dominates π′ if it dominates π′ and there exists R ∈ R
such that V π

M,R(s̄) > V π′

M,R(s̄). A policy is Pareto-optimal
if it is not strictly dominated by any other policy. The Pareto
front for MOMDP M can be represented as a finite set of
deterministic policies Π(M) which are not dominated by any
other policies. This induces an infinite set of Pareto-optimal
stochastic policies, which can be obtained as mixtures of the
deterministic policies in Π(M).

IV. PROBLEM FORMULATION

Navigation MDP: We assume a discrete set of loca-
tions L which the robot can navigate between. Navigation is
stochastic, meaning the robot may reach l′ ̸= l with some
probability when aiming for l ∈ L. A navigation MDP is
defined as Mnav = ⟨L, l̄, Anav, Tnav, Cnav⟩, where:

• L = {l1, . . . , l|L|} is a set of locations;
• l̄ ∈ L is the initial location;
• Anav ⊆ L × L is the action set, where (l, l′) ∈ Anav

indicates the robot can navigate directly from l to l′

without traversing other locations;
• Tnav : L × Anav × L → [0, 1] is the transition function

such that Tnav(l, (l, l
′), l′′) is the probability of moving

from l to l′′ after executing action (l, l′); and
• Cnav : L×Anav → R≥0 represents the cost Cnav(l, (l, l

′))
of attempting to navigate from l to l′.

We assume Tnav(l, (l, l
′), l′) > 0, i.e., there is a non-zero

chance of reaching l′ when attempting to do so. Furthermore,
any location in the navigation MDP is assumed to be reachable
with probability 1 from any other location. These assumptions
are reasonable, based on our experience deploying mobile
robots in a range of environments, e.g. [8], [18], [19].

Navigation and Service MOMDP: We extend the nav-
igation MDP to consider the cost and reward associated
with servicing locations by adding a service reward function
Rservice : L → R≥0 that represents the value of servicing l;

and a service cost function Cservice : L → R≥0 that represents
the cost of servicing l. Given Lend ⊆ L where the mission
can be finished, the multi-objective Navigation and Service
MOMDP (NS-MOMDP) is M = ⟨S, s̄, A, T,R⟩ where:

• S = (L× {0, 1}|L|) ∪ {done} consists of the location
of the robot and Booleans representing whether each
location has been serviced, and a done state indicating
that the robot has finished its mission;

• The robot starts in its initial location, with all locations
unserviced, i.e., s̄ = (l̄, 0, . . . , 0);

• A = Anav ∪ {service, finish}, i.e., we extend Anav

with a service and a mission completion action;
• For s = (l,b) and s′ = (l′,b′) with b,b′ ∈ {0, 1}|L|

and action a ∈ A, the transition function is:

T (s, a, s′) =



Tnav (l, a, l
′) if a ∈ Anav ∧ b = b′

1 if a = service ∧ l = l′∧
b(l) = 0 ∧ b′(l) = 1∧
∀l′′ ̸=lb(l

′′) = b′(l′′)

1 if a = finish∧
l ∈ Lend ∧ s′ = done

0 otherwise;

Intuitively, navigation actions have the same dynamics as
Tnav ; the service action can only occur in an unserviced
location and changes its state to serviced; and the finish
action can only occur in an end location;

• The reward vector is R = (C,R), where C : S ×A →
R≥0 is the cost for action execution, comprised of the
cost for navigation and the cost for servicing locations;
and R : S × A → R≥0 is the reward for servicing
locations. For s = (l,b) ∈ S and a ∈ A:

C(s, a) =


Cnav (l, a) if a ∈ Anav

Cservice(l) if a = service

0 otherwise;

R(s, a) =

{
Rservice(l) if a = service

0 otherwise.

We address the problem of finding the set of Pareto-optimal
policies for the NS-MOMDP. We focus on two objectives
for simplicity, but our method can be extended to handle
multiple costs and rewards.

V. HIERARCHICAL MULTI-OBJECTIVE PLANNING

To address the exponential blow-up of the state space as
more service locations are added, we propose Composing
Hierarchical Pareto Solutions (CHiPS), which decomposes
the NS-MOMDP into smaller subproblem MOMDPs by clus-
tering locations spatially. The solutions to these subproblems
are then used as macro-actions in a high-level MOMDP.

Subproblem MOMDP: We obtain a set of subproblem
MOMDPs by partitioning the location set L into location
clusters L = {K1, . . . ,K|L|}, Ki ⊂ L. For location l ∈ L,
Kl represents the cluster that contains l. A connection exists
from K to K ′ if (l, l′) ∈ Anav for some l ∈ K and l′ ∈ K ′.

The locations l ∈ K and l′ ∈ K ′ with minimal cost Cnav(l, l
′)

are the exit location from K to K ′, and the entry location
to K ′ from K, respectively. For cluster K ∈ L, we define
inK ⊆ K as the locations in K which are an entry location
to K from some K ′ ∈ L; and outK ⊆ K as the subset of
locations in K which are an exit location from K to some
K ′ ∈ L. The neighbour locations of a cluster K are defined
as N (K) = {l′ ∈ L \ K | Tnav(l, a, l

′) > 0 for some l ∈
K and a ∈ Anav ∩ (K ×K)}. We denote a cluster plus its
neighbours as K+ = K ∪N (K). We only consider actions
that try to navigate inside K, i.e., actions in K ×K. K+ are
the locations that have some probability of being the outcome
of such actions.

We can now define the subproblem MOMDP for cluster
K, lin ∈ inK and lout ∈ outK , which constrains the robot
to start at lin , navigate towards and service locations in K
only, and finish execution in lout . We also introduce return
actions to handle accidental transitions to N (K), allowing the
robot to return to K. Formally, we define MK(lin , lout) =
⟨SK , s̄K , AK , TK ,RK⟩ where:

• SK = (K+ × {0, 1}|K|)∪ {done}, i.e., states comprise
the location of the robot within K or its neighbours, and
a Boolean representing whether each location in K has
been serviced. We also add a done state indicating the
robot has finished subproblem K;

• s̄K = (lin , 0, . . . , 0), i.e., the robot starts in the entry
location, with all locations unserviced;

• AK = (Anav ∩ (K × K)) ∪ {return, service,finish},
i.e., we only allow navigation actions that target locations
in K and add an action which returns to K if the robot
navigates to one of its neighbours;

• The transition function TK is constrained to K, also
imposing that the finish action can only be executed
in lout . Furthermore, if l ∈ N (K), then the robot can
execute an action which returns it to location l′ ∈ K with
probability 1 and at minimum expected cost. This action
is a macro-action which represents executing the shortest
path policy πl,closestK(l), where closestK(l) ∈ K is the
location in K that has minimum expected cumulative
cost from l. This location, and the corresponding policy,
are found in a preprocessing step by solving, for each
l′′ ∈ K, a stochastic shortest path problem (i.e. minimise
the expected cost to reach a goal state) in the navigation
MDP, with start state l, goal state l′′, cost function
Cnav , and taking the minimum. Thus, for s = (l,b) and
s′ = (l′,b′) with b,b′ ∈ {0, 1}|K| and a ∈ AK :

TK(s, a, s′) =



T (s, a, s′) if a ∈ AK ∪ {service}∧
l ∈ K

1 if a = finish∧
l = l′ = lout ∧ b = b′

1 if a = return∧
l ∈ N (K)∧
l′ = closestK(l) ∧ b = b′

0 otherwise;

• The reward vector RK is defined as (CK , RK), where:

CK(s, a) =



C(s, a) if l ∈ K and
a ̸= return

c(l, closestK(l)) if l ∈ N (K) and
a = return

0 otherwise,

where c(l, closestK(l)) is the expected cumulative cost
of the optimal policy from l to closestK(l).

RK(s, a) =

{
R(s, a) if l ∈ K and a = service

0 otherwise.

Solving a subproblem MOMDP yields a set
Π(MK(lin , lout)) of deterministic Pareto-optimal policies
which will form macro-actions in the high-level MOMDP.

High-Level MOMDP: The high-level MOMDP operates
over the same state space as the NS-MOMDP but removes ser-
vice actions. Instead, we add macro-actions that represent the
Pareto-optimal policies obtained by solving the subproblem
MOMDPs. We abstract the execution of these macro-actions,
considering only their initial and final state, and a cost and
reward defined by the values of the corresponding policy
on the subproblem MOMDP. Formally, for NS-MOMDP
M = ⟨S, s̄, A, T,R⟩ and location partition L, the high-level
MOMDP is defined as M+ = ⟨S+, s̄+, A+, T+,R+⟩, where:

• S+ = (L × {0, 1}|L|) ∪ {done}, i.e., we consider
servicing of subproblems rather than specific locations;

• s̄+ = (l̄, 0, . . . , 0), i.e., the robot starts in its initial
location, with all subproblems unserviced;

• Actions are the navigation and finish actions from the
NS-MOMDP, plus a set of Pareto-optimal policies for
each entry and exit pair for each subproblem:

A+ = Anav ∪ {finish}∪⋃
K∈L

⋃
lin∈inK

⋃
lout∈outK

Π(MK(lin , lout));

• The transition function has the same format as the
transition function of the NS-MOMDP, except the single
location service actions are replaced with the subproblem
service macro-actions from the subproblem policies.
These macro-actions can be executed from their entry
location, have a deterministic outcome corresponding to
their exit location, and update the subproblem state to
serviced. If a cluster has already been serviced then it is
only possible to navigate through the cluster, additional
reward cannot be gathered. Thus, for s = (l,b) and
s′ = (l′,b′) with b,b′ ∈ {0, 1}|L|:

T+(s, a, s′) =



T (s, a, s′) if a ∈ Anav ∪ {finish}
1 if a ∈ Π(MK(lin , lout))

∧l = lin ∧ l′ = lout∧
b(Klin) = 0∧
∀K ̸=Klin

b(K) = b′(K)

0 otherwise;

• The reward vector R+ is defined as (C+, R+), where:

C+(s, a) =

{
C(s, a) if a ∈ Anav ∪ {finish}
V π
M,C(s) if a is a macro-action π;

R+(s, a) =

{
0 if a ∈ Anav ∪ {finish}
V π
M,R(s) if a is a macro-action π.

Note that the expected values of the macro-actions that are
used for the costs and rewards of the high-level MOMDP
are computed when building the Pareto-optimal policies for
the subproblem MOMDPs.

Composing Hierarchical Pareto Solutions (CHiPS): To
summarise, our approach proceeds as follows:

1) Partition the set of locations L into L;
2) For each K ∈ L, calculate the sets of entry and exit

locations, inK and outK , then build and solve the
subproblem MOMDP for each entry/exit pair, yielding
a set of Pareto-optimal policies to be used as macro-
actions for the high-level MOMDP;

3) Build and solve the high-level MOMDP M+, yielding
a set of high-level Pareto-optimal policies for the full
MOMDP;

4) Choose a high-level Pareto policy and execute it. Macro-
actions are taken by executing the corresponding Pareto-
optimal subproblem MOMDP policy.

CHiPS is a divide-and-conquer approach, solving subprob-
lems whose solutions result in macro-actions for the high-
level MOMDP. This can be seen as first building multi-
objective options and then building and solving a multi-
objective options MDP [16]. As such, it is a suboptimal
approach: the CHiPS high-level MOMDP may not include
actions needed for policies on the Pareto front of the full
NS-MOMDP, removing the ability to model all globally
possible cost/reward trade-offs. However, since the macro-
actions are locally Pareto-optimal (i.e., Pareto-optimal for the
subproblem MOMDP they are computed), we are still able to
synthesise performant policies. Furthermore, the hierarchical
approach allows us to scale to much larger environments.
Note that, whilst we presented a two-level hierarchy, the
general approach can be extended to a multi-level hierarchy.

Whilst suboptimal, CHiPS is able to provide precise
guarantees for the policies it synthesises. Specifically, since
the costs and rewards for the macro-actions are defined by
the values of the corresponding policies over the subproblem
MOMDP, the values associated with the Pareto-optimal
policies for the high-level MOMDP are exact. In other words,
the expectations over cumulative cost and reward of a policy
computed for the high-level MOMDP correspond to the
expectations of that policy for the full NS-MOMDP as well.

Proposition 1: For a policy π of the high-level MOMDP:
V π
M+,R+(s̄+) = V π

M,R(s̄) and V π
M+,C+(s̄+) = V π

M,C(s̄).
Proof: (sketch) The high-level MOMDP navigation

and finish actions are the same as in the NS-MOMDP. The
high-level MOMDP macro-actions correspond to executing
navigation and service actions in a subproblem. The cost
and rewards for these actions are exact, as they are obtained

from solving the subproblem MOMDPs. Thus, the value of
policies is the same for both models.

VI. EXPERIMENTS

We evaluate CHiPS on two synthetic AUV Data Harvesting
domains, as well as on two domains incorporating real-world
data. For all domains, we define the cost function as the time
to complete the mission and compute travel time between
nodes (i.e., the cost function Cnav) using Euclidean distance.
For an action that moves the AUV between two locations
distance d apart, the probability of reaching the intended target
is given by 1 − d

dmax
, with the remaining probability mass

distributed among all nodes within distance d of the starting
node (including the target node). Here, dmax is a parameter
specified for each domain in advance (dmax = 1500 for the
AUV Data Harvesting and Wind Turbine Inspection domains
and dmax = 222,240 for the Wildfire Resupply domain).

AUV Data Harvesting: The AUV Data Harvesting
domain is based on the model presented in [8]. Sensor beacons
at known locations contain data, and an AUV must collect as
much of this data as possible while minimising the time spent
doing so. Both the duration of data-collection actions and
the associated reward depend on the beacon’s data volume,
where the reward is equal to the amount of data gathered,
and one unit of data requires one unit of time to collect. To
complete a mission, the AUV must surface at a predefined
end location.

To generate problem instances, we start with a predefined
list of obstacles and then randomly sample beacon locations
on a rough grid, ensuring they do not lie within obstacles, until
a given problem size n is reached. These beacon locations
are then adjusted to ensure that beacon-to-beacon distances
are not too small.

We generated two synthetic domain settings differing in
data distribution. In Synthetic Domain 1, each beacon’s data
volume decreases according to a normal distribution based on
proximity to a data source. In Synthetic Domain 2, most
locations have minimal data (1 unit), with a few sparse
locations assigned significantly larger values (1000 units).

Navigation actions are determined by connecting each
beacon to its nearest neighbours, ensuring that each location
has at most four and at least two neighbours. We generate a
set of problem instances by varying the number of locations
(5 ≤ n ≤ 40) and the number of clusters (3 ≤ k ≤ 5).

Wind Turbine Inspection: We base the offshore Wind
Turbine Inspection domain on the London Array wind
farm [20], located about 20 km off the coast of Kent. We
use the turbine locations to define obstacles and manually
specify places of interest near these turbines as locations for
the NS-MOMDP. We also manually define the subproblem
partition for CHiPS.

The agent gathers reward for inspecting these locations,
with shallower areas yielding greater reward (20 units) than
deeper areas (10 units). Each inspection action costs 100 time
units. Our problem instances include 15, 20, or 30 locations.

n Method / k Synth. Domain 1 Synth. Domain 2
Time (s) Opt. ratio Time (s) Opt. ratio

10

Baseline 25.54 1.00 27.41 1.00
3 24.18 0.99 13.77 1.00
4 39.35 0.99 22.20 1.00
5 34.13 0.99 23.84 1.00

15

Baseline 2309.08 1.00 1736.39 1.00
3 71.03 0.98 57.91 0.99
4 51.02 0.99 52.65 0.99
5 76.74 0.99 63.77 0.99

20

3 58.11 - 97.65 -
4 56.92 - 67.00 -
5 61.64 - 68.92 -

30
4 215.82 - 541.71 -
5 325.69 - 191.39 -

40 4 2067.41 - 1955.61 -
5 650.93 - 670.73 -

TABLE I
TIMING/PERFORMANCE FOR AUV DATA HARVESTING SYNTHETIC

DOMAINS.

Wildfire Resupply: The Wildfire Resupply domain is in-
spired by the domain presented in [21], based on the locations
of NASA GISTEMP v4 monitoring network stations [4] in the
Kosciuszko National Park, specifically all stations within the
coordinates 36.39S–147.00E to 34.39S–149.00E. These 40
stations are interconnected so that each station has a minimum
of 2 and a maximum of 4 neighbours.

The reward for resupplying a station is informed by the
risk of wildfire spread to that location. We model this by
training a Gaussian mixture model on historical fire data from
NASA Fire Information for Resource Management System
(FIRMS) satellite fire observations [5], spanning 26-12-2019
to 14-01-2020. Each resupply action costs 100 time units. A
visualisation of this domain is shown in Figure 1.

Evaluation: To demonstrate the performance of our
method, we compare it to a non-hierarchical baseline that
solves the NS-MOMDP directly, finding a Pareto-optimal set
of solutions. To find the solutions both for this baseline and
for the subproblem and high-level MOMDPs, we use the
approach of Forejt et al. [22], implemented in the PRISM
model checker [23]. All experiments were run on a machine
with an Intel i5 @ 2 GHz CPU and 16 GB RAM; the solver
was allocated 8 GB of RAM and a 30-minute timeout.

Results: Our results are summarised in Tables I, II and III
for varying problem sizes of n locations and different numbers
of clusters k for CHiPS vs. the baseline. We compare runtimes,
marking the fastest in bold. For CHiPS, the measured time
includes all stages: subproblem construction, subproblem
solving, high-level problem creation, and high-level problem
solving. We also show optimality of the solution with respect
to the baseline (see below). Note that results only shown
where data available, i.e., runtimes are only provided for
configurations that did not exceed the timeout and optimality
is only reported when the baseline solution could be computed
within the timeout.

CHiPS outperforms the baseline and, as problem sizes grow,
provides significantly lower computation times, with up to

n Method / k Time (s) Opt. ratio

15

Baseline 1938.98 1.00
3 44.45 0.92
4 38.63 0.92
5 43.63 0.95
6 50.18 0.98

20

3 88.40 -
4 64.62 -
5 53.19 -
6 66.20 -

30
4 243.66 -
5 163.06 -
6 157.51 -

TABLE II
TIMING/PERFORMANCE FOR THE WIND TURBINE INSPECTION

DOMAIN.

n k Time (s)

40
4 336.75
6 332.92
8 407.29

TABLE III
TIMING RESULTS FOR THE WILDFIRE RESUPPLY DOMAIN.

a 50-fold reduction at higher subproblem counts. Furthermore,
CHiPS can solve problems that the baseline approach cannot
handle due to memory constraints. For instance, the Wildfire
domain is too large for the baseline and thus Table III only
shows runtimes and not optimality statistics. Moreover, in
Table I, problems with more than n = 15 nodes exceed the
allowed time when using the baseline solver.

To assess solution quality, we compare resulting Pareto
fronts by calculating the area under the curve of both
the optimal and CHiPS approximations—extending each to
the maximum time coordinate—and taking their ratio for
problems solvable by the baseline. On average, the CHiPS
solutions achieve approximately 99% of the optimal baseline’s
area in the Synthetic domain (Table I) and 94% in the Wind
Turbine Inspection domain (Table II).

The suboptimality of CHiPS arises from restricting location
visitation order across subproblems. In the optimal baseline,
the solver can freely choose an ordering across the entire
set of locations, whereas CHiPS enforces an order within
subproblems and then an order over subproblems. Notably, if
k = 1 or k = n, CHiPS can recover the baseline solution. For
intermediate k, solution quality depends on both the problem
specifics (e.g., distribution of locations and connectivity) and
how cluster boundaries affect connectivity.

Our results demonstrate that CHiPS improves scalability
and efficiency, significantly reducing computation time and
memory usage compared to the non-hierarchical baseline,
while producing solutions that remain close to optimal.

VII. CONCLUSION

In this paper we introduced CHiPS, a hierarchical approach
for multi-objective policy synthesis under uncertainty, and
demonstrated its effectiveness in the context of AUV mission
planning. CHiPS uses a divide-and-conquer approach, first
solving sub-problem MOMDPs, and using the solutions to

build a high-level MOMDP. This approach enables better
scalability and computes a set of policies with precise
expectations over the objectives.

In future work, we will investigate approximate solution
methods, and top-down approaches that do not require solving
all the sub-MOMDPs before solving the high-level MOMDP.

ACKNOWLEDGEMENTS

Lacerda and Hawes supported by the EPSRC Programme
Grant ‘From Sensing to Collaboration’ (EP/V000748/1).

REFERENCES

[1] M. Tomy, B. Lacerda, N. Hawes, and J. L. Wyatt, “Battery charge
scheduling in long-life autonomous mobile robots via multi-objective
decision making under uncertainty,” RAS, 2020.

[2] M. Staniaszek, L. Brudermüller, R. Bhattacharyya, B. Lacerda, and
N. Hawes, “Difficulty-aware time-bounded planning under uncertainty
for large-scale robot missions,” in ECMR. IEEE, 2023.

[3] A. J. Coles, A. I. Coles, M. M. Munoz, O. E. Savas, T. Keller,
F. Pommerening, and M. Helmert, “On-board planning for robotic
space missions using temporal pddl,” in IWPSS, 2019.

[4] GISTEMP Team, “GISS Surface Temperature Analysis (GISTEMP),
version 4,” https://data.giss.nasa.gov/gistemp/, 2025.

[5] “NASA Fire Information for Resource Management System (FIRMS),”
https://firms.modaps.eosdis.nasa.gov/, 2025.

[6] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” JAIR, 2013.

[7] D. M. Roijers, S. Whiteson, R. Brachman, and P. Stone, Multi-objective
decision making, 2017.

[8] M. Budd, G. Salavasidis, I. Karnarudzaman, C. A. Harris, A. B. Phillips,
P. Duckworth, N. Hawes, and B. Lacerda, “Probabilistic planning for
auv data harvesting from smart underwater sensor networks,” in IROS,
2022.

[9] M. Lahijanian, M. Svorenova, A. A. Morye, B. Yeomans, D. Rao,
I. Posner, P. Newman, H. Kress-Gazit, and M. Kwiatkowska, “Resource-
performance tradeoff analysis for mobile robots,” IEEE RAL, 2018.

[10] B. Lacerda, D. Parker, and N. Hawes, “Multi-objective policy generation
for mobile robots under probabilistic time-bounded guarantees,” in
ICAPS, 2017.

[11] W. Chen and L. Liu, “Pareto Monte Carlo tree search for multi-objective
informative planning,” in RSS, 2019.

[12] M. Painter, B. Lacerda, and N. Hawes, “Convex hull monte-carlo tree
search,” in ICAPS, 2020.

[13] C. F. Hayes, M. Reymond, D. M. Roijers, E. Howley, and P. Mannion,
“Distributional monte carlo tree search for risk-aware and multi-
objective reinforcement learning,” in AAMAS, 2021.

[14] D. Z. Chen, F. Trevizan, and S. Thiébaux, “Heuristic search for multi-
objective probabilistic planning,” in AAAI, 2023.

[15] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and
C. Boutilier, “Hierarchical solution of markov decision processes using
macro-actions,” in UAI, 1998.

[16] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,” AI,
1999.

[17] N. Gopalan, M. desJardins, M. Littman, J. MacGlashan, S. Squire,
S. Tellex, J. Winder, and L. Wong, “Planning with abstract markov
decision processes,” in ICAPS, 2017.

[18] B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning
with formal performance guarantees for mobile service robots,” IJRR,
2019.

[19] M. Staniaszek, T. Flatscher, J. Rowell, H. Niu, W. Liu, Y. You,
R. Skilton, M. Fallon, and N. Hawes, “Autoinspect: Towards long-term
autonomous industrial inspection,” 2024.

[20] “Navionics — navionics.com,” https://www.navionics.com/gbr/, [Ac-
cessed 26-04-2024].

[21] A. Stephens, B. Lacerda, and N. Hawes, “Planning for long-term
monitoring missions in time-varying environments,” in IROS, 2024.

[22] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for
probabilistic model checking,” in ATVA, 2012.

[23] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV, 2011.

