
ESSLLI’10 Summer School, Copenhagen, August 2010

1

Course overview

•  5 lectures: Mon-Fri, 11am-12.30pm

−  Introduction
−  1 – Discrete time Markov chains
−  2 – Markov decision processes
−  3 – Continuous-time Markov chains
−  4 – Probabilistic model checking in practice
−  5 – Probabilistic timed automata

•  Course materials available here:
−  http://www.prismmodelchecker.org/lectures/esslli10/
−  lecture slides, reference list

2

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

(probabilistic automata)

CTMDPs/IMCs

Probabilistic timed
automata (PTAs)

Continuous-time Markov chains

Part 3

4

Time in DTMCs

•  Time in a DTMC (or MDP) proceeds in discrete steps

•  Two possible interpretations:
−  accurate model of (discrete) time units

•  e.g. clock ticks in model of an embedded device
−  time-abstract

•  no information assumed about the time transitions take

•  Continuous-time Markov chains (CTMCs)
−  dense model of time
−  transitions can occur at any (real-valued) time instant
−  modelled using exponential distributions
−  suits modelling of: performance/reliability (e.g. of computer

networks, manufacturing systems, queueing networks),
biological pathways, chemical reactions, …

5

Overview (Part 3)

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, race conditions, examples
−  paths and probability spaces

•  CSL: A temporal logic for CTMCs

•  CSL model checking
−  uniformisation, steady-state probabilities

•  Extensions: Costs & rewards

6

Continuous probability distributions

•  Defined by:
−  cumulative distribution function

−  where f is the probability density function
−  Pr(X=t) = 0 for all t

•  Example: uniform distribution: U(a,b)

7

Exponential distribution

•  A continuous random variable X is exponential with
parameter λ>0 if the density function is given by:

•  Cumulative distribution function (for t≥0):

•  Other properties:
−  negation:
−  mean (expectation):
−  variance: Var(X) = 1/λ2

 λ = “rate”

8

Exponential distribution - Examples

•  The more λ increases, the faster the c.d.f. approaches 1

Cumulative distribution function Probability distribution function

9

Exponential distribution

•  Adequate for modelling many real-life phenomena
−  failures

•  e.g. time before machine component fails
−  inter-arrival times

•  e.g. time before next call arrives to a call centre
−  biological systems

•  e.g. times for reactions between proteins to occur

•  Maximal entropy if just the mean is known
−  i.e. best approximation when only mean is known

•  Can approximate general distributions arbitrarily closely
−  phase-type distributions 

10

Exponential distribution - Properties

•  Two useful properties of the exponential distribution:

•  The exponential distribution is memoryless:
−  Pr(X>t1+t2 I X>t1) = Pr(X>t2)
−  it is the only memoryless continuous distribution
−  the discrete-time equivalent is the geometric distribution

•  The minimum of two independent exponential distributions
is an exponential distribution (parameter is sum)
−  X1 ~ Exponential(λ1), X2 ~ Exponential(λ2)
−  Y = min(X1,X2) ~ Exponential(λ1+λ2)
−  generalises to minimum of n distributions

11

Overview (Part 3)

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, race conditions, examples
−  paths and probability spaces

•  CSL: A temporal logic for CTMCs

•  CSL model checking
−  uniformisation, steady-state probabilities

•  Extensions: Costs & rewards

12

Continuous-time Markov chains

•  Continuous-time Markov chains (CTMCs)
−  labelled transition systems augmented with rates
−  continuous time delays, exponentially distributed

•  Formally, a CTMC C is a tuple (S,sinit,R,L) where:
−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  R : S × S → ℝ≥0 is the transition rate matrix
−  L : S → 2AP is a labelling with atomic propositions

•  Transition rate matrix assigns rates to each pair of states
−  used as a parameter to the exponential distribution
−  transition between s and s’ when R(s,s’)>0
−  probability triggered before t time units: 1 – e-R(s,s’)·t

13

Simple CTMC example

•  Modelling a queue of jobs
−  initially the queue is empty
−  jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
−  jobs are served with rate 3 (i.e. mean service time is 1/3)
−  maximum size of the queue is 3
−  state space: S = {si}i=0..3 where si indicates i jobs in queue

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

14

Race conditions

•  What happens when there exists multiple s’ with R(s,s’)>0?
−  race condition: first transition triggered determines next state
−  two questions:
−  1. How long is spent in s before a transition occurs?
−  2. Which transition is eventually taken?

•  1. Time spent in a state before a transition
−  minimum of exponential distributions
−  exponential with parameter given by summation:

−  probability of leaving a state s within [0,t] is 1-e-E(s)·t

−  E(s) is the exit rate of state s
−  s is called absorbing if E(s)=0 (no outgoing transitions)

15

Race conditions…

•  2. Which transition is taken from state s?
−  the choice is independent of the time at which it occurs
−  e.g. if X1 ~ Exponential(λ1), X2 ~ Exponential(λ2)
−  then the probability that X1<X2 is λ1/(λ1+λ2)
−  more generally, the probability is given by…

•  The embedded DTMC: emb(C)=(S,sinit,Pemb(C),L)
−  state space, initial state and labelling as the CTMC
−  for any s,s’∈S

•  Probability that next state from s is s’ given by Pemb(C)(s,s’)

16

Two interpretations of a CTMC

•  Consider a (non-absorbing) state s ∈ S with multiple
outgoing transitions, i.e. multiple s’ ∈ S with R(s,s’)>0

•  1. Race condition
−  each transition triggered after exponentially distributed delay

•  probability triggered before t time units: 1 – e-R(s,s’)·t
−  first transition triggered determines the next state

•  2. Separate delay/transition
−  remain in s for delay exponentially distributed with rate E(s)

•  i.e. probability of taking an outgoing transition from s within [0,t]
is given by 1-e-E(s)·t

−  probability that next state is s’ is given by Pemb(C)(s,s’)
•  i.e. R(s,s’)/E(s) = R(s,s’) / Σs’∈S R(s,s’)

17

Continuous-time Markov chains

•  Infinitesimal generator matrix

•  Alternative definition: a CTMC is:
−  a family of random variables { X(t) | t ∈ ℝ≥0 }
−  X(t) are observations made at time instant t
−  i.e. X(t) is the state of the system at time instant t
−  which satisfies…

•  Memoryless (Markov property)
P[X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0] = P[X(tk)=sk | X(tk-1)=sk-1]

18

Simple CTMC example…

C = (S, sinit, R, L)
S = {s0, s1, s2, s3}
sinit = s0

AP = {empty, full}
L(s0)={empty}, L(s1)=L(s2)=∅ and L(s3)={full}

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

infinitesimal
generator matrix

transition
rate matrix

embedded
DTMC

19

Example 2

•  3 machines, each can fail independently
−  failure rate λ, i.e. mean-time to failure (MTTF) = 1/ λ
−  modelled as exponential distributions

•  One repair unit
−  repairs a single machine at rate µ (also exponential)

•  State space:
−  S = {si}i=0..3 where si indicates i machines operational

s2 s3

3λ

1

{inactive} {high}

s1 s0

2λ λ

µ µ µ

{low} {high}

20

Example 3

•  Chemical reaction system: two species A and B
•  Two reactions:

−  reversible reaction under which 
species A and B bind to form AB  
(forwards rate = |A|·|B|·k1,  
backwards rate = |AB|·k2)

−  degradation of A (rate |A|·k3)
−  |X| denotes number of 

molecules of species X
•  CTMC with state space

−  (|A|,|B|,|AB|)
−  initially (2,2,0)

2,2,0

4k1

1,1,1 0,0,2

1,2,0 0,1,1

k1

2k2 k2

0,2,0

2k3

k3

k3 2k1

k2

A
k3

A + B AB
k1

k2

21

Paths of a CTMC

•  An infinite path ω is a sequence s0t0s1t1s2t2… such that
−  R(si,si+1) > 0 and ti ∈ ℝ>0 for all i ∈ ℕ
−  amount of time spent in the jth state: time(ω,j)=tj
−  state occupied at time t: ω@t=sj

 where j smallest index such that ∑i≤j tj ≥ t
•  A finite path is a sequence s0t0s1t1s2t2…tk-1sk such that

−  R(si,si+1) > 0 and ti ∈ ℝ>0 for all i<k
−  sk is absorbing (R(s,s’) = 0 for all s’ ∈ S)
−  amount of time spent in the ith state only defined for j≤k:

 time(ω,j)=tj if j<k and time(ω,j)=∞ if j=k
−  state occupied at time t: if t≤∑i≤k tj then ω@t as above

otherwise t>∑i≤k tj then ω@t=sk

•  Path(s) denotes all infinite and finite paths starting in s

22

Recall: Probability spaces

•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω
closed under complementation and countable union, i.e.:
−  if A ∈ Σ, the complement Ω ∖ A is in Σ
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
−  the empty set ∅ is in Σ

•  Elements of Σ are called measurable sets or events
•  Theorem: For any family F of subsets of Ω, there exists a

unique smallest σ-algebra on Ω containing F
•  Probability space (Ω, Σ, Pr)

−  Ω is the sample space
−  Σ is the set of events: σ-algebra on Ω
−  Pr : Σ → [0,1] is the probability measure:

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

23

Probability space

•  Sample space: Path(s) (set of all paths from a state s)
•  Events: sets of infinite paths
•  Basic events: cylinders

−  cylinders = sets of paths with common finite prefix
−  include time intervals in cylinders

•  Cylinder is a sequence s0,I0,s1,I1,…,In-1,sn
−  s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n
−  I0,I1,I2,…,In-1 sequence of of nonempty intervals of ℝ≥0

•  Cyl(s0,I0,s1,I1,…,In-1,sn) set of (infinite and finite paths):
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n

24

Probability space

•  Define measure over cylinders by induction

•  Prs(Cyl(s))=1

•  Prs(Cyl(s,I,s1,I1,…,In-1,sn,I’,s’)) equals:

probability transition
from sn to s’ (defined

using embedded DTMC)
probability time spent in state sn

is within the interval I’

25

Probability space

•  Probability space (Path(s), ΣPath(s), Prs) [BHHK03]

•  Sample space Ω = Path(s) (infinite and finite paths)

•  Event set ΣPath(s)
−  least σ-algebra on Path(s) containing all cylinders sets 

Cyl(s0,I0,…,In-1,sn) where:
•  s0,…,sn ranges over all state sequences with R(si,si+1)>0 for all i
•  I0,…,In-1 ranges over all sequences of non-empty intervals in ℝ≥0  

(where intervals are bounded by rationals)

•  Probability measure Prs
−  Prs extends uniquely from probability defined over cylinders

26

Probability space - Example

•  Probability of leaving the initial state s0 and moving to state
s1 within the first 2 time units of operation?

•  Cylinder Cyl(s0,(0,2],s1)

•  Prs0(Cyl(s0,(0,2],s1))  

= Prs0(Cyl(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2)
 = 1 · 1 · (e-3/2·0 – e-3/2·2)
 = 1– e-3

 ≈ 0.95021

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

27

Transient and steady-state behaviour

•  Transient behaviour
−  state of the model at a particular time instant
−  πC

s,t(s’) is probability of, having started in state s, being in
state s’ at time t (in CTMC C)

−  πC
s,t

 (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ }

•  Steady-state behaviour
−  state of the model in the long-run
−  πC

s(s’) is probability of, having started in state s, being in
state s’ in the long run

−  πC
s(s’) = limt→∞ πC

s,t(s’)
−  intuitively: long-run percentage of time spent in each state

28

Overview (Part 3)

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, race conditions, examples
−  paths and probability spaces

•  CSL: A temporal logic for CTMCs

•  CSL model checking
−  uniformisation, steady-state probabilities

•  Extensions: Costs & rewards

29

CSL

•  Temporal logic for describing properties of CTMCs
−  CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
−  extension of (non-probabilistic) temporal logic CTL
−  transient, steady-state and path-based properties

•  Key additions:
−  probabilistic operator P (like PCTL)
−  steady state operator S

•  Example: down → P>0.75 [¬fail U≤[1,2.5] up]
−  when a shutdown occurs, the probability of a system recovery

being completed between 1 and 2.5 hours without further
failure is greater than 0.75

•  Example: S<0.1[insufficient_routers]
−  in the long run, the chance that an inadequate number of

routers are operational is less than 0.1

30

CSL syntax

•  CSL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulae)

−  ψ ::= X φ | φ UI φ (path formulae)

−  where a is an atomic proposition, I interval of ℝ≥0, p ∈ [0,1],  
and ~ ∈ {<,>,≤,≥}

−  unbounded until U is a special case: φ1 U φ2 ≡ φ1 U[0,∞) φ2

•  Quantitative properties: P=? [ψ] and S=? [φ]
−  where P/S is the outermost operator

 ψ is true with
probability ~p

“time bounded
until”

“next”
 in the “long
run” φ is true

with
probability ~p

31

CSL semantics for CTMCs

•  CSL formulae interpreted over states of a CTMC
−  s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

•  Semantics of state formulae:
−  for a state s of the CTMC (S,sinit,R,L):

−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊨ φ is false
−  s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p
−  s ⊨ S~p [φ] ⇔ ∑s’ ⊨ φ πs(s’) ~ p

Probability of, starting in state s, being
in state s’ in the long run

Probability of,
starting in state s,
satisfying the path

formula ψ

32

CSL semantics for CTMCs

•  Prob(s, ψ) is the probability, starting in state s, of satisfying
the path formula ψ
−  Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ }

•  Semantics of path formulae:
−  for a path ω of the CTMC:
− ω ⊨ X φ ⇔ ω(1) is defined and ω(1) ⊨ φ
− ω ⊨ φ1 UI φ2 ⇔ ∃t ∈ I. (ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1)

there exists a time instant in the interval I where φ2
is true and φ1 is true at all preceding time instants

if ω(0) is absorbing,  
ω(1) not defined

33

CSL example - Workstation cluster

•  Case study: Cluster of workstations [HHK00]
−  two sub-clusters (N workstations in each cluster)
−  star topology with a central switch
−  components can break down, single repair unit

−  minimum QoS: at least ¾ of the workstations operational and
connected via switches

−  premium QoS: all workstations operational and connected via
switches

backbone

left
switch

right
switch

left
sub-cluster

right
sub-cluster

34

CSL example - Workstation cluster

•  S=? [minimum]
−  the probability in the long run of having minimum QoS

•  P=? [F[t,t] minimum]
−  the (transient) probability at time instant t of minimum QoS

•  P<0.05 [F[0,10] ¬minimum]
−  the probability that the QoS drops below minimum within 10

hours is less than 0.05

•  ¬minimum → P<0.1 [F[0,2] ¬minimum]
−  when facing insufficient QoS, the chance of facing the same

problem after 2 hours is less than 0.1

35

CSL example - Workstation cluster

•  minimum → P>0.8 [minimum U[0,t] premium]
−  the probability of going from minimum to premium QoS

within t hours without violating minimum QoS is at least 0.8

•  P=? [¬minimum U[t,∞) minimum]
−  the chance it takes more than t time units to recover from

insufficient QoS

•  ¬r_switch_up → P<0.1 [¬r_switch_up U ¬l_switch_up]
−  if the right switch has failed, the probability of the left switch

failing before it is repaired is less than 0.1

•  P=? [F[2,∞) S>0.9[minimum]]
−  the probability of it taking more than 2 hours to get to a state

from which the long-run probability of minimum QoS is >0.9

36

Overview (Part 3)

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, race conditions, examples
−  paths and probability spaces

•  CSL: A temporal logic for CTMCs

•  CSL model checking
−  uniformisation, steady-state probabilities

•  Extensions: Costs & rewards

37

CSL model checking

•  Model checking a CSL formula φ on a CTMC
−  basic algorithm proceeds by induction on parse tree of φ
−  non-probabilistic operators (true, a, ¬, ∧) identical to PCTL

•  Main task: computing probabilities for P~p [·] and S~p [·]

•  Untimed properties can be verified on the embedded DTMC
−  properties of the form: P~p [X φ] or P~p [φ1 U φ2]
−  use algorithms for checking PCTL against DTMCs

•  Which leaves…
−  time-bounded until operator: P~p [φ UI φ]
−  steady-state operator: S~p [φ]

38

Model checking - Time-bounded until

•  Compute Prob(s, φ1 UI φ2) for all states where I is an
arbitrary interval of the non-negative real numbers

•  Note:
−  Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2)

 where cl(I) denotes the closure of the interval I
−  Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2)

 where emb(C) is the embedded DTMC

•  Therefore, 3 remaining cases to consider:
−  I = [0,t] for some t∈ℝ≥0 (described in this lecture)
−  I = [t,t’] for some t≤t’∈ℝ≥0 or I = [t,∞) for some t∈ℝ≥0

•  Two methods: 1. Integral equations; 2. Uniformisation

39

Time-bounded until (integral equations)

•  Computing the probabilities reduces to determining the
least solution of the following set of integral equations:

•  Prob(s, φ1 U[0,t] φ2) equals
−  1 if s ∈ Sat(φ2),
−  0 if s ∈ Sat(¬φ1 ∧¬φ2)
−  and otherwise equals

•  One possibility: solve these integrals numerically
−  e.g. trapezoidal, Simpson and Romberg integration
−  expensive, possible problems with numerical stability

€

Pemb(C)(s,s')⋅ E(s)⋅ e−E(s)⋅x()
s'∈S
∑ ⋅ Prob(s',φ1 U[0,t−x] φ2) dx

0

t
∫

probability of
moving from s
to s’ at time x

probability, in state
s’, of satisfying
until before t-x

time units elapse

40

Time-bounded until (uniformisation)

•  Reduction to transient analysis…
−  on a modified CTMC C’

•  Make all φ2 states absorbing
−  in such a state φ1 U[0,x] φ2  

holds with probability 1

•  Make all ¬φ1 ∧¬φ2 states absorbing
−  in such a state φ1 U[0,x] φ2  

holds with probability 0

•  Formally: modified CTMC C’ = C[φ2][¬φ1 ∧¬φ2]
−  where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L) where

 R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise

Sat(φ2)

Sat(φ1) S

41

Time-bounded until (uniformisation)

•  Problem then reduces to calculating transient probabilities
in the modified CTMC C’ :

•  To compute for all states s:

−  where is a 0-1 vector characterising φ2  

−  and is the matrix of all transient probabilities in C’

€

Prob(s,φ1 U[0,t] φ2) = πs,t
C'

(s')
s' ∈ Sat(φ2)
∑

€

Prob(φ1 U[0,t] φ2) = Πt
C' ⋅ φ2

€

Πt
C'

€

φ2

πs,t
C’(s’):

transient probability in C’:  
starting in state s,  

the probability of being 
in state s’ at time t

42

Computing transient probabilities

•  Πt - matrix of transient probabilities
−  Πt(s,s’)=πs,t(s’)

•  Πt solution of the differential equation: Πt’ = Πt · Q
−  Q infinitesimal generator matrix

•  Can be expressed as a matrix exponential and therefore
evaluated as a power series

−  computation potentially unstable
−  probabilities instead computed using uniformisation

43

Uniformisation

•  Uniformised DTMC unif(C) of CTMC C =(S,sinit,R,L):
−  unif(C) = (S,sinit,Punif(C),L)
−  set of states, initial state and labelling the same as C
−  Punif(C) = I + Q/q
−  I is the |S|×|S| identity matrix
−  q ≥ max { E(s) | s ∈ S } is the uniformisation rate

•  Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate q
−  if E(s)=q transitions the same as embedded DTMC (residence

time has the same distribution as one epoch)
−  if E(s)<q add self loop with probability 1-E(s)/q (residence

time longer than 1/q so one epoch may not be ‘long enough’)

44

Uniformisation - Example

•  CTMC C:

•  Uniformised DTMC unif(C)
−  let uniformisation rate q = maxs { E(s) } = 4.5
−  Punif(C) = I + Q/q

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

€

Punif(C) =

2/3 1/3 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 2/3 1/3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

s1 s0

1/3

1

{full} {empty}

s2 s3

1/3 1/3

2/3 2/3 2/3 1/3 2/3

€

R =

0 3/2 0 0
3 0 3/2 0
0 3 0 3/2
0 0 3 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

45

Uniformisation

ith Poisson probability with
parameter q·t

•  Using the uniformised DTMC the transient probabilities can
be expressed by:

Punif(C) stochastic (all entries in
[0,1] & rows sum to 1), therefore

computations with P more numerically
stable than Q

46

Uniformisation

•  (Punif(C))i is probability of jumping between each pair of
states in i steps

•  γq·t,i is the ith Poisson probability with parameter q·t
−  the probability of i steps occurring in time t, given each has

delay exponentially distributed with rate q

•  Can truncate the (infinite) summation using the techniques
of Fox and Glynn [FG88], which allow efficient computation
of the Poisson probabilities

47

Time-bounded until (uniformisation)

•  Recall that for model checking, we require:

•  So, using uniformisation:

•  This can be computed efficiently using matrix-vector
multiplication (avoiding matrix powers):

€

 Punif(C')()
0
⋅ φ2 = φ2

€

 Punif(C')()
i+1
⋅ φ2 = Punif(C') ⋅ Punif(C')()

i
⋅ φ2

⎛

⎝
⎜

⎞

⎠
⎟

€

Prob(φ1 U[0,t] φ2) = γq⋅t,i ⋅ Punif(C')()
i
⋅ φ2

⎛

⎝
⎜

⎞

⎠
⎟ i=0

∞

∑

€

Prob(φ1 U[0,t] φ2) = Πt
C' ⋅ φ2

48

Time-bounded until - Example

•  P>0.65 [F[0,7.5] full] ≡ P>0.65 [true U[0,7.5] full]
−  “probability of the queue becoming full within 7.5 time units”

•  State s3 satisfies full and no states satisfy ¬true
−  in C[full][¬true ∧¬ full] only state s3 made absorbing

€

2/3 1/3 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

matrix of unif(C[full][¬true ∧¬full])
with uniformisation rate maxs∈SE(s)

=4.5

s3 made absorbing

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

49

Time-bounded until - Example

•  Computing the summation of matrix-vector multiplications

−  yields Prob(F[0,7.5] full) ≈ [0.6482, 0.6823, 0.7811, 1]

•  P>0.65[F[0,7.5] full] satisfied in states s1, s2 and s3

€

Prob(φ1 U[0,t] φ2) = γq⋅t,i ⋅ Punif(C')()
i
⋅ φ2

⎛

⎝
⎜

⎞

⎠
⎟ i=0

∞

∑

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

50

Model Checking – Steady-state

•  A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC
s(s’) ~ p

−  πC
s(s’) is the probability, having started in state s, of being in

state s’ in the long run
−  thus model checking reduces to computing and then summing

steady-state probabilities for the CTMC

•  Steady-state probabilities: πC
s(s’) = limt→∞ πC

s,t(s’)
−  limit exists for all finite CTMCs
−  need to consider underlying graph structure of CTMC
−  i.e. its bottom strongly connected components (BSCCs)
−  irreducible CTMC (comprises one BSCC)

•  solution of one linear equation system
−  reducible CTMC (multiple BSCCs)

•  solve for each BSCC, combine results

51

Irreducible CTMCs

•  For an irreducible CTMC:
−  the steady-state probabilities are independent of the starting

state: denote the steady state probabilities by πC(s’)

•  These probabilities can be computed as
−  the unique solution of the linear equation system:

 where Q is the infinitesimal generator matrix of C

•  Solved by standard means:
−  direct methods, such as Gaussian elimination
−  iterative methods, such as Jacobi and Gauss-Seidel

52

Balance equations

For all s ∈ S:
πC(s) · (-Σs’≠s R(s,s’)) + Σs’≠s πC(s’) · R(s’,s) = 0

⇔
πC(s) · Σs’≠s R(s,s’) = Σs’≠s πC(s’) · R(s’,s)

balance the rate of
leaving and entering

a state
normalisation

Equivalent to: πC·P = πC where P is matrix for embedded DTMC

53

Steady-state - Example

•  Model check S<0.1[full] on CTMC:

•  CTMC is irreducible (comprises a single BSCC)
−  steady state probabilities independent of starting state

•  Solve: π·Q=0 and ∑ π(s)=1

€

Q =

−3/2 3/2 0 0
3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

54

Steady-state - Example

•  Model check S<0.1[full] on CTMC:

•  Solve:

−  solution: π = [8/15, 4/15, 2/15, 1/15]
−  ∑s’ ⊨ Sat(full) π (s’) = 1/15 < 0.1
−  so all states satisfy S<0.1[full]

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3

55

Reducible CTMCs

•  For a reducible CTMC:
−  the steady-state probabilities πC(s’) depend on start state s

•  Find all BSCCs of CTMC, denoted bscc(C)  

•  Compute:
−  steady-state probabilities πT of sub-CTMC for each BSCC T
−  probability Probemb(C)(s, F T) of reaching each T from s

•  Then:

€

πs
C
(s') = Probemb(C)(s, F T)⋅ π

T
(s')

0

⎧
⎨
⎪

⎩ ⎪

if s'∈ T for some T ∈bscc(C)
otherwise

56

CSL model checking complexity

•  For CSL model checking of a CTMC, complexity is:
−  linear in |Φ| and polynomial in |S|
−  linear in q·tmax (tmax is maximum finite bound in intervals)

•  Unbounded until (P~p[Φ1 U[0,∞) Φ2]) and steady-state (S~p[Φ])
−  require solution of linear equation system of size |S|
−  can be solved with Gaussian elimination: cubic in |S|
−  precomputation algorithms (max |S| steps)

•  Time-bounded until (P~p[Φ1 UI Φ2])
−  at most two iterative sequences of matrix-vector products
−  operation is quadratic in the size of the matrix, i.e. |S|
−  total number of iterations bounded by Fox and Glynn
−  the bound is linear in the size of q·t (q uniformisation rate)

57

Overview (Part 3)

•  Exponential distribution and its properties

•  Continuous-time Markov chains (CTMCs)
−  definition, race conditions, examples
−  paths and probability spaces

•  CSL: A temporal logic for CTMCs

•  CSL model checking
−  uniformisation, steady-state probabilities

•  Extensions: Costs & rewards

58

Rewards (or costs)

•  Like DTMCs, we can augment CTMCs with rewards
−  real-valued quantities assigned to states and/or transitions
−  can be interpreted in two ways: instantaneous/cumulative
−  properties considered here: expected value of rewards
−  formal property specifications in an extension of CSL

•  For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι)
−  ρ : S → ℝ≥0 is a vector of state rewards
−  ι : S × S → ℝ≥0 is a matrix of transition rewards

•  For cumulative reward-based properties of CTMCs
−  state rewards interpreted as rate at which reward gained
−  if the CTMC remains in state s for t∈ℝ>0 time units, a reward

of t·ρ(s) is acquired

59

Reward structures - Examples

•  Example: “size of message queue”
−  ρ(si)=i and ι(si,sj)=0 ∀i,j

•  Example: “time for which queue is not full”
−  ρ(si)=1 for i<3, ρ(s3)=0 and ι(si,sj)=0 ∀i,j

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3
instantaneous

cumulative

60

Reward structures - Examples

•  Example: “number of requests served”

s1 s0

3/2

1

{full} {empty}

s2 s3

3/2 3/2

3 3 3
cumulative

61

CSL and rewards

•  PRISM extends CSL to incorporate reward-based properties
−  adds R operator like the one added to PCTL

−  φ ::= … | R~r [I=t] | R~r [C≤t] | R~r [F φ] | R~r [S]

−  where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}

•  R~r [·] means “the expected value of · satisfies ~r”

“reachability”

 expected reward is ~r

“cumulative” “instantaneous” “steady-state”

62

Types of reward formulae

•  Instantaneous: R~r [I=t]
−  the expected value of the reward at time-instant t is ~r
−  “the expected queue size after 6.7 seconds is at most 2”

•  Cumulative: R~r [C≤t]
−  the expected reward cumulated up to time-instant t is ~r
−  “the expected requests served within the first 4.5 seconds of

operation is less than 10”
•  Reachability: R~r [F φ]

−  the expected reward cumulated before reaching φ is ~r
−  “the expected requests served before the queue becomes full”

•  Steady-state R~r [S]
−  the long-run average expected reward is ~r
−  “expected long-run queue size is at least 1.2”

63

Reward properties in PRISM

•  Quantitative form:
−  e.g. R=? [C≤t]
−  what is the expected reward cumulated up to time-instant t?

•  Add labels to R operator to distinguish between multiple
reward structures defined on the same CTMC
−  e.g. R{num_req}=? [C≤4.5]
−  “the expected number of requests served within the first 4.5

seconds of operation”
−  e.g. R{pow}=? [C≤4.5]
−  “the expected power consumption within the first 4.5 seconds

of operation”

64

Reward formula semantics

•  Formal semantics of the four reward operators:

−  s ⊨ R~r [I=t] ⇔ Exp(s, XI=t) ~ r
−  s ⊨ R~r [C≤t] ⇔ Exp(s, XC≤t) ~ r
−  s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r
−  s ⊨ R~r [S] ⇔ limt→∞(1/t · Exp(s, XC≤t)) ~ r

•  where:
−  Exp(s, X) denotes the expectation of the random variable

 X : Path(s) → ℝ≥0 with respect to the probability measure Prs

65

Reward formula semantics

•  Definition of random variables:
−  path ω= s0t0s1t1s2…

−  where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }

state of ω at time t

time spent in state si

time spent in
state sjt before

t time units
have elapsed

66

Model checking reward formulae

•  Instantaneous: R~r [I=t]
−  reduces to transient analysis (state of the CTMC at time t)
−  use uniformisation

•  Cumulative: R~r [C≤t]
−  extends approach for time-bounded until
−  based on uniformisation

•  Reachability: R~r [F φ]
−  can be computed on the embedded DTMC
−  reduces to solving a system of linear equations

•  Steady-state: R~r [S]
−  similar to steady state formulae S~r [φ]
−  graph based analysis (compute BSCCs)
−  solve systems of linear equations (compute steady state

probabilities of each BSCC)

67

Summary

•  Exponential distribution
−  suitable for modelling failures, waiting times, reactions, …
−  nice mathematical properties

•  Continuous-time Markov chains
−  transition delays modelled as exponential distributions
−  probability space over paths

•  CSL: Continuous Stochastic Logic
−  extension of PCTL for properties of CTMCs

•  CSL model checking
−  extension of PCTL model checking for DTMCs
−  uniformisation: efficient iterative method for transient prob.s

•  Tomorrow: Probabilistic model checking in practice
−  PRISM, tool demo, counterexamples, bisimulation

