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Abstract

We present an implementation of model checking for the probabilistic m-calculus, a pro-
cess algebra which supports modelling of concurrency, mobility and discrete probabilistic
behaviour. Formal verification techniques for this calculus have clear applications in sev-
eral domains, including mobile ad-hoc network protocols and random security protocols.
Despite this, no implementation of automated verification exists. Building upon the (non-
probabilistic) m-calculus model checker MMC, we first show an automated procedure for
constructing the Markov decision process representing a probabilistic m-calculus process.
This can then be verified using existing probabilistic model checkers such as PRISM. Sec-
ondly, we demonstrate how for a large class of systems a more efficient, compositional
approach can be applied, which uses our extension of MMC on each parallel component
of the system and then translates the results into a high-level model description for the
PRISM tool. The feasibility of our techniques is demonstrated through three case studies
from the m-calculus literature.

1 Introduction

The m-calculus [MPW92] is a process algebra for modelling concurrency and mobility. It is well
suited to modelling, for example, communication protocols for dynamic network topologies
and security protocols. For both classes of systems, probability is often also a key ingredient.
Mobile ad-hoc network protocols, for example, can exhibit stochastic behaviour both in terms
of communication failures and random back-off procedures. Randomised security protocols
are used, for example, to tackle anonymity or contract-signing [EGL85|]. The probabilistic 7-
calculus, which extends the original process algebra with discrete probabilistic choice, has been



proposed as a formalism to model and reason about such systems. The benefits for automatic
formal verification and tool support in this context are clear: reasoning correctly about the
behaviour of such models, particularly interactions between probabilistic and nondeterministic
behaviour, is known to be non-trivial. Furthermore, the state spaces of probabilistic models
of realistic systems have a tendency to grow extremely quickly, making manual verification
difficult or infeasible.

In this paper, we describe an implementation of probabilistic model checking for models
described in the simple probabilistic w-calculus: an extension of the w-calculus which adds
a discrete probabilistic choice operator in addition to the existing nondeterministic choice
operator. This probabilistic choice is blind, in the sense that each choice is followed immedi-
ately by a silent 7 action. This proves to be sufficiently expressive for modelling the classes
of system we are interested in, whilst simplifying the semantics, and thus verification, of the
formalism.

Our approach is to adapt and reuse existing tools for verification of mobile systems and
of probabilistic systems. We first developed an extension of the tool MMC [YRS04], a logic
programming based model checker for the m-calculus. This extension, MMCy,, can derive the
semantic model for an arbitrary (input-closed) process in the (finite-control) probabilistic 7-
calculus. The semantic model, which is given by a Markov decision process (MDP), can then
be analysed using standard tools, such as the probabilistic model checker PRISM [HKNP0G].
For efficiency reasons, however, we take a compositional approach, applying MMCy, to each
parallel component of a system, processing the results to produce a high-level description
in the modelling language of PRISM and then performing probabilistic verification. This
avoids a potential blow-up in the size of the intermediate MDP representation and allows
us to exploit the efficient symbolic model construction and analysis techniques in PRISM.
We present experimental results to illustrate the performance of our implementation on three
m-calculus case studies.

Related work

Various tools exist for automatic verification of the (non-probabilistic) m-calculus. The Mobil-
ity Workbench (MWB’99) [VM94] provides a bisimulation checker and a 7-pu-calculus model
checker. MMC (Mobility Model Checker) [YRS04], a more recently developed tool, also
supports the 7-p-calculus. The latter places particular emphasis on efficiency. and is built
using logic programming technology. ProVerif [Bla05] supports verification of the applied
m-calculus, a variant of the basic calculus. It is aimed primarily at analysis of cryptographic
protocols and is theorem-prover based. Two alternative approaches are the PIPER, system
[CRRO2], which verifies m-calculus processes augmented with type signatures based on an
extraction of sound model using types and CCS processes, and [Wu03, [SC03|] which translate
a subset of the 7-calculus to the language Promela for model checking in the SPIN tool.

A number of existing papers have proposed probabilistic extensions of the 7-calculus. The
first [HP0O] extended the asynchronous version of the calculus, which removes the output
prefix construct, meaning processes must terminate immediately after sending output. In
[CP05], a variant which is essentially the same as that used in this paper was presented and
probabilistic testing equivalences were defined to reason about randomised security protocols.
In [BP05], the probabilistic 7-calculus was used to formalise definitions of anonymity. To our
knowledge, this paper constitutes the first attempt to implement automated verification in
this area.



Also related are stochastic variants of the 7-calculus [Pri95] whose semantics are continuous-
time Markov chains. A number of associated discrete-event simulators for this formalism are
available, (e.g. SPIM, BioSpi) but no model checking tools. Both the stochastic 7-calculus
and probabilistic model checking techniques have been applied successfully to case studies in
the field of systems biology. It is hoped that the techniques proposed in this paper will also
prove to be valuable in this domain.

Structure

The remainder of this paper is structured as follows. Section [2] introduces and explains the
probabilistic m-calculus and its semantics. Sections [3| and [4] describe our extension of MMC
for evaluating these semantics and how the result of this can be processed into input for the
PRISM tool. Section [] presents experimental results and Section [6] concludes the paper.

2 The simple probabilistic m-calculus

The m-calculus is a process algebra for modelling concurrency and mobility. Based on the
process algebra CCS, a key distinguishing feature of the calculus is that it uses a single
datatype, names, for both channels and variables, with the consequence that it is possible
to communicate channel names between processes. We use a probabilistic extension of the
m-calculus called the simple probabilistic w-calculus or mgp.

Syntax

We let NV denote a countable set of names, ranged over by z, z;, y, etc. Using P, P; to range
over terms and « to denote an action, the syntax of the simple probabilistic 7-calculus is:

a =T ‘ z(y) ‘ Ty

Pou= 0| aP | TP | TieprPi |
P|IPlvzP | [x=ylP | Aly1,---,un)

where I is an index set, p; € (0,1] with ", ;p; = 1 and A(z1,...,2,) = P is a process
definition.

Intuitively, the operators of the calculus are described as follows. The inactive process,
denoted 0, can perform no actions. The action-prefixed process «.P can perform action o and
then evolve into P, where « is one of three types: z(y) inputs a name on x and stores it in ¥,
Zy outputs the name y on x; and 7 is the silent action representing internal communication.

There are two types of choice: nondeterministic ), ; P; and probabilistic ), ; pi7. ;.
The former is standard in the 7-calculus (and indeed CCS). The latter is the only new operator
in this probabilistic extension of the w-calculus. Notice that branches of the probabilistic
choice operator are always prefixed with 7 actions, indicating that .,; p;7.P; randomly
selects an index ¢ € I with probability p;, performs a 7 action and then evolves as process F;.
This restricted form of probabilistic choice is in practice sufficiently expressive but simplifies
semantics and analysis.

Parallel composition P, | P, means that processes P, and P, can either proceed asyn-
chronously or interact though matching input/output actions. The restriction vz P, localises



the scope of x in process P, i.e. x can be considered a new and unique name within P.
The match construction [x = y|]P can evolve to process P only if the names x and y are
identical. Finally, A(y1,...,yn) is a recursively defined process with a definition clause of the
form A(z1,...,2,) £ P,

An occurrence of name y in process P is bound if it is in a subexpression of P of the form
x(y) or vy; otherwise, it is free. The sets of free and bound names of process P are denoted
by fn(P) and bn(P). A process is closed if it does not contain any free names.

A substitution o is mapping from N to N. The simplest substitutions are of the form
{y/x} which map z to y and all other names to themselves. We use the notation Po to denote
the term obtained from P by substituting names according to . A substitution o satisfies
the match [z = y], denoted o = [z = y| if o(x) = o(y). Satisfaction extends to conjunctions
of matches in the obvious way.

In order to facilitate model checking of probabilistic 7w-calculus processes, we make a few
simple assumptions. Firstly, we restrict our attention to the finite-control version of the
calculus, i.e. where recursion is not permitted within parallel composition. This is necessary
to ensure that the resulting models are finite-state. Secondly, we require that all bound names
in a process are distinct both from each other and from any free names. Any process not
satisfying this condition can easily be converted to an structurally congruent one that does
(through renaming of bound names). Both of these restrictions are in fact also imposed by the
MMC m-calculus model checker, on which our work relies. Lastly, we require that m-calculus
processes are input-closed, meaning that they require no inputs from the environment.

Symbolic semantics

The operational semantics for probabilistic extensions of the m-calculus are typically expressed
in terms of MDPs or, equivalently, probabilistic automata [SLI5], which allow both proba-
bilistic and nondeterministic behaviour. In this paper, we give a symbolic presentation of
the operational semantics. This approach is in fact quite common for the m-calculus and is
particularly beneficial in the context of automatic tool support, as is the case here, or for
development of bisimulation theories.

Consider the simple process a(z).Zb which inputs a name x on channel a and then uses
x as a channel on which to output the name b. A concrete approach to the semantics can
immediately establish the first step of this process, i.e. that it inputs z on a. Subsequent
behaviour, however, is dependent on the actual input to z, and can only be determined once
the process is composed with another which sends output on a. A symbolic approach allows
the semantics of a process to include variables (e.g. x) which can be used in actions (e.g. xb).
This allows a compositional approach to be adopted: given a parallel composition of several
processes, the semantics of each can be computed in full separately, and then composed
afterwards.

The symbolic semantics of the 7y, calculus are expressed in terms of probabilistic symbolic
transition graphs (PSTGs). These are a simple probabilistic extension of the symbolic tran-
sition graphs of [HL95|, previously used for the (non-probabilistic) m-calculus [Lin94, [BN9G,
Lin00, Lin03] and for CCS [HL95]. Alternative, they can be seen as a symbolic extension of
Markov decision processes.
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Probabilistic symbolic transition graphs

Let N be a countable set of names and P be a 7y, process. The probabilistic symbolic
transition graph (PSTG) for P is a tuple (S, sinit, 7) where:

e S is the set of symbolic states, each of which is a term of the simple probabilistic
m-calculus;

® St €5, the initial state, is the term P;

o 7 C S x Cond x Act x Dist(S) is the set of probabilistic symbolic transitions and is
given by the rules in Figure

In the above,

e Cond denotes the set of all conditions on N, where a condition is a finite conjunction
of matches over N (or true);

e Act is a set of actions of four basic types: 7, z(y), Ty and Z(y), where z,y € N.

e Dist(S) denotes the set of probability distributions over the set S.

We use the notation Q Ma, {pi : Q;}: for the probabilistic symbolic transition (Q, M, a, u) €
T where u(R) = > . _gpi for any 7, term R. We abbreviate Q Me, {1:Q'}t0Q Me, Q'

A symbolic state Q encodes a set of 7, terms. More specifically, it encodes the set of
terms derivable from @ by substitutions applied to its input-bound names. For example the
symbolic state () = a(z).Zb represents the terms Q{z/x} for any name z. Of the four action
types in Act the first three types are described in the previous section. The fourth Z(y)
denotes output of a bound name and is used by the rules OPEN and CLOSE to extend the
scope of of the bound variable x.

A transition ) Mo, {pi : Q;}i represents the fact, that under any substitution o satisfying
M, the process term Qo can perform action « and then with probability p; evolve as process
Q;o. Formally, we have the following Lemma which relates the symbolic (PSTG) and concrete
(MDP) semantics of 7. This corresponds to Lemma 2.4 in [Lin00] for the (non-probabilistic)
m-calculus and can be proved in similar fashion.

Lemma 1. Let P be a 7y, term.

(a) If P Me, {pi : P;};, then for any substitution o such that o F M with bn(a) N (fn(P)U
n(o)) =0, Po 2% {p; : Pio}s.

(b) If Po 2 {p; : P,}s, then P 2% [p;: P!}, where o |= M, o = fo and P; = Plo.

3 Generating PSTGs using MMC

In this section we describe the automatic generation of the probabilistic symbolic transition
graph (PSTG) for an arbitrary process expressed in the simple probabilistic 7r-calculus. This is
achieved with an extension of the (non-probabilistic) m-calculus model checker MMC [YRS04],
which from this point on we refer to as MMCs,.



MMC, is based on only a subset of MMC'’s functionality: essentially the capability to
construct the full set of reachable states of a process. The restrictions placed on the syntax
of the calculus are the same that we impose, as described in Section 2| MMC works by (and
derives its efficiency from) exploiting the similarity between the way in which resolution-based
logic programming techniques handle variables and the way in which the symbolic semantics
of the m-calculus handle names [YRS04]. It is implemented in the logic programming system
XSB, which is a dialect of Prolog.

With m-calculus names represented by logic programming (XSB) variables, the symbolic
semantics of the calculus can be directly encoded into XSB rules. This has several benefits:
firstly it gives a clear and intuitive implementation; secondly, and more importantly, this
encoding is provably correct [YRS04].

Our implementation, MMCgy,, is a direct extension of this approach. We have a straight-

forward encoding of the syntax of 7y, into the language of XSB, with 7, names and process
identifiers represented by XSB variables and constants, respectively. We then adapt MMC’s
predicate trans to represent the symbolic semantics of 7,,. Letting function f, denote the
one-to-one mapping of 7y, conditions, actions and processes from XSB syntax to g, syntax,
then a tuple trans(P, PSteps, M) in XSB, where PSteps is a list of compound structures
psteps(pi, act, P;), represents the symbolic probabilistic transition:
R R )
The full definition of this encoding (the syntax of 7, and the function f,) are included in the
Appendix. Appendix [0l To relate this to the original version of MMC, observe that a tuple
trans (P, [psteps(l, act, Q)], M) is equivalent to the definition trans(P, act, M, Q)
in [YRS04].

Again adapting the approach of MMC, the definition of trans is a direct encoding of the
symbolic semantics of MMCj, and is shown in the Appendix. The soundness and completeness
of the encoding can be established by induction on the length of derivations of a query answer
of trans and a symbolic transition in mg,, respectively. The proof details are similar to
Theorem 2 and 3 in [YRS04].

Finally, we add an extra XSB predicate stg(P), which uses query-evaluation on trans
to derive the PSTG of process P and output it in a simple textual format. This is effectively
a depth-first traversal of the PSTG and enumeration of all states and probabilistic symbolic
transitions found. This is also included in the Appendix. In Figure[2] we show the application
of MMCg, to the simple g, process T'oss:

Toss(z) 2 z(y).(pr.yhead.0 + (1 — p)7.gtail .0)

which receives a name y on channel z and then sends out, on channel y, either head or tail,
with probability p or 1—p, respectively. In the output of the tool, lines starting #i show the
msp term for the ith state, lines starting *j and ’k enumerate transitions and the individual
edges of transitions, respectively. All bound names are given unique names (e.g. -h417) and
displayed on lines beginning >. All free names used are listed at the end of the PSTG.

4 Translating PSTGs into PRISM

The scheme described in the previous section can be used to translate an arbitrary process
described in the simple probabilistic 7-calculus into its probabilistic symbolic transition graph



def (toss(X),
pref (in(X, Y),
prob_choice([pref (tau(p), pref(out(Y, head), zero)),
pref (tau(1-p), pref(out(Y, tail), zero))1))).

| 7- stg(toss(try)).

#1: proc(toss(try))

¥1: 1 ==

#2: prob_choice([pref (tau(p),pref (out(_h417,head),
zero)) ,pref (tau(1-p) ,pref (out (_h417,tail) ,zero))])

>1: _h417

’1: -- ’1’:in(try,_h417) --> 2
*2: ==

#3: pref (out(_h417,head) ,zero)
’2: -- ’p’:tau --> 3

#4: pref (out(_h417,tail),zero)
’3: -- ’1 - p’:tau -—> 4

*3: ==

#5: zero

’4: -- ’1’:0ut(_h417,head) --> 5
*4: 4 ==

’6: -- ’1’:0ut(_h417,tail) --> 5

[1: try] [2: head] [3: taill

+++ Statistics of toss(try) +++
Nodes: 5, Edges: 5, P-Steps: 4 Free Names: 3, Bound Names: 1

Figure 2: Sample output from MMCj,

(PSTG). Since for an input-closed 7, term its PSTG and concrete semantics (MDP) coincide,
one can directly map the PSTG into PRISM to enable model checking of the g, term. For
efficiency, however, we adopt where possible a compositional approach.

More specifically, in the case where systems are of the form P = vz ...vag(Py|...|Py,)
and each P, contains no instances of the v operator, the basic idea is compute the PSTG for
each subprocess P;, as described in the previous section, map each PSTG to a PRISM module,
and then use PRISM to construct the semantics of P through the parallel composition of these
modules. At the level of PSTGs, our restricted form ensures that there are no bounded output
transitions Z(y).

The overall process structure we impose (a parallel composition of a set of processes,
optionally enclosed inside a restriction of one or more names) is actually fairly typical: systems
are generally modelled as a parallel composition of multiple components and, given our focus
on input-closed systems, it is likely that free names used as channels between processes will
be restricted in this way. Furthermore, in most cases a process can be rearranged to a
structurally congruent process which is of the correct form, by pushing v operators to the
outside. We have, for example, that Pj|vzPs and va(P;|P;) are structurally congruent under
the assumption that x does not occur in P;. The only class of processes which cannot be
renamed in this way are those which include v inside recursion. In this case, the process can
in principle generate an infinite number of new names. This can be resolved in the context
of a parallel composition with other processes, and therefore in such cases we can resort to
the basic approach: use MMCg, to construct the PSTG for the full system and import this
directly into PRISM.

There are two principal challenges regarding the translation of a set of PSTGs into PRISM:
(1) mapping the name datatype into PRISM’s basic type system; and (2) mapping binary



(CCS-style) communication of names over channels to PRISM’s multi-way (CSP-style) syn-
chronisation without value passing. In brief, (1) is handled by enumerating the set of all
free names (which is known since the system is input-closed), assigning each an (identically
named) integer constant to represent it, and (2) is handled by introducing a synchronous
action label for each required combination of process sender/receiver pair, channel and name.
Communication of names between processes is handled by including in each process with
bound input variable x, an identically named local (integer) variable used to represent a
name.

Before discussing the details of this compositional translation, we give both an overview
of the PRISM syntax and semantics and a simple example which illustrates the key aspects
of the translation.

PRISM semantics

A PRISM model comprises a set of n modules, the state of each being given by a set of
finite-ranging local variables. The global state of the model is determined by the union of
all local variables, which we denote V. The behaviour of each module is defined by a set of
guarded commands of the form:

[act] guard — p1 i ug 4+ -+ + P ¢ U

where act is an (optional) action label, guard is a predicate over V', p; € (0,1] and u; are
updates of the form:

(@) =uin) & ... & (z}, =)

where u; ; is a function over V. Intuitively, in global state s of the PRISM model, a command
in a module is available if s = guard. If a command is executed, the module will, with
probability p; update its local variables according to the update wu;, by setting the value of
each local variable z; to u; j(s). In practice (see for example Figure [3)), we omit probabilities
equal to one and update-components of the form (2’ = x).

The semantics of the whole PRISM model is the parallel composition of all modules
using the standard CSP parallel composition (i.e. modules synchronise over all their common
actions). The full semantics of the PRISM language can be found at [Pri].

Example

Consider the following parallel composition of two processes:

* Q= va(Q1] Q)
e Q1 2 vevd (37.dc.c(v).0 + 7.ad.d(w).0)

e Q2 = vb(a(x).bz.0 ‘ b(y).ge.0)

Process 1 includes two names ¢ and d, available only within the scope of )1, representing
private channels. It makes a random choice, outputting with equal probability either the name
c or d on channel a. It then attempts to receive an input on the corresponding channel (c or
d, respectively) and terminates. Process @3 is the parallel composition of two subprocesses
which communicate over a channel b. The first subprocess inputs a name on channel a (which



will be one of the two private channels from @) and re-outputs it on channel b. The second
subprocess inputs on channel b and then outputs e on whichever channel it received.

Noting that ¢ and d do not occur in Q)2 and that b does not occur in (Q1, we can rewrite
(@ as the structurally congruent process P, defined as follows:

e PE2vavbvevd (P, | Py | P3)
e P £ Lrac.c(v).0+ ir.ad.d(w).0
o P, 2 a(x).bx.0
o P3 = b(y).ye.0
The corresponding PSTGs are:

3 c(v)

. T 2 ac
* Pr: py . Py Py Pig

)

‘ dy

Py _ad, Py

a(z)

) b
* P Py Prog "> Py3

* P3: pyy ") Pyo T Py

In the above we omit probabilities that are 1 and conditions true. The PSTGs for Py, P, and
P5 have the sets of bound names {v,w}, {z} and {y}, respectively, and the total set of free
names is {a,b,c,d,e}. The resulting PRISM model is shown in Figure [3| This example will
be referred to in the full explanation of the translation given below.

Formal translation

We assume that the set of all names in the system is N, which is partitioned into disjoint
subsets: N, the set of all free names, and My 1,. .., N, the sets of input-bound names for
processes Pi, ..., P,.

For clarity, we will retain wherever possible identical notation between the 7y, terms and
the resulting PRISM language description. Thus, each of the n subprocesses (or PSTGs) P;
becomes a PRISM module P; and the (finite) set of 7, terms S; = {Q;1,...,Qix } that
constitute the states of the PSTG become a set of integer indices Q;1,Q;z2,... uniquely
representing each one.

Module P; has | NV ;| + 1 local variables: its local state (i.e. state of corresponding PSTG)
is represented by variable s;, with range 1,...,|S;|, and each bound name z;; € N, has
a corresponding variable x;; with range 0,...,|Ny|. The model also includes Ny integer
constants, one for each free name in the system, which are assigned (in some arbitrary order)
distinct, consecutive non-zero values. If the value of variable x; ; is equal to one of the these
constants, then the corresponding bound name has been assigned the appropriate free name
(by an input action). If z; ;=0, no input to the bound name has occurred yet.

In this way, the conditions which label transitions of PSTGs can be translated directly
into PRISM. For example, let condition M be (z=a)A(y=b) where z,y are bound names and

10



1. const int ¢ = 1; const int b = 2; const int ¢ = 3;
2. const int d = 4; const int e = 5;

3. module P;

4. s1:[1..6] init 1;

5. v :[0..5] init O;

6. w : [0..5] init 0;

7. J(s1=1) — 05:(sf =2)+0.5:(s] =3);
8. [a-P;_P2_c] (s1 =2) — (s] =4);

9. [a-P;_P3_d] (s1 =3) — (s{ =5);

10. [c-P3_Pi_e] (s1=4) — (s7=6); & (v =e
11. [d-P3_Pj_€] (s1=5) — (s1=6); & (v’ =e)
12. | endmodule

13. | module P2

14. s2:[1..3] init 1

15. z : [0..5] init 0;

16. [a-P;_Py_c] (s1 =1) — (s =2) & (¢' =¢);
17. l[a_P;_Py_d] (s1 =1) — (S{ =2) & (z' = d);
18. [b_P3_Ps_z] (s1 =2) — (s] =3);

19. | endmodule

20. | module Pg3

21. s3:[1..2] init 1

22. y : [0..5] init 0;

23. [b_P2_P3_z] (s3=1) — (s =2)& (v =z);
24. [c-P3_Pje](s3=2)& (y=c) — (s§=3);
25. [d_-P3_P;_e] (s3=2)& (y=d) — (s;=3);
26. | endmodule

Figure 3: PRISM code for the example

a, b free names. The translation into PRISM is identical: (z=a)A(y=b), where z,y are integer
variables and a, b integer constants.

For each symbolic probabilistic transition Q; Me, {p1:Ri1,....,pm : Rim} in the PSTG
for P;, we will include a set of corresponding PRISM commands in the module P;. We con-
sider each type of transition separately, beginning with the case where oo = 7.

Case 1 (internal action). For a transition:

M7
Qi —T> {pl : Ri,la <oy Pmot Rz,m}

we add the command:
] (5i=Qi) & M — p1:(s;=Qi1) + - + Pm:(5;=Qim);

See Figure |3|line 7 for an example. This type of transition is in fact the only one which can
actually include multiple probabilistic choices. The remaining types of transitions (input and

M . . . .
output) are always of the form Q; =% R; (this fact can be derived easily from the semantics
in Figure [1)).

Case 2 (output on free name). For a transition:
M,zy
Qi — R; where z € N
we add, for each j € {1,...,n}\{i}, the command:

[z_Pi_Pj_y] (5i=Q;) & M — (s;=R;);

11



The channel x, sender P;, receiver P; and sent name y are all encoded in the action label.
See Figure [3]lines 8 and 18 for examples of sending free and bound names y, respectively.
Case 3 (output on bound name). For a transition:

M,z
Q; —", R; where z € Noi

we add, for each a € Ny and j € {1,...,n}\{i}:

[a-Pi-Pjy] (si=Qi) & M & (x=a) — (s;=R);
This is similar to Case 2 except that we include a command for each possible value a of x.
See for example lines 24 and 25 of Figure

Case 4 (input on free name). For a transition:

Q: Male), R; where x € Ny

we add, for each y € N\N;; and j € {1,...,n}\{i}:
[2-Pi-Pjy] (si=Qi) & M — (si=R;) & ('=y);

For input actions, we add a line for each possible received name y. The assignment (2'=y)
models the update of the bound name z to y. See for example lines 16 and 17 of Figure
which match the output commands from lines 8 and 9.

Case 5 (input on bound name). For a transition:

Q; M R; where z € Np;

we add, for a € Ny, y € NM\Ni and j € {1,...,n}\{i}:
(0-Pi-Pyy] (5i=Q) & M & (2=a) — (si=Ri) & (/=y):

Case 5 combines elements of Cases 3 and 4: we add a command for each possible pairing of
channel a that x may represent and name y that may be received.

Finally, we need to remove some spurious commands added in Cases 4 and 5, since they
correspond to input actions which will never occur. More precisely, for each module P; we
identify action labels x_P;_P;_y which appear on a command in module P; but which do not
appear in any of the commands in module ;. Commands with such action labels are removed
from P;.

Correctness of the translation

By assumption the 7y, term being translated is of the form P = vzy...va(Py]...|P).
The first step in the proof is to show that any term in the derivation tree of P is of the
form vay ... vap(Qior| -+ - | Qnoyn) where, for any 1<j<n, Q; is a state of the PSTG for the
process P; and o; is a substitution from the bound names of P; to the free names of P. The
proof is by induction of the transition rules (concrete) and using Lemma
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We now show that the translation is correct by constructing an mapping between such
msp terms and the states of the PRISM model and demonstrating that, for any 7, term in
the derivation tree of P, there is a transition in the (concrete) semantics if and only if the
corresponding PRISM state has a transition. For any 7y, term vz ... vag(Qior| -+ | Qnon)
the state in the PRISM model is constructed as follows: for any 1 < j n, the values
of the variables of module P; are given by s; = Qj,%j1 = 1j1,...,Tjk, ijk; where if
o(xj;) = z € Ny, then i;; is the integer constant corresponding to the free variable z and
otherwise (i.e. o(x;;) = x;;) i;; equals 0.

Next consider any 7, term P’ in the derivation tree and transition:

IIA

Q=vr.. .ka(Qlo'l | cee |Qnan) 5 {pm : Rm}m~

From the transition rules and the conditions we have imposed on the structure of 7y, terms,

there are the following two cases to consider.

Silent actions. Qjo; = {pm : Rgnaj}m, 1<j<n,and R,, =vzx;...vep(Qio1] ... |R¥no’j |..
M, ; L

From Lemma (b), we have Q) LN {pm : R} and oj = Mj, and hence by construction in

the module P; there is a command of the form

[ (5;=0Q;) & Mj — py:(sj=R]) + -+ + pm:(s/=R%,);

Finally, since o; = M; and by definition of the mapping between 7, terms and PRISM, it
follows that the PRISM state corresponding to @) satisfies the guard (s; = Q;) & M; and that
the transition is preserved in the translation.

Communication. Q;o; ﬂ Rjoj, Qo v, Rioo;, 1 < j#1<n,a=r7and {py :
Rpn}tm = {1 : R} where R = vay...vap(Qior|...|Rjoj{y/z}|... | Rioy|...|Qnon). Now,

from Lemma (b) we have Q; M R; and @Q; My, Ry, 0j E M and 0; = M;. Con-

sidering the case when x is a free name (the case when x is bound follows similarly), since
y € N\N,; in the modules P; and P, we have the commands
[z-P1-Pjy] (;=0Q;) & M; — (s;=R;) & (2'=y);
[z_P_Pjy| (s1=Q1) & My — (s5;=Ry);

respectively. Since o; = M; and o; |= M;, it follows that the guards (s;=0@Q;) & M; and
(s:=Q1) & Mj, hold in the PRISM state encoding Q. Finally, since the encoding of R;o;{y/z}
can be obtained from the encoding of R;o; by setting the variable z to value y, it follows that
that the transition is preserved by the translation.

To complete the proof it remains to show that any transition of the PRISM model is matched
by a transition in the corresponding 7y, term. The result follows in a similarly manner to the
above using Lemma [I|(a) instead to Lemma [1f(b).

Optimisations

The translation from PSTGs to PRISM code described in this section can be optimised to
reduce the size of the generated code and the resulting model. The basic idea is to compute
an over-approximation of the possible values that each PSTG’s bound name can take and,
thus, the channels it can send out on and the values that can be sent on those channels.
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With this information, we can decrease the range of the PRISM local variables corresponding
to each bound name and remove unnecessary commands corresponding to combinations of
channel, value and processes that can never occur. The over-approximation is computed
iteratively, starting with an empty set of possible values for each bound name, and at each
step adding any name that can be received upon any channel that can be used to assign to the
bound name. The iterations required is bounded by the number of processes n. For clarity
of presentation, the example in Figure [3| has been reduced in this way.

Properties

Simple probabilistic reachability properties, such as the maximum probability of failure or the
minimum probability of message delivery, can be encoded simply through the availability or
absence of actions, as such properties are preserved in the translation to PRISM. For example,
in the case of system failure, one would modify the original m-calculus description by adding
to any 7m-calculus process term representing system failure the possibility to output on a new
distinct channel/action to allow one to identify the PRISM states representing system failure
as those states where this new action is available. Once these states have been identified,
one can construct a PCTL formula which when verified will return either the maximum or
minimum probability of reaching this set of states, that is calculate the maximum or minimum
of system failure. More general temporal properties, for example that a certain sequence of
actions is performed, could be encoded through the addition of a test/watchdog process
[GMRT03].

5 Implementation and results

Our implementation of model checking for the simple probabilistic w-calculus is fully au-
tomated and comprises three parts: (1) MMCs,, an extension of MMC (as described in
Section , which constructs the probabilistic symbolic transition graphs (PSTGs) for one
or more g, processes, (2) the translator from PSTGs to PRISM code (as described in Sec-
tion [4), implemented in Java, and (3) the probabilistic model checker PRISM [HKNP0G]
which builds the MDP from part (2) and performs verification of PCTL properties. We based
our implementation on MMC 1.0 and PRISM 3.1.

Firstly, we consider the dining cryptographers protocol (DCP) [Cha88], Chaum’s ran-
domised solution to the classic anonymity problem in which a group of N parties collectively
establish whether either one of the group or an independent party has to make a payment. If
the former, this is achieved without any of the N—1 non-paying parties knowing the identity
of the paying one. This was previously modelled in the probabilistic -calculus in [BP05]. To
check anonymity, we compute the probability of reaching each of the possible outcomes of the
protocol (from the point of view of an individual party) and establish that they are identical.

Secondly, we study the partial secret exchange (PSE) algorithm of [EGL85] for anonymous
contract signing between two parties. A probabilistic w-calculus model of PSE was given in
[CP05]. The protocol was independently analysed in PRISM [NS06], where a potential flaw
of the protocol was identified, in that one party always has an advantage over the other.
Several modifications to the protocol were proposed and shown to have lower probability this
occurring. We used a 74, model of both the original and modified versions to demonstrate
the same flaw.
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Model | N States Transitions | MTBDD | Construction time (sec.) | Model checking
nodes | PSTGs | PRISM | MDP time (sec.)

5 160,543 592,397 58,641 10.9 0.81 0.77 2.49

6 1,475,401 6,520,558 100,290 13.1 0.91 1.43 7.82
DCP | 7 13,221,889 68,121,834 154,500 15.2 1.17 2.62 21.3

8 | 116,192,457 | 683,937,352 | 221,170 18.1 1.21 4.72 55.2

9 | 1,005,495,499 | 6,657,256,911 | 463,425 19.1 1.37 19.3 732.9

3 9,321 32,052 37,008 4.86 0.75 1.60 1.89
PSE | 4 89,025 419,172 103,779 6.60 0.91 3.95 4.47

5 837,361 5,028,700 173,644 8.12 1.20 8.47 11.5

3 9,328 32,059 37,251 5.29 0.75 2.38 2.16
PSE; | 4 89,040 419,187 104,267 6.69 0.96 4.19 13.8

5 837,392 5,028,731 175,212 7.82 1.13 7.58 52.4
MCN | 2 609 950 58,430 4.33 2.49 4.8 1.17

3 3,611 5,811 216,477 5.89 3.11 224 5.24

Table 1: Performance of probabilistic model checking 7y, on three case studies

Thirdly, we constructed a g, model of mobile communication network (MCN), based on
the (non-probabilistic) m-calculus model in [OP92]. The system comprises N base stations
with fixed communication links to a mobile switching centre and a mobile station which can
be connected to each of the base stations via radio links. The mobile station roams between
the base stations. When it changes base station, the mobile communication network acts
as an intermediate party, controlling the handover protocol and exchange of communication
links between stations. This case study was analysed using MMC in [YRS04]. In both this
and the original paper, though, the occurrence of a failure during the handover protocol was
modelled as a nondeterministic choice. We are able to model this correctly, as a random
event. We check the maximum probability of a handover operation completing successfully,
within a given number of communications.

Table [1| shows the performance of our implementation on the three case studies. Experi-
ments were run on a 2 GHz PC with 512 MB RAM running Linux. For the DCP model, we
vary the number of parties N; for the PSE model, we considered two variants (the original
protocol EGL and the modified version EGL3 from [NS06]) and varied the size of contract
N. For the MCN model, we vary the number of base stations N. The table shows the size
of the resulting MDPs (number of states/transitions) and corresponding storage in PRISM
(MTBDD nodes, where 1 node uses 20 bytes). We also give the time required for each stage of
the process, i.e. constructing the PSTGs (using MMCgy,), the PRISM code (using the trans-
lator) and the MDP (using PRISM). Finally, we give the time to check a single (quantitative)
PCTL property for each using PRISM (with the MTBDD engine).

The results are very encouraging. We see that our techniques are scalable to the construc-
tion and analysis of mg, models with extremely large state spaces. Furthermore the times
required for all stages of the process are relatively small. The MCN case study, although
smallest in terms of state space, is perhaps the best example of the applicability of this im-
plementation since it fully exploits the mobile aspects of the calculus. The most obvious area
for improvement in our results concerns MTBDD sizes. This is largely due to the fact the
benefits of PRISM’s symbolic implementation are more difficult to exploit on automatically
generated PRISM code, such as is the case here. We are confident that performance can be
improved in this area.
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6 Conclusions

In this paper we have demonstrated the feasibility of implementing model checking for the
probabilistic m-calculus. The variant of the calculus (with blind probabilistic choice) to which
our techniques are applicable has proved to be expressive enough for the appropriate appli-
cation domains (probabilistic algorithms for security and dynamic communication protocols
with failures and/or randomisation) and yet amenable to analysis with extensions and adap-
tions of existing verification tools. Furthermore we have shown, through its application to
several large examples, the efficiency of the approach.

We would like to extend this work in several directions. For convenience of modelling,
we plan to add support for polyadic communication over channels. We also hope to add
support for more flexible property specifications using watchdog processes and to extend our
approach to the stochastic m-calculus. Finally, we will investigate ways to further improve the
efficiency of our implementation, in particular, with regards to the automatically generated
PRISM code. Possibilities include optimisations to reduce the resulting symbolic (MTBDD)
storage in PRISM and bisimulation minimisation techniques.
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Appendix: Full description of MMC,,

This section gives a full definition of MMC,,, as outlined earlier in Section MMCyy,
which extends the existing tool MMC [YRS04], is an implementation in XSB Prolog of the
translation from a g, process to the corresponding PSTG. Names in 7, are represented by
logic Er(ﬁramming variables in XSB. Letting X,Y,Y; range over variables, P over processes
and Py, 0, over comma-delimited lists of processes, the syntax of 7y, in the input language of
MMC,,is given by the following BNF grammar:

act == tau|in(X,Y) | out(X,Y)
P = zero

| pref(act,P)
| choice(?)
| prob_choice(pref(tau(p),P))
| par(P,P)
| nu(X,P)
| match((X =Y),P)

| proc(A(Yy, -+, Ya))
where A is the lower case form of process identifier A, with the definition clause of the form
def(A(Xy, -+ ,Xn),P).

Assuming that p is a one-to-one function p mapping XSB variables to 75, names, the follow-
ing function f, relates the MMCy), representation of the key components of 7, (conditions,
actions and processes) into their corresponding g, notation:

Conditions:
fo(true) = true
frX=Y) = [p(X)=p(Y)]
fo(LN) = f(M) A fo(N)
Actions:
fo(tau) = 7
fo(in(X,Y)) = p(X)(p(Y))
folout(X,Y)) = p(X)p(Y)
fo(out bound(X,Y)) = p(X)(p(Y))

18



Processes:

fo(zero) = 0
fo(pref(act,P)) = f,(act).f,(P)
fo(choice(P)) = > f,(Ps)
i=1
fo(prob_choice(pref(tau(p),P))) = Zpi'r.fp(Pi)
fo(par(P1,P2)) = [fo(P1)[f,(P2)
fomu(X,P)) = vp(X)f,(P)

fpmatch((X =Y),P)) = [p(X) = p(Y)]f,(P)
folproc(A(Ys, -+ Ya))) = A(p(Ys), -, p(Ya))

where:

[P1, -, Py

[pref(tau(p:),Ps), -,
pref(tau(pn),Py)]

—
P
_

pref(tau(p),P)

and A is defined with:

A(p(xl)a e 7p(Xn)) £ fl’(P)

We can now define the XSB predicate trans, representing the symbolic semantics of g,
(Figure . A tuple trans(P, PSteps, M), where PSteps is a list of compound structures
psteps(pi, act, P;), represents a symbolic probabilistic transition:

1o(®) EEED, (o 1y (P))s
The definition of trans is essentially a direct encoding of the symbolic semantics and is shown
in Figure [l The predicates prob_branch, set_par_steps and set_nu_steps are defined to
construct the list PSteps according to the operational semantics rules PROB, PAR and
RES. Other auxiliary predicates used in Figure [4] are given in Figure

Finally, we give the XSB code for the predicate stg(P), which applies query-evaluation of
trans to perform a depth-first traversal of the PSTG of process P. The states and transitions
of the PSTG are output in text format. This is shown in Figure [§] The following auxiliary
predicates are used:

e ref (P, N) — associates process P with its sequential number N.
e set_pedge num(K) — increases the counter for probabilistic transitions.

e set_edge num(K) — increases the counter for transition edges. Each branch in a proba-
bilistic transition will will be counted as one transition edge.

e print_match(M) — prints out condition M.
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e next(PSteps, Nexts) — collects as a list Nexts all the processes in probability dis-
tribution PSteps and then calls rec_go2 to invoke the depth-first traversals for these
processes one by one.

e clear — initialises some parameters, such as state/edge counters and resets related
tables.

e info(P) — prints out the statistic information of process P.
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% PRE:
trans(pref(act, P), [pstep(l, act, P)], true).

% PROB:
trans (prob_choice(ProbBranches), PSteps, true) :-
prob_branch(ProbBranches, PSteps).
prob_branch([1, [1).
prob_branch([pref (tau(FirstProb), P)|Others],PSteps) :-
prob_branch(Others, OtherPSteps), append([pstep(FirstProb, tau, P)], OtherPSteps, PSteps).

% SUM:
trans(choice(Branches), PSteps, M) :-
length(Branches, Size), upto(Size, I), ith(I, Branches, Branch), trans(Branch, PSteps, M).

% PAR:
trans(par(P, Q), PSteps, M) :-
trans(P, PPSteps, M), set_par_psteps(PPSteps, Q, PSteps, 0).
trans(par(P, Q), PSteps, M) :-
trans(Q, QPSteps, M), set_par_psteps(QPSteps, P, PSteps, 1).
set_par_psteps([l, _, [1, ).
set_par_psteps([pstep(Prob, A, P)|Others], Q, PSteps, Which) :-
set_par_psteps(Others, Q, OtherPSteps, Which),
(Which == 0 -> append([pstep(Prob, A, par(P, Q)], OtherPSteps, PSteps)).
;  append([pstep(Prob, A, par(Q, P)], OtherPSteps, PSteps))).

% RES:

trans(nu(Y, P), PSteps, M) :-
trans(P, PPSteps, M),
not_in_any(Y, PPSteps), not_in_constraint(Y, M),
set_nu_psteps(PPSteps, Y, PSteps).

set_nu_psteps([], _, [1).

set_nu_psteps([pstep(Prob, A, P1)|Others], Y, PSteps) :-
set_nu_psteps(Others, Y, OtherPSteps),
append([pstep(Prob, A, nu(Y, P1))], OtherPSteps, PSteps).

% COM:

trans(par(P, Q), [pstep(l, tau, par(P1i, Q1))], (M, N, L)) :-
trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(i, B, Q1)1, N),
complement (A, B, L).

% OPEN:

trans(nu(Y, P), [pstep(1, outbound(X, Z), P1)], M) :-
trans(P, [pstep(1l, out(X, Z), P1)], N, V),
Y == Z, Y \== X, not_in_constraint(Y, M).

% CLOSE:

trans(par(P, Q), [pstep(l, tau, nu(W, par(P1, Q1)))], (M, N, L)) :-
trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(il, B, Q1)], N),
comp_bound(A, B, W, L).

% MATCH:
trans(match((X=Y), P), PSteps, M) :- X ==Y, trans(P, PSteps, M).
trans(match((X=Y), P), PSteps, (X=Y, M)) :- X \== Y, trans(P, PSteps, M).

% IDE:
trans(proc(PN), PSteps, M) :- def(PN, P), trans(P, PSteps, M).

Figure 4: XSB code for the trans predicate encoding the 7y, symbolic semantics
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complement (out (X, W), in(Y, W), W, true) :- X == Y.
complement (out (X, W), in(Y, W), W, (X=Y)) :- X \== Y.
complement (in(X, W), out(Y, W), W, true) :- X ==
complement (in(X, W), out(Y, W), W, (X=Y)) :- X \== Y.

comp_bound (outbound (X, W), in(Y, W), W, true) :- X == Y.
comp_bound (outbound (X, W), in(Y, W), W, (X=Y)) :- X \== Y.
comp_bound(in(X, W), outbound(Y, W), W, true) :- X == Y.
comp_bound (in(X, W), outbound(Y, W), W, (X=Y)) :- X \== Y.

not_in_any(_, [1).
not_in_any(Z, [pstep(_, A, _)IL]) :- not_in(Z, A), not_in_any(Z, L).

not_in(_, tau).

not_in(Z, in(X,Y)) :- Z \== X, Z \== Y.
not_in(Z, out(X,Y)) :- Z \==X, Z \==Y.
not_in(Z, outbound(X,Y)) :- Z \== X, Z \== Y.
not_in(Z, outbound1(X,Y)) :- Z \== X, Z \== Y.

not_in_constraint(_, true).
not_in_constraint(X, (Y=Z)) :- X \==Y, X \== Z.
not_in_constraint(X, (M, N)) :- not_in_constraint(X, M), not_in_constraint(X, N).

upto(N, N) :- N > 0.
upto(N, I) :- N > 0, N1 is N - 1, upto(N1, I).

Figure 5: Auxiliary XSB code for the trans predicate

:— table go2/1.

go2(Curr) :-
ref (Curr, N),
trans(Curr, PSteps, M),
set_pedge_num(K),
format ("*"w: “w == ", [K, N]),
print_matches(M),
next (PSteps, [1),
fail.

rec_go2([]).
rec_go2([HIL]) :- go2(H); rec_go2(L).

next([], Nexts) :- rec_go2(Nexts).
next ([pstep(Prob, A, Next)|Others], Nexts) :-
ref (Next, M), set_edge_num(X),
format("’“w: -- *>“w’:"w --> “w™n", [K, Prob, A, M]),
append (Nexts, [Next], NewNexts),
next (Others, NewNexts).

stg(Proc) :-
clear,

go2(proc(Proc));
info(Proc).

Figure 6: XSB code for the stg predicate which outputs a PSTG using trans
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