

Model Checking for Probabilistic Hybrid Systems

Marta Kwiatkowska, <u>Ernst Moritz Hahn</u> Oxford University Computing Laboratory

Holger Hermanns, Arnd Hartmanns Saarland University, Dependable Systems and Software

CPSWeek'13, Philadelphia, April 2013

Part 2

Probabilistic Hybrid Systems

Recall – MDPs

- Markov decision processes (MDPs)
 - both probability and nondeterminism
 - in a state, there is a nondeterministic choice between multiple probability distributions over successor states

- Adversaries
 - resolve nondeterministic choices based on history so far
 - properties quantify over all possible adversaries
 - e.g. $P_{<0.1}$ [\diamond err] maximum probability of an error is < 0.1

Real-world protocol examples

- Systems with probability, nondeterminism and real-time
 - e.g. communication protocols, randomised security protocols
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Overview (Part 2)

Time, clocks and zones

- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, reachability
- Model checking for PTAs
 - digital clocks
 - zone-based approaches
 - forwards reachability
- Probabilistic hybrid automata (PHAs)
 - definition, examples, semantics, extensions

Time, clocks and clock valuations

- Dense time domain: non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}
- + Finite set of clocks $x \in X$
 - variables taking values from time domain $\ensuremath{\mathbb{R}}$
 - increase at the same rate as real time
- A clock valuation is a tuple $v \in \mathbb{R}^{X}$. Some notation:
 - v(x): value of clock x in v
 - v+t: time increment of t for v

 $\cdot \ (v+t)(x) = v(x)+t \ \forall x \in X$

-v[Y:=0]: clock reset of clocks $Y \subseteq X$ in v

· v[Y:=0](x) = 0 if $x \in Y$ and v(x) otherwise

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

$$\zeta ::= \mathbf{x} \le d \ \mid \mathbf{c} \le \mathbf{x} \ \mid \mathbf{x} + \mathbf{c} \le \mathbf{y} + d \ \mid \neg \zeta \ \mid \zeta \lor \zeta$$

- where $\textbf{x},\textbf{y} \in \textbf{X}$ and $\textbf{c},\textbf{d} \in \mathbb{N}$
- used for both syntax of PTAs/properties and algorithms

• Can derive:

- logical connectives, e.g. $\zeta_1 \wedge \zeta_2 \equiv \neg(\neg \zeta_1 \vee \neg \zeta_2)$
- strict inequalities, through negation, e.g. x>5 $\equiv \neg(x{\le}5)...$

• Some useful classes of zones:

- closed: no strict inequalities (e.g. x > 5)
- diagonal-free: no comparisons between clocks (e.g. $x \le y$)
- convex: define a convex set, efficient to manipulate

Zones and clock valuations

- A clock valuation v satisfies a zone ζ , written v $\triangleright \zeta$ if - ζ resolves to true after substituting each clock x with v(x)
- The semantics of a zone $\zeta \in \text{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^{X})
 - NB: multiple zones may have the same semantics
 - e.g. $(x \le 2) \land (y \le 1) \land (x \le y+2)$ and $(x \le 2) \land (y \le 1) \land (x \le y+3)$
- We consider only canonical zones
 - i.e. zones for which the constraints are as 'tight' as possible
 - $O(|X|^3)$ algorithm to compute (unique) canonical zone [Dil89]
 - allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

c-equivalence and c-closure

- Clock valuations v and v' are **c**-equivalent if for any $x,y \in X$
 - either v(x) = v'(x), or v(x) > c and v'(x) > c
 - either v(x)-v(y) = v'(x)-v'(y) or v(x)-v(y) > c and v'(x)-v'(y) > c
- The c-closure of the zone ζ , denoted close(ζ ,c), equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constraints which are greater than c
 - for a given c, there are only a finite number of c-closed zones

Operations on zones - Set theoretic

- Similar for other operators
 - Union and difference of two zones: $\zeta_1 \cup \zeta_2$, $\zeta_1 \setminus \zeta_2$
 - Valuations obtained from by resetting the clocks in Y: ζ [Y:=0]
 - Valuations which are in ζ if the clocks in Y are reset: [Y:=0] ζ

10

– Forwards diagonal projection: $\nearrow \zeta$

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, reachability
- Model checking for PTAs
 - zone-based approaches
 - forwards reachability
- Probabilistic hybrid automata (PHAs)
 - definition, examples, semantics, extensions

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour
- Syntax: A PTA is a tuple (Loc, I_{init}, Act, X, inv, prob, L)
 - Loc is a finite set of locations
 - $-I_{init} \in Loc$ is the initial location
 - Act is a finite set of actions
 - X is a finite set of clocks
 - inv : Loc → Zones(X)
 is the invariant condition
 - prob \subseteq Loc×Zones(X)×Dist(Loc×2^X) is the probabilistic edge relation
 - L : Loc \rightarrow AP is a labelling function

Probabilistic edge relation

- Probabilistic edge relation
 - − prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2^x)
- Probabilistic edge $(I,g,a,p) \in prob$
 - I is the source location
 - g is the guard
 - a is the action
 - p target distribution

• Edge (I,g,a,p,I',Y)

- from probabilistic edge (l,g,a,p) where p(l',Y)>0
- l' is the target location
- Y is the set of clocks to be reset

PTA – Example

- Models a simple probabilistic communication protocol
 - starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location sr
 - with probability 0.1 data is lost, move to location si
 - in location si, after 2 to 3 time units, attempts to resend
 - · correctly sent with probability 0.95 and lost with probability 0.05

PTA Modelling

- Simple extension of guarded commands:
 - new variable type clock
 - new language construct invariant
- Invariants:
 - specified restrictions in clocks of a given module depending on its discrete variables
 - for parallel composition: conjunction of invariants is used

```
module ptaexample
```

```
s : [0..2] init 0;
x : clock;
invariant
  (s = 0 => x <= 2) & (s = 2 => x <= 3)
endinvariant
```

endmodule

PTA – Example

 Models a simple probabilistic communication protocol

```
module ptaexample
s : [0..2] init 0;
```

```
x : clock;
```

```
invariant
```

```
(s = 0 => x <= 2) &
  (s = 2 => x <= 3)
endinvariant</pre>
```

```
[send] s = 0 \& x \ge 1 \longrightarrow 0.9: (s' = 1) \& (x' = 0)
+ 0.1: (s' = 2) \& (x' = 0);
[retry] s = 2 \& x \ge 2 \longrightarrow 0.95: (s' = 1)
+ 0.05: (s' = 2) \& (x' = 0);
```

endmodule

PTAs – Behaviour

- A state of a PTA is a pair (I,v) \in Loc $\times \mathbb{R}^{X}$ such that v \triangleright inv(I)
- A PTAs start in the initial location with all clocks set to zero
 let <u>0</u> denote the clock valuation where all clocks have value 0
- For any state (I,v), there is nondeterministic choice between making a discrete transition and letting time pass
 - discrete transition (l,g,a,p) enabled if $v \triangleright g$ and probability of moving to location l' and resetting the clocks Y equals p(l',Y)
 - time transition available only if invariant inv(l) is continuously satisfied while time elapses

PTA – Example

PTAs – Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, Steps, L_P)$ with:
- States: $S_P = \{ (I,v) \in Loc \times \mathbb{R}^X \text{ such that } v \triangleright inv(I) \}$
- Initial state: $s_{init} = (I_{init}, \underline{0})$

actions of MDP M_P are the actions of PTA P or real time delays

- Steps: $S_P \rightarrow 2^{(Act \cup \mathbb{R}) \times Dist(S)}$ such that $(\alpha, \mu) \in Steps(I,v)$ iff:
 - (time transition) $\alpha = t \in \mathbb{R}$, $\mu(I, v+t) = 1$ and $v+t' \triangleright inv(I)$ for all $t' \leq t$
 - (discrete transition) $\alpha = a \in Act$ and there exists (l,g,a,p) \in prob

such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l',v') =$ $\sum p(l', Y)$ Y⊆X∧v[Y:=0]=v' Labelling: $L_P(I,v) = L(I)$ multiple resets may give same clock valuation

19

Probabilistic reachability in PTAs

- For simplicity, in this talk we just consider probabilistic reachability, rather than logic-based model checking
 - i.e. min/max probability of reaching a set of target locations
 - can also encode time-bounded reachability (with extra clock)
- Still captures a wide range of properties
 - probabilistic reachability: "with probability at least 0.999, a data packet is correctly delivered"
 - probabilistic invariance: "with probability 0.875 or greater, the system never aborts"
 - probabilistic time-bounded reachability: "with probability 0.01 or less, a data packet is lost within 5 time units"
 - bounded response: "with probability 0.99 or greater, a data packet will always be delivered within 5 time units"

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, reachability
- Model checking for PTAs
 - digital clocks
 - zone-based approaches
 - forwards reachability
- Probabilistic hybrid automata (PHAs)
 - definition, examples, semantics, extensions

Digital Clocks

- Represent clocks as bounded integers
 - PTA becomes a regular MDP
- Require two restrictions on PTA:
 - no open clock constraints (i.e. no $c_1 < 3$, $c_2 > 2$)
 - no diagonals (i.e. no $c_1 \le c_2$)
- Then the following properties are preserved:
 - probabilistic reachability (time- and cost-bounded)
 - expected-time / expected-cost reachability
- Problem: State space explosion
 - underlying MDP is exponential in number of clocks and max. constants

Zone-based approaches

- Use zones to construct an MDP
- Conventional symbolic model checking relies on computing
 - post(S') the states that can be reached from a state in S' in a single step
 - pre(S') the states that can reach S' in a single step
- Extend these operators to include time passage
 - dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
 - tpost(S') the states that can be reached from a state in S' by letting time elapse
 - pre[e](S') the states that can reach S' by traversing the edge e
 - tpre(S') the states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, ζ) where
 - $I \in Loc$ (location)
 - $\boldsymbol{\zeta}$ is a zone over PTA clocks and formula clocks
- tpost(I, ζ) = (I, $\land \zeta \land inv(I)$)

 - $\nearrow \zeta \land inv(I)$ must satisfy the invariant of the location I
- tpre(I, ζ) = (I, $\checkmark \zeta \land inv(I)$)
 - $\checkmark \zeta$ can reach ζ by letting time pass
 - $\checkmark \zeta \land$ inv(l) must satisfy the invariant of the location l

Zone-based approaches

- For an edge e = (I,g,a,p,I',Y) where
 - I is the source
 - g is the guard
 - a is the action
 - l' is the target
 - Y is the clock reset
- dpost[e](I, ζ) = (I', ($\zeta \land g$)[Y:=0])
 - $\zeta \wedge g$ satisfy the guard of the edge
 - $(\zeta \land g)[Y:=0]$ reset the clocks Y
- dpre[e](l', ζ ') = (l, [Y:=0] ζ ' \land (g \land inv(l)))
 - $[Y=0]\zeta'$ the clocks Y were reset
 - [Y:=0] $\zeta' \land$ (g \land inv(l)) satisfied guard and invariant of l

Forwards reachability

- Based on the operation $post[e](I,\zeta) = tpost(dpost[e](I,\zeta))$
 - $(l',v') \in post[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')

Forwards algorithm (part 1)

•

- start with initial state $S_F = \{tpost((I_{init}, \underline{0}))\}$ then iterate for each symbolic state $(I, \zeta) \in S_F$ and edge e add $post[e](I, \zeta)$ to S_F
- until set of symbolic states $\rm S_F$ does not change
- To ensure termination need to take c-closure of each zone encountered (c is the largest constant in the PTA)

Forwards reachability

- Forwards algorithm (part 2)
 - construct finite state MDP $(S_F, (I_{init}, \underline{0}), Steps_F, L_F)$
 - states S_F (returned from first part of the algorithm)
 - $L_F(I,\zeta){=}L(I)$ for all $(I,\zeta)\in S_F$
 - $\mu \in \text{Steps}_F(I, \zeta)$ if and only if there exists a probabilistic edge (I,g,a,p) of PTA such that for any (I', ζ ') $\in Z$:

 $\mu(I',\zeta') = \sum \left\{ \left| p(I',X) \right| (I,g,\sigma,p,I',X) \in edges(p) \land post[e](I,\zeta) = (I',\zeta') \left| \right\} \right\}$

summation over all the edges of (I,g,a,p) such that applying **post** to (I, ζ) leads to the symbolic state (I', ζ ')

Forwards reachability – Example

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...
- Only obtain upper bounds on maximum probabilities
 - caused by when edges are combined
- Suppose **post**[e₁](I, ζ)=(I_1, ζ_1) and **post**[e₂](I, ζ)=(I_2, ζ_2)
 - where e_1 and e_2 from the same probabilistic edge
- By definition of post
 - there exists $(I,v_i) \in (I,\zeta)$ such that a state in (I_i, ζ_i) can be reached by traversing the edge e_i and letting time pass
- Problem
 - we combine these transitions but are (I,v_1) and (I,v_2) the same?
 - may not exist states in (I, ζ) for which both edges are enabled

Forwards reachability – Example

- Maximum probability of reaching I_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when x=1
 - for the right branch need to take the first transition when x=0
- · However, in the forwards reachability graph probability is 1

- can reach I_3 via either branch from ($I_0, x=y$)

Abstraction Refinement

- Distinguish nondeterminism from model and abstraction
 - yields stochastic game instead of MDP

- provides lower/upper bounds for min/max probabilities

- O p_s^{min} p_s^{max} 1
 If the difference ("error") is too great, refine the abstraction
 - split zones
 - a finer partition yields a more precise abstraction

Overview (Part 2)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, reachability
- Model checking for PTAs
 - digital clocks
 - zone-based approaches
 - forwards reachability
- Probabilistic hybrid automata (PHAs)
 - definition, examples, semantics, extensions

Timed automata do not always suffice

- Probabilistic timed automata do not always suffice
- Systems with complex dynamics
 - e.g. control processes, vehicle dynamics
- Need general continuous variables instead of clocks
 - behaviour over time given by differential equations

Probabilistic hybrid automata (PHAs)

- Probabilistic hybrid automata (PHAs) [Spr01]
 extend PTAs by complex dynamics in locations
- Syntax: A PHA is a tuple (Loc, I_{init}, Act, X, inv, prob, L)
 - Loc is a finite set of locations
 - $\boldsymbol{I}_{init} \in Loc \times \mathbb{R}^{X}$ is the initial condition
 - Act is a finite set of actions
 - X is a finite set of continuous variables
 - inv : Loc $\rightarrow 2^{\mathbb{R}^X}$ is the invariant condition
 - flow : (Loc × \mathbb{R}^X) → \mathbb{R}^X is the flow condition
 - prob ⊆ Loc× $2^{\mathbb{R}^X}$ ×Dist(Loc× \mathbb{R}^X) is the probabilistic edge relation
 - L : Loc \rightarrow AP is a labelling function
- More general definitions possible

Probabilistic edge relation

- Probabilistic edge relation
 - prob ⊆ Loc×2^{\mathbb{R}^{X}}×Act×Dist(Loc× \mathbb{R}^{X})
- Probabilistic edge $(I,g,a,p) \in prob$
 - I is the source location
 - g is the guard
 - a is the action
 - p target distribution

• Edge (I,g,a,p,I',Y)

- from probabilistic edge (l,g,a,p) where p(l',Y)>0
- l' is the target location
- Y is the assignment of continuous variables

PHA – Example

- Models a simple temperature control
 - starts in location He(at);
 - changes between He(at) and Co(ol) to adjust temperature
 - occasionally moves to Ch(eck), where
 - with probability 0.95 can continue its operation
 - with probability 0.05 an Er(ror) occurs

PHAs – Behaviour

- A state of a PTA is a pair (l,v) $\in Loc \times \mathbb{R}^{x}$ such that $v \in inv(l)$
- A PTAs start in the initial location with variable assignment given by initial condition
- For any state (I,v), there is a nondeterministic choice between making a discrete transition and letting time pass
 - discrete transition (l,g,a,p) enabled if v > g and probability of moving to location l' and setting variables to v' equals p(l',v')
 - time transition available only if invariant inv(l) is continuously satisfied while time elapses and the derivate of the trajectory of continuous variables satisfies the invariant

PHA – Example

PHA:

Example execution: (He,t=0,T=9)(He,t=0.5,T=10)1 chg (Co,t=0,T=10)(Ch,t=0.5,T=7.016) 0.95/ 0.05 chk (He,t=0,T=7.016) (Er,t=0,T=7.016) 1.25 38

PHA Modelling

- Two more extensions to guarded commands:
 - continuous variables (type var)
 - derivative operator der for use in invariants

Continuous variables

- evolve over time according to constraints in invariants
- on transitions, take any value from their domain nondeterministically unless explicitly assigned to

```
T : var init 9;
invariant
        T <= 10 & der(T) = -0.5 * T
endinvariant
[chg] T >= 9 -> (T' = T);
```

PHA – Example

module thermostat

dule thermostat	$\mathbf{h}_{He} \xrightarrow{t:=0} \xrightarrow{chg} \mathbf{t}_{Co} = 1$
s : [03] init 0;	$\begin{array}{c} \begin{array}{c} \uparrow = \\ \uparrow = \\ \uparrow = 1 \\ \downarrow = 2 \end{array} \begin{array}{c} chg \\ \uparrow = - \\ \uparrow = - \\ \uparrow = 5 \end{array} \begin{array}{c} \downarrow \\ \uparrow = - \\ \uparrow = 5 \end{array} \begin{array}{c} \downarrow \\ \uparrow = - \\ \uparrow = 5 \end{array} \begin{array}{c} \downarrow \\ \uparrow = - \\ \uparrow = 5 \end{array} \begin{array}{c} \downarrow \\ \uparrow = - \\ \uparrow = 5 \end{array} \begin{array}{c} \downarrow \\ \downarrow = 2 \end{array} $
t : var init 0;	$\begin{array}{c} t \ge 2 \\ t := \\ 0 \\ \end{array}$
T : var init 9;	$2 \begin{pmatrix} T = -T/2 \\ T = -T/2 \\ T = 0.5 \end{pmatrix} \begin{bmatrix} 0.05 \\ Er \end{bmatrix} 3$
invariant	Curk C
$(s = 0 \Rightarrow (der(t) = 1 \& det(t))$	$r(T) = 2 \& T \le 10 \& t \le 3)$
$\& (s = 1 \implies (der(t) = 1 \& der(t)) = 1 \& der(t) = 1 \& der$	r(T) = -T & T >= 0))
$\& (s = 2 \implies (der(t) = 1 \& der(t)) = 1 \& der(t) = 1 \& der$	r(T) = -0.5 * T & t <= 1))
$\& (s = 3 \Rightarrow (der(t) = 0 \& der(t)) = 0 \& der(t) = 0 \& der$	r(T) = 0))
endinvariant	
[chg] s = 0 & T >= 9 -> (s)	s' = 1) & (t' = 0) & (T' = T);
[chg] s = 0 & t >= 2 -> (s)	s' = 2 & (t' = 0) & (T' = T);
$[chg] s = 1 \& T \le 6 \longrightarrow (s)$	s' = 0 & (t' = 0) & (T' = T);
[chk] s = 2 & t >= 0.5 ->	
0.95: (s'=0) & (t	(T' = 0) & (T' = T);
+ 0.05: (s' = 3) & (1	T' = 0) & (T' = T);
	40

endmodule

+ U

PHAs - Formal semantics

- Semantics of PHA P MDP $M_P = (S_P, s_{init}, Steps, L_P)$ with:
- States: $S_P = \{ (I,v) \in Loc \times \mathbb{R}^X \text{ such that } v \in inv(I) \}$
- Initial state: $s_{init} = I_{init}$

actions of MDP M_P are the actions of PHA P or real time delays

- Steps: $S_P \rightarrow 2^{(Act \cup \mathbb{R}) \times Dist(S)}$ such that $(\alpha, \mu) \in Steps(I,v)$ iff:
 - (time transition) $\alpha = t \in \mathbb{R}$, ex. differentiable flow r:[0,t] $\rightarrow \mathbb{R}^{X}$ with r(0)=v, r(t') \in inv(l), r(t') \in flow(l,r(t')) for all t' \leq t and μ (l,r(t))=1
 - (discrete transition) $\alpha = a \in Act$ and there exists $(l,g,a,p) \in prob$ such that $v \in g$ and, for any $(l',v') \in S_P$: $\mu(l',v') = p(l',v')$
- Labelling: $L_P(I,v) = L(I)$

41

Deciding properties of PHAs

- Problem: even for nonprobabilistic hybrid automata, reachability is undecidable
- Solutions in some cases using overapproximation:
- As for PTAs, subsume concrete states to abstract states
- Cannot represent exact behaviour in abstraction
- Rather, build abstraction which simulates the semantics
 - for each step which the semantics can perform, the abstraction has a corresponding step
- Provides upper bound for maximal reachability

- Abstract states: set of finite states
- Have $A \rightarrow B$ if there is $a \in A$ and $b \in B$ so that $a \rightarrow b$
- Similar for probabilistic case by summing up probabilities

- Construct abstractions for PHAs
 - by adapting existing methods for nonprobabilistic HAs ⁴³

- Different abstraction methods: e.g. using rectangles
- Start with bounded variable space
- Divide into rectangles
- Check which ones are connected
- To refine: split rectangles, or disprove paths probabilistic jump

e.g. [RS07]

- Other methods based on polyhedra [HH94,Frehse05]
- Forward or backward reachability analysis
- Enclose flows by polyhedra
- Jumps similar to PTA
- To refine: decrease split length

- Other methods based on predicates [ADI06b]
- Fix finite set of predicates over variables
 - E.g. {Loc=Heat \land T \leq t, Loc=Check \land t=T-2, ... }
- Each abstract state assigns truth value to each predicate
- Transitions can then be decided by Satisfiability Modulo Theories (SMT)
- Refinement: introduce new predicates
 - similar to non-hybrid predicate abstraction

Continuous nondeterminism

Continuous distributions

[FHH + 11]

- Often continuous probability distributions of interest
 - Measurements (normal distribution)
 - random delays (exponential distribution)

Well-definedness

- Semantics: nondeterministic Markov process (NLMP)
- no PA, because of issues with measurability
- restrictions on transitions necessary

- M: normal distribution
- V: some Vitali set
- Probability to reach rightmost mode?
- Does not exist!
- Because V is not measurable
- Thus: restrictions on automaton components necessary
- Carries over to well-definedness of semantics

Solution methods

- Solution methods no longer apply directly
 - divide continuous support into fixed number of parts
- Afterwards, can apply methods discussed for PHAs

Rewards

[HH13]

- So far, considered only reachability
- Extension to reward-based properties possible
- Extend simulation relation to take reward into account
 - basically, reward in abstraction higher than in semantics
- Extend abstraction by reward structure
- Can analyse similar properties as for basic MDPs
 - cumulative, long-run, etc.

Game-based Abstraction

- Also game-based abstraction possible
- Allows also to bound reachability probability from both below and above

• Using similar methods as in the PTA case

[HNP+11]

Other notions of PHAs

- Many other notions of PHAs exist
- All of them have some discrete-continuous features
- But all with different behaviours and definitions

discrete stochastics	~	~	~	~	~	~	~	~	~
continuous stochastics	~	~	X	X	X	X	~	~	~
discrete dynamics	~	~	~	~	~	~	~	~	~
real time	~	~	~	~	~	X	~	×	×
differential inclusions	~	X	~	X	X	X	X	×	×
stochastic differential eqs.	X	X	X	X	X	X	~	×	×
discrete nondeterminism	~	~	~	~	~	~	X	×	~
continuous nondeterminism	~	~	~	~	~	X	X	×	✓

SHA STA PHA PPTA PTA PA SHS DTSHS NLMP

Piecewise-deterministic Markov processes

- No nondeterminism in basic notion (extensions exist)
- But rate-driven jumps
- In each mode have vector field for continuous behaviour
- Jumps occur when border of mode hit
- Or according to a certain rate
 - Which may depend on time and valuation of variables

Stochastic Hybrid Systems by Hu et al

No nondeterminism

[HLS00]

- But stochastic differential equations within modes
 - $dX(t) = f(Q(T_n), X(t)) dt + g(Q(T_n), X(t)) dB_t$

Standard integral

Stochastic integral

Brownian motio

- Different solution methods exists for different properties
- E.g. time-discretisation

Discrete-time SHS by Abate et al

- State: mode + evaluation of continuous variables
- Discrete-time model
 - E.g. by time-discretisation of SHS
- each step choose successor mode and variable valuation

- Solution method: discretisation
- Divide to finitely many regions, transform to Markov model

[APLS08]

56

PHA model checking – Summary

Basic idea for PTAs

- reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)

Approaches:

- digital clocks [KNPS06]
- forwards reachability [KNSS02]
- game-based abstraction refinement [KNP09c]

For PHAs

- more general behaviours possible than in PTAs
- can not reduce to equivalent finite model (undecidability)
- can compute overapproximation
- a number of abstraction methods exist
- continuous distributions, rewards, game-based abstraction
- A number of related approaches exists