

Probabilistic Model Checking

Marta Kwiatkowska Dave Parker

Oxford University Computing Laboratory

ESSLLI'10 Summer School, Copenhagen, August 2010

Course overview

• 5 lectures: Mon-Fri, 11am-12.30pm

- Introduction
- 1 Discrete time Markov chains
- 2 Markov decision processes
- 3 Continuous-time Markov chains
- 4 Probabilistic model checking in practice
- 5 Probabilistic timed automata
- Course materials available here:
 - <u>http://www.prismmodelchecker.org/lectures/esslli10/</u>
 - lecture slides, reference list

Part 4

Probabilistic model checking in practice

Overview (Part 4)

- Tool support for probabilistic model checking
 - motivation, existing tools

The PRISM model checker

- functionality, features
- modelling language & property specification
- PRISM demonstration
- Probabilistic counterexamples
 - (smallest) counterexamples for PCTL + DTMCs
- Probabilistic bisimulation
 - bisimulation equivalences for DTMCs, CTMCs + minimisation

Motivation

- Complexity of PCTL model checking
 - generally polynomial in model size (number of states)
- State space explosion problem
 - models for realistic case studies are typically huge
- Clearly tool support is required
- Benefits:
 - fully automated process
 - high-level languages/formalisms for building models
 - visualisation of quantitative results

Tools – Probabilistic model checkers

- PRISM (Probabilistic Symbolic Model Checker)
 - DTMCs, MDPs, CTMCs + rewards, [Birmingham/Oxford]
- MRMC (Markov Reward Model Checker)
 - DTMCs, CTMCs + reward extensions, [Twente/Aachen]
- LiQuor: LTL model checking for MDPs, Probmela language (probabilistic version of SPIN's Promela), [Dresden]
- Simulation-based probabilistic model checking:
 - APMC, Ymer (both based on PRISM language), VESTA
- Many other related tools/prototypes
 - RAPTURE, CADP, Möbius, APNN-Toolbox, SMART, GreatSPN, GRIP, CASPA, Premo, PASS, ...

The PRISM tool

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL)
 - versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs
- Modelling of:
 - DTMCs, CTMCs, MDPs + costs/rewards

- Model checking of:
 - PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

PRISM functionality

- High-level modelling language
- Wide range of model analysis methods
 - efficient symbolic implementation techniques
 - also: approximate verification using simulation + sampling
- Graphical user interface
 - model/property editor
 - discrete-event simulator model traces for debugging, etc.
 - easy automation of verification experiments
 - graphical visualisation of results
- Command-line version
 - same underlying verification engines
 - useful for scripting, batch jobs

Modelling languages/formalisms

- Many high-level modelling languages, formalisms available
- For example:
 - probabilistic/stochastic process algebras
 - stochastic Petri nets
 - stochastic activity networks
- Custom languages for tools, e.g.:
 - PRISM modelling language
 - Probmela (probabilistic variant of Promela, the input language for the model checker SPIN) – used in LiQuor

PRISM modelling language

- Simple, textual, state-based language
 - modelling of DTMCs, CTMCs and MDPs
 - based on Reactive Modules [AH99]
- Basic components...
- Modules:
 - components of system being modelled
 - composed in parallel
- Variables
 - finite (integer ranges or Booleans)
 - local or global
 - all variables public: anyone can read, only owner can modify

PRISM modelling language

Guarded commands

- describe behaviour of each module
- i.e. the changes in state that can occur
- labelled with probabilities (or, for CTMCs, rates)
- (optional) action labels

send] (s=2) ->
$$p_{loss}$$
 : (s'=3)&(lost'=lost+1) + (1- p_{loss}) : (s'=4);

PRISM modelling language

Parallel composition

- model multiple components that can execute independently
- for DTMC models, mostly assume components operate synchronously, i.e. move in lock-step

Synchronisation

- simultaneous transitions in more than one module
- guarded commands with matching action-labels
- probability of combined transition is product of individual probabilities for each component
- More complex parallel compositions can be defined
 - using process-algebraic operators
 - other types of parallel composition, action hiding/renaming

Simple example

module M1

x : [0..3] init 0; [a] $x=0 \rightarrow (x'=1)$; [b] $x=1 \rightarrow 0.5:(x'=2) + 0.5:(x'=3)$; endmodule

module M2
y : [0..3] init 0;
[a] y=0 -> (y'=1);
[b] y=1 -> 0.4:(y'=2) + 0.6:(y'=3);
endmodule

Example: Leader election

- Randomised leader election protocol
 - due to Itai & Rodeh (1990)
- Set-up: N nodes, connected in a ring
 - communication is synchronous (lock-step)
- Aim: elect a leader
 - i.e. one uniquely designated node
 - by passing messages around the ring
- Protocol operates in rounds. In each round:
 - each node choose a (uniformly) random id $\in \{0, \ldots, k-1\}$
 - (k is a parameter of the protocol)
 - all nodes pass their id around the ring
 - if there is maximum unique id, node with this id is the leader
 - if not, try again with a new round

PRISM property specifications

- Based on (probabilistic extensions of) temporal logic
 - incorporates PCTL, CSL, LTL, PCTL*
 - also includes: quantitative extensions, costs/rewards

Leader election properties

- $P_{\geq 1}$ [F elected]
 - \cdot with probability 1, a leader is eventually elected
- $P_{>0.8}$ [F^{$\leq k$} elected]
 - $\cdot\,$ with probability greater than 0.8, a leader is elected within k steps
- Usually focus on quantitative properties:
 - $P_{=?} [F^{\leq k} elected]$
 - what is the probability that a leader is elected within k steps?

PRISM property specifications

- Best/worst-case scenarios
 - combining "quantitative" and "exhaustive" aspects
- e.g. computing values for a range of states...
- $P_{=?}$ [$F^{\leq t}$ elected {tokens $\leq k$ }{min}] -
 - "minimum probability of the leader election algorithm completing within t steps from any state where there are at most k tokens"
- R_{=?} [F end {"init"}{max}] -
 - "maximum expected run-time over all possible initial configurations"

PRISM property specifications

- Experiments:
 - ranges of model/property parameters
 - e.g. $P_{=?}$ [$F^{\leq T}$ error] for N=1..5, T=1..100
 - where N is some model parameter and T a time bound
 - identify patterns, trends, anomalies in quantitative results

More info on PRISM

PRISM website: http://www.prismmodelchecker.org/

- tool download: binaries, source code (GPL)
- example repository (50+ case studies)
- on-line PRISM manual
- support: help forum, bug tracking, feature requests
- related publications, talks, tutorials, links

Tutorial: http://www.prismmodelchecker.org/tutorial/

Overview (Part 4)

- Tool support for probabilistic model checking
 - motivation, existing tools
- The PRISM model checker
 - functionality, features
 - modelling language & property specification
 - PRISM demonstration
- Probabilistic counterexamples
 - (smallest) counterexamples for PCTL + DTMCs
- Probabilistic bisimulation
 - bisimulation equivalences for DTMCs, CTMCs + minimisation

Non probabilistic counterexamples

- Counterexamples (for non-probabilistic model checking)
 - generated when model checking a (universal) property fails
 - trace through model illustrating why property does not hold
 - major advantage of the model checking approach
 - bug finding vs. verification
- Example:
 - CTL property AG ¬err
 - (or equivalently, $\neg EF err$)
 - ("an error state is never reached")
 - counterexample is a finite trace to a state satisfying err
 - alternatively, this is a witness to the satisfaction of formula EF err

Counterexamples for DTMCs?

- PCTL example: P_{<0.01} [F err]
 - "the probability of reaching an error state is less than 0.01"
 - what is a counterexample for $s \neq P_{<0.01}$ [F err]?
 - not necessarily illustrated by a single trace to an err state
 - in fact, "counterexample" is a set of paths satisfying F err whose combined measure is greater than or equal to 0.01
- Alternative approach seen so far:
 - probabilistic model checker provides actual probabilities
 - e.g. queries of the form P_{=?} [F err]
 - anomalous behaviour identified by examining trends
 - e.g. $P_{=?}$ [$F^{\leq T}$ err] for T=0,...,100
- This lecture: DTMC counterexamples in style of [HK07]
 - also some work done on CTMC/MDP counterexamples

DTMC notation

- DTMC: $D = (S, s_{init}, P, L)$
- Path(s) = set of all infinite paths starting in state s
- $Pr_s : \Sigma_{Path(s)} \rightarrow [0,1] = probability measure over infinite paths$
 - where $\Sigma_{Path(s)}$ is the $\sigma\text{-algebra}$ on Path(s)
 - defined in terms of probabilities for finite paths
- $P_s(\omega) = probability for finite path <math>\omega = ss_1...s_n$
 - $P_{s}(s) = 1$
 - $\mathbf{P}_{s}(\mathbf{s}\mathbf{s}_{1}\ldots\mathbf{s}_{n}) = \mathbf{P}(\mathbf{s},\mathbf{s}_{1}) \cdot \mathbf{P}(\mathbf{s}_{1},\mathbf{s}_{2}) \cdot \ldots \cdot \mathbf{P}(\mathbf{s}_{n-1},\mathbf{s}_{n})$
 - extend notation to sets: $P_s(C)$ for set of finite paths C
 - **P**_s extends uniquely to Pr_s
- Path(s, ψ) = { $\omega \in Path(s) \mid \omega \vDash \psi$ }
 - $Prob(s, \psi) = Pr_s(Path(s, \psi))$
- $Path_{fin}(s, \psi) = set of finite paths from s satisfying \psi$

Counterexamples for DTMCs

Consider PCTL properties of the form:

- $\ P_{\leq p}$ [$\Phi_1 \ U^{\leq k} \ \Phi_2$], where $k \in \mathbb{N} \ \cup \{\infty\}$
- i.e. bounded or unbounded until formulae with closed upper probability bounds

• Refutation:

- $\mathbf{s} \not\models \mathbf{P}_{\leq p} \left[\mathbf{\Phi}_1 \ \mathbf{U}^{\leq k} \ \mathbf{\Phi}_2 \right]$
- $\Leftrightarrow \mathsf{Prob}(\mathsf{s}, [\Phi_1 \ \mathsf{U}^{\leq k} \Phi_2]) > \mathsf{p}$
- $\Leftrightarrow \Pr_{s}(\operatorname{Path}(s, \Phi_{1} \cup U^{\leq k} \Phi_{2})) > p$
- i.e. total probability mass of $\Phi_1 \ U^{\leq k} \ \Phi_2$ paths exceeds p

• Since the property is an until formula

- this is evidenced by a set of finite paths

Counterexamples for DTMCs

- A counterexample for $P_{\leq p}$ [$\Phi_1 U^{\leq k} \Phi_2$] in state s is:
 - a set C of finite paths such that $C\subseteq Path_{fin}(s,\,\psi)$ and $P_s(C)>p$

- Example
 - Consider the PCTL formula:
 - $P_{\leq 0.3}$ [F a]
 - This is not satisfied in s_0
 - $Prob(s_0, F a) = 1/4 + 1/8 + 1/16 + ... = 1/2$
 - A counterexample: $C = \{ s_0 s_2, s_0 s_0 s_2 \}$
 - $P_{s0}(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375$

Finiteness of counterexamples

- There is always a finite counterexample for: $- s \neq P_{< p} [\Phi_1 U^{\le k} \Phi_2]$
- On the other hand, consider this DTMC:
 - and the PCTL formula:
 - $P_{<1/2}$ [F a]
 - $Prob(s_0, F a) = 1/4 + 1/8 + 1/16 + ...$ = 1/2
 - − $s_0 \nvDash P_{<1/2}$ [Fa]

- counterexample would require infinite set of paths
- $\; \{ \; (s_0)^i s_2 \; \}_{i \in \mathbb{N}}$

Counterexamples for DTMCs

- Aim: counterexamples should be succinct, comprehensible
- Set of all counterexamples:
 - $CX_p(s,\psi)$ = set of all counterexamples for $P_{\leq p}$ [ψ] in state s
- Minimal counterexample
 - counterexample C with $|C| \le |C'|$ for all $C' \in CX_p(s,\psi)$
- "Smallest" counterexample
 - minimal counterexample C with $P(C) \ge P(C')$ for all minimal C' $\in CX_p(s,\psi)$
- Strongest (most probable) evidence
 - finite path ω in Path_{fin}(s, ψ) such that $P(\omega) \ge P(\omega')$ for all $\omega' \in Path_{fin}(s, \psi)$
 - i.e. contributes most to violation of PCTL formula

Example

- PCTL formula: $P_{\leq 1/2}$ [F b]
 - $\hspace{0.1 cm} s_{0} \hspace{0.1 cm} \nvDash \hspace{0.1 cm} P_{\leq 1/2} \hspace{0.1 cm} [\hspace{0.1 cm} F \hspace{0.1 cm} b \hspace{0.1 cm}] \hspace{0.1 cm}$
 - since $Prob(s_0, F b) = 0.9$

Counterexamples:

$$-C_{1} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{1}s_{4}s_{5}, s_{0}s_{4}s_{2} \}
\cdot P_{s0}(C_{1}) = 0.2+0.2+0.12+0.15 = 0.67 \quad (not minimal)
-C_{2} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{1}s_{4}s_{5} \}
\cdot P_{s0}(C_{2}) = 0.2+0.2+0.12 = 0.52 \quad (not "smallest")
-C_{3} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{4}s_{2} \}
\cdot P_{s0}(C_{3}) = 0.2+0.2+0.15 = 0.55$$

Weighted digraphs

- A weighted directed graph is a tuple G = (V, E, w) where:
 - V is a set of vertices
 - $E \subseteq V \times V$ is a set of edges
 - $w : E \rightarrow \mathbb{R}_{\geq 0}$ is a weight function
- + Finite path ω in G
 - is a sequence of vertices $v_0v_1v_2...v_n$ such that $(v_i,v_{i+1}) \in E \forall i \ge 0$
 - the distance of $\omega = v_0 v_1 v_2 \dots v_n$ is: $\Sigma_{i=0\dots n-1} w(v_i, v_{i+1})$

Shortest path problem

- given a weighted digraph, find a path between two vertices v_1 and v_2 with the smallest distance
- i.e. a path ω s.t. $d(\omega) \le d(\omega')$ for all other such paths ω'

Finding strongest evidences

- Reduction to graph problem...
- Step 1: Adapt the DTMC
 - make states satisfying $\neg \Phi_1 \land \ \neg \Phi_2$ absorbing
 - $\cdot\,$ (i.e. replace all outgoing transitions with a single self-loop)
 - add an extra state t and replace all transitions from any Φ_2 state with a single transition to t (with probability 1)
- Step 2: Convert new DTMC into a weighted digraph
 - for the (adapted) DTMC $D = (S, s_{init}, P, L)$:
 - corresponding graph is $G_D = (V, E, w)$ where:
 - V = S and E = { (s,s') \in S \times S | P(s,s')>0 }
 - w(s,s') = log(1/P(s,s'))
- Key idea: for any two paths ω and ω ' in D (and in G_D)
 - $P_s(\omega') \ge P_s(\omega)$ if and only if $d(\omega') \le d(\omega)$

Example...

Finding strongest evidences

- To find strongest evidence in DTMC D
 - analyse corresponding digraph
- For unbounded until formula $P_{\leq p}$ [$\Phi_1 \cup \Phi_2$]
 - solve shortest path problem in digraph (target t)
 - polynomial time algorithms exist
 - $\cdot\,$ e.g. Dijsktra's algorithm can be implemented in $O(|E|+|V|\cdot log|V|)$
- + For bounded until formula $P_{\leq p}$ [$\Phi_1 \; U^{\leq k} \; \Phi_2$]
 - solve special case of the constrained shortest path problem
 - also solvable in polynomial time
- Generation of smallest counterexamples
 - based on computation of k shortest paths
 - k can be computed on the fly

Other cases

- Lower bounds on probabilities
 - $\text{ i.e. } s \not\vDash P_{\geq p} \left[\ \Phi_1 \ U^{\leq k} \ \Phi_2 \ \right]$
 - negate until formula to reverse probability bound
 - solvable with BSCC computation + probabilistic reachability
 - for details, see [HK07]

Continuous-time Markov chains

- these techniques can be extended to CTMCs and CSL [HK07b]
- naïve approach: apply DTMC techniques to uniformised DTMC
- modifications required to get smaller counterexamples
- another possibility: directed search based techniques [AHL05]

Overview (Part 4)

- Tool support for probabilistic model checking
 - motivation, existing tools
- The PRISM model checker
 - functionality, features
 - modelling language & property specification
 - PRISM demonstration
- Probabilistic counterexamples
 - (smallest) counterexamples for PCTL + DTMCs
- Probabilistic bisimulation
 - bisimulation equivalences for DTMCs, CTMCs + minimisation

Bisimulation

Identifies models with the same branching structure

- i.e. the same stepwise behaviour
- each model can simulate the actions of the other
- guarantees that models satisfy many of the same properties

Uses of bisimulation:

- show equivalence between a model and its specification
- state space reduction: bisimulation minimisation

Formally, bisimulation is an equivalence relation over states

 bisimilar states must have identical labelling and identical stepwise behaviour

Bisimulation on DTMCs

- Consider a DTMC $D = (S, s_{init}, P, L)$
- Some notation:
 - $\ P(s,T) = \Sigma_{s' \in T} \ P(s,s') \ \text{for} \ T \subseteq S$
- An equivalence relation R on S is a probabilistic bisimulation on D if and only if for all s₁ R s₂:

$$- L(s_1) = L(s_2)$$

- $P(s_1, T) = P(s_2, T)$ for all $T \in S/R$ (i.e. for all equivalence classes of R)
- States s₁ and s₂ are bisimulation-equivalent (or bisimilar)
 - if there exists a probabilistic bisimulation R on D with $s_1 R s_2$
 - denoted $s_1 \sim s_2$

Simple example

- Bisimulation relation ~
- Quotient of S under ~
 - denoted S/~
 - $\{ \{s_1\}, \{u_1, u_2\}, \{v_1, v_2\} \}$
- Bisimilar states:
 - $u_1 \sim u_2$
 - $v_1 \sim v_2$

Bisimulation on DTMCs

- Bisimulation between DTMCs D₁ and D₂
 - D₁ ~ D₂ if they have bisimilar initial states
- Formally:
 - state labellings for D_1 and D_2 over same set of atomic prop.s
 - bisimulation relation is over disjoint union of D_1 and D_2

Simple example

• Bisimilar states:

$$-$$
 u₁ ~ u₂ ~ u

$$-V_1 \sim V_2 \sim V$$

 $- s_1 \sim s$

Quotient DTMC

- For a DTMC D = (S, s_{init}, P, L) and probabilistic bisimulation ~
- Quotient DTMC is
 D/~ = (S',s'_{init},P',L')
- where:
 - $S' = S/~ = \{ [s]_{\sim} | s \in S \}$
 - $s'_{init} = [s_{init}]_{\sim}$
 - $P'([s]_{, s']_{, s'}) = P(s, [s']_{, s'})$
 - $L'([s]_{\sim}) = L(s)$

[s]_~ 2/3 1/3{b} {a} [u] [v] well defined since

bisimulation ensures P(s, [s']_) same for all s in [s]_

Bisimulation and PCTL

- Probabilistic bisimulation preserves all PCTL formulae
- For all states s and s':

s ~ s'
$$\Leftrightarrow$$

for all PCTL formulae Φ , s $\vDash \Phi$ if and only if s' $\vDash \Phi$

- Note also:
 - every pair of non-bisimilar states can be distinguished with some PCTL formula
 - ~ is the coarsest relation with this property
 - in fact, bisimulation also preserves all PCTL* formulae

CTMC bisimulation

- Check equivalence of rates, not probabilities...
- An equivalence relation R on S is a probabilistic bisimulation on CTMC C=(S,s_{init},R,L) if and only if for all s₁ R s₂:
 - $L(s_1) = L(s_2)$
 - $\mathbf{R}(\mathbf{s}_1, \mathbf{T}) = \mathbf{R}(\mathbf{s}_2, \mathbf{T})$ for all classes T in S/R
- Alternatively, check:
 - $L(s_1) = L(s_2), P^{emb(C)}(s_1, T) = P^{emb(C)}(s_2, T), E(s_1) = E(s_2)$
- Bisimulation on CTMCs preserves CSL
 - (see [BHHK03] and also [DP03])

Bisimulation minimisation

- More efficient to perform PCTL/CSL model checking on the quotient DTMC/CTMC
 - assuming quotient model can be constructed efficiently
 - (see [KKZJ07] for experimental results on this)
- Bisimulation minimisation
 - algorithm to construct quotient model
 - based on partition refinement
 - repeated splitting of an initially coarse partition
 - final partition is coarsest bisimulation wrt. initial partition
 - (optimisations/variants possible by changing initial partition)
 - complexity: $O(|\mathbf{P}| \cdot \log |S| + |AP| \cdot |S|)$ [DHS'03]
 - assuming suitable data structure used (splay trees)

Bisimulation minimisation

- 1. Start with initial partition
 - $\ say \ \Pi = \{ \ \{ \ s {\in} S \ | \ a {\in} L(s) \ \} \ | \ a {\in} AP \ \}$
- 2. Find a splitter $T \in \Pi$ for some block $B \in \Pi$
 - a splitter T is a block such that probability of going to T differs for some states in block B
 - i.e. $\exists s,s' \in B$. $P(s,T) \neq P(s',T)$ ← replace P with R for CTMCs
- 3. Split B into sub-blocks
 - such that P(s,T) is the same for all states in each sub-block
- 4. Repeat steps 2/3 until no more splitters exist
 - i.e. no change to partition Π

CTMC example

• Consider model checking P_{-p} [$F^{[0,t]}$ a] on this CTMC:

Minimisation:

 $\Pi_{0:} B_{1} = \{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\}, B_{2} = \{s_{6}\}$ $B_{2} \text{ is a splitter for } B_{1}$ (since e.g. $R(s_{1}, B_{2}) = 0 \neq 2 = R(s_{2}, B_{2})$) $\Pi_{1} : B_{1} = \{s_{0}, s_{1}, s_{4}, s_{5}\}, B_{2} = \{s_{6}\}, B_{3} = \{s_{2}, s_{3}\}$ $B_{3} \text{ is a splitter for } B_{1}$ (since e.g. $R(s_{1}, B_{3}) = 0 \neq 4 = R(s_{0}, B_{3})$)) $\Pi_{2} : B_{1} = \{s_{1}, s_{5}\}, B_{2} = \{s_{6}\}, B_{3} = \{s_{2}, s_{3}\}, B_{4} = \{s_{0}, s_{4}\}$ No more splitters...

 $S/\sim = \{ \{s_1, s_5\}, \{s_6\}, \{s_2, s_3\}, \{s_0, s_4\} \}$

CTMC example...

Prob^C(s, $F^{[0,t]}$ a) = Prob^{C/~}({s₀,s₄}, $F^{[0,t]}$ a)

Summary

PRISM: Probabilistic model checker

- for DTMCs, MDPs, CTMCs, ...
- high-level modelling language, property specifications
- graphical user interface
- Counterexamples
 - essential ingredient of non-probabilistic model checking
 - for PCTL + DTMCs, need set of finite paths/evidences
 - computation: reduction to well-known graph problems
- Bisimulation
 - relates states/Markov chains with identical labelling and identical stepwise behaviour, preserves PCTL, CSL, ...
 - minimisation: automated construction of quotient model
- Tomorrow: probabilistic timed automata (PTAs)