
ESSLLI’10 Summer School, Copenhagen, August 2010

Probabilistic timed automata

Part 5

3

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

(probabilistic automata)

CTMDPs/IMCs

Probabilistic timed
automata (PTAs)

4

Recall – MDPs

•  Markov decision processes (MDPs)
−  mix probability and nondeterminism
−  in a state, there is a nondeterministic choice between multiple

probability distributions over successor states

•  Adversaries
−  resolve nondeterministic choices based on history so far
−  properties quantify over all possible adversaries
−  e.g. P<0.1[◊err] – maximum probability of an error is < 0.1

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

5

Real-world protocol examples

•  Systems with probability, nondeterminism and real-time
−  e.g. communication protocols, randomised security protocols

•  Randomised back-off schemes
−  Ethernet, WiFi (802.11), Zigbee (802.15.4)

•  Random choice of waiting time
−  Bluetooth device discovery phase
−  Root contention in IEEE 1394 FireWire

•  Random choice over a set of possible addresses
−  IPv4 dynamic configuration (link-local addressing)

•  Random choice of a destination
−  Crowds anonymity, gossip-based routing

6

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

7

Time, clocks and clock valuations

•  Dense time domain: non-negative reals ℝ≥0
−  from this point on, we will abbreviate ℝ≥0 to ℝ

•  Finite set of clocks x ∈ X
−  variables taking values from time domain ℝ

−  increase at the same rate as real time

•  A clock valuation is a tuple v ∈ ℝX. Some notation:
−  v(x) : value of clock x in v
−  v+t : time increment of t for v

•  (v+t)(x) = v(x)+t ∀x ∈ X
−  v[Y:=0] : clock reset of clocks Y ⊆ X in v

•  v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise

8

Zones (clock constraints)

•  Zones (clock constraints) over clocks X, denoted Zones(X):

−  where x, y ∈ X and c, d ∈ ℕ
−  used for both syntax of PTAs/properties and algorithms

•  Can derive:
−  logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)
−  strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

•  Some useful classes of zones:
−  closed: no strict inequalities (e.g. x>5)
−  diagonal-free: no comparisons between clocks (e.g. x≤y)
−  convex: define a convex set, efficient to manipulate

 ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ

9

Zones and clock valuations

•  A clock valuation v satisfies a zone ζ, written v ⊲ ζ if
−  ζ resolves to true after substituting each clock x with v(x)

•  The semantics of a zone ζ ∈ Zones(X) is the set of clock
valuations which satisfy it (i.e. a subset of ℝX)
−  NB: multiple zones may have the same semantics
−  e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)

•  We consider only canonical zones
−  i.e. zones for which the constraints are as ‘tight’ as possible
−  O(|X|3) algorithm to compute (unique) canonical zone [Dil89]
−  allows us to use syntax for zones interchangeably with

semantic, set-theoretic operations

10

c-equivalence and c-closure

•  Clock valuations v and v’ are c-equivalent if for any x,y∈X
−  either v(x) = v’(x), or v(x) > c and v’(x) > c
−  either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c

•  The c-closure of the zone ζ, denoted close(ζ,c), equals
−  the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’,

 there exists v ∈ ζ and v and v’ are c-equivalent
−  c-closure ignores all constraints which are greater than c
−  for a given c, there are only a finite number of c-closed zones

11

Operations on zones – Set theoretic

•  Intersection of two zones: ζ1∩ζ2

(0,0) x

y

(0,0) x

y
ζ1∩ζ2

ζ1

ζ2

12

Operations on zones – Set theoretic

•  Union of two zones: ζ1∪ζ2

(0,0) x

y

(0,0) x

y ζ1∪ζ2

ζ1

ζ2

13

Operations on zones – Set theoretic

•  Difference of two zones: ζ1\ζ2

(0,0) x

y

ζ1

ζ2

(0,0) x

y
ζ1\ζ2

14

Operations on zones – Clock resets

•  ζ[Y:=0] = { v[Y:=0] | v⊲ζ }
−  clock valuations obtained from ζ by resetting the clocks in Y

(0,0) x

y

ζ [y:=0]

(0,0) x

y

ζ

15

Operations on zones – Clock resets

•  [Y:=0]ζ = { v | v[Y:=0] ⊲ζ }
−  clock valuations which are in ζ if the clocks in Y are reset

[y:=0]ζ

(0,0) x

y

(0,0) x

y

ζ

16

Operations on zones: Projections

•  Forwards diagonal projection
•  ↗ ζ = { v | ∃t≥0 . (v-t)⊲ζ }

−  contains the clock valuations that can be  
reached from ζ by letting time pass

(0,0) x

y

ζ

x

y

↗ ζ

17

Operations on zones: Projections

•  Backwards diagonal projection
•  ↙ζ’ ζ = { v | ∃t≥0 . ((v+t)⊲ζ ∧ ∀t’<t . ((v+t’)⊲ζ’)) }

−  contains the clock valuations that, by letting time pass, reach
a clock valuation in ζ and remain in ζ’ until ζ is reached

(0,0) x

y

(0,0) x

y
↙ζ1ζ2

ζ2

ζ1

18

Operations on zones: c-closure

•  c-closure: close(ζ,c)
−  ignores all constraints which are greater than c

close(ζ,c)

(0,0) x

y

ζ
c

c (0,0) x

y

c

c

19

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

20

Probabilistic timed automata (PTAs)

•  Probabilistic timed automata (PTAs)
−  Markov decision processes (MDPs) + real-valued clocks
−  or: timed automata + discrete probabilistic choice
−  model probabilistic, nondeterministic and timed behaviour

•  Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L)
−  Loc is a finite set of locations
−  linit ∈ Loc is the initial location
−  Act is a finite set of actions
−  X is a finite set of clocks
−  inv : Loc → Zones(X)  

is the invariant condition
−  prob ⊆ Loc×Zones(X)×Dist(Loc×2X)  

is the probabilistic edge relation
−  L : Loc → AP is a labelling function

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0

21

Probabilistic edge relation

•  Probabilistic edge relation
−  prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

•  Probabilistic edge (l,g,a,p) ∈ prob
−  l is the source location
−  g is the guard
−  a is the action
−  p target distribution

•  Edge (l,g,a,p,l’,Y)
−  from probabilistic edge (l,g,a,p) where p(l’,Y)>0
−  l’ is the target location
−  Y is the set of clocks to be reset

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0

22

PTA - Example

•  Models a simple probabilistic communication protocol
−  starts in location di; after between 1 and 2 time units, the

protocol attempts to send the data:
•  with probability 0.9 data is sent correctly, move to location sr
•  with probability 0.1 data is lost, move to location si

−  in location si, after 2 to 3 time units, attempts to resend
•  correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0

23

PTAs - Behaviour

•  A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

•  A PTAs start in the initial location with all clocks set to zero
−  let 0 denote the clock valuation where all clocks have value 0

•  For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass
−  discrete transition (l,g,a,p) enabled if v ⊲ g and probability of

moving to location l’ and resetting the clocks Y equals p(l’,Y)
−  time transition available only if invariant inv(l) is continuously

satisfied while time elapses

24

PTA - Example

(di,x=0)
1.1

(di,x=1.1)

send 0.1 0.9

(sr,x=0) (si,x=0)
2.7

(si,x=2.7)

retry 0.05 0.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)
⋮

⋮ ⋮

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0

PTA: Example  
execution:

25

PTA semantics

•  Formally, the semantics of a PTA P is an infinite-state MDP
MP = (SP, sinit, Steps, LP) with:

•  States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }

•  Initial state: sinit = (linit, 0)

•  Steps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ Steps(l,v) iff:
−  (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t
−  (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob  

such that v⊲g and, for any (l’,v’) ∈ SP:

•  Labelling: LP(l,v) = L(l)

€

µ(l',v') = p(l',Y)
Y⊆X∧v[Y:=0]=v'
∑

actions of MDP MP are the actions 
of PTA P or real time delays

multiple resets may give  
same clock valuation

26

Time divergence

•  We restrict our attention to time divergent behaviour
−  a common restriction imposed in real-time systems
−  unrealisable behaviour (i.e. corresponding to time not

 advancing beyond a time bound) is disregarded
−  also called non-zeno behaviour

•  For a path ω=s0(α0,µ0)s1(α1,µ1)s2(α2,µ2)... in the MDP MP
−  Dω(n) denotes the duration up to state sn
−  i.e. Dω(n) = ∑ {| αi | 0≤i<n ∧ αi ∈ ℝ |}

•  A path ω is time divergent if, for any t∈ℝ≥0:
−  there exists j ∈ ℕ such that Dω(j)>t

•  Example of non-divergent path:
−  s0(1,µ0)s0(0.5,µ1)s0(0.25,µ2)s0(0.125,µ2)s0…

27

Time divergence

•  An adversary of MP is divergent if, for each state s ∈ SP:
−  the probability of divergent paths under A is 1
−  i.e PrA

s{ ω ∈ PathA(s) | ω is divergent } =1

•  Motivation for probabilistic definition of divergence:

−  in this PTA, any adversary has one non-divergent path:
•  takes the loop in l0 infinitely often, without 1 time unit passing

−  but the probability of such behaviour is 0
−  a stronger notion of divergence would mean no divergent

adversaries exist for this PTA

0.5

x≤1

0.5

l0
x≤1

l1
true

28

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

29

PTCTL - Syntax

•  PTCTL: Probabilistic timed computation tree logic
−  derived from PCTL [BdA95] and TCTL [AD94]

•  Syntax:

−  φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [φ U φ]

•  where:
−  where Z is a set of formula clocks, ζ ∈ Zones(X∪Z), z ∈ Z,
−  a is an atomic proposition, p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

“freeze quantifier” “zone over X∪Z”

 φ U φ is true with probability ~p

30

PTCTL - Examples

•  z . P>0.99 [packet2unsent U packet1delivered ∧ (z<5)]
−  “with probability greater than 0.99, the system delivers packet

1 within 5 time units and does not try to send packet 2 in the
meantime”

•  z . P>0.95[(x≤3) U (z=8)]
−  “with probability at least 0.95, the system clock x does not

exceed 3 before 8 time units elapse”

•  z . P≤0.1[G (failure ∨ (z≤60))]
−  “the system fails after the first 60 time units have elapsed with

probability at most 0.01”

31

PTCTL - Semantics

•  Let (l,v) ∈ SP and ℇ ∈ ℝZ be a formula clock valuation

−  (l,v),ℇ ⊨ a ⇔ a ∈ L(l,v)
−  (l,v),ℇ ⊨ ζ ⇔ v,ℇ ⊲ ζ
−  (l,v),ℇ ⊨ z.φ ⇔ (l,v),ℇ[z:=0] ⊨ φ
−  (l,v),ℇ ⊨ φ1 ∧ φ2 ⇔ (l,v),ℇ ⊨ φ1 and (l,v),ℇ ⊨ φ2

−  (l,v),ℇ ⊨ ¬φ ⇔ (l,v),ℇ ⊨ φ is false
−  (l,v),ℇ ⊨ P~p[ψ] ⇔ PrA

(l,v){ ω∈PathA(l,v) | ω,ℇ ⊨ ψ } ~ p
 for all adversaries A∈AdvMP

after resetting z,
φ is satisfied

combined clock valuation of v and ℇ
satisfies ζ

the probability of a path satisfying ψ meets ~p
for all divergent adversaries

32

PTCTL - Semantics of until

•  Let ω be a path in MP and ℇ be a formula clock valuation
− ω,ℇ ⊨ ψ satisfaction of ψ by ω, assuming ℇ initially

•  ω,ℇ ⊨ φ1 U φ2 if and only if
 there exists i ∈ ℕ and t ∈ Dω(i+1)-Dω(i) such that
− ω(i)+t,ℇ+(Dω(i)+t) ⊨ φ2

− ∀ t’≤t . ω(i)+t’,ℇ+(Dω(i)+t’) ⊨ φ1 ∨ φ2

− ∀ j<i . ∀ t’≤ Dω(j+1)-Dω(j) . ω(j)+t’,ℇ+(Dω(j)+t’) ⊨ φ1 ∨ φ2

•  Condition “φ1 ∨ φ2” different from PCTL and CSL
−  usually φ2 becomes true and φ1 is true until this point
−  difference due to the density of the time domain
−  to allow for open intervals use disjunction φ1 ∨ φ2
−  for example consider x≤5 U x>5 and x<5 U x≥5

33

Probabilistic reachability in PTAs

•  For simplicity, in some cases, we just consider probabilistic
reachability, rather than full PTCTL model checking
−  i.e. min/max probability of reaching a set of target locations
−  can also encode time-bounded reachability (with extra clock)

•  Still captures a wide range of properties
−  probabilistic reachability: “with probability at least 0.999, a

data packet is correctly delivered”
−  probabilistic invariance: “with probability 0.875 or greater, the

system never aborts”
−  probabilistic time-bounded reachability: “with probability 0.01

or less, a data packet is lost within 5 time units”
−  bounded response: “with probability 0.99 or greater, a data

packet will always be delivered within 5 time units”

34

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

35

PTA model checking - Summary

•  Several different approaches developed
−  basic idea: reduce to the analysis of a finite-state model
−  in most cases, this is a Markov decision process (MDP)

•  Region graph construction [KNSS02]
−  shows decidability, but gives exponential complexity

•  Digital clocks approach [KNPS06]
−  (slightly) restricted classes of PTAs
−  works well in practice, still some scalability limitations

•  Zone-based approaches:
−  (preferred approach for non-probabilistic timed automata)
−  forwards reachability [KNSS02]
−  backwards reachability [KNSW07]
−  game-based abstraction refinement [KNP09c]

36

The region graph

•  Region graph construction for PTAs [KNSS02]
−  adapts region graph construction for timed automata [ACD93]
−  partitions PTA states into a finite set of regions
−  based on notion of clock equivalence
−  construction is also dependent on PTCTL formula

•  For a PTA P and PTCTL formula φ
−  construct a time-abstract, finite-state MDP R(φ)
−  translate PTCTL formula φ to PCTL formula φ’
−  φ is preserved by region quivalence
−  i.e. φ holds in a state of MP if and only if φ’ holds in the

corresponding state of R(φ)
−  model check R(φ) using standard methods for MDPs

37

The region graph - Clock equivalence

•  Regions are sets of clock equivalent clock valuations

•  Some notation:
−  let c be largest constant appearing in PTA or PTCTL formula
−  let ⌊t⌋ denotes the integral part of t
−  t and t’ agree on their integral parts if and only if

 (1) ⌊t⌋ = ⌊t’⌋
 (2) t and t’ are both integers or neither is an integer

•  The clock valuations v and v’ are clock equivalent (v ≅ v’) if:
−  for all clocks x ∈ X, either:

•  v(x) and v’(x) agree on their integral parts
•  v(x)>c and v’(x)>c

−  for all clock pairs x,y ∈ X, either:
•  v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts
•  v(x) − v(x’) > c and v’(x) − v’(x’) > c

38

Region graph - Clock equivalence

•  Example regions (for 2 clocks x and y)

(0,0) x

y

x=y ∧ 0<x<1

x=1 ∧ y=2

y=1 ∧ 2<x<3

x<y ∧ 1<x<2 ∧ 1<y<2

39

Region graph - Clock equivalence

•  Fundamental result: if v ≅ v’, then v ⊲ ζ ⇔ v’ ⊲ ζ
−  it follows that r ⊲ ζ is well defined for a region r

•  r’ is the successor region of r, written succ(r) = r’, if
−  for each v∈r, there exists t>0 such that v+t ∈ r’

 and v+t’ ∈ r∪r’ for all t’< t

(0,0) x

y

40

The region graph

•  The region graph MDP is (SR,sinit,StepsR,LR) where…

−  the set of states SR comprises pairs (l,r) such that l is a
location and r is a region over X ∪ Z

−  the initial state is (linit, 0)
−  the set of actions is {succ} ∪ Act

•  succ is a unique action denoting passage of time
−  the probabilistic transition function StepsR is defined as:
−  SR × 2({succ}∪Act)×Dist(SR)
−  (succ,µ) ∈ StepsR(l,r) iff µ(l,succ(r))=1
−  (a,µ) ∈ StepsR(l,r) if and only if ∃ (l,g,a,p) ∈ prob such that 

 r ⊲ g and, for any (l’,r’) ∈ SR:

−  the labelling is given by: LR(l,r) = L(l)

€

µ(l',r') = p(l',Y)
Y⊆X∧r[Y:=0]=r'
∑

41

Region graph - Example

•  PTCTL formula: z.P~p [true U (sr<4)]

(di,x=z=0) (di,0<x=z<1) succ (di,x=z=1)
succ succ

(di,1<x=z<2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0

42

Region graph construction

•  Region graph
−  useful for establishing decidability of model checking
−  or proving complexity results for model checking algorithms

•  But…
−  the number of regions is exponential in the number of clocks

and the size of largest constant
−  so model checking based on this is extremely expensive
−  and so not implemented (even for timed automata)

•  Improved approaches based on:
−  digital clocks
−  zones (unions of regions)

43

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

44

Digital clocks

•  Simple idea: Clocks can only take integer (digital) values
−  i.e. time domain is ℕ as opposed to ℝ
−  based on notion of ε-digitisation [HMP92]

•  Only applies to arestricted class of PTAs; zones must be:
−  closed – no strict inequalities (e.g. x>5)

•  Digital clocks semantics yields a finite-state MDP
−  state space is a subset of Loc × ℕX, rather than Loc × ℝX
−  clocks bounded by cmax (max constant in PTA and formula)
−  then use standard techniques for finite –state MDPs

45

Example - Digital clocks

(di,x=z=0) (di,x=z=1) (di,x=z=2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

(si,x=1∧z=2)

(si,x=2∧z=3)

(sr,x=0∧z=3) (si,x=0∧z=3)

0.95 0.05

0.1
0.9

(sr,x=0∧z=2)

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

si
x≤3

sr
true

0.95

x:=0
PTA:

⋮ ⋮

MDP:  
(digital  
clocks)

46

Digital clocks

•  Digital clocks approach preserves:
−  minimum/maximum reachability probabilities
−  a subset of PTCTL properties
−  (no nesting, only closed zones in formulae)
−  only works for the initial state of the PTA
−  (but can be extended to any state with integer clock values)

•  In practice:
−  translation from PTA to MDP can often be done manually
−  (by encoding the PTA directly into the PRISM language)
−  automated translations exist: mcpta and (soon) PRISM
−  many case studies, despite “closed” restriction

•  Problem: can lead to very large MDPs
−  alleviated partially by efficient symbolic model checking

47

Digital clocks do not preserve PTCTL

•  Consider the PTCTL formula φ=z.P<1 [true U (a ∧ z≤1)]
−  a is an atomic proposition only true in location l1

•  Digital semantics:
−  no state satisfies φ since for any state we have

 ProbA(s,ℇ[z:=0], true U (a∧z≤1)) = 1 for some adversary A

−  hence P<1 [true U φ] is trivially true in all states

l0
x≤3

l1
true

x≥3

x≤1

{a}

48

Digital clocks do not preserve PTCTL

•  Consider the PTCTL formula φ=z.P<1 [true U (a ∧ z≤1)]
−  a is an atomic proposition only true in location l1

•  Dense time semantics:
−  any state (l0,v) where v(x) ∈ (1,2) satisfies φ

 more than one time unit must pass before we can reach l1
−  hence P<1 [true U φ] is not true in the initial state

l0
x≤3

l1
true

x≥3

x≤1

{a}

49

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

50

Zone-based approaches

•  An alternative is to use zones to construct an MDP

•  Conventional symbolic model checking relies on computing
−  post(S’) the states that can be reached from a state in S’ in a

single step
−  pre(S’) the states that can reach S’ in a single step

•  Extend these operators to include time passage
−  dpost[e](S’) the states that can be reached from a state in S’ by

traversing the edge e
−  tpost(S’) the states that can be reached from a state in S’ by

letting time elapse
−  pre[e](S’) the states that can reach S’ by traversing the edge e
−  tpre(S’) the states that can reach S’ by letting time elapse

51

Zone-based approaches

•  Symbolic states (l, ζ) where
−  l ∈ Loc (location)
−  ζ is a zone over PTA clocks and formula clocks
−  generally fewer zones than regions

•  tpost(l,ζ) = (l, ↗ζ∧inv(l))
−  ↗ζ can be reached from ζ by letting time pass
−  ↗ζ∧inv(l) must satisfy the invariant of the location l

•  tpre(l,ζ) = (l, ↙ζ∧inv(l))
−  ↙ ζ can reach ζ by letting time pass
−  ↙ ζ∧ inv(l) must satisfy the invariant of the location l

52

Zone-based approaches

•  For an edge e= (l,g,a,p,l’,Y) where
−  l is the source
−  g is the guard
−  a is the action
−  l’ is the target
−  Y is the clock reset

•  dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0])
−  ζ∧g satisfy the guard of the edge
−  (ζ∧g)[Y:=0] reset the clocks Y

•  dpre[e](l’,ζ’) = (l, [Y:=0]ζ’ ∧ (g ∧ inv(l)))
−  [Y:=0]ζ’ the clocks Y were reset
−  [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

53

Forwards reachability

•  Based on the operation post[e](l,ζ) = tpost(dpost[e](l,ζ))

−  (l’,v’) ∈ post[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after

traversing edge e and letting time pass one can reach (l’,v’)

•  Forwards algorithm (part 1)
−  start with initial state SF={tpost((linit,0))} then iterate

 for each symbolic state (l,ζ) ∈ SF and edge e
 add post[e](l,ζ) to SF

−  until set of symbolic states SF does not change

•  To ensure termination need to take c-closure of each zone
encountered (c is the largest constant in the PTA)

54

Forwards reachability

•  Forwards algorithm (part 2)
−  construct finite state MDP (SF,(linit,0),StepsF,LF)

−  states SF (returned from first part of the algorithm)
−  LF(l,ζ)=L(l) for all (l,ζ) ∈ SF
−  µ ∈ StepsF(l,ζ) if and only if

 there exists a probabilistic edge (l,g,a,p) of PTA 
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that
applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

55

Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5 true

x=0∧y=1 x=0∧y=0 y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y) PTA: MDP:

56

Forwards reachability - Limitations

•  Only obtain upper bounds on maximum probabilities
−  caused by when edges are combined

•  Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2)
−  where e1 and e2 from the same probabilistic edge

•  By definition of post
−  there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be

reached by traversing the edge ei and letting time pass
•  Problem

−  we combine these transitions but are (l,v1) and (l,v2) the same?
−  may not exist states in (l,ζ) for which both edges are enabled

57

Forwards reachability - Example

•  Maximum probability of reaching l3 is 0.5 in the PTA
−  for the left branch need to take the first transition when x=1
−  for the right branch need to take the first transition when x=0

•  However, in the forwards reachability graph probability is 1
−  can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5 true

x=0∧y=1 x=0∧y=0 y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y) PTA: MDP:

58

Forwards reachability

•  Main result [KNSS02]
−  obtain time-abstract, finite-state MDP over zones
−  bound on maximum reachability probabilities only
−  can model check the MDP using standard methods
−  loss of on-the fly, must construct MDP first

•  Implementations
−  KRONOS pre-processor into PRISM input language, outputs

time-abstract MDP [DKN02]
−  Explicit, using Difference Bound Matrices (DBMs), to PRISM

input language [WK05]
−  Symbolic, using Difference Decision Diagrams (DDDs), via

MTBDD-coded PTA syntax directly to PRISM engine [WK05]

59

Backwards reachability

•  An alternative zone-based method: backwards reachability
−  state-space exploration in opposite direction, from target to

initial states; uses pre rather than post operator
•  Basic ideas: (see [KNSW07] for details)

−  construct a finite-state MDP comprising symbolic states
−  need to keep track of branching structure and take

conjunctions of symbolic states if necessary
−  MDP yields maximum reachability probabilities for PTA
−  for min. probs, do graph-based analysis and convert to max.

•  Advantages:
−  gives (exact) minimum/maximum reachability probabilities
−  extends to full PTCTL model checking

•  Disadvantage:
−  operations to implement are expensive, limits applicability
−  (requires manipulation of non-convex zones)

60

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

61

Abstraction

•  Very successful in (non-probabilistic) formal methods
−  essential for verification of large/infinite-state systems
−  hide details irrelevant to the property of interest
−  yields smaller/finite model which is easier/feasible to verify
−  loss of precision: verification can return “don’t know”

•  Construct abstract model of a concrete system
−  e.g. based on a partition of the concrete state space
−  an abstract state represents a set of concrete states

•  Automatic generation of abstractions using refinement
−  start with a simple coarse abstraction; iteratively refine

62

Abstraction of MDPs

•  Abstraction increases degree of nondeterminism
−  i.e. minimum probabilities are lower and maximums higher

•  We construct abstractions of MDPs using stochastic games

−  yields lower/upper bounds for min/max probabilities 

0 1 ps
min ps

max

0 1 ps
min ps

max

11

0.2 0.8
0.5 0.1 0.8

1

0.5

1

0.1

1

abstract

63

Abstraction refinement

•  Consider (max) difference between lower/upper bounds
−  gives a quantitative measure of the abstraction’s precision

•  If the difference (“error”) is too great, refine the abstraction
−  a finer partition yields a more precise abstraction
−  lower/upper bounds can tell us where to refine (which states)
−  (memoryless) strategies can tell us how to refine

0 1 ps
min(F) ps

max(F)

64

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction •  Refinements yield
strictly finer partition

•  Guaranteed to  
converge for finite
models 

•  Guaranteed to
converge for infinite
models with finite
bisimulation

65

Abstraction refinement for PTAs

•  Model checking for PTAs using abstraction refinement

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction
Initial

abstraction
from

forwards
reachability

Splitting of
zones (DBMs)

Guaranteed
convergence
for any ε≥0

Abstraction
computed
and stored
using zones

(DBMs)

66

Abstraction refinement for PTAs

•  Computes reachability probabilities in PTAs
−  minimum or maximum, exact values (“error” ε=0)
−  also time-bounded reachability, with extra clock

•  Integrated in PRISM (next release)
−  PRISM modelling language extended with clocks
−  implemented using DBMs

•  In practice performs, performs very well
−  faster than digital clocks or backwards on large example set
−  (sometimes by several orders of magnitude)
−  handles larger PTAs than the digital clocks approach

67

Overview (Part 5)

•  Time, clocks and zones
•  Probabilistic timed automata (PTAs)

−  definition, examples, semantics, time divergence
•  PTCTL: A temporal logic for for PTAs

−  syntax, examples, semantics
•  Model checking for PTAs

−  the region graph
−  digital clocks
−  zone-based approaches:
−  (i) forwards reachability
−  (ii) backwards reachability
−  (iii) game-based abstraction refinement

•  Costs and rewards

68

Costs and rewards

•  Like other models, we can define a reward structure (ρ,ι)
for a probabilistic timed automaton

•  ρ : Loc →ℝ≥0 location reward function
−  ρ(l) is the rate at which the reward is accumulated in location l

•  ι : Act →ℝ≥0 action reward function
−  ι(a) is the reward associated with performing the action a

•  Generalises notion for uniformly priced timed automata

•  A useful special case is the elapsed time
−  ρ(l)=1 for all locations l ∈ Loc
−  ι(a)=0 for all actions a ∈ Act

69

Expected reachability

•  Expected reachability:
−  min./max. expected cumulated reward until some set of

states (locations) is reached

•  Example properties
−  “the maximum expected time until a data packet is delivered”
−  “the minimum expected number of retransmissions before the

message is correctly delivered”
−  “the maximum expected number of lost messages within the

first 200 seconds”

•  Model checking
−  digital clocks semantics preserves expected reachability
−  so can use existing MDP reward model checking techniques
−  no zone-based approaches (yet)

70

Summary

•  Probabilistic timed automata (PTAs)
−  combine probability, nondeterminism, real-time
−  well suited for e.g. for randomised communication protocols
−  MDPs + clocks (or timed automata + discrete probability)
−  extension with continuous distributions exists, but model

checking only approximate
•  PTCTL: Temporal logic for properties of PTAs

−  but many useful properties expressible with just reachability
•  PTA model checking

−  region graph: decidability results, exponential complexity
−  digital clocks: simple and effective, some scalability issues
−  forwards reachability: only upper bounds on max. prob.s
−  backwards reachability: exact results but often expensive
−  abstraction refinement using stochastic games: performs well
−  tool support: (PRISM) coming soon, mcpta, UPPAAL-Pro

More info here:
www.prismmodelchecker.org

Thanks for your attention

