Model Checking for Probabilistic Hybrid Systems

Marta Kwiatkowska, Ernst Moritz Hahn Oxford University Computing Laboratory

Holger Hermanns, Arnd Hartmanns
Saarland University, Dependable Systems and Software

Part 2

Probabilistic Hybrid Systems

Recall - MDPs

- Markov decision processes (MDPs)
- both probability and nondeterminism
- in a state, there is a nondeterministic choice between multiple probability distributions over successor states

- Adversaries
- resolve nondeterministic choices based on history so far
- properties quantify over all possible adversaries
- e.g. $\mathrm{P}_{<0.1}[\diamond \mathrm{err}]$ - maximum probability of an error is <0.1

Real-world protocol examples

- Systems with probability, nondeterminism and real-time
- e.g. communication protocols, randomised security protocols
- Randomised back-off schemes
- Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
- Bluetooth device discovery phase
- Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
- IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
- Crowds anonymity, gossip-based routing

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, reachability
- Model checking for PTAs
- digital clocks
- zone-based approaches
- forwards reachability
- Probabilistic hybrid automata (PHAs)
- definition, examples, semantics, extensions

Time, clocks and clock valuations

- Dense time domain: non-negative reals $\mathbb{R}_{\geq 0}$
- from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}
- Finite set of clocks $x \in X$
- variables taking values from time domain \mathbb{R}
- increase at the same rate as real time
- A clock valuation is a tuple $v \in \mathbb{R}^{X}$. Some notation:
$-v(x)$: value of clock x in v
$-v+t$: time increment of t for v

$$
\cdot(v+t)(x)=v(x)+t \quad \forall x \in X
$$

$-\mathrm{v}[\mathrm{Y}:=0]$: clock reset of clocks $\mathrm{Y} \subseteq \mathrm{X}$ in v

- $v[Y:=0](x)=0$ if $x \in Y$ and $v(x)$ otherwise

Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted Zones(X):

$$
\zeta::=x \leq d|c \leq x| x+c \leq y+d|\neg \zeta| \zeta \vee \zeta
$$

- where $x, y \in X$ and $c, d \in \mathbb{N}$
- used for both syntax of PTAs/properties and algorithms
- Can derive:
- logical connectives, e.g. $\zeta_{1} \wedge \zeta_{2} \equiv \neg\left(\neg \zeta_{1} \vee \neg \zeta_{2}\right)$
- strict inequalities, through negation, e.g. $x>5 \equiv \neg(x \leq 5) \ldots$
- Some useful classes of zones:
- closed: no strict inequalities (e.g. $x>5$)
- diagonal-free: no comparisons between clocks (e.g. $x \leq y$)
- convex: define a convex set, efficient to manipulate

Zones and clock valuations

- A clock valuation v satisfies a zone ζ, written $v \triangleright \zeta$ if
$-\zeta$ resolves to true after substituting each clock x with $v(x)$
- The semantics of a zone $\zeta \in \operatorname{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^{X})
- NB: multiple zones may have the same semantics
- e.g. $(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+2)$ and $(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+3)$
- We consider only canonical zones
- i.e. zones for which the constraints are as 'tight' as possible
- $\mathrm{O}\left(|\mathrm{X}|^{3}\right)$ algorithm to compute (unique) canonical zone [Dil89]
- allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

c-equivalence and c-closure

- Clock valuations v and v ' are $c-e q u i v a l e n t$ if for any $x, y \in X$
- either $v(x)=v^{\prime}(x)$, or $v(x)>c$ and $v^{\prime}(x)>c$
- either $v(x)-v(y)=v^{\prime}(x)-v^{\prime}(y)$ or $v(x)-v(y)>c$ and $v^{\prime}(x)-v^{\prime}(y)>c$
- The c-closure of the zone ζ, denoted close (ζ, c), equals
- the greatest zone $\zeta^{\prime} \supseteq \zeta$ such that, for any $v^{\prime} \in \zeta^{\prime}$, there exists $v \in \zeta$ and v and v ' are $c-e q u i v a l e n t$
- c-closure ignores all constraints which are greater than c
- for a given c , there are only a finite number of c-closed zones

Operations on zones - Set theoretic

- Intersection of two zones: $\zeta_{1} \cap \zeta_{2}$

- Similar for other operators
- Union and difference of two zones: $\zeta_{1} \cup \zeta_{2}, \zeta_{1} \backslash \zeta_{2}$
- Valuations obtained from by resetting the clocks in $\mathrm{Y}: \zeta[\mathrm{Y}:=0]$
- Valuations which are in ζ if the clocks in Y are reset: $[\mathrm{Y}:=0] \zeta$
- Forwards diagonal projection: $\nearrow \zeta$

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, reachability
- Model checking for PTAs
- zone-based approaches
- forwards reachability
- Probabilistic hybrid automata (PHAs)
- definition, examples, semantics, extensions

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
- Markov decision processes (MDPs) + real-valued clocks
- or: timed automata + discrete probabilistic choice
- model probabilistic, nondeterministic and timed behaviour
- Syntax: A PTA is a tuple (Loc, $\mathrm{I}_{\text {init }}$, Act, X , inv, prob, L)
- Loc is a finite set of locations
$-I_{\text {init }} \in L o c$ is the initial location
- Act is a finite set of actions
- X is a finite set of clocks
- inv: Loc \rightarrow Zones(X) is the invariant condition
- prob $\subseteq \operatorname{Loc} \times$ Zones $(X) \times \operatorname{Dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right)$ is the probabilistic edge relation

$-\mathrm{L}: \mathrm{Loc} \rightarrow \mathrm{AP}$ is a labelling function

Probabilistic edge relation

- Probabilistic edge relation
- prob $\subseteq \operatorname{Loc} \times$ Zones $(X) \times \operatorname{Act} \times \operatorname{Dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right)$
- Probabilistic edge $(\mathrm{I}, \mathrm{g}, \mathrm{a}, \mathrm{p}) \in \mathrm{prob}$
- I is the source location
$-g$ is the guard
- a is the action
- p target distribution

- Edge (I,g,a,p,l',Y)
- from probabilistic edge (l, g, a, p) where $p\left(l^{\prime}, Y\right)>0$
- I' is the target location
- Y is the set of clocks to be reset

PTA - Example

- Models a simple probabilistic communication protocol
- starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
- with probability 0.9 data is sent correctly, move to location sr
- with probability 0.1 data is lost, move to location si
- in location si, after 2 to 3 time units, attempts to resend
. correctly sent with probability 0.95 and lost with probability 0.05

PTA Modelling

- Simple extension of guarded commands:
- new variable type clock
- new language construct invariant
- Invariants:
- specified restrictions in clocks of a given module depending on its discrete variables
- for parallel composition: conjunction of invariants is used module ptaexample

```
s : [0..2] init 0;
x : clock;
    invariant
        (s = 0 => x <= 2) & ( }s=2 => x <= 3)
    endinvariant
```

 ...
 endmodule

PTA - Example

- Models a simple probabilistic communication protocol
module ptaexample
s : [0..2] init 0;
x : clock;

invariant

$$
\begin{aligned}
& (s=0 \Rightarrow x<=2) \& \\
& (s=2 \Rightarrow x<=3)
\end{aligned}
$$

endinvariant

$$
\begin{aligned}
& \text { [send] } s=0 \& x>=1->0.9:\left(s^{\prime}=1\right) \&\left(x^{\prime}=0\right) \\
&+0.1:\left(s^{\prime}=2\right) \&\left(x^{\prime}=0\right) ; \\
& \text { [retry] } s=2 \& x>=2->0.95:\left(s^{\prime}=1\right) \\
&+0.05:\left(s^{\prime}=2\right) \&\left(x^{\prime}=0\right) ;
\end{aligned}
$$

endmodu7e

PTAs - Behaviour

- A state of a PTA is a pair $(\mathrm{l}, \mathrm{v}) \in \operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}$ such that $\mathrm{v} \triangleright \operatorname{inv}(\mathrm{I})$
- A PTAs start in the initial location with all clocks set to zero - let $\underline{0}$ denote the clock valuation where all clocks have value 0
- For any state (I,v), there is nondeterministic choice between making a discrete transition and letting time pass
- discrete transition (l,g,a,p) enabled if $v \triangleright g$ and probability of moving to location I' and resetting the clocks Y equals $p\left(l^{\prime}, Y\right)$
- time transition available only if invariant inv(I) is continuously satisfied while time elapses

PTA - Example

PTAs - Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_{p}=\left(S_{p}, s_{\text {init }}\right.$, Steps, $\left.L_{p}\right)$ with:
- States: $\mathrm{S}_{\mathrm{P}}=\left\{(\mathrm{I}, \mathrm{v}) \in \operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}\right.$ such that $\left.\mathrm{v} \triangleright \operatorname{inv}(\mathrm{I})\right\}$
- Initial state: $s_{\text {init }}=\left(l_{\text {init }}, \underline{0}\right)$
actions of MDP M_{p} are the actions of PTA P or real time delays
- Steps: $S_{P} \rightarrow 2^{(\text {ActuR }) \times D i s t(S)}$ such that $(\alpha, \mu) \in \operatorname{Steps}(I, v)$ iff:
- (time transition) $\alpha=t \in \mathbb{R}, \mu(l, v+t)=1$ and $v+t^{\prime} \triangleright \operatorname{inv}(I)$ for all $t^{\prime} \leq t$
- (discrete transition) $\alpha=a \in$ Act and there exists $(I, g, a, p) \in$ prob such that $v \triangleright g$ and, for any $\left(I^{\prime}, v^{\prime}\right) \in S_{p}: \mu\left(I^{\prime}, v^{\prime}\right)=\quad \sum p\left(I^{\prime}, Y\right)$
- Labelling: $\mathrm{L}_{\mathrm{P}}(\mathrm{I}, \mathrm{v})=\mathrm{L}(\mathrm{I})$

Probabilistic reachability in PTAs

- For simplicity, in this talk we just consider probabilistic reachability, rather than logic-based model checking
- i.e. min/max probability of reaching a set of target locations
- can also encode time-bounded reachability (with extra clock)
- Still captures a wide range of properties
- probabilistic reachability: "with probability at least 0.999, a data packet is correctly delivered"
- probabilistic invariance: "with probability 0.875 or greater, the system never aborts"
- probabilistic time-bounded reachability: "with probability 0.01 or less, a data packet is lost within 5 time units"
- bounded response: "with probability 0.99 or greater, a data packet will always be delivered within 5 time units"

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, reachability
- Model checking for PTAs
- digital clocks
- zone-based approaches
- forwards reachability
- Probabilistic hybrid automata (PHAs)
- definition, examples, semantics, extensions

Digital Clocks

- Represent clocks as bounded integers
- PTA becomes a regular MDP
- Require two restrictions on PTA:
- no open clock constraints (i.e. no $\mathrm{c}_{1}<3, \mathrm{c}_{2}>2$)
- no diagonals (i.e. no $\mathrm{c}_{1} \leq \mathrm{c}_{2}$)
- Then the following properties are preserved:
- probabilistic reachability (time- and cost-bounded)
- expected-time / expected-cost reachability
- Problem: State space explosion
- underlying MDP is exponential in number of clocks and max. constants

Zone-based approaches

- Use zones to construct an MDP
- Conventional symbolic model checking relies on computing
- post(S') the states that can be reached from a state in S' in a single step
- pre(S') the states that can reach S^{\prime} in a single step
- Extend these operators to include time passage
- dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
- tpost(S') the states that can be reached from a state in S' by letting time elapse
- pre[e](S') the states that can reach S' by traversing the edge e
- tpre(S') the states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, $\zeta)$ where
$-I \in$ Loc (location)
- ζ is a zone over PTA clocks and formula clocks
- tpost $(I, \zeta)=(I, \tau \zeta \wedge \operatorname{inv}(I))$
$-\nearrow \zeta$ can be reached from ζ by letting time pass
- $\zeta \wedge \operatorname{inv}(I)$ must satisfy the invariant of the location I
- tpre $(\mathrm{I}, \zeta)=(\mathrm{l}, \iota \zeta \wedge \operatorname{inv}(\mathrm{l}))$
$-\iota \zeta$ can reach ζ by letting time pass
$-\swarrow \zeta \wedge \operatorname{inv}(\mathrm{I})$ must satisfy the invariant of the location I

Zone-based approaches

- For an edge $e=\left(l, g, a, p, l^{\prime}, Y\right)$ where
- I is the source
$-g$ is the guard
- a is the action
- I ' is the target
- Y is the clock reset
- dpost[e] $(\mathrm{l}, \zeta)=(\mathrm{l},(\zeta \wedge \mathrm{g})[\mathrm{Y}:=0])$
$-\zeta \wedge g$ satisfy the guard of the edge
- $(\zeta \wedge \mathrm{g})[\mathrm{Y}:=0]$ reset the clocks Y
- dpre[e] $\left(\mathrm{I}^{\prime}, \zeta^{\prime}\right)=\left(\mathrm{l},[\mathrm{Y}:=0] \zeta^{\prime} \wedge(\mathrm{g} \wedge \operatorname{inv}(\mathrm{l}))\right)$
$-[Y:=0] \zeta^{\prime}$ the clocks Y were reset
$-[Y:=0] \zeta^{\prime} \wedge(g \wedge \operatorname{inv}(I))$ satisfied guard and invariant of I

Forwards reachability

- Based on the operation post[e] $(I, \zeta)=\operatorname{tpost}(d p o s t[e](I, \zeta))$
- $\left(I^{\prime}, \mathrm{v}^{\prime}\right) \in \operatorname{post}[\mathrm{e}](\mathrm{I}, \zeta)$ if there exists $(\mathrm{I}, \mathrm{v}) \in(\mathrm{I}, \zeta)$ such that after traversing edge e and letting time pass one can reach (l^{\prime}, v^{\prime})
- Forwards algorithm (part 1)
- start with initial state $S_{F}=\left\{\operatorname{tpost}\left(\left(l_{\text {init }}, \underline{0}\right)\right)\right\}$ then iterate for each symbolic state $(I, \zeta) \in S_{F}$ and edge e add post[e] $(1, \zeta)$ to S_{F}
- until set of symbolic states S_{F} does not change
- To ensure termination need to take c-closure of each zone encountered (c is the largest constant in the PTA)

Forwards reachability

- Forwards algorithm (part 2)
- construct finite state MDP ($\mathrm{S}_{\mathrm{F}},\left(\mathrm{l}_{\text {init }}, \mathbf{0}\right)$, Steps $\left._{\mathrm{F}}, \mathrm{L}_{\mathrm{F}}\right)$
- states S_{F} (returned from first part of the algorithm)
- $L_{F}(I, \zeta)=L(I)$ for all $(I, \zeta) \in S_{F}$
$-\mu \in$ Steps $_{\mathrm{F}}(\mathrm{l}, \zeta)$ if and only if there exists a probabilistic edge ($\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}$) of PTA such that for any $\left(I^{\prime}, \zeta^{\prime}\right) \in Z$:
$\mu\left(I^{\prime}, \zeta^{\prime}\right)=\sum\left\{\left|p\left(I^{\prime}, X\right)\right|\left(l, g, \sigma, p, I^{\prime}, X\right) \in \operatorname{edges}(p) \wedge \operatorname{post}[e](l, \zeta)=\left(I^{\prime}, \zeta^{\prime}\right) \mid\right\}$
summation over all the edges of $(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p})$ such that applying post to (l, ζ) leads to the symbolic state $\left(l^{\prime}, \zeta^{\prime}\right)$

Forwards reachability - Example

MDP: $\quad\left(I_{3}, x=y\right)$

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...
- Only obtain upper bounds on maximum probabilities
- caused by when edges are combined
- Suppose post $\left[\mathrm{e}_{1}\right](\mathrm{I}, \zeta)=\left(\mathrm{I}_{1}, \zeta_{1}\right)$ and post $\left[\mathrm{e}_{2}\right](\mathrm{I}, \zeta)=\left(\mathrm{I}_{2}, \zeta_{2}\right)$
- where e_{1} and e_{2} from the same probabilistic edge
- By definition of post
- there exists $\left(\mathrm{l}, \mathrm{v}_{\mathrm{i}}\right) \in(\mathrm{I}, \zeta)$ such that a state in $\left(\mathrm{l}_{\mathrm{i}}, \zeta_{\mathrm{i}}\right)$ can be reached by traversing the edge e_{i} and letting time pass
- Problem
- we combine these transitions but are $\left(1, v_{1}\right)$ and $\left(1, v_{2}\right)$ the same?
- may not exist states in (I, ζ) for which both edges are enabled

Forwards reachability - Example

- Maximum probability of reaching I_{3} is 0.5 in the PTA
- for the left branch need to take the first transition when $x=1$
- for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
- can reach I_{3} via either branch from $\left(I_{0}, x=y\right)$

MDP: $\quad\left(I_{3}, x=y\right)$

Abstraction Refinement

- Distinguish nondeterminism from model and abstraction
- yields stochastic game instead of MDP

abstract

- provides lower/upper bounds for min/max probabilities

- If the difference ("error") is too great, refine the abstraction
- split zones
- a finer partition yields a more precise abstraction

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
- definition, examples, semantics, reachability
- Model checking for PTAs
- digital clocks
- zone-based approaches
- forwards reachability
- Probabilistic hybrid automata (PHAs)
- definition, examples, semantics, extensions

Timed automata do not always suffice

- Probabilistic timed automata do not always suffice
- Systems with complex dynamics
- e.g. control processes, vehicle dynamics
- Need general continuous variables instead of clocks
- behaviour over time given by differential equations

Probabilistic hybrid automata (PHAs)

- Probabilistic hybrid automata (PHAs)
[Spr01]
- extend PTAs by complex dynamics in locations
- Syntax: A PHA is a tuple (Loc, $\mathrm{I}_{\text {init }}$, Act, X , inv, prob, L)
- Loc is a finite set of locations
$-I_{\text {init }} \in \operatorname{Loc} \times \mathbb{R}^{X}$ is the initial condition
- Act is a finite set of actions
$-X$ is a finite set of continuous variables
- inv: Loc $\rightarrow 2^{\mathbb{R}^{X}}$ is the invariant condition
- flow: $\left(\operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}\right) \rightarrow \mathbb{R}^{\mathrm{X}}$ is the flow condition
- prob $\subseteq \operatorname{Loc} \times 2^{\mathbb{R}^{X}} \times \operatorname{Dist}\left(\operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}\right)$ is the probabilistic edge relation
$-\mathrm{L}: \mathrm{Loc} \rightarrow \mathrm{AP}$ is a labelling function

- More general definitions possible

Probabilistic edge relation

- Probabilistic edge relation
$-\operatorname{prob} \subseteq \operatorname{Loc} \times 2^{\mathbb{R}^{X}} \times \operatorname{Act} \times \operatorname{Dist}\left(\operatorname{Loc} \times \mathbb{R}^{X}\right)$
- Probabilistic edge $(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}) \in \mathrm{prob}$
- I is the source location
$-g$ is the guard
- a is the action
- p target distribution

- Edge (I,g,a,p,l',Y)
- from probabilistic edge (l, g, a, p) where $p(l, Y)>0$
- I' is the target location
- Y is the assignment of continuous variables

PHA - Example

- Models a simple temperature control
- starts in location He(at);
- changes between $\mathrm{He}(\mathrm{at})$ and $\mathrm{Co}(\mathrm{ol})$ to adjust temperature
- occasionally moves to Ch(eck), where
- with probability 0.95 can continue its operation
- with probability 0.05 an $\operatorname{Er}($ ror $)$ occurs

PHAs - Behaviour

- A state of a PTA is a pair $(I, v) \in \operatorname{Loc} \times \mathbb{R}^{X}$ such that $v \in \operatorname{inv}(\mathrm{l})$
- A PTAs start in the initial location with variable assignment given by initial condition
- For any state (l,v), there is a nondeterministic choice between making a discrete transition and letting time pass
- discrete transition (l,g,a,p) enabled if $v \triangleright g$ and probability of moving to location I' and setting variables to v^{\prime} equals $p\left(l^{\prime}, v^{\prime}\right)$
- time transition available only if invariant inv(l) is continuously satisfied while time elapses and the derivate of the trajectory of continuous variables satisfies the invariant

PHA - Example

PHA:

Example

execution:

(He,t=0,T=7.016) (Er,t=0,T=7.016)

$$
1.25
$$

PHA Modelling

- Two more extensions to guarded commands:
- continuous variables (type var)
- derivative operator der for use in invariants
- Continuous variables
- evolve over time according to constraints in invariants
- on transitions, take any value from their domain nondeterministically unless explicitly assigned to

T : var init 9;
invariant
$T<=10 \& \operatorname{der}(T)=-0.5 * T$ endinvariant
[chg] $\mathrm{T}>=9$-> ($\mathrm{T}^{\prime}=\mathrm{T}$);

PHA - Example

module thermostat

s : [0..3] init 0;
t : var init 0;
T : var init 9;
invariant

$$
\left.\left.\left.\begin{array}{rl}
(s=0 \Rightarrow(\operatorname{der}(t) & =1 \& \operatorname{der}(T)
\end{array}=2 \& T<=10 \& t<=3\right)\right) ~ 子(\operatorname{der}(t)=1 \& \operatorname{der}(T)=-T \& T>=0)\right) .
$$

endinvariant
[chg] $s=0$ \& $T>=9 \rightarrow\left(s^{\prime}=1\right) \&\left(t^{\prime}=0\right) \&\left(T^{\prime}=T\right)$;
[chg] $s=0 \& t>=2 \quad->\left(s^{\prime}=2\right) \&\left(t^{\prime}=0\right) \&\left(T^{\prime}=T\right) ;$
[chg] $s=1 \& T<=6 \quad->\left(s^{\prime}=0\right) \&\left(t^{\prime}=0\right) \&\left(T^{\prime}=T\right)$;
[chk] $s=2 \& t>=0.5->$

$$
0.95:\left(s^{\prime}=0\right) \&\left(t^{\prime}=0\right) \&\left(T^{\prime}=T\right) ;
$$

$$
+0.05:\left(s^{\prime}=3\right) \&\left(t^{\prime}=0\right) \&\left(T^{\prime}=T\right)
$$

endmodule

PHAs - Formal semantics

- Semantics of PHA P MDP $M_{P}=\left(S_{p}, s_{\text {init }}\right.$, Steps, $\left.L_{p}\right)$ with:
- States: $\mathrm{S}_{\mathrm{P}}=\left\{(\mathrm{I}, \mathrm{v}) \in \operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}\right.$ such that $\left.\mathrm{v} \in \operatorname{inv}(\mathrm{I})\right\}$
- Initial state: $\mathrm{s}_{\text {init }}=\mathrm{I}_{\text {init }}$
actions of MDP M_{p} are the actions of PHA P or real time delays
- Steps: $S_{P} \rightarrow 2^{(A c t u R) \times D i s t(S)}$ such that $(\alpha, \mu) \in \operatorname{Steps}(1, v)$ iff:
- (time transition) $\alpha=t \in \mathbb{R}$, ex. differentiable flow $r:[0, t] \rightarrow \mathbb{R}^{X}$ with $r(0)=v, r\left(t^{\prime}\right) \in \operatorname{inv}(\mathrm{l})$, $\dot{r}\left(\mathrm{t}^{\prime}\right) \in \operatorname{flow}\left(\mathrm{l}, \mathrm{r}\left(\mathrm{t}^{\prime}\right)\right)$ for all $\mathrm{t}^{\prime} \leq \mathrm{t}$ and $\mu(\mathrm{l}, \mathrm{r}(\mathrm{t}))=1$
- (discrete transition) $\alpha=a \in$ Act and there exists $(l, g, a, p) \in$ prob such that $v \in g$ and, for any $\left(l^{\prime}, v^{\prime}\right) \in S_{p}: \mu\left(l^{\prime}, v^{\prime}\right)=p\left(l^{\prime}, v^{\prime}\right)$
- Labelling: $\mathrm{L}_{\mathrm{p}}(\mathrm{I}, \mathrm{v})=\mathrm{L}(\mathrm{I})$

Deciding properties of PHAs

- Problem: even for nonprobabilistic hybrid automata, reachability is undecidable
- Solutions in some cases using overapproximation:
- As for PTAs, subsume concrete states to abstract states
- Cannot represent exact behaviour in abstraction
- Rather, build abstraction which simulates the semantics
- for each step which the semantics can perform, the abstraction has a corresponding step
- Provides upper bound for maximal reachability

Abstraction methods for PHAs

- Abstract states: set of finite states
- Have $A \rightarrow B$ if there is $a \in A$ and $b \in B$ so that $a \rightarrow b$

- Similar for probabilistic case by summing up probabilities

- Construct abstractions for PHAs by adapting existing methods for nonprobabilistic HAs

Abstraction methods for PHAs

- Different abstraction methods: e.g. using rectangles
- Start with bounded variable space
- Divide into rectangles
e.g. [RS07]
- Check which ones are connected
- To refine: split rectangles, or disprove paths
probabilistic jump

Abstraction methods for PHAs

- Other methods based on polyhedra [HH94,Frehse05]
- Forward or backward reachability analysis
- Enclose flows by polyhedra
- Jumps similar to PTA
- To refine: decrease split length

Abstraction methods for PHAs

- Other methods based on predicates [ADI06b]
- Fix finite set of predicates over variables
- E.g. $\{$ Loc $=$ Heat $\wedge T \leq t$, Loc $=$ Check $\wedge t=T-2, \ldots\}$
- Each abstract state assigns truth value to each predicate
- Transitions can then be decided by Satisfiability Modulo Theories (SMT)
- Refinement: introduce new predicates
- similar to non-hybrid predicate abstraction

Continuous nondeterminism

- Can extend to fontinuous nondeterminism in jumps

on update, t can become any value between 0 and 1
- And to differential inequations

Continuous distributions

- Often continuous probability distributions of interest
- Measurements (normal distribution)
- random delays (exponential distribution)

can state probability of certain set of successors

Well-definedness

- Semantics: nondeterministic Markov process (NLMP)
- no PA, because of issues with measurability
- restrictions on transitions necessary

- M: normal distribution
- V: some Vitali set
- Probability to reach rightmost mode?
- Does not exist!
- Because V is not measurable
- Thus: restrictions on automaton components necessary
- Carries over to well-definedness of semantics

Solution methods

- Solution methods no longer apply directly
- divide continuous support into fixed number of parts
- Afterwards, can apply methods discussed for PHAs

Rewards

- So far, considered only reachability
- Extension to reward-based properties possible
- Extend simulation relation to take reward into account
- basically, reward in abstraction higher than in semantics
- Extend abstraction by reward structure
- Can analyse similar properties as for basic MDPs
- cumulative, long-run, etc.

Game-based Abstraction

- Also game-based abstraction possible
- Allows also to bound reachability probability from both below and above

- Using similar methods as in the PTA case

Other notions of PHAs

- Many other notions of PHAs exist
- All of them have some discrete-continuous features
- But all with different behaviours and definitions

SHA STA PHA PPTA PTA PA SHS DTSHS NLMP

discrete stochastics	\checkmark								
continuous stochastics	\checkmark	\checkmark	x	x	x	x	\checkmark	\checkmark	\checkmark
discrete dynamics	\checkmark								
real time	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark	x	x
differential inclusions	\checkmark	x	\checkmark	x	x	x	x	x	x
stochastic differential eqs.	x	x	x	x	x	x	\checkmark	x	x
discrete nondeterminism	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	x	\checkmark
continuous nondeterminism	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	x	x	\checkmark

Piecewise-deterministic Markov processes

- No nondeterminism in basic notion (extensions exist)
- But rate-driven jumps
- In each mode have vector field for continuous behaviour
- Jumps occur when border of mode hit
- Or according to a certain rate
- Which may depend on time and valuation of variables

Stochastic Hybrid Systems by Hu et al

- No nondeterminism
- But stochastic differential equations within modes
$-d X(t)=f\left(Q\left(T_{n}\right), X(t)\right) d t+g\left(Q\left(T_{n}\right), X(t)\right) d B_{t}$

- Different solution methods exists for different properties
- E.g. time-discretisation

Discrete-time SHS by Abate et al

- State: mode + evaluation of continuous variables
[APLS08]
- Discrete-time model
- E.g. by time-discretisation of SHS
- each step choose successor mode and variable valuation

- Solution method: discretisation
- Divide to finitely many regions, transform to Markov model

s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$	$\mathrm{~s}_{6}$
$\mathrm{~s}_{7}$	$\mathrm{~s}_{8}$	$\mathrm{~s}_{9}$

PHA model checking - Summary

- Basic idea for PTAs
- reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)
- Approaches:
- digital clocks [KNPS06]
- forwards reachability [KNSS02]
- game-based abstraction refinement [KNP09c]
- For PHAs
- more general behaviours possible than in PTAs
- can not reduce to equivalent finite model (undecidability)
- can compute overapproximation
- a number of abstraction methods exist
- continuous distributions, rewards, game-based abstraction
- A number of related approaches exists

