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Probabilistic Model Checking

Formal verification and analysis of systems that exhibit
probabilistic behaviour

— e.g. randomised algorithms/protocols
— e.g. systems with failures/unreliability

Based on the construction and analysis of precise
mathematical models

- This lecture: discrete-time Markov chains
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Overview

- Probability basics

- Discrete-time Markov chains (DTMCs)
— definition, properties, examples

- Formalising path-based properties of DTMCs
— probability space over infinite paths

- Probabilistic reachability
— definition, computation

- Sources/further reading: Section 10.1 of [BK08]
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Probability basics

First, need an experiment
— The sample space Q is the set of possible outcomes
— An event is a subset of Q, can form events AN B, AUB,Q\ A

Examples:
— toss a coin: Q = {H,T}, events: “H”, “T”
— toss two coins: Q = {(H,H),(H,T),(T,H),(T, T},
event: “at least one H”
— toss a coin co-often: Q is set of infinite sequences of H/T
event: “H in the first 3 throws”
Probability is:

— Pr("H”) = Pr("T”) = 1/2, Pr(“at least one H”) = 3/4
— Pr(“H in the first 3 throws”) =1/2 +1/4+1/8=7/8
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Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:
— start at O, toss a coin
— upper branch when H
— lower branch when T
— repeat until value chosen

Is this algorithm correct?
— e.g. probability of obtaining a 4?
— Obtain as disjoint union of events
— THH, TTTHH, TTTTTHH, ...
— Pr(“eventually 47)
=(1/22+Q0Q/2°>+0/2) +...=1/6
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Example...

- Other properties?
— “what is the probability of termination?”
- e.g. efficiency?

— “what is the probability of needing
more than 4 coin tosses?”

— “on average, how many
coin tosses are needed?”’

- Probabilistic model checking provides a framework for
these kinds of properties...

— modelling languages
— property specification languages
— model checking algorithms, techniques and tools
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Discrete-time Markov chains

State-transition systems augmented with probabilities

States

— set of states representing possible configurations of the
system being modelled

- Transitions

— transitions between states model
evolution of system’s state;
occur in discrete time-steps

Probabilities

— probabilities of making transitions
between states are given by
discrete probability distributions
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Markov property

If the current state is known, then the future states of the
system are independent of its past states

i.e. the current state of the model contains all information
that can influence the future evolution of the system

also known as “memorylessness”
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Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart

{succ}
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Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s
— Sis a set of states (“state space”)
— Siie € Sis the initial state
— P:S xS —[0,1]is the transition probability matrix

P,L) where:

inity

where 2., P(s,s’) = 1 foralls €S

— L:S — 2AP s function labelling states with atomic propositions
(taken from a set AP)
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Simple DTMC example

AP = {try, fail, succ}

D = (5,Sinit,P,L) L(sg)=9
L(S ={tr ’
S ={sq, S1, Sz, S3!} L(s;;=§faT|}},
Sinit = S0 L(s3)={succ}
0 1 0 0 ]
o 0 0.01 0.01 0.98
110 0 0
0 0 0 1
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Some more terminology

P is a stochastic matrix, meaning it satisifes:
— P(s,s’) € [0,1] forall s,s’ € Sand ... P(s,s’) =1 foralls € S

- A sub-stochastic matrix satisfies:
— P(s,s’) € [0,1] forall s,s’ € Sand ... P(s,s’) < 1 foralls €S

- An absorbing state is a state s for which:
— P(s,s) = 1 and P(s,s’) = O for all s#5s’
— the transition from s to itself is sometimes called a self-loop

Note: Since we assume P is stochastic...
— every state has at least one outgoing transition
— i.e. no deadlocks (in model checking terminology)
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DTMCs: An alternative definition

- Alternative definition... a DTMC is:

— a family of random variables { X(k) | k=0,1,2,... }
— where X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k
— which satisfies...

- The Markov property (“memorylessness”)
— Pr( X(k)=s, | X(k-T)=s,_{, ... , X(0)=s,)
= Pr( X(k)=s, | X(k-1)=s,_;)
— for a given current state, future states are independent of past

- This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)
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Other assumptions made here

- We consider time-homogenous DTMCs

— transition probabilities are independent of time
— P(s,_¢,5,) = Pr(X(k)=s, | X(k-T)=s,_;)

— otherwise: time-inhomogenous

- We will (mostly) assume that the state space S is finite
— in general, S can be any countable set

Initial state s,;, € S can be generalised...

— to an initial probability distribution s, : S — [0,1]

- Transition probabilities are reals: P(s,s’) € [0,1]
— but for algorithmic purposes, are assumed to be rationals
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DTMC example 2 - Coins and dice

- Recall Knuth/Yao’s die algorithm from earlier:

{done}
{done}

{done, four}

{done}

{done}
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{done} S=1{5sg Syy ..y Sgy 1, 2, ..

Sinit = S0
P(sg,57)=0.5
etc.

L(sy) = {init}
etc.
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DTMC example 3 - Zeroconf

Zeroconf = “Zero configuration networking”
— self-configuration for local, ad-hoc networks
— automatic configuration of unique IP for new devices
— simple; no DHCP, DNS, ...

Basic idea:
— 65,024 available IP addresses (IANA-specified range)
— new hode picks address U at random
— broadcasts “probe” messages: “Who is using U?’

— a node already using U replies to the probe
— in this case, protocol is restarted

— messages may not get sent (transmission fails, host busy, ...)
— s0: nodes send multiple (n) probes, waiting after each one
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DTMC for Zeroconf

— n=4 probes, m existing nodes in network

— probability of message loss: p
— probability that new address is in use: g = m/65024
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Properties of DTMCs

Path-based properties

— what is the probability of observing a particular behaviour (or
class of behaviours)?

— e.g. “what is the probability of throwing a 4?”

- Transient properties
— probability of being in state s after t steps?

- Steady-state
— long-run probability of being in each state

Expectations
— e.g. “what is the average number of coin tosses required?”
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DTMCs and paths

- A path in a DTMC represents an execution (i.e. one possible
behaviour) of the system being modelled

Formally:

— infinite sequence of states s,5;5,5;...
such that P(s;,s;,;) > 0 Vi=0

— infinite unfolding of DTMC
Examples:

— hever succeeds: (5,5;5,)"

— tries, waits, fails, retries, succeeds: $,5;5;5,505;(S3)®
Notation:

— Path(s) = set of all infinite paths starting in state s

— also sometimes use finite (length) paths

— Pathy, (s) = set of all finite paths starting in state s
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Paths and probabilities

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: -
. . /\—} .....

— sample space: Path(s) = set of all __,__* .....
infinite paths from a state s (}E»:.'I.’I.'

— events: sets of infinite paths from s ST

— basic events: cylinder sets (or “cones”)

— cylinder set Cyl(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: Cyl(ss;s,)

DP/Probabilistic Model Checking, Michaelmas 2011 20



Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X

Elements of X are called measurable sets or events

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F
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Probability spaces

Probability space (Q, Z, Pr)
— Q is the sample space

— > is the set of events: o-algebra on Q

— Pr: 2 - [0,1] is the probability measure:
Pr(QQ) = 1 and Pr(u, A)) = £, Pr(A) for countable disjoint A,
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Probability space - Simple example

- Sample space Q
- Q=1{1,2,3}

- Event set 2

— e.g. powerset of Q

-2 ={0, {1} {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }

— (closed under complement/countable union, contains &)

- Probability measure Pr

— e.g. Pr(1) = Pr(2) = Pr(3) = 1/3
— Pr1,2) =1/3+1/3 = 2/3, etc.

DP/Probabilistic Model Checking, Michaelmas 2011
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Probability space - Simple example 2

- Sample space Q
- 0=N={0,1,2,3,4,... }

- Event set 2
—e.g.2={0, “odd”, “even”, N }

— (closed under complement/countable union, contains &)

- Probability measure Pr
— e.dg. Pr(fodd”) = 0.5, Pr(*even”) = 0.5

DP/Probabilistic Model Checking, Michaelmas 2011
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Probability space over paths

- Sample space QO = Path(s)
set of infinite paths with initial state s
Event set 2, s
— the cylinder set Cyl(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpathes) IS the least o-algebra on Path(s) containing Cyl(w) for
all finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P(w) = P(s,s;) - ... - P(s,_,5,) otherwise
. define Pr(Cyl(w)) = P,(w) for all finite paths w
— Pr, extends uniquely to a probability measure Prg:3,. 6 —[0,1]

- See [KSK76] for further details
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Paths and probabilities - Example

Paths where sending fails immediately
— W = 545;5;
— Cyl(w) = all paths starting s,s;s,...
— P.o(w) = P(sg,s;) - P(s;,S5)
=1 -0.01 =0.01T
— Pr,(Cyl(w)) = P,o(w) = 0.01

Paths which are eventually successful and with no failures
— Cyl(sgs;53) U Cyl(s45;5:53) U Cyl(syS;5,5:53) U ...
— Pro( Cyl(sgs;s3) U Cyl(s45:5:53) U Cyl(s¢S;5;5:S3) U ...)
= P.o(505153) + P.o(S0S15153) + P,o(S¢S:5151S3) + ...
=1-0.98 +1-:0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99
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Reachability

Key property: probabilistic reachability
— probability of a path reaching a state in some target set T < S
— e.g. “probability of the algorithm terminating successfully?”
— e.g. “probability that an error occurs during execution?”

Dual of reachability: invariance
— probability of remaining within some class of states
— Pr(“remain in set of states T") = 1 - Pr(“reach set S\T")
— e.g. “probability that an error never occurs”

- We will also consider other variants of reachability
— time-bounded, constrained (“until”), ...
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Reachability probabilities

Formally: ProbReach(s, T) = Pr,(Reach(s, T))
— where Reach(s, T) = { 5455, ... € Path(s) | s;in T for some i }

Is Reach(s, T) measurable forany T = S ? Yes...

— Reach(s, T) is the union of all basic cylinders
Cyl(sgs;-..S,) where s,s,...s, in Reachg, (s, T)

— Reachy, (s, T) contains all finite paths s;s,...s, such that:
So=S, Sgs--sSp-1 € 1, S, €T

— set of such finite paths s;s,...s,, is countable

Probability
— in fact, the above is a disjoint union
— so probability obtained by simply summing...

DP/Probabilistic Model Checking, Michaelmas 2011 28



Computing reachability probabilities

- Compute as (infinite) sum...

- Example:
— ProbReach(s,, {4})
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Computing reachability probabilities

- ProbReach(s,, {s¢}) : compute as infinite sum?
— doesn’t scale...
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Computing reachability probabilities

- Alternative: derive a linear equation system
— solve for all states simultaneously
— i.e. compute vector ProbReach(T)

- Let x, denote ProbReach(s, T)

- Solve: :

] ifseT

X, = - 0 if T is not reachable from s
EP(s,s') - X, Otherwise

s'eS

DP/Probabilistic Model Checking, Michaelmas 2011
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Example

- Compute ProbReach(s,, {4})

DP/Probabilistic Model Checking, Michaelmas 2011
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Unique solutions

- Why the need to identify states that cannot reach T?

- Consider this simple DTMC:
— compute probability of reaching {s,} from s,

Qg

1

— linear equation system: x,, = 1, X;, = X,

— multiple solutions: (x;,, X,,) = (1,p) for any p € [0,1]

sQ?

DP/Probabilistic Model Checking, Michaelmas 2011
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Computing reachability probabilities

- Another alternative: least fixed point characterisation

. Consider functions of the form:

— F:[0,1]5 = [0,1]° T —
\ vectors of

. probabilities :
- And define: . for each state

ey iy <y foralls
- vis afixed pointof Fif Fly) =y

- A fixed point x of F is the least fixed point of F if x <y for
any other fixed pointy

DP/Probabilistic Model Checking, Michaelmas 2011
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Least fixed point

ProbReach(T) is the least fixed point of the function F:

1 ifseT
EP(S’S')' Y(') otherwise.

s'eS

F(y)(s) =

- This yields a simple iterative algorithm to approximate
ProbReach(T):

— x® =0 (i.e. x©O(s) = 0 for all s) in practice, terminate
when for example:
— x(+1) = F(xM)

max, | X(+1(s) - x(s)) | < €
— x0 < x(M < x@ < xB® < .

_ ProbReach(T) = lim.__ x®™ for some user-defined
n—oo ==
tolerance value ¢
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Least fixed point

- Expressing ProbReach as a least fixed point...

— corresponds to solving the linear equation system
using the power method

. other iterative methods exist (see later)
. power method is guaranteed to converge

— generalises non-probabilistic reachability

— can be generalised to:
. constrained reachability (see PCTL “until”)
. reachability for Markov decision processes

— also yields bounded reachability probabilities...

DP/Probabilistic Model Checking, Michaelmas 2011

36



Bounded reachability probabilities

- Probability of reaching T from s within k steps

- Formally: ProbReach=K(s, T) = Pr,(Reach=k(s, T)) where:
— Reach=K(s, T) = { s45;S, ... € Path(s) | s;in T for some i<k }

- ProbReach=K(T) = x&+1 from the previous fixed point
— which gives us...

] ifseT
ProbReach¥(s, T) = 0 ifk=0&s¢&T
EP(s,s')- ProbReach™'(s', T) ifk>0&s¢&T
[ S'ES
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(Bounded) reachability

- ProbReach(s,, {1,2,3,4,5,6}) =1

- ProbReach=k (s,, {1,2,3,4,5,6}) = ...

o0 *—@ *—0

Probability
o
(9]
o

0.00 ' }—=
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Summing up...

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

Formalising path-based properties of DTMCs
— probability space over infinite paths

Probabilistic reachability
— infinite sum
— linear equation system
— least fixed point characterisation
— bounded reachability
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Next lecture

- Thur 12pm

- Discrete-time Markov chains...
— transient

— steady-state
— long-run behaviour
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