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Abstract

Modelling and verification of systems such as communication, network and se-
curity protocols, which exhibit both probabilistic and non-deterministic behaviour,
typically use Markov Decision Processes (MDPs). For large, complex systems, ab-
straction techniques are essential. This paper builds on a promising approach for
abstraction of MDPs based on stochastic two-player games which provides distinct
lower and upper bounds for minimum and maximum probabilistic reachability prop-
erties. Existing implementations work at the model level, limiting their scalability. In
this paper, we develop language-level abstraction techniques that build game-based
abstractions of MDPs directly from high-level descriptions in the PRISM modelling
language, using predicate abstraction and SMT solvers. For efficiency, we develop
a compositional framework for abstraction. We have applied our techniques to a
range of case studies, successfully verifying models larger than was possible with ex-
isting implementations. We are also able to demonstrate the benefits of adopting a
compositional approach.

1 Introduction

Verification of systems that exhibit both non-deterministic and probabilistic behaviour
has proved to be very useful in domains such as communication and network protocols,
security protocols, and randomised distributed algorithms. Markov Decision Processes
(MDPs) are a natural model for such systems and several tools, such as PRISM [13]
and LiQuor [4], implement efficient solution methods for these models. As in the field
of non-probabilistic model checking, however, the state space explosion problem tends to
limit the scalability of these approaches and techniques to counter this are an important
area of research.

Of particular current interest are the development of abstraction techniques for the
verification of MDPs [6, 8, 17, 21]. In this paper, we use the abstraction approach of
[17], which is based on stochastic two-player games. The key idea is to separate the
non-determinism that is introduced by the abstraction from the non-determinism present
in the original MDP. This results in abstract models that provide distinct upper and
lower bounds on minimum and maximum reachability probabilities. This is in contrast
to alternative abstraction methods [6], where only an upper bound on the maximum prob-
ability and a lower bound on the minimum probability can be extracted. Besides being a
more informative abstraction, these bounds also provide a measure of the quality of the
abstraction. This information is potentially very useful when considering refinement.

A limitation of the existing implementation in [17] is that abstractions are performed
at the model level, i.e. the full concrete model (MDP) is constructed and then reduced to
the corresponding stochastic game. In this paper, we develop techniques to construct the
abstraction directly from a high-level description of the MDP (in this case the modelling
language of PRISM) using predicate abstraction [12, 1, 5], which has been very successful
in the non-probabilistic setting.

Predicate abstraction for PRISM models was recently considered in [21], but using the
abstraction technique of [6] which represents abstractions as MDPs. Applying predicate
abstraction to the approach of [17] provides the additional benefits of the game-based
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approach but proves to be more involved. This is because the game-based abstraction
preserves additional information which is non-trivial to extract from language-level de-
scriptions of PRISM models.

We present a compositional variant of game-based abstraction of MDPs, explain how
to apply it at the level of the PRISM modelling language, and describe an implementation
of these techniques using SMT solvers and ‘on-the-fly’ abstraction. We illustrate its
applicability on several examples, successfully analysing models larger than is possible
with the implementation of [17] and improving performance on others. We also analyse
the benefits of employing a compositional approach.

The remainder of this paper is structured as follows. Section 2 provides background
material, including the PRISM modelling language and its semantics. In Section 3 we
present a compositional variant of the game-based abstraction method of [17]. In Sec-
tion 4, we give a game-based variant of PRISM called A–PRISM and describe a predicate
abstraction procedure for PRISM models that results in A–PRISM models. Sections 5
and 6 describe our implementation and present experimental results from several case
studies. We conclude with a discussion of related work and ideas for future development.

2 Background

We assume a set of typed variables V . A valuation of V is a function s mapping each
variable in V to a value in its domain. We let val(V ) denote the set of all valuations of
V and, for any s ∈ val(V ) and V ′ ⊆ V , let sdV ′ denote the restriction of s to the domain
V ′. Furthermore, if s1 ∈ val(V1), s2 ∈ val(V2) and V1 ∩ V2 = ∅, we let s1 ‖ s2 denote the
valuation of V1 ∪ V2 where (s1 ‖ s2)dV1= s1 and (s1 ‖ s2)dV2= s2. We will often refer to
valuations as states. We also assume a finite set Act of actions and an additional ‘silent’
action τ 6∈ Act .

A probability distribution over a finite set S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. Let Dist(S) denote the set of all distributions over S. For any s ∈ S,

let ηs denote the point distribution at s. If µ1 ∈ Dist(val(V1)), µ2 ∈ Dist(val(V2)) and
V1 ∩ V2 = ∅, let µ1 ‖µ2 denote the distribution over val(V1 ∪ V2) such that (µ1 ‖µ2)(s) =
µ1(sdV1) · µ2(sdV2) for all s ∈ val(V1 ∪ V2).

Definition 1 Let V, V ′ be sets of variables such that V ′ ⊆ V. A transition from V to V ′‘
is a tuple 〈s, step〉 where s ∈ val(V ) and step ⊆ (Act ∪ {τ})× Dist(val(V ′)).

A transition 〈s, step〉 consists of a source state s and non-deterministic choice step between
pairs comprising an action and a distribution over target states. We now define (standard
CSP-style) parallel composition of transitions.

Definition 2 Suppose V1, V2 ⊆ V are disjoint sets of variables, 〈s, stepi〉 is a transition
from V to Vi for i ∈ {1, 2} and A ⊆ Act . Let 〈s, step1〉 |[A]| 〈s, step2〉 denote the transition
〈s, step〉 from V to V1∪V2 where 〈a, µ〉 ∈ step if and only if one of the following conditions
holds:

1. a 6∈ A and µ = µ1 ‖ η(sdV2
) for some 〈a, µ1〉 ∈ step1;
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2. a 6∈ A and µ = η(sdV1
) ‖µ2 for some 〈a, µ2〉 ∈ step2;

3. a ∈ A and µ = µ1 ‖µ2 for some 〈a, µ1〉 ∈ step1 and 〈a, µ2〉 ∈ step2.

2.1 Controlled Markov Decision Processes

The techniques introduced in this paper are for Markov Decision Processes (MDPs).
However, in order to adopt a compositional approach, we use a variant called Controlled
Markov Decision Processes which represent components of an MDP. These are similar to
the probabilistic modules of [7].

Definition 3 A Controlled Markov Decision Process (CMDP) is a tuple C =
〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V is a finite set of typed variables;

• V ctrl and V ext partition V into controlled and external variables;

• Act is a finite set of actions;

• sinit ∈ val(V ctrl) is the initial valuation;

• Steps : val(V ) → P((Act ∪ {τ})× Dist(val(V ctrl))) is the transition function.

A CMDP specifies the initial values of its controlled variables and how these variables
are updated. These updates depend on the values of both its controlled variables and
the external variables, which are assumed to be under the control of other components
in the system. Given a valuation of all variables s ∈ val(V) the set of action-distribution
pairs Steps (s) represents a non-deterministic choice between several behaviours. If the
〈a, µ〉 is chosen, then the CMDP performs action a and then probabilistically selects a
new valuation of its controlled variables according to µ. The transition function can
equivalently be defined as the set {〈s,Steps (s)〉 | s ∈ val(V )} of transitions from V to V ctrl.

We now describe the parallel composition of CMDPs. CMDPs can only be combined
in parallel when they agree on the total set of variables and their control variables are
disjoint. We call such CMDPs composable. Let Ci = 〈V, V ctrl

i , V ext
i ,Act i, s

init
i ,Steps i〉 for

i ∈ {1, 2}.

Definition 4 The parallel composition of two composable CMDPs C1 and C2 is the CMDP
C1 |[A]| C2 = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V ctrl = V ctrl
1 ∪ V ctrl

2 ;

• V ext = (V ext
1 ∪ V ext

2 ) \ (V ctrl
1 ∪ V ctrl

2 );

• Act = Act 1 ∪Act 2;

• sinit = sinit
1 ‖ sinit

2 ;

• if s ∈ val(V ), then 〈s,Steps (s)〉 = 〈s,Steps 1(s)〉 |[A]| 〈s,Steps 2(s)〉.
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We can also define action renaming and action hiding operations for CMDPs, but for
brevity we will omit these from the presentation in this paper.

Example 2.1 Consider the CMDP Cwalk where V ctrl={val}, V ext={close}, val has do-
main {0, . . . , 4} with initial value 2 and close has the type Boolean. For any valua-
tion (v, c) ∈ val({val , close}), StepsCwalk

(v, c) = {〈τ, 1
2 · ηv−1 + 1

2 · ηv+1〉, 〈read , ηv〉} if
v ∈ {1, 2, 3} and equals {〈read , ηv〉} otherwise. The CMDP models a random walk that
can, at any time, do a read action. Let Cwalk be composed with the CMDP Cobs in which
V ctrl={close}, V ext={val}, close has initial value false, and, for (v, c) ∈ val({val , close}),
StepsCobs

(v, c) = {〈read , ηclose〉} if v 6=2 and equals {〈read , η¬close〉} otherwise. This mod-
els a CMDP which performs action read, and updates close depending on whether val is
close to the ends of the walk or not. Graphical representations of these CMDPs are given
in Figure 1(a).

Note that a CMDP for which V ext = ∅ (for example the parallel composition of CMDPs
whose controlled variables partition V) is simply an MDP. For an MDP, we are typically
interested in quantitative aspects such as probabilistic reachability. An adversary of an
MDP is a particular resolution of the non-determinism. Given an MDP, a valuation
s ∈ val(V ), a set of valuations F ⊆ val(V ) and an adversary A we use pAs (F ) to denote
the probability of reaching F from s under adversary A, defined in the usual way [16]. We
use p−s (F ) = infA pAs (F ) and p+

s (F ) = supA pAs (F ) to denote the extremal probabilities
of reaching F from s [2].

2.2 PRISM Models

We now describe the modelling language used by the PRISM [13] to describe MDPs. This
language is based on guarded commands extended with probabilistic choices.

Definition 5 A PRISM model is a tuple P = 〈var(P), sys, {M1, . . . ,Mm}〉 consisting of
a finite set of (Boolean or integer) variables var(P), a system definition sys and a finite
set modules {M1, . . . ,Mm}. The system definition sys is a process algebraic expression
containing each of the m modules exactly once. Each module M consists of:

• a finite set of local variables var(M) ⊆ var(P) such that:

- var(M) are disjoint from the local variables of all other modules;

- each variable var ∈ var(M) has the initial value init(var);

- init(M) ∈ val(var(M)) denotes the initial values of var(M);

• a finite set of commands com(M) where each command cmd ∈ com(M) includes:

- a guard guard(cmd) which is a Boolean function over val(var(P));

- an action act(cmd);

- a finite set of updates updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉} such that λi ∈
(0, 1],

∑n
i=1 λi = 1 and ui is a function from val(var(P)) to val(var(M)).
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(a) CMDPs.

module walk

val : [0..4] init 2;

[] (0<val<4) → 0.5 : (val ′=val−1) + 0.5 : (val ′=val+1);
[read ] true → 1.0 : true;

endmodule

module obs

close : bool init false;

[read ] (val 6=2) → 1.0 : (close′=true);
[read ] (val=2) → 1.0 : (close′=false);

endmodule

system walk |[read ]| obs endsystem

(b) PRISM syntax.

Figure 1: Simple example: a random walk and observer process (see Examples 2.1 and
2.2).

For each command cmd of a module M and valuation s of var(P), supposing updates(cmd)
is {〈λ1, u1〉, . . . , 〈λn, un〉}, let dist(cmd , s) denote the distribution over val(var(M)) such
that dist(cmd , s)(s′) =

∑
ui(s)=s′ λi for all s′ ∈ val(var(M)). Intuitively, dist(cmd , s)(s′)

is the probability that performing cmd in s updates the module’s local variables to s′.

Definition 6 The semantics of a module M of a PRISM model P is given by the CMDP
[[M ]] = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V = var(P), V ctrl = var(M) and V ext = var(P) \ var(M);

• Act = {act(cmd) | cmd ∈ com(M)} \ {τ};

• sinit = init(M);

• if s ∈ val(var(P)), then 〈a, µ〉 ∈ Steps (s) if and only if there exists cmd ∈ com(M)
such that guard(cmd)(s) holds and 〈act(cmd), dist(cmd , s)〉 = 〈a, µ〉.

The semantics [[P]] of a PRISM model P is defined according to its system definition
sys, using the semantics [[M ]] of each individual module M , given above, and parallel
composition of CMDPs (see Definition 4). We assume that var(P) is the disjoint union
∪m

i=1var(Mi), and hence, for the parallel composition of all modules in a PRISM model,
the set V ext is empty. In other words, the semantics of a PRISM model is given by an
MDP.

Example 2.2 Figure 1(b) presents a PRISM model of the CMDP in Example 2.1.
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3 Abstraction of CMDPs

In this section we introduce abstractions of CMDPs, using the stochastic two-player game
approach of [17] and predicates. A predicate ϕ is over variables V if all valuations of V
uniquely determine the truth value of ϕ and we write ϕ(s) to denote the value of ϕ for a
valuation s of V . Given a set of predicates Φ, let bool(Φ) be the set of Boolean variables
indexed by the predicates in Φ, i.e. the set {bϕ |ϕ ∈ Φ}. Furthermore, for abstraction
of a particular CMDP using Φ, we will require that every predicate is either over only
controlled variables or only external variables of this component. This partitions the
predicates into Φctrl and Φext.

3.1 Abstract Controlled Markov Decision Processes

In order to present a compositional variant of game-based MDP abstraction, we introduce
Abstract Controlled Markov Decision Processes (ACMDPs) which are a variant of the
class of stochastic two-player games used in [17].

Definition 7 An Abstract Controlled Markov Decision Process (ACMDP) is a tuple
A = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where:

• V is a set of typed variables;

• V ctrl and V ext partition V into controlled and external variables;

• Act is a finite set of actions;

• sinit ∈ val(V ctrl) is the initial valuation;

• Steps : val(V ) → P(P((Act ∪ {τ})× Dist(val(V ctrl)))) is the transition function.

The crucial difference between CMDPs and ACMDPs is that the transition function now
returns sets of sets of action-distribution pairs. This means ACMDPs capture two levels
of non-determinism: the choice of a set of action-distribution pairs, and then the choice
of an element in this set. This two-level non-determinism is equivalent to that of the
stochastic two-player games used in [17], where first player 1 makes a choice, then player
2 does, followed by a probabilistic choice.

We now describe the parallel composition of ACMDPs. As for CMDPs, ACMDPs can
only be combined when they agree on the total set of variables and their control variables
are disjoint. We call such ACMDPs composable. Let Ai = 〈V , V ctrl

i , V ext
i ,Act i, sinit

i ,Steps i〉
for i ∈ {1, 2}.

Definition 8 The parallel composition of two composable ACMDPs A1 and A2 is the
ACMDP A1 |[A]| A2 = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where

• V ctrl = V ctrl
1 ∪ V ctrl

2 ;

• V ext = (V ext
1 ∪ V ext

2 ) \ (V ctrl
1 ∪ V ctrl

2 );
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• Act = Act 1 ∪Act 2;

• sinit = sinit
1 ‖ sinit

2 ;

• if s ∈ val(V ), then step ∈ Steps (s) if and only if 〈s, step〉 = 〈s, step1〉 |[A]| 〈s, step2〉
for some step1 ∈ Steps 1(s) and step2 ∈ Steps 2(s).

Like the relation between CMDPs and MDPs, an ACMDP for which V ext = ∅ is equiva-
lent to a stochastic two-player game from [17]. A player 1 strategy in such an ACMDP is
a particular resolution of the first non-deterministic choice of transitions in the ACMDP,
whereas a player 2 strategy resolves the second non-deterministic choice. Given a valua-
tion s ∈ val(V ), a set of valuations F ⊆ val(V ) and strategy pair σ1, σ2, we use pσ1,σ2

s (F )
to denote the probability of reaching F from s under the strategies σ1, σ2. Like for MDPs,
we define extremal values as:

p−−s (F ) = inf
σ1

inf
σ2

pσ1,σ2
s (F ) p+−

s (F ) = sup
σ1

inf
σ2

pσ1,σ2
s (F )

p−+
s (F ) = inf

σ1

sup
σ2

pσ1,σ2
s (F ) p++

s (F ) = sup
σ1

sup
σ2

pσ1,σ2
s (F )

3.2 Predicate Abstraction for CMDPs

In this section we introduce a compositional and predicate-based extension of the ab-
straction procedure described in [17]. Like in non-probabilistic predicate abstraction [1],
we will represent an abstract state using Boolean variables bool(Φ) indexed by a set of
predicates Φ. We will denote abstractions with respect to Φ by α( · ,Φ), which we now
define for states, distributions, transitions and then CMDPs.

Definition 9 Given a set of variables V and predicates Φ over V , the abstractions of a
valuation s ∈ val(V ) and distribution µ ∈ Dist(val(V )) with respect to Φ are defined as
follows:

• α(s,Φ) is the valuation of bool(Φ) where α(s,Φ)(bϕ)=ϕ(s) for all ϕ ∈ Φ;

• α(µ,Φ) is the distribution over val(bool(Φ)) where α(µ,Φ)(s) =
∑

α(s,Φ)=s µ(s) for
all s ∈ val(bool(Φ)).

Definition 10 Given a set of variables V, subset V ′ ⊆ V and sets of predicates Φ and
Φ′ ⊆ Φ over V and V ′, the abstraction of a transition 〈s, step〉 from V to V ′ with respect to
Φ, denoted α(〈s, step〉,Φ), is given by the transition 〈α(s,Φ), {〈a, α(µ,Φ′)〉 | 〈a, µ〉 ∈ step}〉
from bool(Φ) to bool(Φ′).

We now define an abstraction function over CMDPs. For the remainder of Section 3, we
fix a CMDP C = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 and set of predicates Φ over V .

Definition 11 The abstraction of CMDP C with respect to the predicates Φ is the ACMDP
α(C,Φ) = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where:

• V = bool(Φ);
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• V ctrl = bool(Φctrl);

• V ext = bool(Φext);

• sinit = α(sinit,Φctrl);

• if s ∈ val(V ), then step ∈ Steps (s) if and only if there exists s ∈ val(V ) such that
α(〈s,Steps (s)〉,Φ) = 〈s, step〉.

Example 3.1 Consider the CMDP Cwalk of Example 2.1 and set of predicates Φ =
{(val=0), (val=4), (close)}. Applying Definition 11, we obtain the ACMDP depicted in
Figure 2(a) with V ctrl = {bval=0, bval=4} and V ext = {bclose}. The states of the ACMDP are
shown as rectangles and the initial state as a double rectangle. The first non-deterministic
choice is represented by the circles within a state, and the second non-deterministic choice
by outgoing distributions from a circle. Since the external variables have no influence,
they are omitted.

It is straightforward to show that applying Definition 11 to a CMDP for which V ext = ∅
yields an ACMDP (with V ext = ∅) equivalent to the stochastic two-player game derived
from the abstraction procedure described in [17]. Therefore the results of [17] carry over
to this setting; in particular, by analysing the ACMDP α(C,Φ) we can obtain upper and
lower bounds for both minimum and maximum reachability probabilities of the CMDP
C. More formally, given a CMDP C = 〈V, V ctrl, V ext,Act , sinit,Steps 〉, valuation s ∈ val(V)
and reachability objective F ⊆ val(V ), letting s = α(s,Φ) and F = {α(s′,Φ) | s′ ∈ F} we
have:

p−−s (F ) ≤ p−s (F ) ≤ p+−
s (F )

p−+
s (F ) ≤ p+

s (F ) ≤ p++
s (F )

3.3 Compositional Abstraction of CMDPs

The abstraction of Definition 11 can be applied to any CMDP but, as the following
example demonstrates, parallel composition and abstraction do not commute.

Example 3.2 Consider again Example 2.1 (Figure 1(a)) and set of predicates Φ =
{(val=0), (val=4), (close)}. For the abstract valuation s = (¬bval=0,¬bval=4, bclose) from
Definition 11 it follows that {〈τ, η(¬bval=0,¬bval=4)〉, 〈read , η(¬bval=0,¬bval=4)〉} and {〈read,
ηbclose 〉} are in Steps α(Cobs ,Φ)(s). Therefore, by Definition 8, it follows that {〈τ, ηs〉, 〈read,
ηs〉} is in Steps α(Cwalk ,Φ) |[read ]|α(Cobs ,Φ)(s). However, no valuation (v, c) abstracts to s
and induces this transition in α(Cwalk |[read ]| Cobs ,Φ). More precisely, if the τ transition
abstracts to a self-loop, then v=2, and if the read transition sets close to true, then v 6=2.

As this example illustrates, a compositional abstraction may introduce spurious transi-
tions, resulting in an over-approximation of the non-compositional abstraction and thus
less precise lower and upper bounds for probabilistic reachability. Although such ab-
stractions may still lead to useful results, we now introduce the notion of abstraction
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preserving CMDPs, for which compositional abstraction is precise (i.e. equivalent to the
non-compositional abstraction).

Definition 12 The CMDP C is called abstraction preserving with respect to the predi-
cates Φ if for any s, s′ ∈ val(V ) such that sdV ctrl= s′dV ctrl and α(s,Φext) = α(s′,Φext), then
α(〈s,Steps (s)〉,Φ) = α(〈s′,Steps (s′)〉,Φ).

Intuitively, this states that any valuations which agree on control variables and satisfy
the same external predicates yield the same abstract transitions. As the following two
results show, this property is both preserved under parallel composition and ensures a
precise abstraction under parallel composition.

Proposition 3.3 Let C1 and C2 be composable CMDPs and A be a set of actions. If C1

and C2 are abstraction preserving with respect to the predicates Φ, then their composition
C1 |[A]| C2 is also abstraction preserving with respect to Φ.

Proposition 3.4 Let C1 and C2 be composable CMDPs and A be a set of actions. If C1

and C2 are abstraction preserving with respect to the predicates Φ, then:

α(C1,Φ) |[A]|α(C2,Φ) = α(C1 |[A]| C2,Φ) .

From Proposition 3.3 and Proposition 3.4, we can infer that a compositional abstraction
is precise if each individual component is abstraction preserving.

Example 3.5 Consider the CMDP Cobs from Example 2.1 and set of predicates Φ =
{(val=0), (val=4), (close)}. This CMDP is not abstraction preserving with respect to
Φ. For example, the valuations s = (2, true) and s′ = (3, true) agree on the value of
close and α(s,Φext) = α(s′,Φext) = (¬bval=0 ,¬bval=4 ). However, α(〈s,Steps Cobs

(s)〉,Φ) =
〈α(s,Φ), {〈read , η¬bclose 〉}〉 while α(〈s′,Steps Cobs

(s′)〉,Φ) = 〈α(s′,Φ), {〈read , ηbclose 〉}〉. If
we extend Φ with the predicate (val=2), then Cobs is abstraction preserving.

4 Abstraction of PRISM Models

Suppose we wish to abstract a PRISM model. One possibility is to (compositionally or
non-compositionally) apply the abstraction method of Section 3 to its CMDP semantics.
In either case, the disadvantage of such a method is that the concrete CMDPs have to
be constructed, limiting the applicability of the approach. In this section we define a
language-level abstraction method to remedy the situation.

4.1 A–PRISM Models

For our language-level abstraction, we introduce the A–PRISM language, an extension
of the PRISM language with an additional element of choice.

Definition 13 An A–PRISM model is a tuple A = 〈var(A), sys, {M1, . . . ,Mm}〉. The
only difference between this and a PRISM model is the definition of the commands
com(M) for each module M . Each command cmd ∈ com(M) includes:
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• a guard guard(cmd) which is a Boolean function over val(var(A));

• a finite set of choices choices(cmd) where each chc ∈ choices(cmd) consists of an
action act(chc) and a finite set of updates updates(chc) = {〈λ1, u1〉, . . . , 〈λn, un〉}
such that λi ∈ (0, 1],

∑n
i=1 λi = 1 and ui is a function from var(A) to var(M).

For a choice chc of a command and valuation s ∈ val(var(A)), supposing updates(chc) =
{〈λ1, u1〉, . . . , 〈λn, un〉}, let dist(chc, s) denote the distribution over var(M) such that
dist(chc, s)(s′) =

∑
ui(s)=s′ λi for all s′ ∈ val(var(M)).

Definition 14 The semantics of a module M of A–PRISM model A is given by the
ACMDP [[[M ]]] = 〈V , V ctrl, V ext,Act , sinit,Steps 〉, where:

• V = var(A), V ctrl = var(M) and V ext = var(A) \ var(M);

• Act = {act(chc) | cmd ∈ com(M), chc ∈ choices(cmd)} \ {τ};

• sinit = init(M);

• if s ∈ val(var(A)), then step ∈ Steps (s) if and only if there exists a command
cmd ∈ com(M) such that step = {〈act(chc), dist(chc, s)〉 | chc ∈ choices(cmd)} and
guard(cmd)(s) holds.

The semantics [[[A]]] of an A–PRISM model A is defined according to its system definition
sys, using the semantics [[[M ]]] of each individual module M , given above, and parallel
composition of ACMDPs (see Definition 8).

The ‘first’ non-deterministic choices of [[[M ]]] are caused by overlaps between the guards
of commands, whereas the ‘second’ non-deterministic choices are induced by the choices
within commands.

Example 4.1 Figure 2 shows an A–PRISM module and its ACMDP semantics.

4.2 Language-level Abstraction of PRISM Models

In this section we introduce a language-level abstraction method for PRISM. We as-
sume a fixed PRISM model P = 〈var(P), sys, {M1, . . . ,Mm}〉 and a set of predicates Φ
which is partitioned into subsets ΦM1 , . . . ,ΦMm over the local variables of the modules
M1, . . . ,Mm. The abstraction of P is defined as the A–PRISM model:

β(P,Φ) = 〈bool(Φ), β(sys), {β(M1,Φ), . . . , β(Mm,Φ)}〉

where the system definition β(sys) is a syntactic copy of sys and each module M is replaced
by the language-level abstraction β(M,Φ), defined below.

Definition 15 The language-level abstraction of a module M of P is the A–PRISM
module β(M,Φ) where:

10
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1.0
read

1.0
read
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(a) ACMDP.

module walk

b val0 : bool init false;
b val4 : bool init false;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 1.0 : true;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 0.5 : (b val0 ′=true) + 0.5 : true;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 0.5 : true + 0.5 : (b val4 ′=true);

(b val0&!b val4 ) [read ] → 1.0 : true;
(!b val0&b val4 ) [read ] → 1.0 : true;

endmodule

(b) A–PRISM syntax.

Figure 2: Abstraction of the random walk component of Figure 1 (see Example 3.1).

• the local variables var(β(M,Φ)) are bool(ΦM );

• the initial value init(bϕ) equals ϕ(init(M)) for all bϕ ∈ bool(ΦM );

• the set of commands com(β(M,Φ)) equals {cmds | s ∈ val(var(P))} where

- guard(cmds) =
∧

ϕ∈Φ (bϕ = ϕ(s)),

- choices(cmds) = {cmd | cmd ∈ com(M), guard(cmd)(s)} with
– act(cmd) = act(cmd)
– if updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉} and u is the constant function

that returns α(u(s),ΦM ), then updates(cmd) = {〈
∑

uj=ui
λj , ui〉 | 1 ≤ i ≤

n}.

The results below illustrate that using the language-level method we obtain the same
abstraction as with the model-level abstraction of Section 3.2.

Proposition 4.2 If M is a module of P, then [[[β(M,Φ)]]] = α([[M ]],Φ).

Combining this with the results of the previous sections we have the following.

Theorem 4.3 If [[M ]] is abstract preserving with respect to Φ for each module M of P,
then [[[β(P,Φ)]]] = α([[P]],Φ).

Figure 4.2 presents an overview of the correspondence between the model-level (α) and
language-level (β) abstractions.

The remaining question is how to check abstraction preservation at the language level.
We now outline a simple check which guarantees this. It is always possible to rewrite a
single PRISM command into commands with disjoint guards such that the updates only
contain local variables. Now, if we have a PRISM module containing only commands of
this form, then to check its semantics is abstraction preserving it is sufficient to show
that if s, s′ ∈ val(var(P)) such that sdvar(M)= s′dvar(M) and α(s,Φ) = α(s′,Φ), then
guard(cmd)(s) = guard(cmd)(s′) for all commands cmd .

11



[[[β(M1) ‖ . . . ‖ β(Mm)]]]
Section 4.1

[[[β(M1)]]] ‖ . . . ‖ [[[β(Mm)]]]
Proposition 4.2

α([[M1]]) ‖ . . . ‖ α([[Mm]])
Proposition 3.3 and Proposition 3.4

ACMDP

A–PRISM

Semantics

β(M1) ‖ . . . ‖ β(Mm)

A–PRISMLanguage-level
Abstraction (β)

Model-level

α([[M1]] ‖ . . . ‖ [[Mm]])
Abstraction (α)

[[M1]] ‖ . . . ‖ [[Mm]]

[[M1 ‖ . . . ‖ Mm]]
Section 2.2

CMDP

PRISM

M1 ‖ . . . ‖ Mm

Semantics

PRISM

Figure 3: Relation between model-level and language-level abstraction functions.

5 Implementation

We have built prototype tools both for our language-level abstraction (translation from
PRISM to A–PRISM) and model checking A–PRISM models. The model checker is a
relatively simple extension of PRISM’s MTBDD model checking engine for MDPs. In
the remainder of this section we will discuss the abstraction tool.

5.1 Abstraction with SMT Solvers

The key step in the translation of a (concrete) PRISM model to an (abstract) A–PRISM
model is the construction of abstract commands, as described in Definition 15. For this,
the implementation uses ALL-SAT procedures over the theories of integer arithmetic and
fixed-size bit-vectors through the SMT solver Yices [10]. This is based on the principles
described in [5, 19] for predicate abstraction of non-probabilistic systems.

In Definition 15 each abstract command is induced by a concrete valuation and the
concrete commands enabled for this valuation. However, considering each concrete valua-
tion individually is clearly inefficient. Our implementation therefore employs an approach
which detects multiple valuations inducing identical commands. The basic idea is to in-
stead enumerate what we call overlaps, which are combinations of commands that can
be simultaneously enabled.

Formally, an overlap of module M from a PRISM model P is a set of commands
O ⊆ com(M) for which there exists s ∈ val(var(P)) such that cmd ∈ O if and only if
guard(cmd)(s). Given a module M , we first find all overlaps of M with an ALL-SAT
procedure1. Then, for a given overlap O, we find the corresponding abstract commands,
again with an ALL-SAT procedure. To optimise this approach, we remove unnecessary

1The algorithm to check if a PRISM module is abstraction preserving can be implemented similarly.
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predicates both from the guards and updates of abstract commands. For example, we do
not include any predicates in an abstract update if the corresponding concrete updates
do not influence their values.

5.2 ‘On-the-Fly’ Abstraction

During prototyping, our implementation would often find a large number of overlaps,
making the ALL-SAT procedures infeasible. However, further investigation revealed that
the majority of these overlaps were induced by unreachable concrete valuations. There-
fore, the prototype was extended with an ‘on-the-fly’ abstraction method to overcome
this problem. Like in explicit-state model checking, this is achieved by keeping a stack of
reachable abstract valuations of bool(ΦM ). Initially, this stack only contains the element
α(sinit,ΦM ). The method takes individual abstract valuations off the stack, constructs the
abstract commands for this valuation and adds any new abstract valuations that are the
target of this command to the stack. Note that, since the tool now constructs abstract
commands for each abstract state s separately, only commands that are enabled for some
valuation s such that α(s,ΦM ) = s need be considered when searching for overlaps of
these commands.

Although this ‘on-the-fly’ abstraction method does perform reachability over abstract
states, it is important to stress that, unlike [17], it does not require the construction of the
reachable concrete state space or take into account whether concrete states are reachable.

6 Experimental Results

We have tested the performance of our implementation on three case studies:2

• An extension of the sliding window protocol of [20] where channels lose messages
probabilistically instead of non-deterministically and a notion of timeout is included.
We fix the window size of the sender (2) and receiver (1), buffer size of the channels
(2) and sequence numbers (modulo 4) while varying the number of data frames
(D) in the source. We analyse ‘the maximum probability of sending D data frames
without a timeout ’ using an abstraction that removes the values of the data frames.
In the compositional approach, we abstract the sender and data channel separately
from the receiver and acknowledgement channel.

• IPv4 Zeroconf protocol [3], as described in [17], parameterised by the number of
configured hosts (N) and with 64 IP addresses. We encode the abstraction of
[17] into predicates and consider ‘the minimum probability that the host eventually
secures an IP address’. In the compositional approach, the configuring host is
abstracted separately from the channel and configured hosts.

• Israeli and Jalfon’s self-stabilisation protocol [15] for a ring with N processes. We
encode the abstraction of [9] into predicates and analyse ‘the minimum probability

2Files for the case studies are available from http://www.prismmodelchecker.org/files/qapl08/.
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Concrete Model Abstract Models
Non-compositional Compositional

Num. Num. Check Abstr. Num. Abstr. Num. Num. Check
comm. states time time Comm. time Comm. states time

Sl
id

in
g

W
in

.
(D

) 8 19 189,952 30.2 96.7 540 220 3,260 742 0.21
10 19 987,136 153 126 706 336 4,870 964 0.43
12 19 – – 155 872 473 6,545 1,186 0.69
14 19 – – 200 1,038 630 8,225 1,408 1.23
16 19 – – 237 1,204 819 9,905 1,630 1.68
18 19 – – 285 1,370 962 11,585 1,852 2.47
20 19 – – 334 1,536 1,201 13,265 2,074 3.45

Z
er

oc
on

f
(N

) 4 89 50,377 206 1,110 2,349 106 362 1,325 104
5 109 113,217 355 1,480 2,523 183 396 1,421 134
6 129 282,185 678 2,480 2,695 262 431 1,517 161
7 149 426,529 952 3,630 2,762 434 444 1,549 175
8 169 838,905 1,400 6,370 2,804 785 453 1,581 209

Is
ra

el
i&

Ja
lfo

n
(N

) 8 8 255 0.01 13.4 28 n/a n/a 22 <0.01
10 10 1,023 0.03 95.2 68 n/a n/a 42 <0.01
12 12 4,095 0.08 727 168 n/a n/a 77 <0.01
14 14 16,383 0.22 4,210 415 n/a n/a 135 <0.01
16 16 65,535 0.75 28,000 1,025 n/a n/a 231 <0.01
18 18 262,143 2.27 136,000 2,505 n/a n/a 385 <0.01
20 20 1,048,575 8.51 1,090,000 6,056 n/a n/a 627 0.02

Figure 4: Experimental results of compositional and non-compositional language-level
abstraction.

that the ring eventually stabilises’. Since each predicate refers to variables from all
components of the system, this model cannot be abstracted compositionally.

Figure 4 presents a summary of the performance for each case study. For the full concrete
model, we give the number of states, the number of PRISM commands and the time
required to perform model checking in PRISM (to ensure a fair comparison, we use
PRISM’s MTBDD engine). For the abstract model, we show the number of states, the
time to perform model checking with our prototype and, for each of the two abstraction
approaches (non-compositional and compositional), the number of A–PRISM commands
and the time required for abstraction. All times are in seconds and experiments were run
on an AMD Athlon 4600+ with 2GB RAM.

Figure 5 gives quantitative results obtained from the models: lower and upper bounds
from the abstract model and, where possible, exact answers from the concrete model.
This, together with Figure 4, confirms that the game-based abstraction works well, in all
cases providing tight lower and upper bounds from relatively small abstract models.

A key observation from the results is that we successfully managed to analyse models
(for the sliding window protocol) larger than is possible with the model-level implemen-
tation of game-based abstraction from [17]. Furthermore, for the larger Zeroconf models,
building and checking the abstraction is more efficient than checking the full model. In all
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Figure 5: Quantitative results obtained using language-level game-based abstraction.

cases, the use of ‘on-the-fly’ abstraction is essential to make the abstraction process feasi-
ble. This is because the number of potential overlaps, if reachability is not considered, is
prohibitively large. The worst performance is observed for the Israeli & Jalfon’s protocol.
For this model, the generation of abstract commands described in Section 5.1 needs to
consider every concrete state in the model (the worst possible scenario), resulting in a
large number of calls to the SMT solver and thus a very slow abstraction time.

As regards a comparison of the compositional and non-compositional approaches to
abstraction, we observe varied results. For Zeroconf models, the compositional abstrac-
tion significantly outperforms the non-compositional one, both in terms of abstraction
time and A–PRISM model size, but for the sliding window protocol the reverse is true. In
fact, this is due to the general suitability of the models to a compositional analysis. For
the sliding window protocol, each component makes no assumptions about the content
(and ordering) of incoming messages and thus, when considered in isolation, its (concrete
or abstract) state space is much larger. This makes the compositional approach perform
poorly. What is very encouraging, however, is that for models which can be decomposed
without such a blow-up (such as Zeroconf) our composition approach can exploit this
and performs much better.

7 Related Work

Practical approaches for abstracting MDPs are presented in [6, 17], the former using
MDPs themselves as abstract models and the latter using stochastic two-player games.
In [6] the tool RAPTURE is presented which performs successive abstractions and refine-
ments for checking bounds on reachability probabilities. In [17], a prototype implemen-
tation is used to construct abstract models from the corresponding MDPs and partition
of the state space and compute upper and lower bounds on reachability probabilities.

Predicate abstraction techniques [12] are prevalent in non-probabilistic verification.
In the probabilistic case, the only other work we are aware of is [21] which introduces the
PASS tool for language-level abstraction of PRISM models using the abstract approach
of [6]. Like to our approach, PASS employs an SMT solver in the abstraction procedure.
A key difference, however, is our use of stochastic two-player games rather than MDPs.
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While this will in general provide a more useful abstraction, it is also more difficult
to apply to predicate abstraction. In [21] each command of a PRISM module can be
abstracted separately. Here, as described in Section 5, we must consider overlaps between
commands in order to distinguish between the two types of non-determinism. To improve
efficiency, we also adopt a compositional approach to abstraction and use ‘on-the-fly’
techniques.

Also relevant is the ‘magnifying-lens abstraction’ (MLA) approach of [8], which com-
putes lower and upper bounds for PCTL formulae on MDPs. This is done by partitioning
the state space into regions and analysing each region separately. It is still necessary to
build the full MDP, however. Finally, approaches have also been proposed for abstracting
discrete-time Markov chains [11, 14], using interval-based extensions of Markov chains,
but no implementations or results were presented.

8 Conclusions

We have introduced a method to obtain stochastic two-player game abstractions of MDPs,
directly from high-level model descriptions in the PRISM language. Our approach is
based on a compositional reformulation of the abstraction techniques from [17] and the
use of predicate abstraction. Although a compositional abstraction is potentially an over-
approximation (compared to the non-compositional version), we provide conditions which
guarantee a precise abstraction. We have developed an implementation of our techniques
based on the SMT solver Yices and present experimental results from a range of case
studies, illustrating how our work can generate game-based abstractions for larger models
than was previously possible. We also highlight the benefits of adopting a compositional
approach.

In the future, we hope to improve the performance of our tool chain using symbolic
decision procedures [18]. We also plan to integrate this with ongoing work to develop an
abstraction-refinement loop for MDP verification. Finally, we also intend to extend the
current method to imperative programming languages.
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Appendices

A Proofs of Section 3.3

In this section we give the proofs of Proposition 3.3 and Proposition 3.4 which we first
recall.

Proposition 3.3 Let C1 and C2 be composable CMDPs and A be a set of actions. If C1

and C2 are abstraction preserving with respect to the predicates Φ, then their composition
C1 |[A]| C2 is also abstraction preserving with respect to Φ.

Proposition 3.4 Let C1 and C2 be composable CMDPs and A be a set of actions. If C1

and C2 are abstraction preserving with respect to the predicates Φ, then

α(C1,Φ) |[A]|α(C2,Φ) = α(C1 |[A]| C2,Φ) .

Before we give the proof, we require a number of preliminary lemmas. In the following,
we assume that V1 ⊆ V and V2 ⊆ V are disjoint sets of variables, and Φ1 ⊆ Φ and Φ2 ⊆ Φ
are set of predicates over V1 and V2.

Lemma A.1 If s1 and s2 are valuations of V1 and V2, then

α(s1,Φ1) ‖α(s2,Φ2) = α(s1 ‖ s2,Φ1 ∪ Φ2) .

Proof. The result follows from showing that for any predicate ϕ ∈ Φ1 ∪ Φ2:(
α(s1,Φ1) ‖α(s2,Φ2)

)
(bϕ) = α(s1 ‖ s2,Φ1 ∪ Φ2)(bϕ).

Therefore, consider any ϕ ∈ Φ1 ∪ Φ2, if ϕ ∈ Φ1, since by the hypothesis V1 ∩ V2 = ∅ it
follows by definition of ‖ on valuations that:(

α(s1,Φ1) ‖α(s2,Φ2)
)
(bϕ) = α(s1,Φ1)(bϕ)

= ϕ(s1) by Definition 9
= ϕ(s1 ‖ s2) by definition of ‖ on valuations
= α(s1 ‖ s2,Φ1 ∪ Φ2)(bϕ) by Definition 9.

An analogous result holds if ϕ ∈ Φ2 and, since these are the only cases to consider, this
completes the proof. ut

Lemma A.2 If µ1 and µ2 are distributions over valuations of V1 and V2, then

α(µ1,Φ1) ‖α(µ2,Φ2) = α(µ1 ‖µ1,Φ1 ∪ Φ2) .

Proof. We prove the lemma by showing that for any s ∈ val(bool(Φ1 ∪ Φ2)):(
α(µ1,Φ1) ‖α(µ2,Φ2)

)
(s) = α(µ1 ‖µ1,Φ1 ∪ Φ2)(s) .
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Therefore consider any s ∈ val(bool(Φ1 ∪ Φ2)), by the hypothesis Φ1 and Φ2 are predicates
over V1 and V2 and V1∩V2 = ∅, and hence we can write s as s1 ‖ s2 where s1 ∈ val(bool(Φ1))
and s2 ∈ val(bool(Φ2)). By definition of ‖ on distributions it follows that:(

α(µ1,Φ1) ‖α(µ2,Φ2)
)
(s) = α(µ1,Φ1)(s1) · α(µ2,Φ2)(s2)

=

 ∑
α(s1,Φ1)=s1

µ1(s1)

 ·

 ∑
α(s2,Φ2)=s2

µ2(s2)

 by Definition 9

=
∑

α(s1,Φ1)=s1

∑
α(s2,Φ2)=s2

µ1(s1) · µ2(s2) rearranging

=
∑

α(s1,Φ1) ‖α(s2,Φ2)=s1 ‖ s2

(µ1 ‖µ2)(s1 ‖ s2) by definition of ‖ on distributions

=
∑

α(s1 ‖ s2,Φ1∪Φ2)=s1 ‖ s2

(µ1 ‖µ2)(s1 ‖ s2) by Lemma A.1

= α(µ1 ‖µ1,Φ1 ∪ Φ2)(s1 ‖ s2) by Definition 9
= α(µ1 ‖µ1,Φ1 ∪ Φ2)(s) by construction of s1 ‖ s2.

Hence, since s ∈ val(bool(Φ1 ∪ Φ2)) was arbitrary, the lemma holds. ut

Lemma A.3 If 〈s, step1〉 and 〈s, step2〉 are transitions from V to V1 and V2 respectively,
then for any set of actions A:

α(〈s, step1〉,Φ) |[A]|α(〈s, step2〉,Φ) = α
(
〈s, step1〉 |[A]| 〈s, step2〉,Φ

)
.

Proof. Let 〈sα(‖), stepα(‖)〉 = α(〈s, step1〉,Φ) |[A]|α(〈s, step2〉,Φ) and 〈sα‖α, stepα‖α〉 =
α(〈s, step1〉 |[A]| 〈s, step2〉,Φ). Using Lemma A.1 it follows that sα‖α = sα(‖) = α(s,Φ),
and hence is remains to show that stepα‖α = stepα(‖). Therefore consider any 〈act , µ〉 ∈
stepα‖α by the hypothesis, Definition 4 and Definition 11 one of the following cases must
hold:

• act 6∈ A and µ = α(µ1 ‖ ηsdV2
,Φ) and 〈act , µ1〉 ∈ step1;

• act 6∈ A and µ = α(ηsdV1
‖µ2,Φ) and 〈act , µ2〉 ∈ step2;

• act ∈ A and µ = α(µ1 ‖µ2,Φ) and 〈act , µi〉 ∈ stepi for i ∈ {1, 2}.

On the other hand, for any 〈act , µ〉 ∈ stepα(‖), by the hypothesis, Definition 8 and
Definition 11 one of the following cases must hold:

• act 6∈ A and µ = α(µ1,Φ1) ‖ ηα(s,Φ)dbool(V2)
and 〈act , µ1〉 ∈ step1;

• act 6∈ A and µ = ηα(s,Φ)dbool(V1)
‖α(µ2,Φ2) and 〈act , µ2〉 ∈ step2;

• act ∈ A and µ = α(µ1,Φ1) ‖α(µ2,Φ2) and 〈act , µi〉 ∈ stepi for i ∈ {1, 2}.
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Now, since ηα(s,Φ)dbool(Vi)
= α(ηsdVi

,Φ) for i ∈ {1, 2}, it follows from Lemma A.2 that the
cases are equivalent, and hence stepα‖α = stepα(‖) as required. ut

We are now in a position to present the proofs of Proposition 3.3 and Proposition 3.4.

Proof of Proposition 3.3. Let Ci = 〈V, V ctrl
i , V ext

i ,Act i, s
init,Steps i〉 for i ∈ {1, 2}

and C1 |[A]| C2 = 〈V, V ctrl, V ext,Act , sinit,Steps 〉. Consider any s, s′ ∈ val(V ) such that
sdV ctrl= s′dV ctrl and α(s,Φext) = α(s′,Φext). Now by Definition 4 we have 〈s,Steps (s)〉 =
〈s,Steps 1(s)〉 |[A]| 〈s,Steps 2(s)〉 and using Lemma A.3 it follows that:

α(〈s,Steps (s)〉,Φ) = α(〈s,Steps 1(s)〉,Φ) |[A]|α(〈s,Steps 2(s)〉,Φ2) .

Similarly, we have:

α(〈s′,Steps (s′)〉,Φ) = α(〈s′,Steps 1(s
′)〉,Φ) |[A]|α(〈s′,Steps 2(s

′)〉,Φ) .

By the hypothesis C1 and C2 are abstraction preserving, therefore by construction of s
and s′ we have α(〈s,Steps i(s)〉,Φ) = α(〈s′,Steps i(s′)〉,Φ) for i ∈ {1, 2}. Combining these
results gives α(〈s,Steps (s)〉,Φ) = α(〈s′,Steps (s′)〉,Φ), and hence C1 |[A]| C2 is abstraction
preserving as required. ut

Proof of Proposition 3.4. Let Ci = 〈V, V ctrl
i , V ext

i ,Act i, s
init,Steps i〉 for i ∈ {1, 2}. By

construction the controlled variables, external variables, actions and initial valuations of
α(C1,Φ) |[A]|α(C2,Φ) and α(C1 |[A]| C2,Φ) are equal. To complete the proof it therefore
remains to show that the transition functions of the two ACMDPs are the same. To ease
notation let Steps α‖α denote the transition function of α(C1,Φ) |[A]|α(C2,Φ), Steps α(‖)
the transition function of α(C1 |[A]| C2,Φ) and α(Ci,Φ) = 〈V , V ctrl

i , V ext
i ,Act i, sinit,Steps i〉

for i ∈ {1, 2}. We split the proof into two parts by showing that for any s ∈ val(V ):

1. if step ∈ Steps α‖α(s), then step ∈ Steps α(‖)(s);

2. if step ∈ Steps α(‖)(s), then step ∈ Steps α‖α(s).

Therefore consider any s ∈ val(V ).

1. If step ∈ Steps α‖α(s), then from Definition 8 there exists step1 ∈ Steps 1(s) and
step2 ∈ Steps 2(s) such that 〈s, step〉 = 〈s, step1〉 |[A]| 〈s, step2〉. Now, since step1 ∈
Steps 1(s) and step2 ∈ Steps 2(s), it follows from Definition 11 there exist valua-
tions s1, s2 ∈ val(V ) such that α(s1,Φ) = α(s2,Φ) = s and α(〈s1,Steps 1(s1)〉,Φ) =
〈s1, step1〉 and α(〈s2,Steps 2(s2),Φ) = 〈s2, step2〉. Letting s = s1d(V \V ctrl

2 ) ‖ s2dV ctrl
2

,
we have sdV ctrl

1
= s1dV ctrl

1
, sdV ctrl

2
= s2dV ctrl

2
and α(s,Φ) = s, since C1 and C2 are abstrac-

tion preserving, we have:

α(〈s,Steps i(s)〉,Φ) = α(〈si,Steps i(si)〉,Φ) for i ∈ {1, 2},

and therefore

〈s, step〉 = α(〈s,Steps 1(s)〉,Φ) |[A]|α(〈s,Steps 2(s)〉,Φ)
= α(〈s,Steps 1(s)〉 |[A]| 〈s,Steps 2(s)〉,Φ) by Lemma A.3.
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From Definition 11 and Definition 4 it follows that step is the element of Steps α(‖)(s),
induced by s, as required.

2. If step ∈ Steps α(‖)(s), then by Definition 11 there exists s ∈ val(V ) such that
α(s,Φ) = s and

〈s, step〉 = α(〈s,Steps 1(s)〉 |[A]| 〈s,Steps 2(s)〉,Φ)
= α(〈s,Steps 1(s)〉,Φ) |[A]|α(〈s,Steps 2(s)〉,Φ) by Lemma A.3.

It then follows from Definition 8 that step ∈ Steps α‖α(s) as required.

Thus the transition functions of the two ACMDPs are the same which completes the
proof of Proposition 3.4. ut

B Proofs of Section 4.2

As in Section 4.2 we assume a fixed PRISM model P = 〈var(P), sys, {M1, . . . ,Mm}〉 and a
set of predicates Φ which is partitioned into subsets ΦM1 , . . . ,ΦMm over the local variables
of the modules M1, . . . ,Mm. Before presenting the proofs we first recall Proposition 4.2
and Theorem 4.3.

Proposition 4.2 If M is a module of P, then [[[β(M,Φ)]]] = α([[M ]],Φ).

Theorem 4.3 If [[M ]] is abstract preserving with respect to Φ for each module M of P,
then [[[β(P,Φ)]]] = α([[P]],Φ).

Proof of Proposition 4.2. By construction the controlled variables, external vari-
ables, actions and initial valuations of [[[β(M,Φ)]]] and α([[M ]],Φ) are equal. To com-
plete the proof it therefore remains to show that the transition functions of the two
ACMDPs are the same. Let Steps [[[β(M,Φ)]]] denote the transition function of [[[β(M,Φ)]]]
and Steps α([[M ]],Φ) the transition function of α([[M ]],Φ), to complete the proof we will show
that Steps [[[β(M,Φ)]]](s) = Steps α([[M ]],Φ)(s) for all s ∈ val(bool(Φ)). Therefore consider any
s ∈ val(bool(Φ)).

• If step[[[β(M,Φ)]]] ∈ Steps [[[β(M,Φ)]]](s), then by Definition 14 there exists a command
cmd of β(M,ΦM ) such that:

step[[[β(M,Φ)]]] =
{
〈act(chc), dist(chc, s)〉 | chc ∈ choices(cmd)

}
and guard(cmd)(s) holds. By Definition 15, there exists a valuation s ∈ val(var(P))
such that:

step[[[β(M,Φ)]]] =
{
〈act(cmd), dist(cmd , s)〉 | cmd ∈ com(M) ∧ guard(cmd)(s)

}
and α(s,Φ) = s.
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• On the other hand, if stepα([[M ]],Φ) ∈ Steps α([[M ]],Φ)(s), then from Definition 11 it
follows that there exists a valuation s ∈ val(var(P)) such that 〈s, stepα([[M ]],Φ)〉 =
α(〈s, stepα([[M ]],Φ)〉,Φ) where 〈s, stepα([[M ]],Φ)〉 is a transition of [[M ]]. By Definition 6
it follows that stepα([[M ]],Φ) equals

α
(
{〈act(cmd), dist(cmd , s)〉 | cmd ∈ com(M) ∧ guard(cmd)(s)} ,ΦM

)
=

{
〈act(cmd), α(dist(cmd , s),ΦM )〉 | cmd ∈ com(M) ∧ guard(cmd)(s)

}
by Definition 11.

Combining these results and since act(cmd) = act(cmd), it follows that it is sufficient to
show that

α(dist(cmd , s),ΦM ) = dist(cmd , s) for all cmd ∈ com(M) .

Therefore consider any cmd ∈ com(M) where updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉}
and s′ ∈ val(bool(ΦM )), from Definition 9 we have:

α(dist(cmd , s),ΦM )(s′)=
∑

α(s′,ΦM )=s′

dist(cmd , s)(s′)

=
∑

α(s′,ΦM )=s′

 ∑
1≤i≤n∧ui(s)=s′

λi

 by definition of dist(·, ·)

=
∑

1≤i≤n∧
α(ui(s),Φ

M )=s′

λi rearranging

=
∑

1≤i≤n∧
ui(s)=s′

λi by Definition 15

=
∑

u∈{ui | 1≤i≤n}
∧u(s)=s′

 ∑
1≤i≤n∧ui=u

λi

 rearranging

=
∑

〈λ,u〉∈updates(cmd)
∧u(s)=s′

λ by Definition 15

= dist(cmd , s)(s′) by definition of dist(·, ·).

Therefore, since s′ ∈ val(bool(ΦM )) and cmd ∈ com(M) were arbitrary, it follows that
α(dist(cmd , s),ΦM ) = dist(cmd , s) for all cmd ∈ com(M) as required. ut

Proof of Theorem 4.3. The proof is by induction on the structure of sys. In the base
case, sys = M for some module M and hence [[[β(P,Φ)]]] = [[[β(M,Φ)]]] = α([[M ]],Φ) by
Proposition 4.2 as required.

For the inductive step we have that sys = sys1 |[A]| sys2 for some process-algebraic
expressions sys1 and sys2 over the modules of P. First note that, since [[M ]] is abstract
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preserving with respect to Φ for each module M of P, applying Proposition 3.3 it follows
that [[sys1]] and [[sys2]] are abstract preserving, and hence from Proposition 3.4 we have:

α([[sys1]],Φ) |[A]|α([[sys2]],Φ) = α([[sys1]] |[A]| [[sys2]],Φ) . (1)

Now by definition of [[[·]]]:

[[[β(P,Φ)]]] = [[[β(sys1),Φ]]] |[A]| [[[β(sys2),Φ]]]
= α([[sys1]],Φ) |[A]|α([[sys2]],Φ) by induction
= α([[sys1]] |[A]| [[sys2]],Φ) by (1)
= α([[sys1 |[A]| sys2]],Φ) by definition of [[·]]
= α([[P]],Φ) by definition of P,

and hence the theorem holds by induction on the structure of sys. ut
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