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Recall – MDPs 

•  Markov decision processes (MDPs) 
−  mix probability and nondeterminism 
−  in a state, there is a nondeterministic choice between multiple 

probability distributions over successor states 

•  Adversaries 
−  resolve nondeterministic choices based on history so far 
−  properties quantify over all possible adversaries 
−  e.g. P<0.1[◊err] – maximum probability of an error is < 0.1 
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Real-world protocol examples 

•  Systems with probability, nondeterminism and real-time  
−  e.g. communication protocols, randomised security protocols 

•  Randomised back-off schemes 
−  Ethernet, WiFi (802.11), Zigbee (802.15.4) 

•  Random choice of waiting time 
−  Bluetooth device discovery phase 
−  Root contention in IEEE 1394 FireWire 

•  Random choice over a set of possible addresses 
−  IPv4 dynamic configuration (link-local addressing)  

•  Random choice of a destination 
−  Crowds anonymity, gossip-based routing  
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 



7 

Time, clocks and clock valuations 

•  Dense time domain: non-negative reals ℝ≥0 
−  from this point on, we will abbreviate ℝ≥0 to ℝ 

•  Finite set of clocks x ∈ X  
−  variables taking values from time domain ℝ 

−  increase at the same rate as real time 

•  A clock valuation is a tuple v ∈ ℝX. Some notation: 
−  v(x) : value of clock x in v 
−  v+t : time increment of t for v 

•  (v+t)(x) = v(x)+t  ∀x ∈ X 
−  v[Y:=0] : clock reset of clocks Y ⊆ X in v 

•  v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise 
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Zones (clock constraints) 

•  Zones (clock constraints) over clocks X, denoted Zones(X): 

−  where x, y ∈ X and c, d ∈ ℕ 
−  used for both syntax of PTAs/properties and algorithms 

•  Can derive: 
−  logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2) 
−  strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)… 

•  Some useful classes of zones: 
−  closed: no strict inequalities (e.g. x>5) 
−  diagonal-free: no comparisons between clocks (e.g. x≤y) 
−  convex: define a convex set, efficient to manipulate 

 ζ ::= x ≤ d  | c ≤ x  | x+c ≤ y+d  | ¬ζ  | ζ ∨ ζ  
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Zones and clock valuations 

•  A clock valuation v satisfies a zone ζ, written v ⊲ ζ if 
−  ζ resolves to true after substituting each clock x with v(x) 

•  The semantics of a zone ζ ∈ Zones(X) is the set of clock 
valuations which satisfy it (i.e. a subset of ℝX) 
−  NB: multiple zones may have the same semantics 
−  e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)  

•  We consider only canonical zones 
−  i.e. zones for which the constraints are as ‘tight’ as possible 
−  O(|X|3) algorithm to compute (unique) canonical zone [Dil89] 
−  allows us to use syntax for zones interchangeably with 

semantic, set-theoretic operations 
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c-equivalence and c-closure 

•  Clock valuations v and v’ are c-equivalent if for any x,y∈X 
−  either v(x) = v’(x), or v(x) > c and v’(x) > c 
−  either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c  

•  The c-closure of the zone ζ, denoted close(ζ,c), equals 
−  the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’, 

 there exists v ∈ ζ and v and v’ are c-equivalent 
−  c-closure ignores all constraints which are greater than c 
−  for a given c, there are only a finite number of c-closed zones 
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Operations on zones – Set theoretic 

•  Intersection of two zones: ζ1∩ζ2 
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Operations on zones – Set theoretic 

•  Union of two zones: ζ1∪ζ2 
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Operations on zones – Set theoretic 

•  Difference of two zones: ζ1\ζ2 
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Operations on zones – Clock resets 

•  ζ[Y:=0] = { v[Y:=0]  | v⊲ζ } 
−  clock valuations obtained from ζ by resetting the clocks in Y 
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Operations on zones – Clock resets 

•  [Y:=0]ζ = { v | v[Y:=0] ⊲ζ } 
−  clock valuations which are in ζ if the clocks in Y are reset 

[y:=0]ζ 
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y 
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Operations on zones: Projections 

•  Forwards diagonal projection 
•  ↗ ζ = { v | ∃t≥0 . (v-t)⊲ζ } 

−  contains the clock valuations that can be  
reached from ζ by letting time pass 
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Operations on zones: Projections 

•  Backwards diagonal projection 
•  ↙ζ’ ζ = { v | ∃t≥0 . ( (v+t)⊲ζ ∧ ∀t’<t . ( (v+t’)⊲ζ’ ) ) } 

−  contains the clock valuations that, by letting time pass, reach 
a clock valuation in ζ and remain in ζ’ until ζ is reached 
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Operations on zones: c-closure 

•  c-closure: close(ζ,c) 
−  ignores all constraints which are greater than c 

close(ζ,c) 

(0,0) x

y 

ζ 
c 

c (0,0) x

y 

c 

c



19 

Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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Probabilistic timed automata (PTAs) 

•  Probabilistic timed automata (PTAs) 
−  Markov decision processes (MDPs) + real-valued clocks 
−  or: timed automata + discrete probabilistic choice 
−  model probabilistic, nondeterministic and timed behaviour 

•  Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L) 
−  Loc is a finite set of locations 
−  linit ∈ Loc is the initial location 
−  Act is a finite set of actions 
−  X is a finite set of clocks 
−  inv : Loc → Zones(X)  

is the invariant condition 
−  prob ⊆ Loc×Zones(X)×Dist(Loc×2X)  

is the probabilistic edge relation 
−  L : Loc → AP is a labelling function 

di 
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Probabilistic edge relation 

•  Probabilistic edge relation 
−  prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X) 

•  Probabilistic edge (l,g,a,p) ∈ prob 
−  l is the source location 
−  g is the guard 
−  a is the action 
−  p target distribution 

•  Edge (l,g,a,p,l’,Y) 
−  from probabilistic edge (l,g,a,p) where p(l’,Y)>0 
−  l’ is the target location 
−  Y is the set of clocks to be reset 
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PTA - Example 

•  Models a simple probabilistic communication protocol 
−  starts in location di; after between 1 and 2 time units, the 

protocol attempts to send the data: 
•  with probability 0.9 data is sent correctly, move to location sr 
•  with probability 0.1 data is lost, move to location si 

−  in location si, after 2 to 3 time units, attempts to resend 
•  correctly sent with probability 0.95 and lost with probability 0.05 

invariant 

guard 

clock reset action 

di 
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PTAs - Behaviour 

•  A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l) 

•  A PTAs start in the initial location with all clocks set to zero 
−  let 0 denote the clock valuation where all clocks have value 0 

•  For any state (l,v), there is nondeterministic choice between 
making a discrete transition and letting time pass 
−  discrete transition (l,g,a,p) enabled if v ⊲ g and probability of 

moving to location l’ and resetting the clocks Y equals p(l’,Y) 
−  time transition available only if invariant inv(l) is continuously 

satisfied while time elapses 
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PTA - Example 

(di,x=0) 
1.1 

(di,x=1.1) 

send 0.1 0.9 

(sr,x=0) (si,x=0) 
2.7 

(si,x=2.7) 

retry 0.05 0.95 

(sr,x=0) (si,x=0) 

8.66 

(sr,x=8.66) 
⋮ 

⋮ ⋮ 
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retry 

si 
x≤3 

sr 
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x:=0 

PTA: Example  
execution: 
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PTA semantics 

•  Formally, the semantics of a PTA P is an infinite-state MDP 
MP = (SP, sinit, Steps, LP) with: 

•  States: SP = { (l,v) ∈ Loc × ℝX  such that v ⊲ inv(l) } 

•  Initial state: sinit = (linit, 0) 

•  Steps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ Steps(l,v) iff:  
−  (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t 
−  (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob  

such that v⊲g and, for any (l’,v’) ∈ SP: 

•  Labelling: LP(l,v) = L(l) 
  

€ 

µ(l',v' ) =  p(l',Y)
Y⊆X∧v[Y:=0]=v'
∑

actions of MDP MP are the actions 
of PTA P or real time delays 

multiple resets may give  
same clock valuation 



26 

Time divergence 

•  We restrict our attention to time divergent behaviour 
−  a common restriction imposed in real-time systems 
−  unrealisable behaviour (i.e. corresponding to time not 

 advancing beyond a time bound) is disregarded 
−  also called non-zeno behaviour 

•  For a path ω=s0(α0,µ0)s1(α1,µ1)s2(α2,µ2)... in the MDP MP 
−  Dω(n) denotes the duration up to state sn 
−  i.e. Dω(n) = ∑ {| αi | 0≤i<n ∧ αi ∈ ℝ |} 

•  A path ω is time divergent if, for any t∈ℝ≥0: 
−  there exists j ∈ ℕ such that Dω(j)>t 

•  Example of non-divergent path: 
−  s0(1,µ0)s0(0.5,µ1)s0(0.25,µ2)s0(0.125,µ2)s0… 
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Time divergence 

•  An adversary of MP is divergent if, for each state s ∈ SP: 
−  the probability of divergent paths under A is 1 
−  i.e PrA

s{ ω ∈ PathA(s) | ω is divergent } =1 

•  Motivation for probabilistic definition of divergence: 

−  in this PTA, any adversary has one non-divergent path: 
•  takes the loop in l0 infinitely often, without 1 time unit passing 

−  but the probability of such behaviour is 0 
−  a stronger notion of divergence would mean no divergent 

adversaries exist for this PTA 

0.5 
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0.5 

l0 
x≤1 

l1 
true 
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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PTCTL - Syntax 

•  PTCTL: Probabilistic timed computation tree logic 
−  derived from PCTL [BdA95] and TCTL [AD94] 

•  Syntax: 

−  φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [ φ U φ ] 

•  where: 
−  where Z is a set of formula clocks, ζ ∈ Zones(X∪Z), z ∈ Z, 
−  a is an atomic proposition, p ∈ [0,1] and ~ ∈ {<,>,≤,≥} 

“freeze quantifier” “zone over X∪Z” 

 φ U φ is true with probability ~p 
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PTCTL - Examples 

•  z . P>0.99 [ packet2unsent U packet1delivered ∧ (z<5) ] 
−  “with probability greater than 0.99, the system delivers packet 

1 within 5 time units and does not try to send packet 2 in the 
meantime” 

•  z . P>0.95[ (x≤3) U (z=8) ] 
−  “with probability at least 0.95, the system clock x does not 

exceed 3 before 8 time units elapse” 

•  z . P≤0.1[ G (failure ∨ (z≤60)) ] 
−  “the system fails after the first 60 time units have elapsed with 

probability at most 0.01” 
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PTCTL - Semantics 

•  Let (l,v) ∈ SP and ℇ ∈ ℝZ be a formula clock valuation 

−  (l,v),ℇ ⊨ a   ⇔  a ∈ L(l,v) 
−  (l,v),ℇ ⊨ ζ   ⇔  v,ℇ ⊲ ζ 
−  (l,v),ℇ ⊨ z.φ   ⇔  (l,v),ℇ[z:=0] ⊨ φ 
−  (l,v),ℇ ⊨ φ1 ∧ φ2 ⇔  (l,v),ℇ ⊨ φ1  and (l,v),ℇ ⊨ φ2 

−  (l,v),ℇ ⊨ ¬φ   ⇔  (l,v),ℇ ⊨ φ  is false 
−  (l,v),ℇ ⊨ P~p[ψ]  ⇔  PrA

(l,v){ ω∈PathA(l,v) | ω,ℇ ⊨ ψ } ~ p 
                                    for all adversaries A∈AdvMP 

after resetting z, 
φ is satisfied  

combined clock valuation of v and ℇ 
satisfies ζ  

the probability of a path satisfying ψ meets ~p 
for all divergent adversaries 
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PTCTL  - Semantics of until 

•  Let ω be a path in MP and ℇ be a formula clock valuation 
− ω,ℇ ⊨ ψ satisfaction of ψ by ω, assuming ℇ initially 

•  ω,ℇ ⊨ φ1 U φ2 if and only if 
 there exists i ∈ ℕ and t ∈ Dω(i+1)-Dω(i) such that 
− ω(i)+t,ℇ+(Dω(i)+t) ⊨ φ2 

− ∀ t’≤t . ω(i)+t’,ℇ+(Dω(i)+t’) ⊨ φ1 ∨ φ2 

− ∀ j<i . ∀ t’≤ Dω(j+1)-Dω(j) . ω(j)+t’,ℇ+(Dω(j)+t’) ⊨ φ1 ∨ φ2 

•  Condition “φ1 ∨ φ2” different from PCTL and CSL 
−  usually φ2 becomes true and φ1 is true until this point 
−  difference due to the density of the time domain 
−  to allow for open intervals use disjunction φ1 ∨ φ2 
−  for example consider x≤5 U x>5 and x<5 U x≥5 
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Probabilistic reachability in PTAs 

•  For simplicity, in some cases, we just consider probabilistic 
reachability, rather than full PTCTL model checking 
−  i.e. min/max probability of reaching a set of target locations 
−  can also encode time-bounded reachability (with extra clock) 

•  Still captures a wide range of properties 
−  probabilistic reachability: “with probability at least 0.999, a 

data packet is correctly delivered” 
−  probabilistic invariance: “with probability 0.875 or greater, the 

system never aborts” 
−  probabilistic time-bounded reachability: “with probability 0.01 

or less, a data packet is lost within 5 time units” 
−  bounded response: “with probability 0.99 or greater, a data 

packet will always be delivered within 5 time units” 
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 



35 

PTA model checking - Summary 

•  Several different approaches developed 
−  basic idea: reduce to the analysis of a finite-state model 
−  in most cases, this is a Markov decision process (MDP) 

•  Region graph construction [KNSS02] 
−  shows decidability, but gives exponential complexity 

•  Digital clocks approach [KNPS06] 
−  (slightly) restricted classes of PTAs 
−  works well in practice, still some scalability limitations 

•  Zone-based approaches: 
−  (preferred approach for non-probabilistic timed automata) 
−  forwards reachability [KNSS02] 
−  backwards reachability [KNSW07] 
−  game-based abstraction refinement [KNP09c] 
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The region graph 

•  Region graph construction for PTAs [KNSS02] 
−  adapts region graph construction for timed automata [ACD93] 
−  partitions PTA states into a finite set of regions 
−  based on notion of clock equivalence 
−  construction is also dependent on PTCTL formula 

•  For a PTA P and PTCTL formula φ  
−  construct a time-abstract, finite-state MDP R(φ) 
−  translate PTCTL formula φ to PCTL formula φ’ 
−  φ is preserved by region quivalence 
−  i.e. φ holds in a state of MP if and only if φ’ holds in the 

corresponding state of R(φ) 
−  model check R(φ) using standard methods for MDPs 
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The region graph - Clock equivalence 

•  Regions are sets of clock equivalent clock valuations 

•  Some notation: 
−  let c be largest constant appearing in PTA or PTCTL formula 
−  let ⌊t⌋ denotes the integral part of t 
−  t and t’ agree on their integral parts if and only if 

 (1) ⌊t⌋ = ⌊t’⌋ 
 (2) t and t’ are both integers or neither is an integer 

•  The clock valuations v and v’ are clock equivalent (v ≅ v’) if: 
−  for all clocks x ∈ X, either: 

•  v(x) and v’(x) agree on their integral parts 
•  v(x)>c and v’(x)>c 

−  for all clock pairs x,y ∈ X, either: 
•  v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts 
•  v(x) − v(x’) > c and v’(x) − v’(x’) > c 
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Region graph - Clock equivalence 

•  Example regions (for 2 clocks x and y) 

(0,0) x 

y 

x=y ∧ 0<x<1  

x=1 ∧ y=2  

y=1 ∧ 2<x<3  

x<y ∧ 1<x<2 ∧ 1<y<2  
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Region graph - Clock equivalence 

•  Fundamental result: if v ≅ v’, then v ⊲ ζ  ⇔ v’ ⊲ ζ 
−  it follows that r ⊲ ζ is well defined for a region r 

•  r’ is the successor region of r, written succ(r) = r’, if  
−  for each v∈r, there exists t>0 such that v+t ∈ r’ 

 and v+t’ ∈ r∪r’ for all t’< t  

(0,0) x 

y 
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The region graph 

•  The region graph MDP is (SR,sinit,StepsR,LR) where… 

−  the set of states SR comprises pairs (l,r) such that l is a 
location and r is a region over X ∪ Z 

−  the initial state is (linit, 0) 
−  the set of actions is {succ} ∪ Act 

•  succ is a unique action denoting passage of time 
−  the probabilistic transition function StepsR is defined as: 
−   SR × 2({succ}∪Act)×Dist(SR) 
−  (succ,µ) ∈ StepsR(l,r) iff µ(l,succ(r))=1 
−  (a,µ) ∈ StepsR(l,r) if and only if ∃ (l,g,a,p) ∈ prob such that 

 r ⊲ g and, for any (l’,r’) ∈ SR: 

−  the labelling is given by: LR(l,r) = L(l) 
  

€ 

µ(l',r' ) =  p(l',Y)
Y⊆X∧r[Y:=0]=r'
∑
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Region graph - Example 

•  PTCTL formula: z.P~p [ true U (sr<4) ] 
          

(di,x=z=0) (di,0<x=z<1) succ (di,x=z=1) 
succ succ 

(di,1<x=z<2) 

(sr,x=0∧z=1) (si,x=0∧z=1) 

0.9 0.1 

di 

0.1 0.05 

x≤2 

0.9 

x≥2 
send 

x≥1 

x:=0 x:=0 

retry 

si 
x≤3 

sr 
true 

0.95 

x:=0 
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Region graph construction 

•  Region graph 
−  useful for establishing decidability of model checking 
−  or proving complexity results for model checking algorithms 

•  But… 
−  the number of regions is exponential in the number of clocks 

and the size of largest constant 
−  so model checking based on this is extremely expensive 
−  and so not implemented (even for timed automata) 

•  Improved approaches based on: 
−  digital clocks 
−  zones (unions of regions) 



43 

Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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Digital clocks 

•  Simple idea: Clocks can only take integer (digital) values 
−  i.e. time domain is ℕ as opposed to ℝ 
−  based on notion of ε-digitisation [HMP92] 

•  Only applies to arestricted class of PTAs; zones must be: 
−  closed – no strict inequalities (e.g. x>5) 

•  Digital clocks semantics yields a finite-state MDP 
−  state space is a subset of Loc × ℕX, rather than Loc × ℝX  
−  clocks bounded by cmax (max constant in PTA and formula) 
−  then use standard techniques for finite –state MDPs 
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Example - Digital clocks 

(di,x=z=0) (di,x=z=1) (di,x=z=2) 

(sr,x=0∧z=1) (si,x=0∧z=1) 

0.9 0.1 

(si,x=1∧z=2) 

(si,x=2∧z=3) 

(sr,x=0∧z=3) (si,x=0∧z=3) 

0.95 0.05 

0.1 
0.9 

(sr,x=0∧z=2) 

di 

0.1 0.05 

x≤2 

0.9 

x≥2 
send 

x≥1 

x:=0 x:=0 

retry 

si 
x≤3 

sr 
true 

0.95 

x:=0 
PTA: 

⋮ ⋮ 

MDP:  
(digital  
clocks) 
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Digital clocks 

•  Digital clocks approach preserves: 
−  minimum/maximum reachability probabilities 
−  a subset of PTCTL properties 
−  (no nesting, only closed zones in formulae) 
−  only works for the initial state of the PTA 
−  (but can be extended to any state with integer clock values) 

•  In practice: 
−  translation from PTA to MDP can often be done manually 
−  (by encoding the PTA directly into the PRISM language) 
−  automated translations exist: mcpta and (soon) PRISM 
−  many case studies, despite “closed” restriction 

•  Problem: can lead to very large MDPs 
−  alleviated partially by efficient symbolic model checking 
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Digital clocks do not preserve PTCTL 

•  Consider the PTCTL formula φ=z.P<1 [ true U (a ∧ z≤1)] 
−  a is an atomic proposition only true in location l1 

•  Digital semantics: 
−  no state satisfies φ since for any state we have 

 ProbA(s,ℇ[z:=0],  true U (a∧z≤1) ) = 1 for some adversary A 

−  hence P<1 [ true U φ ] is trivially true in all states 

l0 
x≤3 

l1 
true 

x≥3 

x≤1 

{a} 
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Digital clocks do not preserve PTCTL 

•  Consider the PTCTL formula φ=z.P<1 [ true U (a ∧ z≤1)] 
−  a is an atomic proposition only true in location l1 

•  Dense time semantics: 
−  any state (l0,v) where v(x) ∈ (1,2) satisfies φ  

 more than one time unit must pass before we can reach l1 
−  hence P<1 [ true U φ ] is not true in the initial state 

l0 
x≤3 

l1 
true 

x≥3 

x≤1 

{a} 
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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Zone-based approaches 

•  An alternative is to use zones to construct an MDP 

•  Conventional symbolic model checking relies on computing 
−  post(S’) the states that can be reached from a state in S’ in a 

single step 
−  pre(S’) the states that can reach S’ in a single step 

•  Extend these operators to include time passage 
−  dpost[e](S’) the states that can be reached from a state in S’ by 

traversing the edge e 
−  tpost(S’) the states that can be reached from a state in S’ by 

letting time elapse 
−  pre[e](S’) the states that can reach S’ by traversing the edge e 
−  tpre(S’) the states that can reach S’ by letting time elapse 
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Zone-based approaches 

•  Symbolic states (l, ζ) where  
−  l ∈ Loc (location) 
−  ζ is a zone over PTA clocks and formula clocks 
−  generally fewer zones than regions 

•  tpost(l,ζ) = (l, ↗ζ∧inv(l) ) 
−  ↗ζ can be reached from ζ by letting time pass 
−  ↗ζ∧inv(l) must satisfy the invariant of the location l 

•  tpre(l,ζ) = (l, ↙ζ∧inv(l) )  
−  ↙ ζ can reach ζ by letting time pass 
−  ↙ ζ∧ inv(l) must satisfy the invariant of the location l 
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Zone-based approaches 

•  For an edge e= (l,g,a,p,l’,Y) where 
−  l is the source 
−  g is the guard 
−  a is the action 
−  l’ is the target  
−  Y is the clock reset 

•  dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0] ) 
−  ζ∧g satisfy the guard of the edge 
−  (ζ∧g)[Y:=0] reset the clocks Y  

•  dpre[e](l’,ζ’) = (l,  [Y:=0]ζ’ ∧ (g ∧ inv(l)) ) 
−  [Y:=0]ζ’ the clocks Y were reset 
−  [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l 
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Forwards reachability 

•  Based on the operation post[e](l,ζ) = tpost(dpost[e](l,ζ))
     
−  (l’,v’) ∈ post[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after 

traversing edge e and letting time pass one can reach (l’,v’) 

•  Forwards algorithm (part 1) 
−  start with initial state SF={tpost((linit,0))} then iterate 

   for each symbolic state (l,ζ) ∈ SF and edge e  
   add post[e](l,ζ) to SF 

−  until set of symbolic states SF does not change 

•  To ensure termination need to take c-closure of each zone 
encountered (c is the largest constant in the PTA) 
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Forwards reachability 

•  Forwards algorithm (part 2) 
−  construct finite state MDP (SF,(linit,0),StepsF,LF) 

−  states SF (returned from first part of the algorithm) 
−  LF(l,ζ)=L(l) for all (l,ζ) ∈ SF 
−  µ ∈ StepsF(l,ζ) if and only if  

 there exists a probabilistic edge (l,g,a,p) of PTA 
such that for any (l’, ζ’) ∈ Z: 

summation over all the edges of (l,g,a,p) such that 
applying post to (l,ζ) leads to the symbolic state (l’,ζ’) 
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Forwards reachability - Example 

l1 

0.5 
x:=0 

l2 

l3 

l0 

0.5 true 

x=0∧y=1 x=0∧y=0 y:=0 

0.5 

(l0,x=y) 

0.5 

(l0,x≤y) (l0,x=y) 

(l3,x=y) PTA: MDP: 
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Forwards reachability - Limitations 

•  Only obtain upper bounds on maximum probabilities 
−  caused by when edges are combined 

•  Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2) 
−  where e1 and e2 from the same probabilistic edge 

•  By definition of post 
−  there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be 

reached by traversing the edge ei and letting time pass 
•  Problem 

−  we combine these transitions but are (l,v1) and (l,v2) the same? 
−  may not exist states in (l,ζ) for which both edges are enabled 
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Forwards reachability - Example 

•  Maximum probability of reaching l3 is 0.5 in the PTA 
−  for the left branch need to take the first transition when x=1 
−  for the right branch need to take the first transition when x=0 

•  However, in the forwards reachability graph probability is 1 
−  can reach l3 via either branch from (l0,x=y) 

l1 

0.5 
x:=0 

l2 

l3 

l0 

0.5 true 

x=0∧y=1 x=0∧y=0 y:=0 

0.5 

(l0,x=y) 

0.5 

(l0,x≤y) (l0,x=y) 

(l3,x=y) PTA: MDP: 
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Forwards reachability 

•  Main result [KNSS02] 
−  obtain time-abstract, finite-state MDP over zones 
−  bound on maximum reachability probabilities only 
−  can model check the MDP using standard methods 
−  loss of on-the fly, must construct MDP first  

•  Implementations 
−  KRONOS pre-processor into PRISM input language, outputs 

time-abstract MDP [DKN02] 
−  Explicit, using Difference Bound Matrices (DBMs), to PRISM 

input language [WK05] 
−  Symbolic, using Difference Decision Diagrams (DDDs), via 

MTBDD-coded PTA syntax directly to PRISM engine [WK05] 
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Backwards reachability 

•  An alternative zone-based method: backwards reachability 
−  state-space exploration in opposite direction, from target to 

initial states; uses pre rather than post operator 
•  Basic ideas: (see [KNSW07] for details) 

−  construct a finite-state MDP comprising symbolic states 
−  need to keep track of branching structure and take 

conjunctions of symbolic states if necessary 
−  MDP yields maximum reachability probabilities for PTA 
−  for min. probs, do graph-based analysis and convert to max. 

•  Advantages: 
−  gives (exact) minimum/maximum reachability probabilities 
−  extends to full PTCTL model checking 

•  Disadvantage: 
−  operations to implement are expensive, limits applicability 
−  (requires manipulation of non-convex zones) 
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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Abstraction 

•  Very successful in (non-probabilistic) formal methods 
−  essential for verification of large/infinite-state systems 
−  hide details irrelevant to the property of interest 
−  yields smaller/finite model which is easier/feasible to verify 
−  loss of precision: verification can return “don’t know” 

•  Construct abstract model of a concrete system 
−  e.g. based on a partition of the concrete state space 
−  an abstract state represents a set of concrete states 

•  Automatic generation of abstractions using refinement 
−  start with a simple coarse abstraction; iteratively refine 
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Abstraction of MDPs 

•  Abstraction increases degree of nondeterminism 
−  i.e. minimum probabilities are lower and maximums higher 

•  We construct abstractions of MDPs using stochastic games 

−  yields lower/upper bounds for min/max probabilities 

0 1 ps
min ps

max 

0 1 ps
min ps

max 
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1
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Abstraction refinement 

•  Consider (max) difference between lower/upper bounds 
−  gives a quantitative measure of the abstraction’s precision 

•  If the difference (“error”) is too great, refine the abstraction 
−  a finer partition yields a more precise abstraction 
−  lower/upper bounds can tell us where to refine (which states) 
−  (memoryless) strategies can tell us how to refine 

0 1 ps
min(F) ps

max(F) 
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Abstraction-refinement loop 

•  Quantitative abstraction-refinement loop for MDPs 

[error<ε] 

Initial  
partition 

Bounds and 
strategies 

[error≥ε] 

model 
check 

abstract 

refine 

New 
partition 

Return 
bounds 

Abstraction •  Refinements yield 
strictly finer partition 

•  Guaranteed to  
converge for finite 
models 

•  Guaranteed to 
converge for infinite 
models with finite 
bisimulation 
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Abstraction refinement for PTAs 

•  Model checking for PTAs using abstraction refinement 

[error<ε] 

Initial  
partition 

Bounds and 
strategies 

[error≥ε] 

model 
check 

abstract 

refine 

New 
partition 

Return 
bounds 

Abstraction 
Initial 

abstraction 
from 

forwards 
reachability 

Splitting of 
zones (DBMs) 

Guaranteed 
convergence 
for any ε≥0 

Abstraction 
computed 
and stored 
using zones 

(DBMs) 
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Abstraction refinement for PTAs 

•  Computes reachability probabilities in PTAs 
−  minimum or maximum, exact values (“error” ε=0) 
−  also time-bounded reachability, with extra clock 

•  Integrated in PRISM (next release) 
−  PRISM modelling language extended with clocks 
−  implemented using DBMs 

•  In practice performs, performs very well 
−  faster than digital clocks or backwards on large example set 
−  (sometimes by several orders of magnitude) 
−  handles larger PTAs than the digital clocks approach 
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Overview (Part 5) 

•  Time, clocks and zones 
•  Probabilistic timed automata (PTAs) 

−  definition, examples, semantics, time divergence 
•  PTCTL: A temporal logic for for PTAs 

−  syntax, examples, semantics 
•  Model checking for PTAs 

−  the region graph 
−  digital clocks 
−  zone-based approaches: 
−  (i) forwards reachability 
−  (ii) backwards reachability 
−  (iii) game-based abstraction refinement 

•  Costs and rewards 
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Costs and rewards 

•  Like other models, we can define a reward structure (ρ,ι) 
for a probabilistic timed automaton 

•  ρ : Loc →ℝ≥0 location reward function 
−  ρ(l) is the rate at which the reward is accumulated in location l  

•  ι : Act →ℝ≥0 action reward function 
−  ι(a) is the reward associated with performing the action a 

•  Generalises notion for uniformly priced timed automata 

•  A useful special case is the elapsed time 
−  ρ(l)=1 for all locations l ∈ Loc   
−  ι(a)=0 for all actions a ∈ Act 
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Expected reachability 

•  Expected reachability: 
−  min./max. expected cumulated reward until some set of 

states (locations) is reached 

•  Example properties 
−  “the maximum expected time until a data packet is delivered” 
−  “the minimum expected number of retransmissions before the 

message is correctly delivered” 
−  “the maximum expected number of lost messages within the 

first 200 seconds” 

•  Model checking 
−  digital clocks semantics preserves expected reachability 
−  so can use existing MDP reward model checking techniques 
−  no zone-based approaches (yet) 



70 

Summary 

•  Probabilistic timed automata (PTAs) 
−  combine probability, nondeterminism, real-time 
−  well suited for e.g. for randomised communication protocols 
−  MDPs + clocks (or timed automata + discrete probability) 
−  extension with continuous distributions exists, but model 

checking only approximate 
•  PTCTL: Temporal logic for properties of PTAs 

−  but many useful properties expressible with just reachability 
•  PTA model checking 

−  region graph: decidability results, exponential complexity 
−  digital clocks: simple and effective, some scalability issues 
−  forwards reachability: only upper bounds on max. prob.s 
−  backwards reachability: exact results but often expensive 
−  abstraction refinement using stochastic games: performs well  
−  tool support: (PRISM) coming soon, mcpta, UPPAAL-Pro 



More info here: 
www.prismmodelchecker.org 

Thanks for your attention 


