Lecture 2 Discrete-time Markov Chains

Dr. Dave Parker

Department of Computer Science University of Oxford

Probabilistic Model Checking

- Formal verification and analysis of systems that exhibit probabilistic behaviour
 - e.g. randomised algorithms/protocols
 - e.g. systems with failures/unreliability
- Based on the construction and analysis of precise mathematical models
- This lecture: discrete-time Markov chains

Overview

- Probability basics
- Discrete-time Markov chains (DTMCs)
 - definition, properties, examples
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - definition, computation
- Sources/further reading: Section 10.1 of [BK08]

Probability basics

- First, need an experiment
 - The sample space Ω is the set of possible outcomes
 - An event is a subset of Ω , can form events $A \cap B$, $A \cup B$, $\Omega \setminus A$

• Examples:

- toss a coin: $\Omega = \{H,T\}$, events: "H", "T"

- toss two coins: $\Omega = \{(H,H),(H,T),(T,H),(T,T)\},$

event: "at least one H"

- toss a coin ∞-often: Ω is set of infinite sequences of H/T

event: "H in the first 3 throws"

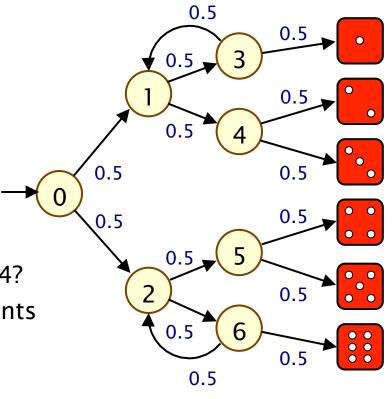
Probability is:

- Pr("H") = Pr("T") = 1/2, Pr("at least one H") = 3/4
- Pr("H in the first 3 throws") = 1/2 + 1/4 + 1/8 = 7/8

Probability example

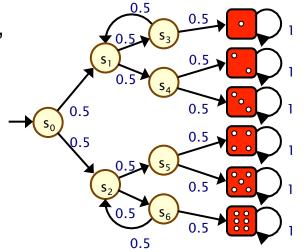
- Modelling a 6-sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen
- Is this algorithm correct?
 - e.g. probability of obtaining a 4?
 - Obtain as disjoint union of events
 - THH, TTTHH, TTTTTHH, ...
 - Pr("eventually 4")

$$= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$$



Example...

- Other properties?
 - "what is the probability of termination?"
- e.g. efficiency?
 - "what is the probability of needing more than 4 coin tosses?"
 - "on average, how many coin tosses are needed?"



- Probabilistic model checking provides a framework for these kinds of properties...
 - modelling languages
 - property specification languages
 - model checking algorithms, techniques and tools

Discrete-time Markov chains

State-transition systems augmented with probabilities

States

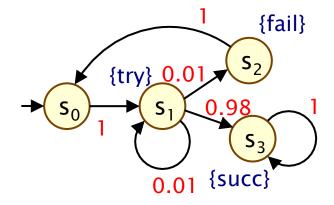
 set of states representing possible configurations of the system being modelled

Transitions

 transitions between states model evolution of system's state; occur in discrete time-steps

Probabilities

 probabilities of making transitions between states are given by discrete probability distributions

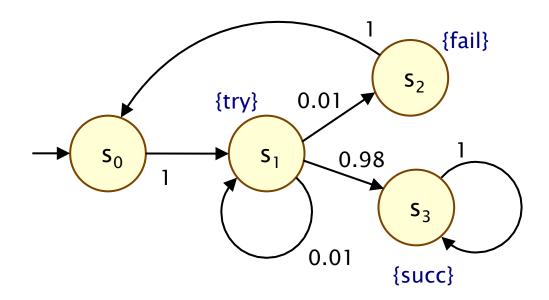


Markov property

- If the current state is known, then the future states of the system are independent of its past states
- i.e. the current state of the model contains all information that can influence the future evolution of the system
- also known as "memorylessness"

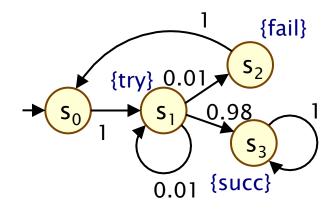
Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart



Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : S → 2^{AP} is function labelling states with atomic propositions (taken from a set AP)



Simple DTMC example

$$D = (S,s_{init},P,L)$$

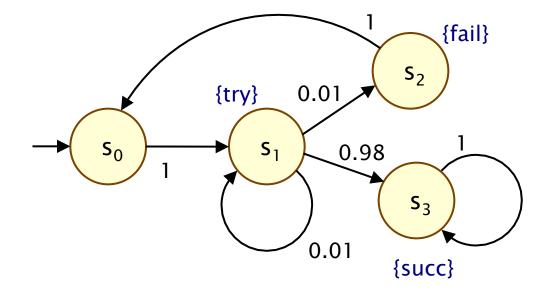
$$S = \{s_0, s_1, s_2, s_3\}$$

 $s_{init} = s_0$

AP = {try, fail, succ}

$$L(s_0) = \emptyset$$
,
 $L(s_1) = \{try\}$,
 $L(s_2) = \{fail\}$,
 $L(s_3) = \{succ\}$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Some more terminology

- P is a stochastic matrix, meaning it satisifes:
 - P(s,s') \in [0,1] for all s,s' \in S and $\Sigma_{s'\in S}$ P(s,s') = 1 for all s \in S
- A sub-stochastic matrix satisfies:
 - P(s,s') \in [0,1] for all s,s' \in S and $\Sigma_{s'\in S}$ P(s,s') \leq 1 for all s \in S
- An absorbing state is a state s for which:
 - P(s,s) = 1 and P(s,s') = 0 for all $s \neq s'$
 - the transition from s to itself is sometimes called a self-loop
- Note: Since we assume P is stochastic...
 - every state has at least one outgoing transition
 - i.e. no deadlocks (in model checking terminology)

DTMCs: An alternative definition

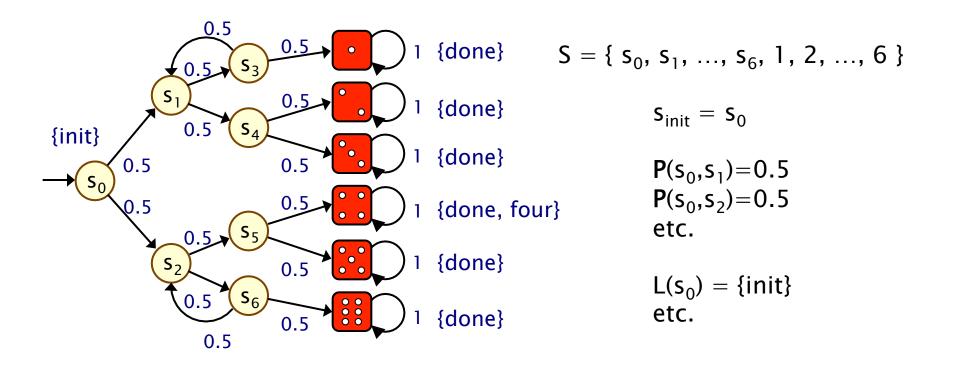
- Alternative definition... a DTMC is:
 - a family of random variables $\{X(k) \mid k=0,1,2,...\}$
 - where X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
 - which satisfies...
- The Markov property ("memorylessness")
 - $Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, ..., X(0)=s_0)$ = $Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

Other assumptions made here

- We consider time-homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k | X(k-1)=s_{k-1})$
 - otherwise: time-inhomogenous
- We will (mostly) assume that the state space S is finite
 - in general, S can be any countable set
- Initial state $s_{init} \in S$ can be generalised...
 - to an initial probability distribution s_{init} : S → [0,1]
- Transition probabilities are reals: $P(s,s') \in [0,1]$
 - but for algorithmic purposes, are assumed to be rationals

DTMC example 2 – Coins and dice

Recall Knuth/Yao's die algorithm from earlier:

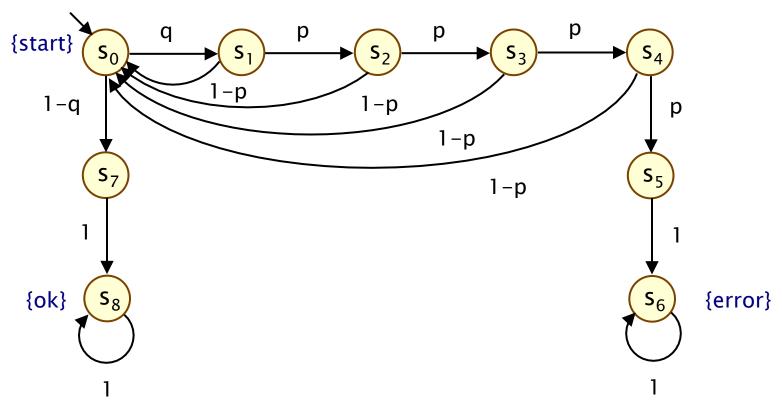


DTMC example 3 – Zeroconf

- Zeroconf = "Zero configuration networking"
 - self-configuration for local, ad-hoc networks
 - automatic configuration of unique IP for new devices
 - simple; no DHCP, DNS, ...
- Basic idea:
 - 65,024 available IP addresses (IANA-specified range)
 - new node picks address U at random
 - broadcasts "probe" messages: "Who is using U?"
 - a node already using U replies to the probe
 - in this case, protocol is restarted
 - messages may not get sent (transmission fails, host busy, ...)
 - so: nodes send multiple (n) probes, waiting after each one

DTMC for Zeroconf

- n=4 probes, m existing nodes in network
- probability of message loss: p
- probability that new address is in use: q = m/65024



Properties of DTMCs

Path-based properties

- what is the probability of observing a particular behaviour (or class of behaviours)?
- e.g. "what is the probability of throwing a 4?"

Transient properties

– probability of being in state s after t steps?

Steady-state

long-run probability of being in each state

Expectations

– e.g. "what is the average number of coin tosses required?"

DTMCs and paths

 A path in a DTMC represents an execution (i.e. one possible behaviour) of the system being modelled

Formally:

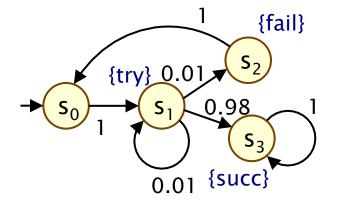
- infinite sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0$ ∀i≥0
- infinite unfolding of DTMC

Examples:

- never succeeds: $(s_0s_1s_2)^{\omega}$
- tries, waits, fails, retries, succeeds: $s_0 s_1 s_1 s_2 s_0 s_1 (s_3)^{\omega}$

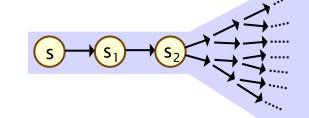
Notation:

- Path(s) = set of all infinite paths starting in state s
- also sometimes use finite (length) paths
- Path_{fin}(s) = set of all finite paths starting in state s



Paths and probabilities

- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s



- events: sets of infinite paths from s
- basic events: cylinder sets (or "cones")
- cylinder set Cyl(ω), for a finite path ω = set of infinite paths with the common finite prefix ω
- for example: Cyl(ss₁s₂)

Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if A ∈ Σ, the complement Ω \ A is in Σ
 - if A_i ∈ Σ for i ∈ \mathbb{N} , the union $\cup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F

Probability spaces

- Probability space (Ω, Σ, Pr)
 - $-\Omega$ is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - Pr : Σ → [0,1] is the probability measure: Pr(Ω) = 1 and Pr(\cup_i A_i) = Σ_i Pr(A_i) for countable disjoint A_i

Probability space - Simple example

- Sample space Ω
 - $-\Omega = \{1,2,3\}$
- Event set Σ
 - e.g. powerset of Ω
 - $-\Sigma = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
 - (closed under complement/countable union, contains \emptyset)
- Probability measure Pr
 - e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
 - $Pr({1,2}) = 1/3+1/3 = 2/3$, etc.

Probability space - Simple example 2

Sample space Ω

$$-\Omega = \mathbb{N} = \{0,1,2,3,4,...\}$$

- Event set Σ
 - e.g. Σ = { \emptyset , "odd", "even", \mathbb{N} }
 - (closed under complement/countable union, contains \emptyset)
- Probability measure Pr
 - e.g. Pr("odd") = 0.5, Pr("even") = 0.5

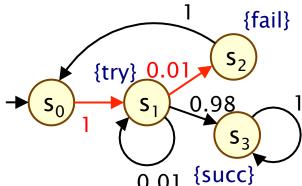
Probability space over paths

- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set Cyl(ω) = { ω ' \in Path(s) | ω is prefix of ω ' }
 - $\Sigma_{Path(s)}$ is the least σ-algebra on Path(s) containing Cyl(ω) for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - · define $Pr_s(Cyl(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Paths and probabilities - Example

Paths where sending fails immediately

$$\begin{split} &-\omega = s_0 s_1 s_2 \\ &- \text{Cyl}(\omega) = \text{all paths starting } s_0 s_1 s_2 ... \\ &- P_{s0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2) \\ &= 1 \cdot 0.01 = 0.01 \\ &- \text{Pr}_{s0}(\text{Cyl}(\omega)) = P_{s0}(\omega) = 0.01 \end{split}$$



· Paths which are eventually successful and with no failures

```
 \begin{array}{l} - \ \mbox{Cyl}(s_0s_1s_3) \ \cup \ \mbox{Cyl}(s_0s_1s_1s_3) \ \cup \ \mbox{Cyl}(s_0s_1s_1s_3) \ \cup \ \mbox{...} \\ - \ \mbox{Pr}_{s0}(\ \mbox{Cyl}(s_0s_1s_3) \ \cup \ \mbox{Cyl}(s_0s_1s_1s_3) \ \cup \ \mbox{Cyl}(s_0s_1s_1s_1s_3) \ \cup \ \mbox{...} \ ) \\ = \ \mbox{P}_{s0}(s_0s_1s_3) \ + \ \mbox{P}_{s0}(s_0s_1s_1s_3) \ + \ \mbox{...} \\ = \ \mbox{1} \cdot 0.98 \ + \ \mbox{1} \cdot 0.01 \cdot 0.98 \ + \ \mbox{1} \cdot 0.01 \cdot 0.01 \cdot 0.98 \ + \ \mbox{...} \\ = \ \mbox{0} \cdot 9898989898... \\ = \ \mbox{9} \cdot 898989898... \\ = \ \mbox{9} \cdot 898989898... \end{array}
```

Reachability

- Key property: probabilistic reachability
 - probability of a path reaching a state in some target set $T \subseteq S$
 - e.g. "probability of the algorithm terminating successfully?"
 - e.g. "probability that an error occurs during execution?"
- Dual of reachability: invariance
 - probability of remaining within some class of states
 - Pr("remain in set of states T") = 1 Pr("reach set $S \ T$ ")
 - e.g. "probability that an error never occurs"
- We will also consider other variants of reachability
 - time-bounded, constrained ("until"), ...

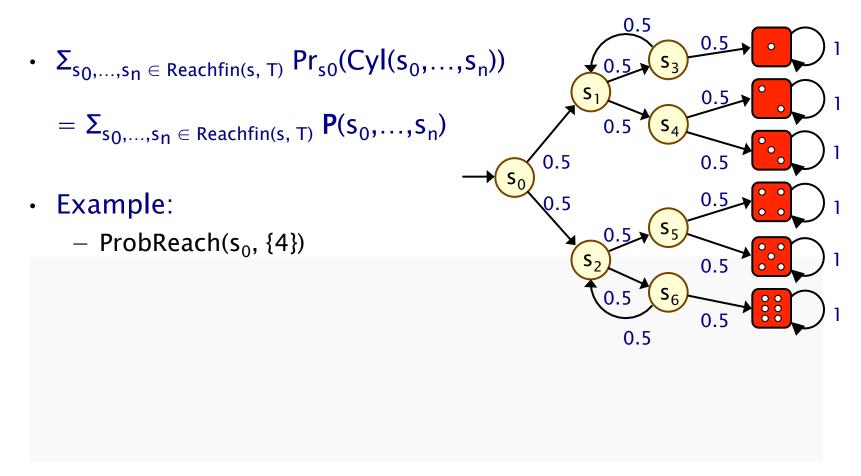
Reachability probabilities

- Formally: ProbReach(s, T) = Pr_s(Reach(s, T))
 - where Reach(s, T) = { $s_0 s_1 s_2 ... \in Path(s) | s_i in T for some i }$
- Is Reach(s, T) measurable for any T ⊆ S? Yes...
 - Reach(s, T) is the union of all basic cylinders $Cyl(s_0s_1...s_n)$ where $s_0s_1...s_n$ in Reach_{fin}(s, T)
 - Reach_{fin}(s, T) contains all finite paths $s_0s_1...s_n$ such that: $s_0=s, s_0,...,s_{n-1} \notin T, s_n \in T$
 - set of such finite paths $s_0 s_1 ... s_n$ is countable

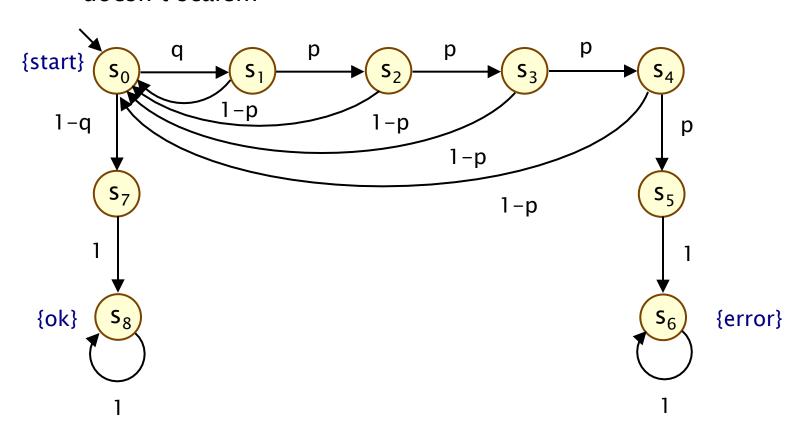
Probability

- in fact, the above is a disjoint union
- so probability obtained by simply summing...

Compute as (infinite) sum...



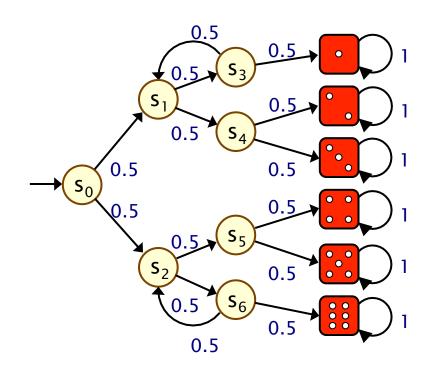
- ProbReach(s₀, {s₆}): compute as infinite sum?
 - doesn't scale...



- Alternative: derive a linear equation system
 - solve for all states simultaneously
 - i.e. compute vector <u>ProbReach</u>(T)
- Let x_s denote ProbReach(s, T)
- Solve:

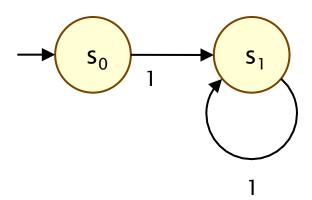
Example

Compute ProbReach(s₀, {4})



Unique solutions

- Why the need to identify states that cannot reach T?
- Consider this simple DTMC:
 - compute probability of reaching {s₀} from s₁



- linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
- multiple solutions: $(x_{s_0}, x_{s_1}) = (1,p)$ for any $p \in [0,1]$

- Another alternative: least fixed point characterisation
- Consider functions of the form:

$$- F : [0,1]^S \rightarrow [0,1]^S$$

vectors of probabilities for each state

And define:

$$- y \le y'$$
 iff $y(s) \le y'(s)$ for all s

- y is a fixed point of F if F(y) = y
- A fixed point \underline{x} of F is the least fixed point of F if $\underline{x} \le \underline{y}$ for any other fixed point \underline{y}

Least fixed point

ProbReach(T) is the least fixed point of the function F:

$$F(\underline{y})(s) = \begin{cases} 1 & \text{if } s \in T \\ \sum_{s' \in S} P(s,s') \cdot \underline{y}(s') & \text{otherwise.} \end{cases}$$

 This yields a simple iterative algorithm to approximate <u>ProbReach(T)</u>:

$$- \underline{x}^{(0)} = \underline{0} \quad \text{(i.e. } \underline{x}^{(0)}(s) = 0 \text{ for all s)}$$
$$- \underline{x}^{(n+1)} = F(\underline{x}^{(n)})$$

$$- \underline{x}^{(0)} \le \underline{x}^{(1)} \le \underline{x}^{(2)} \le \underline{x}^{(3)} \le \dots$$

$$-\operatorname{\underline{ProbReach}}(T) = \lim_{n \to \infty} \underline{x}^{(n)}$$

in practice, terminate when for example:

$$\max_{s} | \underline{x}^{(n+1)}(s) - \underline{x}^{(n)}(s)) | < \epsilon$$

for some user-defined tolerance value ε

Least fixed point

- Expressing <u>ProbReach</u> as a least fixed point...
 - corresponds to solving the linear equation system using the power method
 - other iterative methods exist (see later)
 - power method is guaranteed to converge
 - generalises non-probabilistic reachability
 - can be generalised to:
 - constrained reachability (see PCTL "until")
 - reachability for Markov decision processes
 - also yields bounded reachability probabilities...

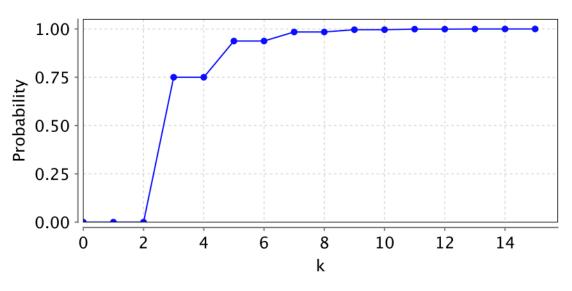
Bounded reachability probabilities

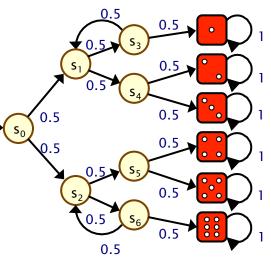
- Probability of reaching T from s within k steps
- Formally: ProbReach $\leq k(s, T) = Pr_s(Reach^{\leq k}(s, T))$ where:
 - Reach≤k(s, T) = { $s_0s_1s_2 ... \in Path(s) | s_i in T for some i ≤ k }$
- ProbReach $\leq k(T) = \underline{x}^{(k+1)}$ from the previous fixed point
 - which gives us...

$$ProbReach^{\leq k}(s, T) \ = \ \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } k = 0 \& s \notin T \\ \sum_{s' \in S} P(s,s') \cdot ProbReach^{\leq k-1}(s', T) & \text{if } k > 0 \& s \notin T \end{cases}$$

(Bounded) reachability

- ProbReach(s_0 , {1,2,3,4,5,6}) = 1
- ProbReach $\leq k$ (s₀, {1,2,3,4,5,6}) = ...





Summing up...

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formalising path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - infinite sum
 - linear equation system
 - least fixed point characterisation
 - bounded reachability

Next lecture

- Thur 12pm
- Discrete-time Markov chains...
 - transient
 - steady-state
 - long-run behaviour