Computing Laboratory

QUANTITATIVE MULTI-OBJECTIVE
VERIFICATION FOR PROBABILISTIC SYSTEMS

Vojtéch Forejt
Marta Kwiatkowska
Gethin Norman
David Parker

Hongyang Qu

CL-RR-10-26

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

Quantitative Multi-Objective
Verification for Probabilistic Systems

Vojtéch Forejt!, Marta Kwiatkowska!,
Gethin Norman?, David Parker', and Hongyang Qu'

1 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK
2 School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. We present a verification framework for analysing multiple
quantitative objectives of systems that exhibit both nondeterministic
and stochastic behaviour. These systems are modelled as probabilistic
automata, enriched with cost or reward structures that capture, for ex-
ample, energy usage or performance metrics. Quantitative properties of
these models are expressed in a specification language that incorporates
probabilistic safety and liveness properties, expected total cost or re-
ward, and supports multiple objectives of these types. We propose and
implement an efficient verification framework for such properties and
then present two distinct applications of it: firstly, controller synthesis
subject to multiple quantitative objectives; and, secondly, quantitative
compositional verification. The practical applicability of both approaches
is illustrated with experimental results from several large case studies.

1 Introduction

Automated formal verification techniques such as model checking have proved
to be an effective way of establishing rigorous guarantees about the correctness
of real-life systems. In many instances, though, it is important to also take
stochastic behaviour of these systems into account. This might be because of
the presence of components that are prone to failure, because of unpredictable
behaviour, e.g. of lossy communication media, or due to the use of randomisation,
e.g. in distributed communication protocols such as Bluetooth.

Probabilistic verification offers techniques to automatically check quantita-
tive properties of such systems. Models, typically labelled transition systems
augmented with probabilistic information, are verified against properties speci-
fied in probabilistic extensions of temporal logics. Examples of such properties
include “the probability of both devices failing within 24 hours is less than 0.001”
or “with probability at least 0.99, all message packets are sent successfully”.

In this paper, we focus on verification techniques for probabilistic automata
(PAs) [23], which model both nondeterministic and probabilistic behaviour. We
augment these models with one or more reward structures that assign real values
to certain transitions of the model. In fact, these can associate a notion of either
cost or reward with the executions of the model and capture a wide range of

2 Forejt, Kwiatkowska, Norman, Parker, Qu

quantitive measures of system behaviour, for example “number of time steps”,
“energy usage” or “number of messages successfully sent”.

Properties of PAs can be specified using well-known temporal logics such as
PCTL, LTL or PCTL* [6] and extensions for reward-based properties [I]. The
corresponding verification problems can be executed reasonably efficiently and
are implemented in tools such as PRISM, LiQuor and RAPTURE.

A natural extension of these techniques is to consider multiple objectives. For
example, rather than verifying two separate properties such as “message loss oc-
curs with probability at most 0.001” and “the expected total energy consumption
is below 50 units”, we might ask whether it is possible to satisfy both proper-
ties simultaneously, or to investigate the trade-off between the two objectives as
some parameters of the system are varied.

In this paper, we consider verification problems for probabilistic automata
on properties with multiple, quantitative objectives. We define a language that
expresses Boolean combinations of probabilistic w-regular properties (which sub-
sumes e.g. LTL) and expected total reward measures. We then present, for prop-
erties expressed in this language, techniques both to verify that a property holds
for all adversaries (strategies) of a PA and to synthesise an adversary of a PA
under which a property holds. We also consider numerical queries, which yield
an optimal value for one objective, subject to constraints imposed on one or more
other objectives. This is done via reduction to a linear programming problem,
which can be solved efficiently. It takes time polynomial in the size of the model
and doubly exponential in the size of the property (for LTL objectives), i.e. the
same as for the single-objective case [14].

Multi-criteria optimisation for PAs or, equivalently, Markov decision pro-
cesses (MDPs) is well studied in operations research [13]. More recently, the
topic has also been considered from a probabilistic verification point of view
[12/16/9]. In [I6], w-regular properties are considered, but not rewards which, as
illustrated by the examples above, offer an additional range of useful properties.
In, [12] discounted reward properties are used. In practice, though, a large class
of properties, such as “expected total time for algorithm completion” are not ac-
curately captured when using discounting. Finally, [9] handles a complementary
class of long-run average reward properties. All of [I2IT6I9] present algorithms
and complexity results for verifying properties and approximating Pareto curves;
however, unlike this paper, they do not consider implementations.

We implement our multi-objective verification techniques and present two
distinct applications. Firstly, we illustrate the feasibility of performing con-
troller synthesis. Secondly, we develop compositional verification methods based
on assume-guarantee reasoning and quantitative multi-objective properties.

Controller synthesis. Synthesis, which aims to build correct-by-construction
systems from formal specifications of their intended behaviour, represents a long-
standing and challenging goal in the field of formal methods. One area where
progress has been made is controller synthesis, a classic problem in control en-
gineering which devises a strategy to control a system such that it meets its
specification. We demonstrate the application of our techniques to synthesising

Quantitative Multi-Objective Verification for Probabilistic Systems 3

controllers under multiple quantitative objectives, illustrating this with experi-
mental results from a realistic model of a disk driver controller.

Compositional verification. Perhaps the biggest challenge to the practical ap-
plicability of formal verification is scalability. Compositional verification offers
a powerful means to address this challenge. It works by breaking a verification
problem down into manageable sub-tasks, based on the structure of the system
being analysed. One particularly successful approach is the assume-guarantee
paradigm, in which properties (guarantees) of individual system components are
verified under assumptions about their environment. Desired properties of the
combined system, which is typically too large to verify, are then obtained by
combining separate verification results using proof rules. Compositional anal-
ysis techniques are of particular importance for probabilistic systems because
verification is often more expensive than for non-probabilistic models.

Recent work in [21] presents an assume-guarantee framework for probabilis-
tic automata, based on a reduction to the multi-objective techniques of [16].
However, the assumptions and guarantees in this framework are restricted to
probabilistic safety properties. This limits the range of properties that can be
verified and, more importantly, can be too restrictive to express assumptions of
the environment. We use our techniques to introduce an alternative framework
where assumptions and guarantees are the quantitative multi-objective properties
defined in this paper. This adds the ability to reason compositionally about, for
example, probabilistic liveness or expected rewards. To facilitate this, we also
incorporate a notion of fairness into the framework. We have implemented the
techniques and present results from compositional verification of several large
case studies, including instances where it is infeasible non-compositionally.

Related work. Existing research on multi-objective analysis of MDPs and its
relationship with this work has been discussed above. On the topic of controller
synthesis, the problem of synthesising MDP adversaries to satisfy a temporal
logic specification has been addressed several times, e.g. [3I7]. Also relevant is
[11], which synthesises non-probabilistic automata based on quantitative mea-
sures. In terms of compositional verification, the results in this paper significantly
extend the recent work in [2I]. Other related approaches include: [8II5], which
present specification theories for compositional reasoning about probabilistic sys-
tems; and [10], which presents a theoretical framework for compositional verifica-
tion of quantitative (but not probabilistic) properties. None of [SII5IT0], however,
consider practical implementations of their techniques.

Contributions. In summary, the contributions of this paper are as follows:

— novel multi-objective verification techniques for probabilistic automata (and
MDPs) that include both w-regular and ezpected total reward properties;

— a corresponding method to generate optimal adversaries, with direct appli-
cability to the problem of controller synthesis for these models;

— new compositional verification techniques for probabilistic automata using
expressive quantitative properties for assumptions and guarantees.

This paper is an extended version, with proofs, of [I§].

4 Forejt, Kwiatkowska, Norman, Parker, Qu
2 Background

We use Dist(S) for the set of all discrete probability distributions over a set S,
7 for the point distribution on s € S, and g1 X s for the product distribution of
u1 € Dist(S1) and po € Dist(Ss), defined by py Xpa((s1,82)) = pi(s1) - pa(s2).

2.1 Probabilistic automata (PAs)

Probabilistic automata [23] are a commonly used model for systems that ex-
hibit both probabilistic and nondeterministic behaviour. PAs are very similar to
Markov decision processes (MDPS)B For the purposes of verification (as in Sec-
tion, they can often be treated identically; however, for compositional analysis
(as in Section , the distinction becomes important.

Definition 1 (Probabilistic automata). A probabilistic automaton (PA) is
a tuple M=(S,3, an, dm) where S is a set of states, 5 € S is an initial state, arq
is an alphabet and Sy C Sxar X Dist(S) is a probabilistic transition relation.

In a state s of a PA M, a transition s = u, where a is an action and p is a
distribution over states, is available if (s, a,) € . The selection of an available
transition is nondeterministic and the subsequent choice of successor state is
probabilistic, according to the distribution of the chosen transition.

A path is a sequence w = SOM&% .-+ where sg=5s, s; N W; is an
available transition and p;(s;4+1)>0 for all i € N. We denote by IPaths (FPaths)
the set of all infinite (finite) paths. If w is finite, |w| denotes its length and last(w)
its last state. The trace, tr(w), of w is the sequence of actions apa; ... and we
use tr(w)l, to indicate the projection of such a trace onto an alphabet o C a .

A reward structure for M is a mapping p : a, = Ry from some alphabet

a, € ap to the positive reals. We sometimes write p(a) = 0 to indicate that

a & a,. For an infinite path w = s 200y g SLEL L the total reward for w

over p is p(w) = ZiGN,aiG(xp pla;).

An adversary of M is a function o : FPaths— Dist(aa x Dist(S)) such that,
for a finite path w, o(w) only assigns non-zero probabilities to action-distribution
pairs (a, p) for which (last(w), a, i) € 6. Employing standard techniques [20], an
adversary o induces a probability measure Pr{, over IPaths. An adversary o
is deterministic if o(w) is a point distribution for all w, memoryless if o(w) de-
pends only on last(w), and finite-memory if there are a finite number of memory
configurations such that o(w) depends only on last(w) and the current mem-
ory configuration, which is updated (possibly stochastically) when an action is
performed. We let Advaq denote the set of all adversaries for M.

If M; = (S;,5i, apm,, O0,) Tor i=1, 2, then their parallel composition, denoted
Mi|[Ma, is given by the PA (S1xSs, (51,52), aar,Uaas,, Oar, | am,) Where Oz, as,
is defined such that (s1,s2) < 1 X o if and only if one of the following holds: (i)
S1 2 f11, 52 — g and a € ang, Nagg,; (i) s1 L, g = Ns, and a € apy, \as,;
or (iii) sp = pg, p1 = s, and a € ang, \oag, -

! For MDPs, 6 in Definition [1| becomes a partial function S x ax — Dist(S).

Quantitative Multi-Objective Verification for Probabilistic Systems 5

When verifying systems of PAs composed in parallel, it is often essential to
consider fairness. In this paper, we use a simple but effective notion of fairness
called unconditional fairness, in which it is required that each process makes
a transition infinitely often. For probabilistic automata, a natural approach to
incorporating fairness (as taken in, e.g., [4I2]) is to restrict analysis of the system
to a class of adversaries in which fair behaviour occurs with probability 1.

If M = My|...||M, is a PA comprising n components, then an (uncondi-
tionally) fair path of M is an infinite path w € IPaths in which, for each com-
ponent M;, there exists an action a € ayy, that appears infinitely often. A fair
adversary o of M is an adversary for which Pr{{w € IPaths | w is fair} = 1.
We let Adv"" denote the set of fair adversaries of M.

2.2 Verification of PAs
Throughout this section, let M = (5,3, ar,d0) be a PA.

Definition 2 (Probabilistic predicates). A probabilistic predicate [¢].., com-
prises an w-regular property ¢ C (ag)” over some alphabet oy C apng, a rela-
tional operator ~€{<,<,>,>} and a rational probability bound p. Satisfaction
of [@l~p by M, under adversary o, denoted M, o |=[¢]|~p, is defined as follows:

M, 0 = [Blep & Prog(p)~p where Pro,(¢)=Pro({welPaths | tr(w) lay €O}).

Definition 3 (Reward predicates). A reward predicate [p]~, comprises a
reward structure p : a, — Rso over some alphabet o, C apn, a relational
operator ~ € {<,<,>, >} and a rational reward bound r. Satisfaction of [p]r
by M, under adversary o, denoted M, o |=[p]~r, is defined as follows:

M, o= [pler & ExpTotS(p) ~r where ExpToti,(p) = ., p(w) dPry,.

Verification of PAs is based on quantifying over all adversaries. For example, we
define satisfaction of probabilistic predicate [¢]., by M, denoted M |= [¢]~p, as:

ME [Py © Yo e Adop . M, 0= [Pl -

In similar fashion, we can verify a multi-component PA M| ... || M, under
fairness by quantifying only over fair adversaries:

Ml Mo B [0y & Vo € AdoRE) jan, - Mill- - [Ma, 0 =[]y

Verifying whether M satisfies a probabilistic predicate [¢]~, or reward predicate
[p]~r can be done with, for example, the techniques in [T4/I]. In the remainder
of this section, we give further details of the case for w-regular properties, since
we need these later in the paper. We follow the approach of [I], which is based
on the use of deterministic Rabin automata and end components.

An end component (EC) of M is a pair (S’,¢") comprising a subset S’CS of
states and a probabilistic transition relation ¢’ C4 that is strongly connected when
restricted to S” and closed under probabilistic branching, i.e., {s € S|3(s,a, u) €
0’y € 5 and {s’ € S|u(s')>0 for some (s,a,pu) € 6} C S’. An EC (5',¢') is
mazimal if there is no EC (S”,6") such that §'Cé".

6 Forejt, Kwiatkowska, Norman, Parker, Qu

A deterministic Rabin automaton (DRA) is a tuple A = (Q,q, «, §, Acc) of
states @, initial state @, alphabet «, transition function ¢ : @xa — @, and
acceptance condition Acc = {(L;, K;)}¥_ | with L;, K; C Q. Any infinite word
w € (a)¥ has a unique corresponding run g g gz . .. through A and we say that A
accepts w if the run contains, for some 1<i<k, finitely many states from L; and
infinitely many from K. For any w-regular property ¢ C (a4)* we can construct
a DRA, say Ay, over ay that accepts precisely ¢.

Verification of [¢]~, on M is done by constructing the product of M and Ay,
and then identifying accepting end components. The product M®A4 of M and
DRA A, = (Q,q,anm, 0, {(Li, Ki)}r_,) is the PA (S x Q, (5,7), am, 6),) where
for all (s,a,p) € 0pr there is ((s,q),a, ') € 8y such that p/(s’,¢") = p(s’) for
¢ =6(g,a) and all &' € S. An accepting EC for ¢ in M®A, is an EC (57, ¢") for
which there exists an 1<i<k such that the set of states S’, when projected onto
@, contains some state from K, but no states from L;. Verifying, for example,
that M = [¢]~p, when ~ € {<, <}, reduces to checking that M®Ay = [0T]~ps
where T is the union of states of accepting ECs for ¢ in M®A,.

Verification of such properties under fairness, e.g. checking M=, [#]~p,
can be done by further restricting the set of accepting ECs. For details, see [2],
which describes verification of PAs under strong and weak fairness conditions,
of which unconditional fairness is a special case.

3 Quantitative Multi-Objective Verification

In this section, we define a language for expressing multiple quantitative objec-
tives of a probabilistic automaton. We then describe, for properties expressed in
this language, techniques both to werify that the property holds for all adver-
saries of a PA and to synthesise an adversary of a PA under which the property
holds. We also consider numerical queries, which yield an optimal value for one
objective, subject to constraints imposed on one or more other objectives.

Definition 4 (Quantitative multi-objective properties). A quantitative
multi-objective property (gmo-property) for a PA M is a Boolean combination of
probabilistic and reward predicates, i.e. an expression produced by the grammar:

Ui=true | WAV | UV | V| [dlp | [plor

where [@]~p and [p]~, are probabilistic and reward predicates for M, respectively.
A simple gmo-property comprises a single conjunction of predicates, i.e. is of the
Jorm (A1 [@il~ip,) A (AJ2ylps]~;r,). We refer to the predicates occurring in a
formula as objectives. For property Wp, we use ap to denote the set of actions
used in ¥p, i.e. the union of ay and o, over [@l~p and [p]~, occurring in ¥p.

A quantitative multi-objective property ¥ is evaluated over a PA M and an
adversary o of M. We say that M satisfies ¥ under o, denoted M,o =V,
if ¥ evaluates to true when substituting each predicate x with the result of
M, o | x. Verification of ¥ over a PA M is defined as follows.

Quantitative Multi-Objective Verification for Probabilistic Systems 7

fast 0.5 choose
slow
off done
on

Fig. 1. PAs for a machine M., (left) and two controllers, M., (centre) and M., (right)

Definition 5 (Verification queries). For a PA M and a gmo-property ¥, a
verification query asks whether ¥ is satisfied under all adversaries of M:

MEVY & Voe Advpy . M,o=0.

For a simple qmo-property ¥, we can verify whether M =¥ using standard tech-
niques [I4J] (since each conjunct can be verified separately). To treat the general
case, we will use multi-objective model checking, proceeding via a reduction to
the dual notion of achievability queries.

Definition 6 (Achievability queries). For a PA M and gmo-property ¥, an
achievability query asks if there exists a satisfying adversary of M, i.e. whether
there exists o € Adv g such that M, o EW.

Remark. Since qmo-properties are closed under negation, we can convert any
verification query into an equivalent (negated) achievability query. Furthermore,
any gmo-property can be translated to an equivalent disjunction of simple qmo-
properties (obtained by converting to disjunctive normal form and pushing nega-
tion into predicates, e.g. =([¢]>p) = [Pl<p)-

In practice, it is also often useful to obtain the minimum/maximum value of an
objective, subject to constraints on others. For this, we use numerical queries.

Definition 7 (Numerical queries). For a PA M, gmo-property ¥ and w-
reqular property ¢ or reward structure p, o (maximising) numerical query is:

Pri¥ (o] W) 2 sup{Priu(9) | o € Ado A M, o =),
or BxpTothi(p|¥) = sup{EapTotS,(p) | o € Advpg AM, o =T}

If the property W is not satisfied by any adversary of M, these queries return 1.
A minimising numerical query is defined similarly.

Example 1. Figure [1| shows the PAs we use as a running example. A machine,
M., executes 2 consecutive jobs, each in 1 of 2 ways: fast, which requires 1
time unit and 20 units of energy, but fails with probability 0.1; or slow, which
requires 3 time units and 10 units of energy, and never fails. The reward struc-
tures pume={fast—1, slow—3} and ppon={fast—20, slow—10} capture the time
elapse and power consumption of the system. The controllers, M., and M,,, can
(each) control the machine, when composed in parallel with M,,. Using qmo-
property ¥ = [Odone]>1 A [Ppow]<20, We can write a verification query M,,, =¥

min

(which is false) or a numerical query ExpTot'y;" (ptime |¥) (which yields 6).

8 Forejt, Kwiatkowska, Norman, Parker, Qu

Before describing our techniques to check verification, achievability and nu-
merical queries, we first need to discuss some assumptions made about PAs.
One of the main complications when introducing rewards into multi-objective
queries is the possibility of infinite expected total rewards. For the classical,
single-objective case (see e.g. [I]), it is usual to impose assumptions so that such
behaviour does not occur. For the multi-objective case, the situation is more
subtle, and requires careful treatment. We now outline what assumptions should
be imposed; later we describe how they can be checked algorithmically.

A key observation is that, if we allow arbitrary reward structures, situations
may occur where extremely improbable (but non-zero probability) behaviour still
yields infinite expected reward. Consider e.g. the PA ({sg, s1, 82}, S0, {a, b}, 9)
with 6 = {(s0,b,7s,), (50,0, Ms,), (81,0, 75,), (S2,b,7s,)}, reward structure p =
{a—1}, and the qmo-property ¥ = [Ob]>, A [p]>,. For any p, including values
arbitrarily close to 1, there is an adversary satisfying ¥ for any r € Ry, because
it suffices to take action a with non-zero probability. This rather unnatural be-
haviour would lead to misleading verification results, masking possible errors in
the model design.

Motivated by such problems, we enforce the restriction below on multi-
objective queries. To match the contents of the next section, we state this for a
maximising numerical query on rewards. We describe how to check the restric-
tion holds in the next section.

Assumption 1 Let ExpTot'yi*(p|¥) be a numerical query for a PA M and
gmo-property ¥ which is a disjunctiorﬂ of simple gqmo-properties ¥y, ..., ;. For
each Wy, = (A1 [Pilmipi) A (/\Tzl[pj}erj), we require that:

sup{ EzpTot}(C) | M, o |= Ny [hil~ip,} < 00

for all ¢ € {p} U{p; | 1<j<m A ~j e {>,>}}.

3.1 Checking Multi-Objective Queries

We now describe techniques for checking the multi-objective queries described
previously. For presentational purposes, we focus on numerical queries. It is
straightforward to adapt this to achievability queries by introducing, and then
ignoring, a dummy property to maximise (with no loss in complexity). As men-
tioned earlier, verification queries are directly reducible to achievability queries.

Let M be a PA and ExpTot)y;*(p|¥) be a maximising numerical query for
reward structure p (the cases for minimising queries and w-regular properties
are analogous). As discussed earlier, we can convert ¥ to a disjunction of simple
qmo-properties. Clearly, we can treat each element of the disjunction separately
and then take the maximum. So, without loss of generality, we assume that ¥
is simple, i.e. ¥ = (A1 [Pi]~ip;) A (/\;—n:ﬂpj]N,-rj)- Furthermore, we assume that
each ~; is > or > (which we can do by changing e.g. [¢]<, to [7@]s1-p).

2 This assumption extends to arbitrary properties ¥ by, as described earlier, first
reducing to disjunctive normal form.

Quantitative Multi-Objective Verification for Probabilistic Systems 9

max

Our technique to compute EzpTot'yi*(p|¥) proceeds via a sequence of mod-
ifications to M, producing a PA M. From this, we construct a linear program
L(M), whose solution yields both the desired numerical result and a correspond-
ing adversary ¢ of M. Crucially, 6 is memoryless and can thus be mapped to a
matching finite-memory adversary of M. The structure of L(M) is very similar
to the one used in [16], but many of the steps to construct M and the techniques
to establish a memoryless adversary are substantially different. We also remark
that, although not discussed here, L(M) can be adapted to a multi-objective
linear program, or used to approximate the Pareto curve between objectives.

In the remainder of this section, we describe the process in detail, which
comprises 4 steps: 1. checking Assumption [I} 2. building a PA M in which
unneccessary actions are removed; 3. converting M to a PA M; 4. building and

solving the linear program L(M). The correctness of the procedure is formalised
with a corresponding sequence of propositions (proved in the appendix).

Step 1. We start by constructing a PA M? = M®A,, ® -+ ®Ag, which is the
product of M and a DRA Ay, for each w-regular property ¢; appearing in ¥. We
check Assumption [1| by analysing M®: for each mazimising reward structure ¢
(i.e. letting (=p or (=p; when ~; € {>,>}) we use the proposition below. This
requires a simpler multi-objective achievability query on probabilistic predicates
only. In fact, this can be done with the techniques of [16].

Proposition 1. We have sup{EzpTot$,(¢) | M,o = N [¢i]~ip, } = 00 for a
reward structure ¢ of M iff there is an adversary o of M? such that M?, o =
[Opos]so A Ni—y [@il~ip; where “pos” labels any transition (s, a,) that satisfies
¢(a)>0 and is contained in an EC.

Step 2. Next, we build the PA M from M? by removing actions that, thanks to
Assumption [I} will not be used by any adversary which satisfies ¥ and maximises
the expected value for the reward p. Let M?® = (5?3, aM,éﬁ,l). Then M =
(8,3, aa, 604) is the PA obtained from M¢? as follows. First, we remove (s, a, 1)
from (5%1 if it is contained in an EC and ((a)>0 for some mazimising reward
structure (. Second, we repeatedly remove states with no outgoing transitions
and transitions that lead to non-existent states, until a fixpoint is reached. The
following proposition holds whenever Assumption [1|is satisfied.

Proposition 2. There is an adversary o of M? where ExpTot},(p)=x and
M, o =W iff there is an adversary & of M where ExpTotS,(p)=xz and M, G =W.

Step 3. Then, we construct PA M from M, by converting the n probabilistic
predicates [@;]~,p, into n reward predicates [A;]~,p;. For each R C {1,...,n},
we let Sg denote the set of states that are contained in an EC (S’,4") that: (i)
is accepting for all {¢; | i € R}; (ii) satisfies p;(a) = 0 for all 1 < j < m and
(s,a,u) € 8'. Thus, in each Sg, no reward is gained and almost all paths satisfy
the w-regular properties ¢; for i € R. Note that identifying the sets Sr can be
done in time polynomial in the size of M (see Appendix for clarification).
We then construct M by adding a new terminal state s4eqq and adding tran-
sitions from states in each Sg to $4eqq, labelled with a new action a’®. Intuitively,

10 Forejt, Kwiatkowska, Norman, Parker, Qu

Magimise 3 o)es 525 m0ma P(@) * Ys,a,m) Subject to:

Z(SvaRaMGSM,S#ded Yis,aRp) =1

D (s)€ 5% geng Ni (@) " Y(s,aun) ~i Pi for all 1<i<n
(5,008 pts5 25 gena P7(@) " Yls,aum) ™5 T for all 1<j<m

Z(S,a,wegM Y(s,am) — Z(g,&’megM W (S) - y(s,a,0) = wnit(s) for all s€S\{sd€(1d}
Y(s,ap) = 0 for all (s,a, p)Eom

where init(s) is 1 if s =3 and 0 otherwise.

Fig. 2. The linear program L(M)

taking an action a® in M corresponds to electing to remain forever in the cor-
responding EC of M. Formally, M = (§,§, dM,SM) where S = S U {Sdead}
apm = apmU {aR | RC {17 s 7n}}’ and 8./\/1 = SM U{(S, aR77ISdead) ‘ s € SR} Fi-
nally, we create, for each 1 < i < n, a reward structure \; : {af* | i € R} — Rx¢
with \;(a) = 1 whenever); is defined.

Proposition 3. There is an adversary & of M such that Ea:pTot/a\;l(p):x and
M, G =V iff there is a memoryless adversary & of M such that Exp Tot%, (p)=x

and M; o ': (/\?:lp‘i]Nim) A (T:l[pj]’vy‘?“j) A ([Osdead]>1)-

Step 4. Finally, we create a linear program L(M), given in Figure [2| which
encodes the structure of M as well as the objectives from ¥. Intuitively, in a

solution of L(M), the variables ¥y,) express the expected number of times

that state s is visited and transition s — is taken subsequently. The expected
total reward w.r.t. p; is then captured by Z(S) €6 pt 555 don pi(@) * Y(s,a,u)- The

result of L(M) yields the desired value for our numerical query.

Proposition 4. For x € Ry, there is a memoryless adversary & ofM where
E:cpTotjU\;t(p):x and Mva": (?:1[)‘2']'%171‘) A (T:l[pj]NjTj) A ([Qsdead]zl) Zﬁ

there is a feasible solution (y(s,a,p)) of the linear program L(M) such

(5,a,1) €6
* —

tht 3 s 0. €bpm st sins PO Yis.agn) = T

In addition, a solution to L(M) gives a memoryless adversary opr.q defined

by oproa(s)(a, p) = Za,i(f’;(’:i " if the denominator is nonzero (and defined

arbitrarily otherwise). This can be converted into a finite memory adversary ¢’
for M® by combining decisions of ¢ on actions in a4 and, instead of taking
actions a®, mimicking adversaries witnessing that the state which precedes a®
in the history is in Sg. Adversary ¢’ can be translated into an adversary o of
M in standard fashion (see Appendix for clarification) using the fact that
every finite path in M® has a counterpart in M given by projecting states of
M? to their first components.

The following is then a direct consequence of Propositions and

max

Theorem 1. Given a PA M and numerical query ExpToti™(p|¥) satisfying
Assumption[d], the result of the query is equal to the solution of the linear program

Quantitative Multi-Objective Verification for Probabilistic Systems 11

@ >
done
done

Fig. 3. A DRA A, for the property ¢ = Odone and the PA M for M = M, || M.,

0.1

(507t27q0)
slow done
0 {1} Y

a a

--e ., -« --(s0,t2,q1)
'Sdeaqr doOME

|5 dead!

L(M) (see Figure @ Furthermore, this requires time polynomial in the size of
M and doubly exponential in the size of the property (for LTL objectives).

An analogous result holds for numerical queries of the form Exp Totj\n,il“(p | @),
Pric™(¢|®) or Priy(¢|¥). As discussed previously, this also yields a technique
to solve both achievability and verification queries in the same manner.

3.2 Controller Synthesis

The achievability and numerical queries presented in the previous section are
directly applicable to the problem of controller synthesis. We first illustrate these
ideas on our simple example, and then apply them to a large case study.

Example 2. Consider the composition M = M_, || M,,, of PAs from Figure
M., can be seen as a template for a controller of M,,. We synthesise an
adversary for M that minimises the expected execution time under the con-
straints that the machine completes both jobs and the expected power con-
sumption is below some bound 7. Thus, we use the minimising numerical query
ExpTot"A‘Ai“(ptime | [Ppowl<r A [Odone]s1). Figure 3| shows the corresponding PA
M, dashed lines indicating additions to construct M from M. Solving the LP

problem L(M) yields the minimum expected time under these constraints. If
r=30, for example, the result is %. Examining the choices made in the corre-
sponding (memoryless) adversary, we find that, to obtain this time, a controller
could schedule the first job fast with probability % and slow with %, and the
second job slow. Figure (a) shows how the result changes as we vary the bound

r and use different values for the failure probability of fast (0.1 in Figure [1f).

Case study. We have implemented the techniques of Section [3|as an extension
of PRISM [19] and using the ECLiPSe LP solver. We applied them to perform
controller synthesis on a realistic case study: we build a power manager for
an IBM TravelStar VP disk-drive [5]. Specific (randomised) power management
policies can already be analysed in PRISM [22]; here, we synthesise such policies,
subject to constraints specified as qmo-properties. More precisely, we minimise
the expected power consumption under restrictions on, for example, the expected
job-queue size, expected number of lost jobs, probability that a request waits
more than K steps, or probability that N requests are lost. Further details
are available from [24]. As an illustration, Figure b) plots the minimal power
consumption under restrictions on both the expected queue size and number
of lost customers. This shows the familiar power-versus-performance trade-off:
policies can offer improved performance, but at the expense of using more power.

12 Forejt, Kwiatkowska, Norman, Parker, Qu

m
R
¢ —p_fail=0.]] “““‘ ““‘ N
=i e TR
e fail=0.4 2000 “‘

e
o
S o
S o

I
=3
o

SN
OISNEE
RSSSS5

min power consumption

0
2000

Minimum expected time
5 N
'S

1500

g, 1000

sy o
30 25 30 35 40 45 50 55 60 65 70 75 ‘2z 500 50 Ledl
ec!
r e¥P

(a) Running example (see Ex. 2) (b) IBM TravelStar disk-drive controller

Fig. 4. Experimental results illustrating controller synthesis

4 Quantitative Assume-Guarantee Verification

We now present novel compositional verification techniques for probabilistic au-
tomata, based on the quantitative multi-objective properties defined in Section [3]
The key ingredient of this approach is the assume-guarantee triple, whose defi-
nition, like in [21], is based on quantification over adversaries. However, whereas
[21] uses a single probabilistic safety property as an assumption or guarantee, we
permit quantitative multi-objective properties. Another key factor is the incor-
poration of fairness.

Definition 8 (Assume-guarantee triples). If M = (5,35, anr,00) s a PA
and YA, Yq are gmo-properties such that ag C aq U ayr, then (W) M (Ug) is
an assume-guarantee triple with the following semantics:

<WA>M<Wg> 4 VO’EAdUM[aA] . (M,UlZWA—)M,(T':WG) .

where M[a4] denotes the alphabet extension [21)] of M, which adds a-labelled
self-loops to all states of M for each a € as\anm.

Informally, an assume-guarantee triple (Z4) M (Ug), means “if M is a compo-
nent of a system such that the environment of M satisfies ¥ 4, then the combined
system (under fairness) satisfies ¥”.

Verification of an assume guarantee triple, i.e. checking whether (¥4) M (¥g)
holds, reduces directly to the verification of a qmo-property since:

(M,U'ZWA —>M70)=¥7G) == M,J)Z(—!WA\/WG).

Thus, using the techniques of Section [3] we can reduce this to an achievability
query, solvable via linear programming. Using these assume-guarantee triples
as a basis, we can now formulate several proof rules that permit compositional
verification of probabilistic automata. We first state two such rules, then explain
their usage, illustrating with an example.

Quantitative Multi-Objective Verification for Probabilistic Systems 13

Theorem 2. If My and My are PAs, and Wa,,%4, and Y are quantitative
multi-objective properties, then the following proof rules hold:
My |:fair glAz
<WA2> My <WA1>
(Wa,) M2 (Ya)
Ml || M2 ‘:fair WG

M, ':fair !pAl
(Wa,) M2 (Tg) (ASYM)
Ml ||'/\/l2 ':fair WG

(CIrC)

where, for well-formedness, we assume that, if a rule contains an occurrence
of the triple (Wa) M (Ug) in a premise, then ag C aa U apg; similarly, for a
premise that checks Wy against M, we assume that ag C ap

Theorem [2 presents two assume-guarantee rules. The simpler, (ASYM), uses a
single assumption ¥4, about M;j to prove a property W on M;||Mas. This is
done compositionally, in two steps. First, we verify M =, Wa,. If My com-
prises just a single PA, the stronger (but easier) check M; W4, suffices; the
use of fairness in the first premise is to permit recursive application of the rule.
Second, we check that (P4,) Ma (¥g) holds. Again, optionally, we can consider
fairness hereE| In total, these two steps have the potential to be significantly
cheaper than verifying M1 ||Ms. The other rule, (CIRC), operates similarly, but
using assumptions about both M; and M.

Example 3. We illustrate assume-guarantee verification using the PAs M,,
and M., from Figure 1} Our aim is to verify that M., Mo, Fp;, [prime] <2,
which does indeed hold. We do so using the proof rule (ASyM) of Theorem
with Mi=M,., and My=M,,. We use the assumption Alz[pslow]gé where
Psiow={slowr—1}, i.e. we assume the expected number of slow jobs requested is at
most 0.5. We verify M., = [pslow]gé and the triple ([pslow}<%> M., ([ptime]<%>.
The triple is checked by verifying M., = ﬂ[pslow]gé V [ptimel <
that no adversary of M,, satisfies [Pslow]g% A [ptime]>%.

1 O, equivalently,

Experimental Results. Using our implementation of the techniques in Sec-
tion 3] we now demonstrate the application of our quantitative assume-guarantee
verification framework to two large case studies: Aspnes & Herlihy’s randomised
consensus algorithm and the Zeroconf network configuration protocol. For con-
sensus, we check the maximum expected number of steps required in the first
R rounds; for zeroconf, we verify that the protocol terminates with probability
1 and the minimum/maximum expected time to do so. In each case, we use the
(CIRC) rule, with a combination of probabilistic safety and liveness properties
for assumptions. All models and properties are available from [24]. In fact, we
execute numerical queries to obtain lower/upper bounds for system properties,
rather than just verifying a specific bound.

Table (1| summarises the experiments on these case studies, which were run
on a 2.66GHz PC with 8GB of RAM, using a time-out of 1 hour. The table

3 Adding fairness to checks of both gmo-properties and assume-guarantee triples is
achieved by encoding the unconditional fairness constraint as additional objectives.

14 Forejt, Kwiatkowska, Norman, Parker, Qu

Case study | Non-compositional “ Compositional]
[parameters] | States [Time (s) [Result|| LP size[Time (s)[Result]
32 1,806 0.4| 89.00 1,565 1.8| 89.65

consensus 3 20 11,598 27.8| 5,057 6,749 10.8| 5,057
(2 processes) |4 2 7,478 1.3] 89.00 5,368 3.9| 98.42
(maz. steps) |4 20 51,830 155.0| 5,057|| 15,160 16.2| 5,120
[R K] 5 2 30,166 3.1| 89.00|| 10,327 6.5| 100.1

5 20 212,758 552.8| 5,057|| 24,727 21.9| 5,121

3 2 114,559 20.5| 212.0|| 43,712 12.1| 214.3

consensus 312 507,919 1,361.6| 4,352|| 92,672 284.9(4,352
(8 processes) |3 20 822,607 time-out -] 131,840 901.8|11,552
(maz. steps) |4 2| 3,669,649 728.1| 212.0(| 260,254 118.9] 260.3
[R K] 4 12||29,797,249 | mem-out -1 351,694 642.2| 4,533

4 201| 65,629,249|mem-out -|| 424,846| 1,697.0(11,840

zeroconf 4 57,960 8.7 1.0]| 155,458 23.8 1.0
(termination) | 6 125,697 16.6 1.0{| 156,690 24.5 1.0
[K] 8 163,229 19.4 1.0{| 157,922 25.5 1.0
zeroconf 4 57,960 6.7| 13.49]] 155,600 23.0| 16.90
(min. time) 6 125,697 15.7| 17.49]| 154,632 23.1| 12.90
[K] 8 163,229 22.2| 21.49|| 156,568 23.9| 20.90
zeroconf 4 57,960 5.8 14.28]] 154,632 23.7| 17.33
(maz. time) 6 125,697 13.3| 18.28|| 155,600 24.2| 22.67
[K] 8 163,229 18.9| 22.28|| 156,568 25.1| 28.00

Table 1. Experimental results for compositional verification

shows the (numerical) result obtained and the time taken for verification done
both compositionally and non-compositionally (with PRISM). As an indication
of problem size, we give the size of the (non-compositional) PA, and the number
of variables in the linear programs for multi-objective model checking.
Compositional verification performs very well. For the consensus models, it is
almost always faster than the non-compositional case, often significantly so, and
is able to scale up to larger models. For zeroconf, times are similar. Encourag-
ingly, though, times for compositional verification grow much more slowly with
model size. We therefore anticipate better scalability through improvements to
the underlying LP solver. Finally, we note that the numerical results obtained
compositionally are very close to the true results (where obtainable).

5 Conclusions
We have presented techniques for studying multi-objective properties of PAs,
using a language that combines w-regular properties, expected total reward
and multiple objectives. We described how to verify a property over all adver-
saries of a PA, synthesise an adversary that satisfies and/or optimises objectives,
and compute the minimum or maximum value of an objective, subject to con-
straints. We demonstrated direct applicability to controller synthesis, illustrated
with a realistic disk-drive controller case study. Finally, we proposed an assume-
guarantee framework for PAs that significantly improves existing ones [21], and
demonstrated successful compositional verification on several large case studies.
Possible directions for future work include extending our compositional ver-
ification approach with learning-based assumption generation, as [I7] does for
the simpler framework of [21], and investigation of continuous-time models.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, EU FP7 project CONNECT and EPSRC grant EP/D07956X.
Vojtéch Forejt is also supported by a Royal Society Newton Fellowship and the
Institute for Theoretical Computer Science, project no. 1M0545.

Quantitative Multi-Objective Verification for Probabilistic Systems 15

References

10.

11.

12.

13.

14.

15.

16.

17.

de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

Baier, C., Groler, M., Ciesinski, F.: Quantitative analysis under fairness con-
straints. In: Liu, Z., Ravn, A. (eds.) Proc. ATVA’09. LNCS, vol. 5799, pp. 135-150.
Springer (2009)

Baier, C., Groler, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: Levy, J., Mayr, E., Mitchell, J. (eds.) Exploring New
Frontiers of Theoretical Informatics. IFIP International Federation for Information
Processing, vol. 155, pp. 493-506. Springer (2004)

Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3), 125-155 (1998)

Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.D.: Policy optimization for dy-
namic power management. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 8(3), 299-316 (2000)

Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P. (ed.) Proc. FSTTCS’95. LNCS, vol. 1026, pp. 499-
513. Springer (1995)

Brazdil, T., Forejt, V., Kucera, A.: Controller synthesis and verification for
Markov decision processes with qualitative branching time objectives. In: Aceto,
L., Damgard, 1., Goldberg, L., Halldérsson, M., Ingdlfsdéttir, A., Walukiewicz, I.
(eds.) Proc. ICALP’08. LNCS, vol. 5126, pp. 148-159. Springer (2008)

Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.:
Compositional design methodology with constraint Markov chains. In: Proc.
QEST’10. pp. 123-132. IEEE CS Press (2010)

. Chatterjee, K.: Markov decision processes with multiple long-run average objec-

tives. In: Arvind, V., Prasad, S. (eds.) Proc. FSTTCS’07. LNCS, vol. 4855, pp.
473-484. Springer (2007)

Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga,
M.: Compositional quantitative reasoning. In: Proc. QEST’06. pp. 179-188. IEEE
CS Press (2006)

Chatterjee, K., Henzinger, T., Jobstmann, B., Singh, R.: Measuring and synthe-
sizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P.
(eds.) Proc. CAV’10. LNCS, vol. 6174, pp. 380-395. Springer (2010)

Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-
tiple objectives. In: Durand, B., Thomas, W. (eds.) Proc. STACS’06. LNCS, vol.
3884, pp. 325-336. Springer (2006)

Climaco, J. (ed.): Multicriteria Analysis. Springer (1997)

Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Transactions on Automatic Control 43(10), 1399-1418 (1998)

Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: A compositional
reasoning methodology for the design of stochastic systems. In: Proc. ACSD’10.
pp. 223-232. IEEE CS Press (2010)

Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science 4(4),
1-21 (2008)

Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: Proc. QEST’10. pp. 133-142. IEEE CS Press (2010)

16 Forejt, Kwiatkowska, Norman, Parker, Qu

18. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P., K. Rustan M. Leino
(eds.) Proc. TACAS’11. LNCS, Springer (2011), to appear

19. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
Proc. TACAS’06. LNCS, vol. 3920, pp. 441-444. Springer (2006)

20. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, 2nd edn.
(1976)

21. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) Proc. TACAS’10.
LNCS, vol. 6105, pp. 23-37. Springer (2010)

22. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using probabilis-
tic model checking for dynamic power management. Formal Aspects of Computing
17(2), 160-176 (2005)

23. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-
tems. Ph.D. thesis, Massachusetts Institute of Technology (1995)

24. http://www.prismmodelchecker.org/files/tacasll/

A Appendix

Below, we include the proofs omitted from the main text. The results and proofs
presented for Section concern the case for maximising a numerical query on
rewards. For the case of minimising rewards, we would first decide whether the
minimal reward is infinite and, if yes, remove it from the query and then continue
following the methods presented.

For the remainder of the section, we fix a PA M and qmo-property ¥. Before
we give the proofs, we require the following definitions. For a state s, let Mg
be the PA obtained from M by changing the initial state to s. For a finite

ao,;Ho ai,p1 An—1,Mn—1 Qs [
path w1 = sg 51 P s s, and path wy = s, —%
An+1;Hn+1 1
Spp1 ——> -+, let
_ _ ao,Ho at,H1 An—1:Mn—1 Ansfhn An+1;Mn+1
w1 Qw2 =wi1 = 8o S1 s Sn Sn+1

be the concatenation of w; and wy. For a state s, we let initaq(s) = 1 if s is the
initial state of M and init r¢(s) = 0 otherwise. For any adversary ¢ and triple
(s,a, 1) € Sxar xDist(S) we let:

oo

vis? (s, a, i) & Z Z Pri,(w)

7=0 w€FPaths,|w|=j+1&
jth trans. of w is (s,a,u)

i.e. the expected number of times the transition s — y is taken by o. Similarly,
let vis?(s) equal the expected number of times the state s is visited by o.

http://www.prismmodelchecker.org/files/tacas11/

Quantitative Multi-Objective Verification for Probabilistic Systems 17

A.1 Proof of Propositions [T and
We first require the following lemma.

Lemma 1. If (s,a, p) is a transition that is not contained in any end component
(EC) of M, then sup,c ag, ,, vis? (s, a, p) is finite.

Proof. If (s,a, 1) is not in an EC of M, then there exists £>0 such that, starting
from (s, a, 1), the probability of returning to s is at most 1—¢, independent of the
adversary. The proof then follows from basic results of probability theory. ad

Proposition [1], direction =. Suppose
sup { EapTot3, (C) |0 € Aduag A M, }= Ny [Blp, } = 00

for a reward structure ¢ of M. A direct consequence of Lemma [I] is that, if
a transition (s, a, u) appears infinitely often (i.e. sup,¢ 44, ,, vis’ (s, a, jt) is infi-
nite), then it is contained in an EC. Therefore, for the total reward EzpTot%,(()
to be unbounded there must exist some adversary o, such that o= Al [¢]~,p.
and under o we enter some EC with non-zero probability in which some tran-
sition is assigned a positive reward. More precisely, we have that, under o, the
formula [Opos]so is satisfied, and hence the result follows. O

Proposition |1}, direction <. Suppose there is an adversary o of M? such that
M? o = [0pos]=o A Ni—; [#il~p: - Since the formula [Opos]~ is satisfied by o,
under o we reach a transition (s,a,) contained in an EC such that ((a)>0.
Therefore there exists a finite path w = so RULLN S1 RN --- 8, that has
non-zero probability under o and (Sy—1, Gm—1, tm—1)=(s, a,).

To complete the proof it is sufficient to create a sequence of adversaries
(0k)ken under which the probabilistic predicates [¢1]~ypys-- -, [Pn]~,p, are sat-
isfied and limy—,o EzpTot(, (()=0c0. For k € N, we construct oy, as follows.

— For all paths that do not start with w, the adversary o, mimics o.

— When the path w is performed, oy, stays in the EC containing (s, a, u) for k
steps, picking uniformly all transitions of the EC. After k steps, on the next
visit to S, i.e. when the history is of the form w ® w’ where w’ starts and
ends in s,,, the adversary o, mimics o assuming that the part of the path
after w was never performed.

To see that the probabilistic predicates [¢;]~,p, are satisfied under o) for any
k € N, consider the function 6;, that maps each path w of ¢ to the paths of o
that differ only in the part where o}, forcingly stays in the component containing
(s,a,p) (if such a part exists). Now, 8(w) N O(w’) = @ for all w # w’ and for all
sets 2 we have Prf,;(2) = Pri/,(0(£2)). The satisifaction of the predicates
under each o then follows from the fact that, for any path w of o, we have w
satisfies a w-regular property ¢ if and only if each path in 6({2) satisfies ¢.

To complete the proof it remains to show that limg_, ExpTotj’jld,(C):oo.
From the hypothesis, under o, the probability of performing the path w is equal

18 Forejt, Kwiatkowska, Norman, Parker, Qu

to some positive value p, and therefore by construction, for any & € N, under
o the probability of w is also at least p. From basic results of end components,
there exists a positive value ¢ such that when starting from any state contained
in the EC containing s and uniformly picking the next transition, we reach s
with probability at least ¢ within £ steps, where £ is the number of states of M®.
Now, considering any k € N, it follows that ExpTot7}, (¢) at least p-q-((a)- |k/¢]
and the result follows. ad

The proof of Proposition 2] follows straightforwardly from Proposition [I]

A.2 Proof of Proposition

Proposition [3, direction <=. Suppose there exists a memoryless adversary &
of M such that ExpTot, (p)=x and M, & = (A7_1[Ail~ip) A (A?zl[ijerj) A
([0Sdead)>1). The result follows by constructing an adversary ¢ on M which
makes choices according to ¢ until an action a® for some R C {1,...,n} is
taken, and then we switch to an adversary that stays in the end component

witnessing that the last state belongs to Sg.

Pmposition@ direction =. Suppose there exists an adversary & of M such that
ExpTot%;(p)=z and M,5 =W¥. We first prove a weaker form of the proposition
by removing the requirement on the adversary being memoryless and then extend
the result to memoryless adversaries.

History-dependent adversaries. In this section we prove that the following
proposition holds.

Proposition 5. If there is an adversary & of M such that ExpTotf\;((p)=z and
M,5 =W for some x € Rsg, then there is an adversary 6 of M such that
ExpTotSy(p)=z and M, 6 |= (N=y[Nil~ip) A (NF2rlpilnr,) A ([08dead]>1)-

To prove this proposition, we first require the following lemmas.

Lemma 2. There ezists r € Ryo such that ExpTotS(p;)<r for all adversaries
o of M and reward predicates [pj]~,r, where ~;€ {>,>} appearing in ¥.

Proof. The proof follows directly from Lemma [I| and the fact that by construc-
tion, no EC of M contains a transition (s, a, ;) such that p;(a)>0. O

Lemma 3. For any & € Advyy and >0, if M,5=¥, then there exists k € N
such that, under &, the expected reward accumulated after k steps is at most ¢.

Proof. The proof is by contradiction. Suppose that there exists ¢’ € Adv ; and
¢’>0 such that M, ’'=¥ and, under &', the expected reward accumulated after
k steps is at least &’ for all k € N. It then follows that, for any k € N, there exists
[>k such that the expected reward accumulated between the kth and lth step
is at least ¢’/2. However, this means that the expected reward is infinite for ¢’
which yields a contradiction since from Lemma [2 and the fact that M,&’ = ¥
it follows that the reward is bounded for &'. ad

Quantitative Multi-Objective Verification for Probabilistic Systems 19

We now proceed with the proof of Proposition [5| by constructing a sequence
of adversaries (0;);eny and sets ©r C FPaths for R C {1,...,n}. The limit of
this sequence yields an adversary o, which we will show satisfies the following
properties:

— M,0. ¥ and ExpTot(s (p) = x;

— under 04, almost surely we take a path w ending in a state s in S for some
R, such that almost surely the infinite paths initiated in w stay in the EC
which witnesses that s is in Sg.

The second property will allow us to take actions a® after w, turning probabilistic
properties into reward properties. To keep track of the paths w after which we
switch to a®®, we create the set O that contains these paths.

The construction of the adversaries (o;);cn is by induction on ¢ € N. For
the base case, let 09 = &. For the inductive step, suppose that o;_; has been
constructed and k € N is obtained from Lemma [3| when applied to the adversary
o1 for E:%. Given a finite path w, we denote by o, the adversary given by
0u(W)=0;_1(w ®w'). Let Pos be the set of all transitions (s,a,u) of M with
p;(a)>0. Now, for an w-regular property ¢ and finite path w, let ¢[w] be the
property which holds on a path w’ if and only if w’ does not contain a transition
of Pos and ¢ holds on w ® w’.

By [16], we can suppose that there is a finite-memory adversary o, satisfying:

- Pri;“lsw (pilw]) = Prf\;sw (pilw]) for all 1 < i < n;

- Priﬁsw Esiam) = Prj;sw (&(s,a,p)) for all (s,a, p) € Pos
where s,=last(w) and &, 4,,) is the set of paths that contain the transition
(s,a, 1) and do not contain any other transition in Pos before the first occurence
of (s,a,p).

Because ¢’ is a finite-memory adversary, almost surely the path of M last(w)
has a finite prefix (i.e. starts with a finite path) w’ satisfying the following;:

— there is an end component (S5’,¢") such that almost surely the paths starting
with w’ will visit all transitions of ¢’ infinitely often;
— for all Ay, (for 1 < i < n), either almost surely the trace the path starting
with w’ is accepted by Ag,, or almost surely the trace of no path starting
with w’ is accepted by Ag,.
For all such paths «’, let us put w’ to a set T, where R contains all 7 such that
the EC (57, ") above is accepting for Ay, .

Now let us fix (s,a,) € Pos. Let wy,ws, ... be all finite paths that start with
w and end with s 2 & for some s’ and do not contain any transition in Pos
before the last position (we only handle the case when there is infinitely many
such paths, the finite case is similar). For any finite path @ and (last(@), a’, ') €
dam, we let w4 be the adversary of M such that:

((77',_)w _a
e 0 %)

(Ci-1w ¢, ~ ~
ZjENPTMmsi(W) (wj © @)

my (@) (d 1) =

20 Forejt, Kwiatkowska, Norman, Parker, Qu

if the denominator is positive, and arbitrarily otherwise.
Lemma 4. For every measurable set §2 of paths of M:

(0im1)w;

Pr}f{sl () =2 jen Prog, (92).

Proof. The proof follows from the construction of the probability measure over
infinite paths for an adversary of a PA [20], first proving by induction that the
result holds for basic cylinders, i.e. proving by induction on the length of a finite
path ws, of My that the lemma holds for the measurable set {w € IPaths |w =
wpnOwW' for some w’ € IPaths}. O

Next, we let 6, be the adversary such that for any finite path w':

. ou(w') if w’ does not contain any transition in Pos
6u(w') = am .
ms(s == @) otherwise

where @ is the finite path such that w’' = ©®s Ly & and & contains no transition
in Pos.
We now construct the adversary o; such that for any finite path w:

— 0i(w) = gj—1(w) if |w| < k or if no transitions (s, a,) where a has positive
reward are reachable from w under o;_1;
— and otherwise 0;(w) = 6 (w”) where w =W’ ©w” and |W'| = k.

For all w’ € Tk and finite paths w of length k, we add w ® w’ to O, whenever
w ®w' is defined.

This completes the construction of the sequence of adversaries (o;);en and
sets Or C FPaths for R C {1,...,n} and let 0o, = lim; o, 0;.

Lemma 5. The adversaries o; and oo preserve the probabilities that the w-
reqular properties in W are satisfied, and the expected rewards achieved. Moreover,
under 0., almost surely the path is initiated with a path in O for some R.

Proof. The fact that probabilities are preserved in o; follows from its construc-
tion via 6, and o;_1. That this result holds for o, follows from the fact that o
is obtained as a limit of the sequence (0;);en. To see that almost surely the path
is initiated with a path in @g, suppose for a contradiction this does not hold.
Hence, a non-zero measure of paths must contain infinitely many actions with
non-zero reward. However, for £>0, the probability of such paths in o; (where
5>%) is lower than e, yielding a contradiction. a

Finally, the proof of Proposition [5| follows by constructing the adversary & from
0s0, With the change that, after a finite path w in @p is taken, & chooses the
action a®. Note that such an action is indeed available.

Memoryless adversaries. We now prove the following proposition, which,
together with Proposition [f] proves the = direction of Proposition [3]

Quantitative Multi-Objective Verification for Probabilistic Systems 21

Proposition 6. If there is an adversary o of M such that ExpTot%, (p)=z and
M, 6 1= (N il mip) AT 3]~y ry) N[0S dead] >1), then there is a memoryless
adversary o’ ofM with the same properties.

In the remainder of this section we suppose o is an adversary of M such that
EapTotT, (p)=z and M, = (Ni[Ni]~ip) A (N2ilps]ars) A ([08deaal>1). By
the definitions of vis and Ezp Tot, to complete the proof of Proposition|[f]it is suffi-
cient to find a memoryless adversary o’ of M for which vis” (s, a, u)=vis’ (s, a, 1)
for all (s,a,p) € dpq such that p(a)>0, p;(a)>0 and \;(a)>0 for 1<j<m and
1<i<n.

Note that, for all (s, a,), whenever vis? (s, a, p)=00, we have p(a)=0, p;(a)=0
for all 1<i<m and \;(a)=0 for all 1<i<n. For reward structures related to a
reward predicate with an operator < or <, this holds because the predicate is
satisfied (and hence the expected total reward with respect to the reward struc-
ture is finite, meaning that no transition whose action has nonzero reward is
taken). For other reward structures, this follows from the fact that no EC con-
tains any transition (s’,a’, ') with o’ having nonzero reward under the reward
structure, and from Lemma

The remainder of this section is therefore concerned with constructing a
memoryless adversary ¢’ of M for which vis“/(s,a,u):vis"(&a,u) whenever
vis? (s, a, 1) <oo.

Let InfA = {(s,a,u) | vis?(s,a,u)=0c} and InfS = {s | (s,a,pu) € InfS}.
Obviously, s € InfS if and only if vis?(s) = oco.

Lemma 6. The sets of states (InfS, InfA) are unions of disjoint end-components.
Proof. The result follows from basic results of probability theory. a

Lemma 7. If (S',¢) is an EC which is mazimal with respect to the PA induced
by (InfS, InfA), then there is a memoryless adversary m g 5y such that for all
3,5 €S8 and (s,a,p) satisfying vis®(s,a,p) < 0o :

vis? (s, a, 1)
Zs/eS’,visU(s’,a/,;t')<oovisa (5/7 CL/, H)

= Priﬁi";/)({w LB 7 | w stays in S'})

Proof. We can see the lemma as a multi-objective reachability query where each
of the states to be reached is terminal. For such a problem, memoryless adver-
saries are sufficient [16]. Moreover, because the end component is left eventually,
the expected numbers of times each of its transitions will be taken are finite. O

Let ¢’ be the memoryless adversary where

vis? (s,a,p) .
O'I(QJ)(CL,‘LL) — { 27(1/ 111'8"'(8,5",;1/) if last(w) € I’I’LfS

m(sr,51y(w) otherwise

where (57, ¢’) is the unique (maximal with respect to the PA induced by (InfS, InfA))
end component such that last(w) € S'.

22 Forejt, Kwiatkowska, Norman, Parker, Qu

To complete the proof it therefore remains to show vis® (s,a, p)=vis? (s, a,)
for all (s,a,u) € 5 such that vis? (s, a, p)<oo. Suppose for a contradiction this
is not the case, and let (s, a,) be any transition such that d(, q,,) = %
is maximal and denote this maximal value by d. However, if d<1, then instead
choose (s,a, i) such that d, 4 ,) is minimal, let d equal this minimal value and
proceed similarly.

Let w = 5o —2£2 -+ Sp41 be a finite path where (s, an, n)=(s,a,) and

Pre (w)>0. We show that the case when n=0 can not occur, and if n>1, then

there exists i < n such that d = 25 G020 which together yields the desired

vis®' (si,ai,4;)
contradiction. There are two cases to consider.

Case 1. If s & InfS, then Y5 15900 — 5(g)(a, p) = 25" g thus:

157 () vis' (s)

’

vis?(s) = d-vis? (s)
=d- (zmt(s) + > vis? (s, d, u’)-u'(s))

(s",a’ 1!) ES pAp(s")>0

= init(s) +d'- (> vis? (s, d, u')~p’(s)>

(s a’ ') ES pAp(s")>0
= init(s) + (S i ar vy vis” (s’,a’,u’)~u'(s)> :
(s a’ ') €S Ap(s")>0
for some d’ > d. Suppose init(s)=1 (which is the case n=0), then it follows that:
vis” (s) =1+ > wis” (s a) (s)
(s",a" 1w)ESpmA(s")>0

which means some d 4,y is greater than d, which is a contradiction. On the
other hand, suppose init(s) = 0, it then follows that:
vis” (s) = S wis? (s a) (s)

(s',0/ W) ES pAR(s")>0

which by maximality of d implies d(y 4 ,=d for all 4i'(s)>0 and thus we can
choose i=n—1.

Case 2. If s € InfS, let (5’,4¢") be the EC that contains s and is maximal in
(InfS, InfA),

Eour = {(s',a, 1) | 8 € §' Awis® (s',a’, p)<oo}
Ein ={(s',d', 1) | vis” (s',a', p')<oo A 35" € S . i/ (s")>0} .
By definition of (g 5):

> viS”(S’,a’,u’)=d-< > viS"'(S’,a’,u’)>

(s",a" .1)EEoput (s',a’, 0")EEout

Quantitative Multi-Objective Verification for Probabilistic Systems 23

and because the flow into (5’,4") is equal to the flow out of (S’,d"), we have:

wis)+ 8 (£ e aul)) = 8 ()

(s',a’ ;")EE;,\8" €S’ (s",a’ ;')EEout

where init(S’) is 1 if S’ contains the initial state and 0 otherwise. Suppose
init(S’) = 1 (which includes the case n=0), then both the following must hold:

1+ X (> m’s"’<s’,a',u’>-u<s’/>> = X wis(sd)
(s',a’,u')EE;n \s"€S’ (s",a/ 1")EEout
1+ > d(s/7a/7u/)-vis‘7/(s’,a’,u’)-u(s”)) =d- (> visal(sﬂaﬂu’))

(s’,a’,u’)EEm(S”ES’ (s",a’ ,u')EEqut

which is not possible by the maximality of d. On the other hand, suppose
init(S’) = 0, then both the following must hold:

(> vis”/(s’,a’,u’)-u(s”)) = S wis” (s, d 1))

(s7,a",u)EEm\s"" €S’ (s”,a,p")€ Eout

> (> d(sgaum'vis”l(S’,a’,u’)-u(S”)) =d~< > viS"'(S’,a’,u’)>

(7,0 1)) EEin\s" €S’ (7,0, 11") € Eout

which necessarily means that for all (s',a’, ') € Eous we have d(y o/ ,y=d, and
we can thus pick some i<n (since there must be i where (s;, a;, 1;) € Eipn).

A.3 Computing the Sets Sy

In this section, we describe the computation of the sets Sg from page [0] and
analyse its complexity. For each R C {1,...,n}, and for every possible choice of
pairs {(L;, K;)}icr where (L;, K;) is an accepting pair of Ag,, we perform the
following procedure: repeatedly remove until a fixpoint is reached:

— states whose (i+1)th component is in L; for some i;
— transitions that lead to non-existent states;
— states that have no outgoing transitions.

In the resulting PA, we find all maximal ECs that for each K; contain a state
whose (i+1)th component is in K;.

For a fixed R and set of pairs, we can perform the procedure in time polyno-
mial in the size of the model. We need to perform this procedure O(2" - £™)-times
where / is the maximal number of accepting pairs in the automata. Because £ is
at most exponential in the size of the original (LTL) property, we obtain that the
whole procedure can be performed in time polynomial in the size of the model
and doubly exponential in the size of the (LTL) properties.

24 Forejt, Kwiatkowska, Norman, Parker, Qu

A.4 Proof of Proposition

Proposition l direction =. We begin by defining the values yE s, 810 [16],
i.e. we set y(q ap) = vzs(s)" The following lemma is then the analogue of [16],
Lemma 3.3].

Lemma 8. The vector y' is well-defined and is a feasible solution of L(M)

Proof. The proof follows similarly to [I6, Lemma 3.3] except we also need to
show:

Z(S7Q7H)ESM7S¢Sdead (a) yES a IL) - E‘TpTOti/l (p) (1)
Z(S a #)65/\/1 S#Sdead Pi (a) ygs,a n) ExpTOt.c/f\/t (pz) (2>
Z(s,a,u)eéM,syﬁsdmd A (a’) E s,a,L) EmpTOt(/T\/t()‘j) (3)

for 1<i<m and 1<j<n. Below we consider only (/1) as the other cases follow
similarly. For any infinite path w = sg —£% g3 222 o0 we let tr(w); = a;.

Now by definition we have:

BapTot5(p) = [rpagns Pria(@) - (X520p(tr(w);) dPriy)

=32020 (Locrpatns Proa(w) - p(tr(w);) dProy) rearranging
= Zoi (Zweppaths Pri(w) - p(tr(w)j1)> by construction of Pr9,
Alw|=7+1

jth trans. of w is (s,a,u)

=2 (sapesP(@) - (Z;io (E wEFPaths,|w|=j+1A PT‘”M(w)>> rearranging
= Z(s,a,y)e&p(a) : yzs,a,u) by definition of yzsya#)

and hence holds as required. a

Proposition |4}, direction <. Suppose y” is a solution of L(M) We define an
adversary o identically to [16, Theorem 3.2, (2.) = (1.)], i.e. we let o(s)(a, p) =

Y(s,a,p) 1 _ /
S a ”(57‘217#). From the results of [16] we have Yisapm) = Ysiam) for any state

reachable under o from the initial state. For the unreachable states, we have
that if y(s a0, then (s,a,) is contained in some end component (this follows

from the structure of the equations in L(M)). Thus, for such transitions, we
have p;(a)>0 only if the reward predicate containing p; is of the form [p;]<,, or
[pil<r; (and similarly for A;). This means we can distinguish between 2 cases.

— If the reward predicate containing p; is of the form [p;]s,, or [pi]>r,, then
we obtain the same equations as above.

— If the reward predicate containing p; is of the form [p;]<,, or [pi]<,,, then
we obtain the same equations as above, changing the last = to <.

Quantitative Multi-Objective Verification for Probabilistic Systems 25

A.5 Construction of adversaries

From M® to M. To construct an adversary of M from an adversary of M?
that preserves the rewards gained and probabilities of satisfying ¢; for 1<i<n,
we require the following function 6 that maps finite paths on M to finite paths
on M?. For paths of length 0, we let 8(s) = (s,q1,...,q;) where ¢; is the initial
state of Ay, for 1<i<n. Supposing # has been defined for paths of length k and w

is a finite path of length k+1, then w is of the form w’ =% s for some path w’ of

length k and we let 0(w) = 0(w') 2ty o where i is obtained from p following
the definition of the product automaton M?, and s’ is the unique state that is
chosen by p’ with nonzero probability and has s in the first component.

Now given any adversary o’ of M?, we define an adversary o of M as follows:
for any finite path w and action-distribution pair (a, u) of M let o(w)(a,n) =
a(6(w))(a, p’) where u' is obtained from pu following the definition of the product
automaton M?. It is straightforward to see that o preserves the rewards gained
and the probabilities of satisfying ¢; for 1<i<n of ¢’. Also, if ¢’ is a finite
memory adversary, then o is also a finite memory strategy.

A.6 Proof of Theorem 2

Let M; and My be PAs. Before we give the proof, we require the following
definitions and lemmas. We first define projections. For a state s = (s1, $2) of
M || Mz, the projection of s onto M;, denoted by slu,, is s;. We extend this
notation to distributions over S; xSy of M;i||Ms in the standard manner. For
any path w of M;||Ma, the projection of w onto M;, denoted wlyy,, is the path
obtained from w by projecting each state of w onto M; and removing all the
actions not in ayy, together with subsequent states. For any fair adversary o
of My||Mz, the projection of o onto M;, denoted oy, is the adversary of M;
where, for any finite path w; of M;, oy, (w)(a, p;) equals

Y AIPro(w)-o(w)(a, p) | w € Pathiy a, N wiv,=wi A pla,=pil}
Prolv; (w;)

Note that, in the lemmas below, the projections onto M;[a] are well defined since
the condition o € apy, | ar, implies that M| My = Mi[a]||Ma = M| Ms[a).

Lemma 9. Let My, M3 be PAs, o € AdviﬁiHMW aCapym, andi=1,2. If
¢i and ¢F are w-reqular properties over ay, and apq, o), then:

olm; ol ila
Priay (8 = Priic(e0) and Priy, e, (67) = Prigiel (¢2).
Furthermore, if p and pf* are reward structures over an, and apg,[q), then:

M

o ol i o ol il
Ea?pTOtMl”Mz(pi):EJ?pTOtM/:A (pi) and EprotMIHMZ(pf‘):EprotMi[E[]](pf‘).

Proof. The result is a simple extension of [23] Lemma 7.2.6, page 141]. a

26 Forejt, Kwiatkowska, Norman, Parker, Qu

Lemma 10. Let My, My be PAs, 0 € Advi'{’,iflnMQ, a C apm, and i =1,2.
If O; and @2 are qgmo-properties for M; and M;[a], then:

(a) M| Mo, = ; if and only if Mi, oL, =i
(b) My||[Ma, 0 = if and only if Mi[a],0la, () E

Proof. The proof follows from Lemma [9] above. O

Proof (of Theorem @) We consider only the ASyM proof rule, since the CIRC
rule follows similarly. Therefore suppose M; and My are PAs and ¥4, and
Vg are quantitative multi-objective properties, such that both M; =, ¥a, and
(W4,) My (¥g) hold. Now, consider an arbitrary fair adversary o of M| Ma.
Since M f=q,;, ¥4, , by definition, we have M1, 0z, =Wa, and therefore, using
the assumption a4, C anq, and applying Lemma [10f(a), we have:

My, 00m, s = M| Mo, o ET,
= Maaal,0lmyas) FPa by Lemma|10[(b) since aa C apqyfau]
= Malaal, 0lmsfaa) F Y since (W4) M (¥g)
= MMz, 0 EV¥a by Lemma [10(b) since ag € aaqy[a,]-

Now, since o was an arbitrary fair adversary of M| Ma, by definition we have
My || My ., Ye as required. 0

	Quantitative Multi-Objective Verification for Probabilistic Systems
	Introduction
	Background
	Probabilistic automata (PAs)
	Verification of PAs

	Quantitative Multi-Objective Verification
	Checking Multi-Objective Queries
	Controller Synthesis

	Quantitative Assume-Guarantee Verification
	Conclusions
	Appendix
	Proof of Propositions 1 and 2
	Proposition 1, direction .
	Proposition 1, direction .

	Proof of Proposition 3
	Proposition 3, direction .
	Proposition 3, direction .

	Computing the Sets SR
	Proof of Proposition 4
	Proposition 4, direction .
	Proposition 4, direction .

	Construction of adversaries
	From M to M.

	Proof of Theorem 2

