

Probabilistic Model Checking

Marta Kwiatkowska Dave Parker

Oxford University Computing Laboratory

ESSLLI'10 Summer School, Copenhagen, August 2010

Part 5

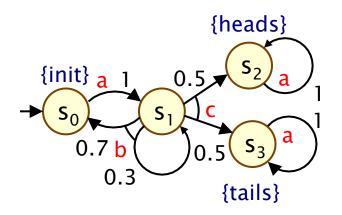
Probabilistic timed automata

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	CTMDPs/IMCs
		Probabilistic timed automata (PTAs)

Recall – MDPs

- Markov decision processes (MDPs)
 - mix probability and nondeterminism
 - in a state, there is a nondeterministic choice between multiple probability distributions over successor states



- Adversaries
 - resolve nondeterministic choices based on history so far
 - properties quantify over all possible adversaries
 - e.g. $P_{<0.1}[\diamond err]$ maximum probability of an error is < 0.1

Real-world protocol examples

- Systems with probability, nondeterminism and real-time
 - e.g. communication protocols, randomised security protocols
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

Time, clocks and clock valuations

- Dense time domain: non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}
- + Finite set of clocks $x \in X$
 - variables taking values from time domain $\ensuremath{\mathbb{R}}$
 - increase at the same rate as real time
- A clock valuation is a tuple $v \in \mathbb{R}^{X}$. Some notation:
 - v(x): value of clock x in v
 - -v+t: time increment of t for v

 $\cdot \ (v{+}t)(x) = v(x){+}t \ \forall x \in X$

-v[Y:=0]: clock reset of clocks $Y \subseteq X$ in v

· v[Y:=0](x) = 0 if $x \in Y$ and v(x) otherwise

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

$$\zeta ::= \textbf{x} \leq d \ \mid c \leq \textbf{x} \ \mid \textbf{x} + c \leq \textbf{y} + d \ \mid \neg \zeta \ \mid \zeta \lor \zeta$$

- where x, $y \in X$ and c, $d \in \mathbb{N}$
- used for both syntax of PTAs/properties and algorithms

Can derive:

- logical connectives, e.g. $\zeta_1\wedge\zeta_2\equiv\neg(\neg\zeta_1\vee\neg\zeta_2)$
- strict inequalities, through negation, e.g. $x > 5 \equiv \neg(x \le 5)...$

Some useful classes of zones:

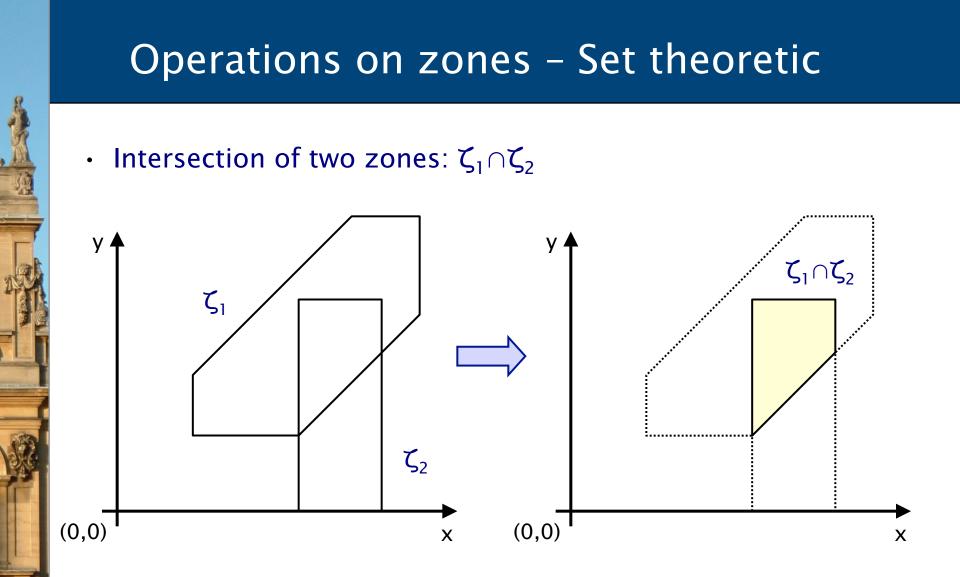
- closed: no strict inequalities (e.g. x > 5)
- diagonal-free: no comparisons between clocks (e.g. $x \le y$)
- convex: define a convex set, efficient to manipulate

Zones and clock valuations

- A clock valuation v satisfies a zone ζ , written v $\triangleright \zeta$ if
 - ζ resolves to true after substituting each clock x with v(x)
- The semantics of a zone $\zeta \in \text{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^{X})
 - NB: multiple zones may have the same semantics
 - e.g. $(x \le 2) \land (y \le 1) \land (x \le y+2)$ and $(x \le 2) \land (y \le 1) \land (x \le y+3)$
- We consider only canonical zones
 - i.e. zones for which the constraints are as 'tight' as possible
 - $O(|X|^3)$ algorithm to compute (unique) canonical zone [Dil89]
 - allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

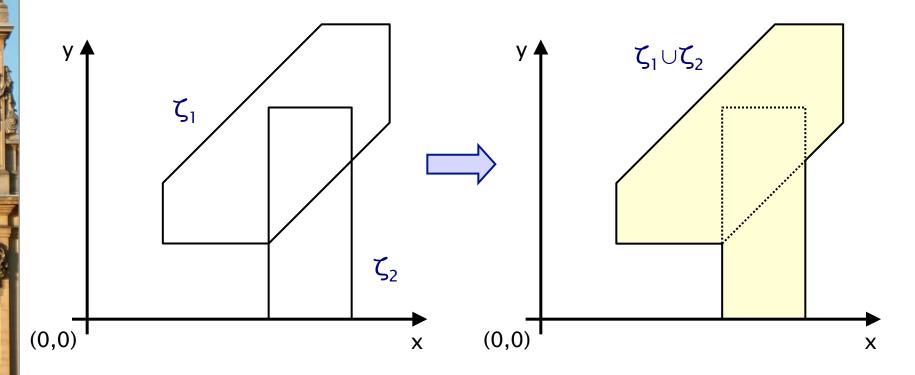
c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any $x,y \in X$
 - either v(x) = v'(x), or v(x) > c and v'(x) > c
 - either v(x)-v(y) = v'(x)-v'(y) or v(x)-v(y) > c and v'(x)-v'(y) > c
- The c-closure of the zone ζ , denoted close(ζ ,c), equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constraints which are greater than c
 - for a given c, there are only a finite number of c-closed zones



Operations on zones – Set theoretic

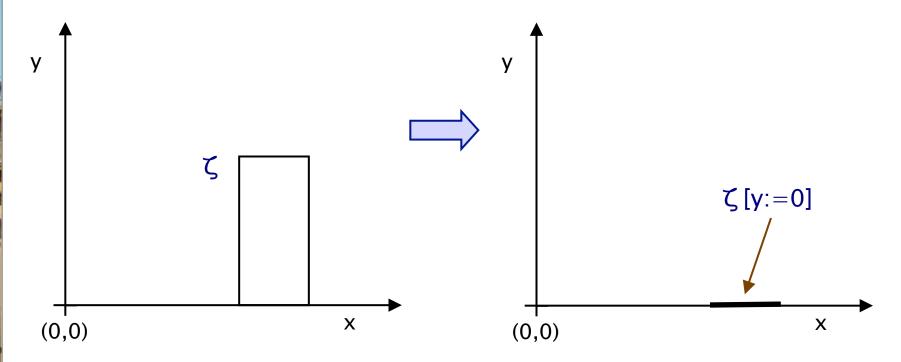
• Union of two zones: $\zeta_1 \cup \zeta_2$



Operations on zones – Set theoretic • Difference of two zones: $\zeta_1 \setminus \zeta_2$ $\zeta_1 \backslash \zeta_2$ V A ζ_1 ζ_2 (0,0) (0,0) Х Х

Operations on zones - Clock resets

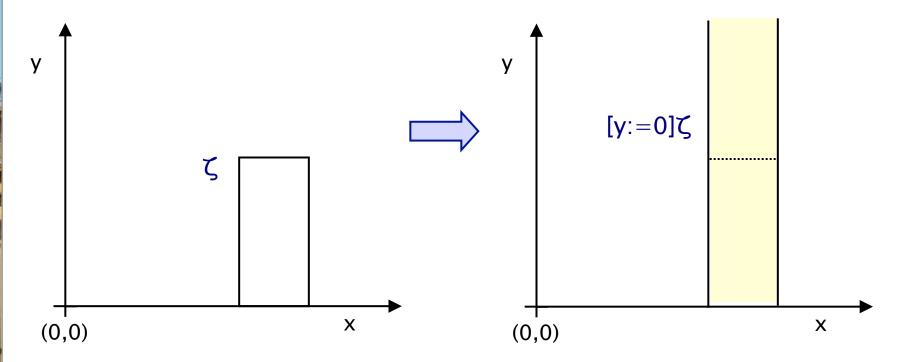
- $\zeta[Y:=0] = \{ v[Y:=0] | v \triangleright \zeta \}$
 - clock valuations obtained from $\boldsymbol{\zeta}$ by resetting the clocks in Y



Operations on zones - Clock resets

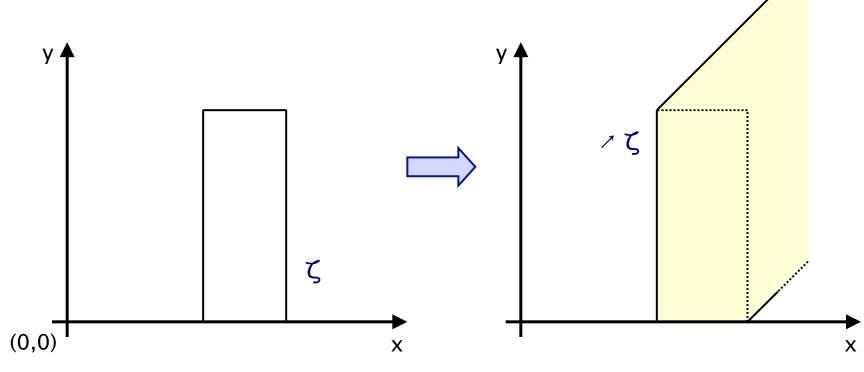
• $[Y:=0]\zeta = \{ v \mid v[Y:=0] \triangleright \zeta \}$

- clock valuations which are in $\boldsymbol{\zeta}$ if the clocks in Y are reset



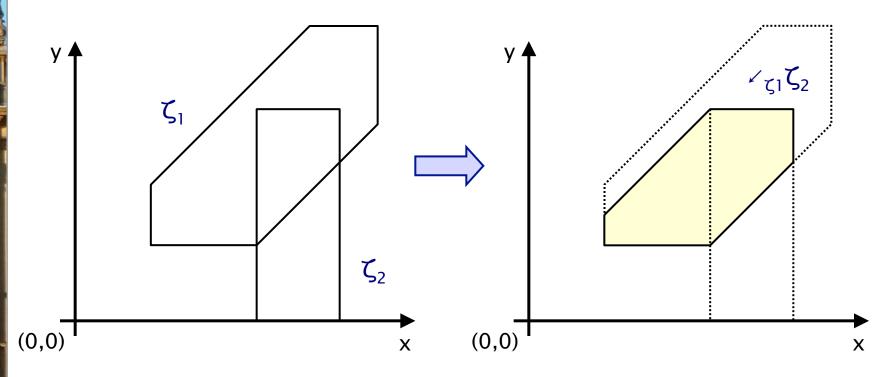
Operations on zones: Projections

- Forwards diagonal projection
- $\bullet \ \ \land \zeta = \{ v \mid \exists t {\geq} 0 \ . \ (v{-}t) {\triangleright} \zeta \}$
 - contains the clock valuations that can be reached from ζ by letting time pass



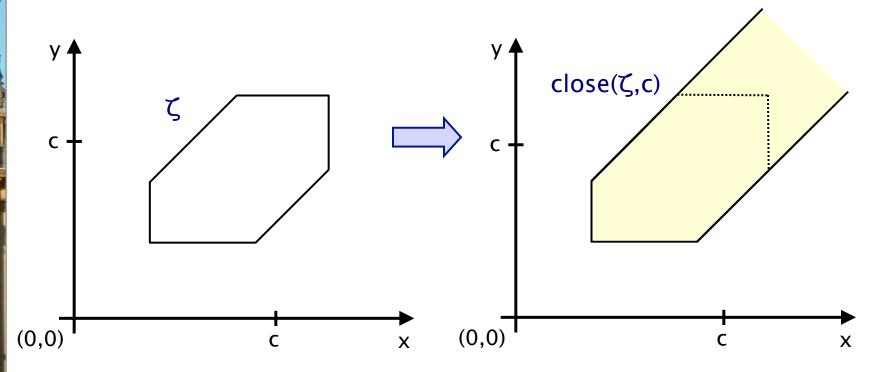
Operations on zones: Projections

- Backwards diagonal projection
- $\checkmark_{\zeta'} \zeta = \{ v \mid \exists t \ge 0 \text{ . (} (v+t) \triangleright \zeta \land \forall t' < t \text{ . (} (v+t') \triangleright \zeta' \text{) }) \}$
 - contains the clock valuations that, by letting time pass, reach a clock valuation in ζ and remain in ζ ' until ζ is reached



Operations on zones: c-closure

- c-closure: close(ζ,c)
 - ignores all constraints which are greater than c

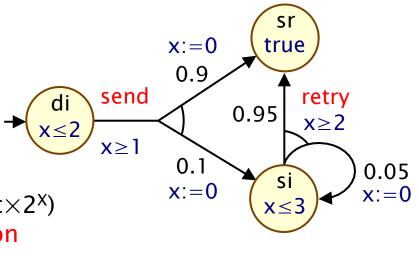


Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
 - Costs and rewards

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour
- Syntax: A PTA is a tuple (Loc, I_{init}, Act, X, inv, prob, L)
 - Loc is a finite set of locations
 - $I_{\text{init}} \in Loc$ is the initial location
 - Act is a finite set of actions
 - X is a finite set of clocks
 - inv : Loc \rightarrow Zones(X) is the invariant condition
 - prob \subseteq Loc×Zones(X)×Dist(Loc×2^X) is the probabilistic edge relation
 - L : Loc \rightarrow AP is a labelling function



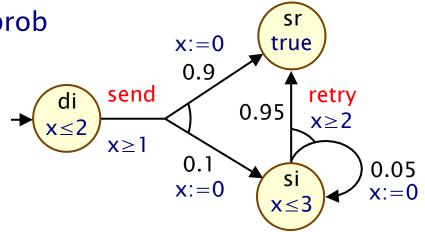
Probabilistic edge relation

- Probabilistic edge relation
 - − prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2^X)

• Probabilistic edge $(I,g,a,p) \in prob$

- I is the source location
- g is the guard
- a is the action
- p target distribution

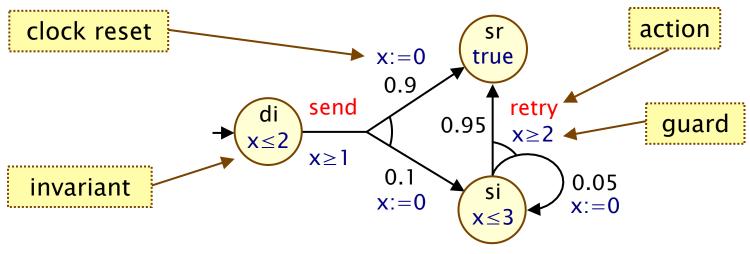
- from probabilistic edge (l,g,a,p) where p(l',Y)>0
- l' is the target location
- Y is the set of clocks to be reset



PTA – Example

Models a simple probabilistic communication protocol

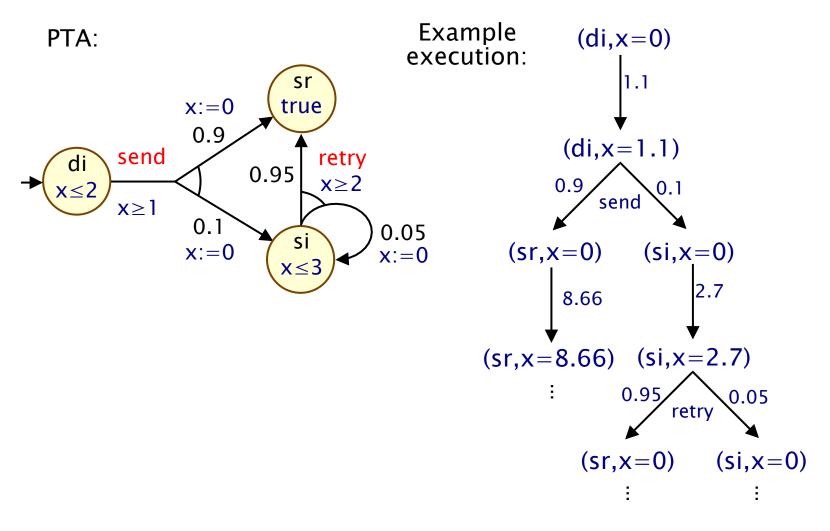
- starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - · with probability 0.9 data is sent correctly, move to location sr
 - with probability 0.1 data is lost, move to location si
- in location si, after 2 to 3 time units, attempts to resend
 - $\cdot\,$ correctly sent with probability 0.95 and lost with probability 0.05



PTAs – Behaviour

- A state of a PTA is a pair (I,v) \in Loc $\times \mathbb{R}^{X}$ such that v \triangleright inv(I)
- A PTAs start in the initial location with all clocks set to zero
 let <u>0</u> denote the clock valuation where all clocks have value 0
- For any state (I,v), there is nondeterministic choice between making a discrete transition and letting time pass
 - discrete transition (l,g,a,p) enabled if $v \triangleright g$ and probability of moving to location l' and resetting the clocks Y equals p(l',Y)
 - time transition available only if invariant inv(l) is continuously satisfied while time elapses

PTA – Example



24

PTA semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, Steps, L_P)$ with:
- States: $S_P = \{ (I,v) \in Loc \times \mathbb{R}^X \text{ such that } v \triangleright inv(I) \}$
- Initial state: $s_{init} = (I_{init}, \underline{0})$

actions of MDP M_P are the actions of PTA P or real time delays

- Steps: $S_P \rightarrow 2^{(Act \cup \mathbb{R}) \times Dist(S)}$ such that $(\alpha, \mu) \in Steps(I,v)$ iff:
 - (time transition) $\alpha = t \in \mathbb{R}$, $\mu(I, v+t) = 1$ and $v+t' \triangleright inv(I)$ for all $t' \le t$
 - (discrete transition) $\alpha = a \in Act$ and there exists (l,g,a,p) \in prob

such that
$$v \triangleright g$$
 and, for any $(l',v') \in S_p$: $\mu(l',v') = \sum_{\P \subseteq X \land v[Y:=0]=v'} p(l',Y)$

• Labelling: $L_P(I,v) = L(I)$

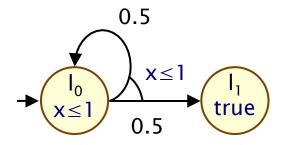
multiple resets may give same clock valuation

Time divergence

- We restrict our attention to time divergent behaviour
 - a common restriction imposed in real-time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
 - also called non-zeno behaviour
- For a path $\omega = s_0(\alpha_0,\mu_0)s_1(\alpha_1,\mu_1)s_2(\alpha_2,\mu_2)...$ in the MDP M_P
 - $D_{\omega}(n)$ denotes the duration up to state s_n
 - i.e. $D_{\omega}(n) = \Sigma \{ \mid \alpha_i \mid 0 \leq i < n \land \alpha_i \in \mathbb{R} \mid \}$
- A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$:
 - there exists $j \in \mathbb{N}$ such that $D_{\omega}(j){>}t$
- Example of non-divergent path:
 - $s_0(1,\mu_0)s_0(0.5,\mu_1)s_0(0.25,\mu_2)s_0(0.125,\mu_2)s_0...$

Time divergence

- An adversary of M_P is divergent if, for each state $s \in S_P$:
 - the probability of divergent paths under A is 1
 - i.e Pr^{A}_{s} { $\omega \in Path^{A}(s) \mid \omega \text{ is divergent } }=1$
- Motivation for probabilistic definition of divergence:



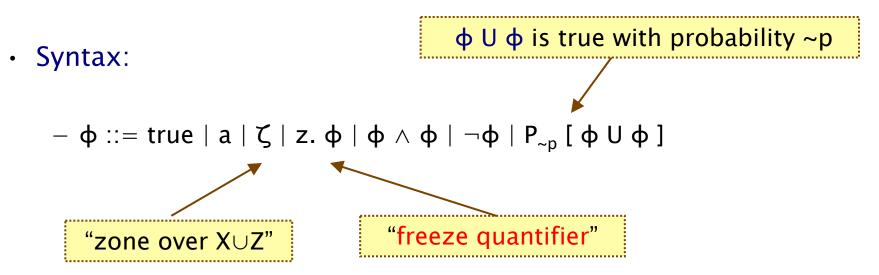
- in this PTA, any adversary has one non-divergent path:
 - $\cdot\,$ takes the loop in I_0 infinitely often, without 1 time unit passing
- but the probability of such behaviour is 0
- a stronger notion of divergence would mean no divergent adversaries exist for this PTA

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

PTCTL – Syntax

- PTCTL: Probabilistic timed computation tree logic
 - derived from PCTL [BdA95] and TCTL [AD94]



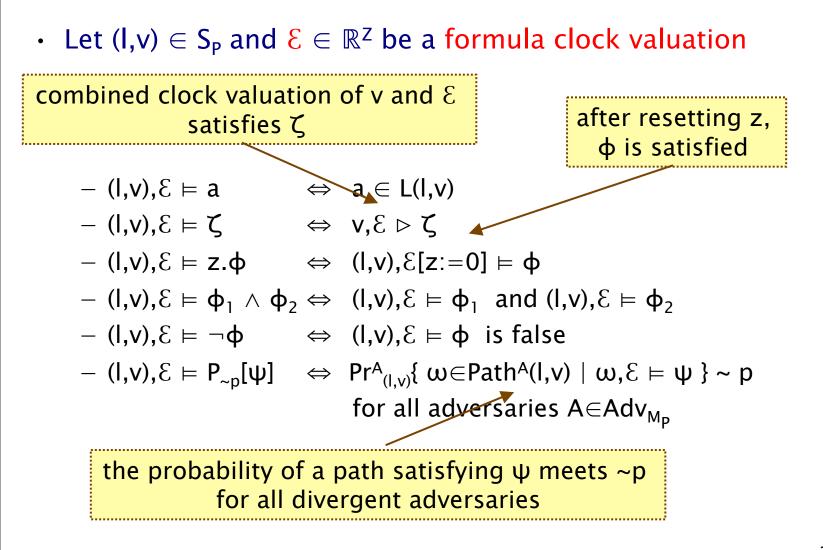
- where:
 - where Z is a set of formula clocks, $\zeta \in \text{Zones}(X \cup Z)$, $z \in Z$,
 - a is an atomic proposition, $p \in [0,1]$ and $\textbf{\sim} \in \{<,>,\leq,\geq\}$

PTCTL – Examples

+ z . $P_{>0.99}$ [packet2unsent U packet1delivered \wedge (z<5)]

- "with probability greater than 0.99, the system delivers packet
 1 within 5 time units and does not try to send packet 2 in the meantime"
- z . $P_{>0.95}$ [(x \leq 3) U (z=8)]
 - "with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse"
- + z . $P_{\leq 0.1}$ [G (failure \lor (z \leq 60))]
 - "the system fails after the first 60 time units have elapsed with probability at most 0.01"

PTCTL – Semantics



PTCTL – Semantics of until

- Let ω be a path in M_P and \mathcal{E} be a formula clock valuation - $\omega, \mathcal{E} \models \psi$ satisfaction of ψ by ω , assuming \mathcal{E} initially
- $\omega, \mathcal{E} \models \phi_1 \cup \phi_2$ if and only if there exists $i \in \mathbb{N}$ and $t \in D_{\omega}(i+1)-D_{\omega}(i)$ such that
 - $\omega(i)+t, \mathcal{E}+(D_{\omega}(i)+t) \vDash \varphi_2$
 - \forall t' \leq t . $\omega(i)+t'$, $\mathcal{E}+(D_{\omega}(i)+t') \vDash \varphi_1 \lor \varphi_2$
 - $\hspace{0.1cm} \forall \hspace{0.1cm} j {<} i \hspace{0.1cm} . \hspace{0.1cm} \forall \hspace{0.1cm} t' {\leq} \hspace{0.1cm} D_{\omega}(j{+}1) {-} D_{\omega}(j) \hspace{0.1cm} . \hspace{0.1cm} \omega(j) {+} t', \\ \mathcal{E} {+} (D_{\omega}(j) {+} t') \vDash \varphi_1 \hspace{0.1cm} \lor \hspace{0.1cm} \varphi_2$
- Condition " $\phi_1 \lor \phi_2$ " different from PCTL and CSL
 - usually φ_2 becomes true and φ_1 is true until this point
 - difference due to the density of the time domain
 - to allow for open intervals use disjunction $\varphi_1 \lor \varphi_2$
 - for example consider $x{\le}5$ U $x{>}5$ and $x{<}5$ U $x{\ge}5$

Probabilistic reachability in PTAs

- For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking
 - i.e. min/max probability of reaching a set of target locations
 - can also encode time-bounded reachability (with extra clock)
- Still captures a wide range of properties
 - probabilistic reachability: "with probability at least 0.999, a data packet is correctly delivered"
 - probabilistic invariance: "with probability 0.875 or greater, the system never aborts"
 - probabilistic time-bounded reachability: "with probability 0.01 or less, a data packet is lost within 5 time units"
 - bounded response: "with probability 0.99 or greater, a data packet will always be delivered within 5 time units"

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

PTA model checking – Summary

Several different approaches developed

- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSS02]
 - shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
 - (slightly) restricted classes of PTAs
 - works well in practice, still some scalability limitations
- Zone-based approaches:
 - (preferred approach for non-probabilistic timed automata)
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
 - game-based abstraction refinement [KNP09c]

The region graph

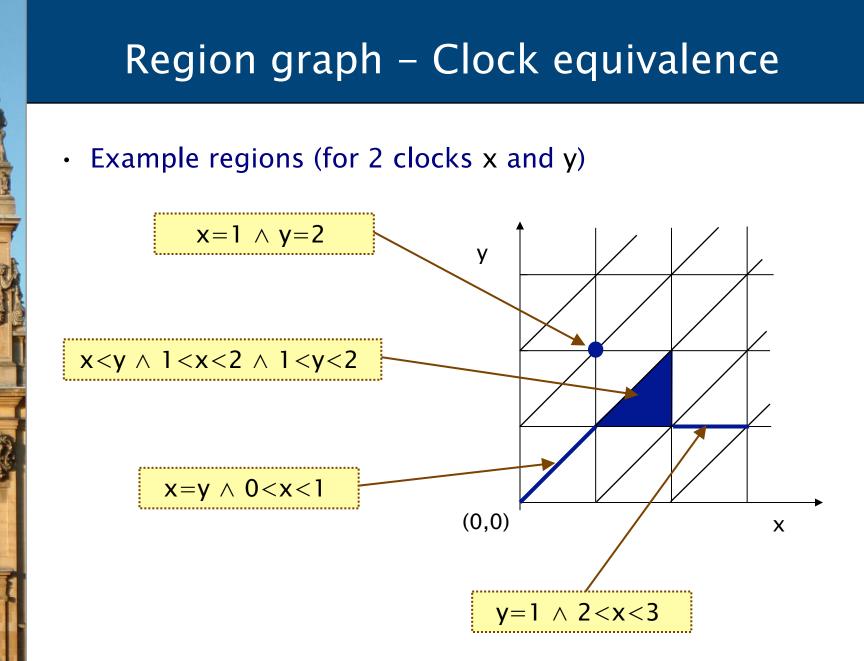
- Region graph construction for PTAs [KNSS02]
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a finite set of regions
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula
- + For a PTA P and PTCTL formula φ
 - construct a time-abstract, finite-state MDP $R(\phi)$
 - translate PTCTL formula φ to PCTL formula φ'
 - $-\phi$ is preserved by region quivalence
 - i.e. ϕ holds in a state of M_P if and only if ϕ ' holds in the corresponding state of R(ϕ)
 - model check $R(\phi)$ using standard methods for MDPs

The region graph – Clock equivalence

Regions are sets of clock equivalent clock valuations

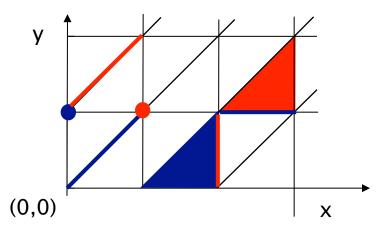
• Some notation:

- let c be largest constant appearing in PTA or PTCTL formula
- let [t] denotes the integral part of t
- t and t' agree on their integral parts if and only if
 (1) [t] = [t']
 - (2) t and t' are both integers or neither is an integer
- The clock valuations v and v' are clock equivalent (v \cong v') if:
 - for all clocks $x \in X$, either:
 - \cdot v(x) and v'(x) agree on their integral parts
 - v(x) > c and v'(x) > c
 - for all clock pairs $x,y \in X$, either:
 - $\cdot v(x) v(x')$ and v'(x) v'(x') agree on their integral parts
 - v(x) v(x') > c and v'(x) v'(x') > c



Region graph – Clock equivalence

- Fundamental result: if $v \cong v'$, then $v \triangleright \zeta \Leftrightarrow v' \triangleright \zeta$
 - it follows that $r \vartriangleright \zeta$ is well defined for a region r
- r' is the successor region of r, written succ(r) = r', if
 for each v∈r, there exists t>0 such that v+t ∈ r'
 and v+t' ∈ r∪r' for all t' < t



The region graph

- The region graph MDP is (S_R,s_{init},Steps_R,L_R) where...
 - the set of states S_R comprises pairs (I,r) such that I is a location and r is a region over $X \cup Z$
 - the initial state is $(I_{init}, \underline{0})$
 - the set of actions is {succ} \cup Act
 - $\cdot\,$ succ is a unique action denoting passage of time
 - the probabilistic transition function Steps_R is defined as:
 - $S_R \times 2^{(\{succ\} \cup Act) \times Dist(S_R)}$
 - $(succ,\mu) \in Steps_R(I,r) \text{ iff } \mu(I,succ(r))=1$
 - (a,µ) $\in \textbf{Steps}_R(I,r)$ if and only if \exists (I,g,a,p) \in prob such that

 $r \triangleright g \text{ and, for any (l',r')} \in S_{R:} \quad \mu(l',r') = \sum_{Y \subseteq X \land r[Y:=0]=r'} p(l',Y)$

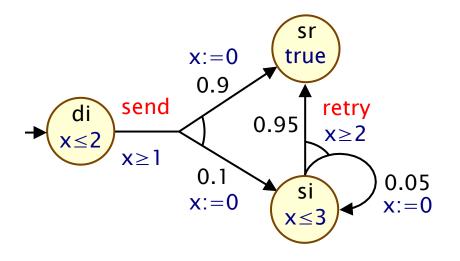
- the labelling is given by: $L_R(I,r) = L(I)$

Region graph – Example

• PTCTL formula: z.P_{~p} [true U (sr<4)]

$$di,x=z=0) \xrightarrow{succ} (di,0< x=z<1) \xrightarrow{succ} (di,x=z=1) \xrightarrow{succ} (di,1< x=z<2)$$

$$0.9 \xrightarrow{0.1} (sr,x=0 \land z=1) \qquad (si,x=0 \land z=1)$$



Region graph construction

- Region graph
 - useful for establishing decidability of model checking
 - or proving complexity results for model checking algorithms

• But...

- the number of regions is exponential in the number of clocks and the size of largest constant
- so model checking based on this is extremely expensive
- and so not implemented (even for timed automata)
- Improved approaches based on:
 - digital clocks
 - zones (unions of regions)

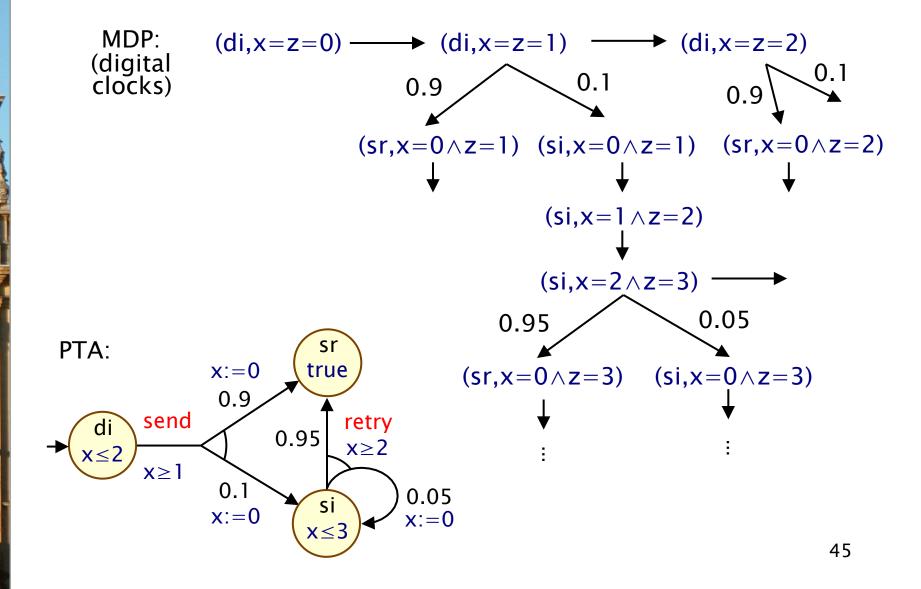
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

Digital clocks

- Simple idea: Clocks can only take integer (digital) values
 - i.e. time domain is $\mathbb N$ as opposed to $\mathbb R$
 - based on notion of ϵ -digitisation [HMP92]
- Only applies to arestricted class of PTAs; zones must be:
 - closed no strict inequalities (e.g. x > 5)
- Digital clocks semantics yields a finite-state MDP
 - state space is a subset of Loc $\times \ \mathbb{N}^X$, rather than Loc $\times \ \mathbb{R}^X$
 - clocks bounded by c_{max} (max constant in PTA and formula)
 - then use standard techniques for finite -state MDPs

Example – Digital clocks



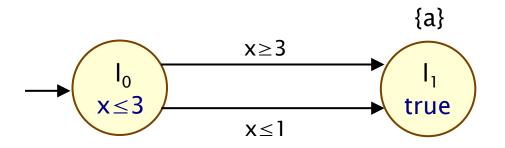
Digital clocks

- Digital clocks approach preserves:
 - minimum/maximum reachability probabilities
 - a subset of PTCTL properties
 - (no nesting, only closed zones in formulae)
 - only works for the initial state of the PTA
 - (but can be extended to any state with integer clock values)

• In practice:

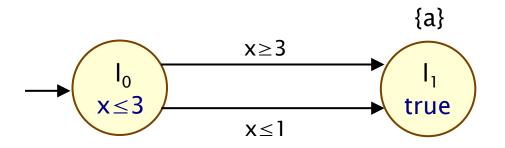
- translation from PTA to MDP can often be done manually
- (by encoding the PTA directly into the PRISM language)
- automated translations exist: mcpta and (soon) PRISM
- many case studies, despite "closed" restriction
- Problem: can lead to very large MDPs
 - alleviated partially by efficient symbolic model checking

Digital clocks do not preserve PTCTL



- Consider the PTCTL formula $\phi = z.P_{<1}$ [true U (a \land z ≤ 1)]
 - a is an atomic proposition only true in location I_1
- Digital semantics:
 - no state satisfies ϕ since for any state we have Prob^A(s, $\mathcal{E}[z:=0]$, true U (a \land z \leq 1)) = 1 for some adversary A
 - hence $P_{<1}$ [true U ϕ] is trivially true in all states

Digital clocks do not preserve PTCTL



- Consider the PTCTL formula $\phi = z.P_{<1}$ [true U (a \land z ≤ 1)]
 - a is an atomic proposition only true in location I_1
- Dense time semantics:
 - any state (I₀,v) where v(x) \in (1,2) satisfies φ
 - more than one time unit must pass before we can reach I_1
 - hence $P_{<1}$ [true U φ] is not true in the initial state

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

Zone-based approaches

- An alternative is to use **zones** to construct an MDP
- Conventional symbolic model checking relies on computing
 - post(S') the states that can be reached from a state in S' in a single step
 - **pre**(S') the states that can reach S' in a single step
- Extend these operators to include time passage
 - dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
 - tpost(S') the states that can be reached from a state in S' by letting time elapse
 - pre[e](S') the states that can reach S' by traversing the edge e
 - tpre(S') the states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, ζ) where
 - $I \in Loc (location)$
 - $\boldsymbol{\zeta}$ is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions
- tpost(I, ζ) = (I, $\land \zeta \land inv(I)$)
 - $\sin \zeta$ can be reached from ζ by letting time pass
 - $\nearrow \zeta \land inv(I)$ must satisfy the invariant of the location I
- tpre(I, ζ) = (I, $\checkmark \zeta \land inv(I)$)
 - $\checkmark \zeta$ can reach ζ by letting time pass
 - $\checkmark \zeta \land$ inv(l) must satisfy the invariant of the location l

Zone-based approaches

• For an edge e= (I,g,a,p,I',Y) where

- I is the source
- g is the guard
- a is the action
- l' is the target
- Y is the clock reset
- dpost[e](I, ζ) = (I', ($\zeta \land g$)[Y:=0])
 - $-\zeta \wedge g$ satisfy the guard of the edge
 - $(\zeta \land g)[Y:=0]$ reset the clocks Y
- dpre[e](l', ζ ') = (l, [Y:=0] ζ ' \land (g \land inv(l)))
 - $[Y:=0]\zeta'$ the clocks Y were reset
 - [Y:=0] $\zeta' \land$ (g \land inv(l)) satisfied guard and invariant of l

Forwards reachability

- Based on the operation **post**[e](I, ζ) = **tpost**(**dpost**[e](I, ζ))
 - $(l',v') \in post[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')
- Forwards algorithm (part 1)
 - start with initial state $S_F = \{tpost((I_{init}, \underline{0}))\}$ then iterate for each symbolic state $(I, \zeta) \in S_F$ and edge e add $post[e](I, \zeta)$ to S_F
 - until set of symbolic states S_F does not change
- To ensure termination need to take c-closure of each zone encountered (c is the largest constant in the PTA)

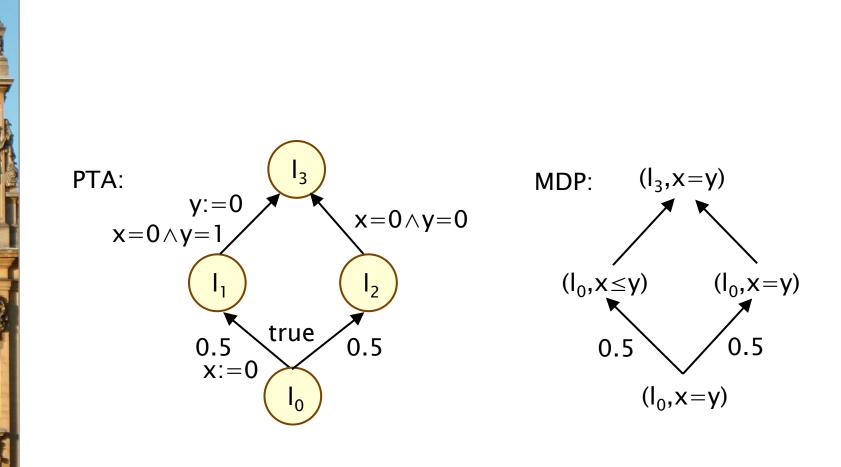
Forwards reachability

- Forwards algorithm (part 2)
 - construct finite state MDP (S_F , (I_{init} , $\underline{0}$), Steps_F, L_F)
 - states S_F (returned from first part of the algorithm)
 - $L_F(I,\zeta){=}L(I)$ for all $(I,\zeta)\in S_F$
 - $\mu \in \text{Steps}_F(I, \zeta)$ if and only if there exists a probabilistic edge (I,g,a,p) of PTA such that for any (I', ζ ') \in Z:

 $\mu(I', \zeta') = \sum \{ | p(I', X) | (I, g, \sigma, p, I', X) \in edges(p) \land post[e](I, \zeta) = (I', \zeta') | \}$

summation over all the edges of (l,g,a,p) such that applying **post** to (l, ζ) leads to the symbolic state (l', ζ ')

Forwards reachability – Example

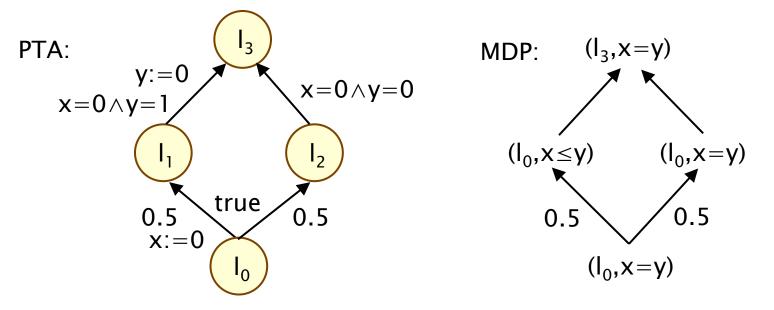


Forwards reachability - Limitations

- Only obtain upper bounds on maximum probabilities
 - caused by when edges are combined
- Suppose **post**[e_1](I, ζ)=(I_1, ζ_1) and **post**[e_2](I, ζ)=(I_2, ζ_2)
 - where e_1 and e_2 from the same probabilistic edge
- By definition of post
 - there exists $(I,v_i) \in (I,\zeta)$ such that a state in (I_i, ζ_i) can be reached by traversing the edge e_i and letting time pass
- Problem
 - we combine these transitions but are (I,v_1) and (I,v_2) the same?
 - may not exist states in (I, ζ) for which both edges are enabled

Forwards reachability - Example

- Maximum probability of reaching I_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when x=1
 - for the right branch need to take the first transition when x=0
- · However, in the forwards reachability graph probability is 1
 - can reach I_3 via either branch from ($I_0, x=y$)



Forwards reachability

- Main result [KNSS02]
 - obtain time-abstract, finite-state MDP over zones
 - bound on maximum reachability probabilities only
 - can model check the MDP using standard methods
 - loss of on-the fly, must construct MDP first

Implementations

- KRONOS pre-processor into PRISM input language, outputs time-abstract MDP [DKN02]
- Explicit, using Difference Bound Matrices (DBMs), to PRISM input language [WK05]
- Symbolic, using Difference Decision Diagrams (DDDs), via MTBDD-coded PTA syntax directly to PRISM engine [WK05]

Backwards reachability

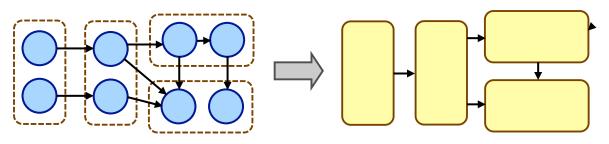
- An alternative zone-based method: backwards reachability
 - state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator
- Basic ideas: (see [KNSW07] for details)
 - construct a finite-state MDP comprising symbolic states
 - need to keep track of branching structure and take conjunctions of symbolic states if necessary
 - MDP yields maximum reachability probabilities for PTA
 - for min. probs, do graph-based analysis and convert to max.
- Advantages:
 - gives (exact) minimum/maximum reachability probabilities
 - extends to full PTCTL model checking
- Disadvantage:
 - operations to implement are expensive, limits applicability
 - (requires manipulation of non-convex zones)

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

Abstraction

- Very successful in (non-probabilistic) formal methods
 - essential for verification of large/infinite-state systems
 - hide details irrelevant to the property of interest
 - yields smaller/finite model which is easier/feasible to verify
 - loss of precision: verification can return "don't know"
- Construct abstract model of a concrete system
 - e.g. based on a partition of the concrete state space
 - an abstract state represents a set of concrete states

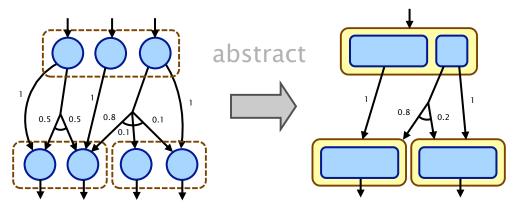


Automatic generation of abstractions using refinement
 – start with a simple coarse abstraction; iteratively refine

Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

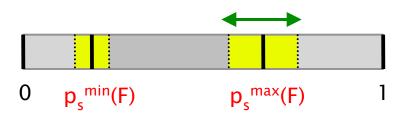
We construct abstractions of MDPs using stochastic games



- yields lower/upper bounds for min/max probabilities

Abstraction refinement

Consider (max) difference between lower/upper bounds
 – gives a quantitative measure of the abstraction's precision

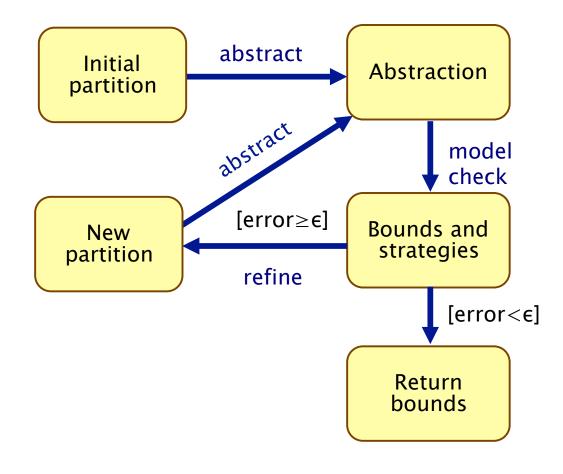


If the difference ("error") is too great, refine the abstraction

- a finer partition yields a more precise abstraction
- lower/upper bounds can tell us where to refine (which states)
- (memoryless) strategies can tell us how to refine

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

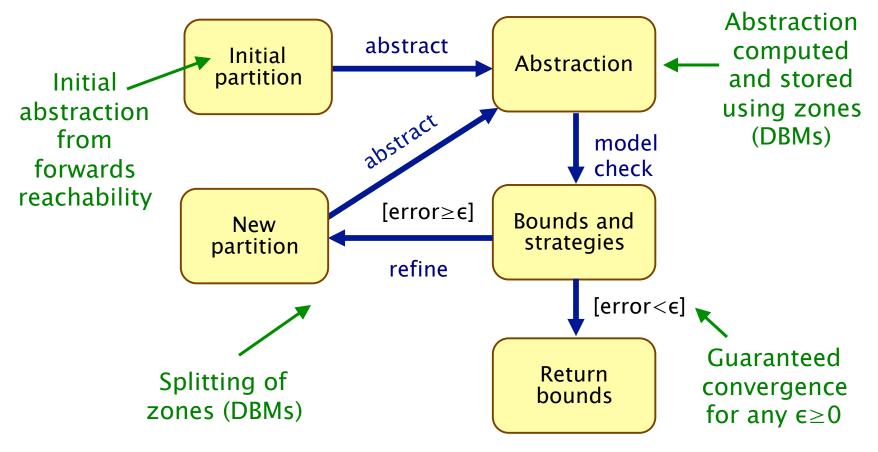


 Refinements yield strictly finer partition

- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation

Abstraction refinement for PTAs

Model checking for PTAs using abstraction refinement



Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
 - minimum or maximum, exact values ("error" ϵ =0)
 - also time-bounded reachability, with extra clock
- Integrated in PRISM (next release)
 - PRISM modelling language extended with clocks
 - implemented using DBMs
- In practice performs, performs very well
 - faster than digital clocks or backwards on large example set
 - (sometimes by several orders of magnitude)
 - handles larger PTAs than the digital clocks approach

Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards

Costs and rewards

- Like other models, we can define a reward structure (ρ,ι) for a probabilistic timed automaton
- ρ : Loc $\rightarrow \mathbb{R}_{\geq 0}$ location reward function
 - $\underline{\rho}(I)$ is the rate at which the reward is accumulated in location I_
- $\iota : Act \to \mathbb{R}_{\geq 0}$ action reward function
 - $\iota(a)$ is the reward associated with performing the action a
- Generalises notion for uniformly priced timed automata
- A useful special case is the elapsed time
 - $\underline{\rho}(I) = 1$ for all locations $I \in Loc$
 - $\iota(a){=}0$ for all actions $a\in Act$

Expected reachability

• Expected reachability:

 min./max. expected cumulated reward until some set of states (locations) is reached

Example properties

- "the maximum expected time until a data packet is delivered"
- "the minimum expected number of retransmissions before the message is correctly delivered"
- "the maximum expected number of lost messages within the first 200 seconds"

Model checking

- digital clocks semantics preserves expected reachability
- so can use existing MDP reward model checking techniques
- no zone-based approaches (yet)

Summary

Probabilistic timed automata (PTAs)

- combine probability, nondeterminism, real-time
- well suited for e.g. for randomised communication protocols
- MDPs + clocks (or timed automata + discrete probability)
- extension with continuous distributions exists, but model checking only approximate
- PTCTL: Temporal logic for properties of PTAs
 - but many useful properties expressible with just reachability
- PTA model checking
 - region graph: decidability results, exponential complexity
 - digital clocks: simple and effective, some scalability issues
 - forwards reachability: only upper bounds on max. prob.s
 - backwards reachability: exact results but often expensive
 - abstraction refinement using stochastic games: performs well
 - tool support: (PRISM) coming soon, mcpta, UPPAAL-Pro 70

Thanks for your attention

More info here: www.prismmodelchecker.org