
Model Checking Model Checking Model Checking Model Checking forforforfor
Probabilistic Probabilistic Probabilistic Probabilistic Hybrid SystemsHybrid SystemsHybrid SystemsHybrid Systems

Marta Kwiatkowska, Ernst Moritz Hahn
Oxford University Computing Laboratory

Holger Hermanns, Arnd Hartmanns
Saarland University, Dependable Systems and Software

CPSWeek’13, Philadelphia, April 2013

Probabilistic Hybrid Systems

Part 2

3

Recall – MDPs

• Markov decision processes (MDPs)

− both probability and nondeterminism

− in a state, there is a nondeterministic choice between multiple
probability distributions over successor states

• Adversaries

− resolve nondeterministic choices based on history so far

− properties quantify over all possible adversaries

− e.g. P<0.1[◊err] – maximum probability of an error is < 0.1

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

4

Real-world protocol examples

• Systems with probability, nondeterminism and real-time

− e.g. communication protocols, randomised security protocols

• Randomised back-off schemes

− Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time

− Bluetooth device discovery phase

− Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses

− IPv4 dynamic configuration (link-local addressing)

• Random choice of a destination

− Crowds anonymity, gossip-based routing

5

Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions

6

Time, clocks and clock valuations

• Dense time domain: non-negative reals ℝ≥0

− from this point on, we will abbreviate ℝ≥0 to ℝ

• Finite set of clocks x ∈ X

− variables taking values from time domain ℝ

− increase at the same rate as real time

• A clock valuation is a tuple v ∈ ℝX. Some notation:

− v(x) : value of clock x in v

− v+t : time increment of t for v

• (v+t)(x) = v(x)+t ∀x ∈ X

− v[Y:=0] : clock reset of clocks Y ⊆ X in v

• v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise

7

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

− where x, y ∈ X and c, d ∈ ℕ

− used for both syntax of PTAs/properties and algorithms

• Can derive:

− logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)

− strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

• Some useful classes of zones:

− closed: no strict inequalities (e.g. x>5)

− diagonal-free: no comparisons between clocks (e.g. x≤y)

− convex: define a convex set, efficient to manipulate

ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ

8

Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written v ⊲ ζ if

− ζ resolves to true after substituting each clock x with v(x)

• The semantics of a zone ζ ∈ Zones(X) is the set of clock
valuations which satisfy it (i.e. a subset of ℝX)

− NB: multiple zones may have the same semantics

− e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)

• We consider only canonical zones

− i.e. zones for which the constraints are as ‘tight’ as possible

− O(|X|3) algorithm to compute (unique) canonical zone [Dil89]

− allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations

9

c-equivalence and c-closure

• Clock valuations v and v’ are c-equivalent if for any x,y∈X

− either v(x) = v’(x), or v(x) > c and v’(x) > c

− either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c

• The c-closure of the zone ζ, denoted close(ζ,c), equals

− the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’,

there exists v ∈ ζ and v and v’ are c-equivalent

− c-closure ignores all constraints which are greater than c

− for a given c, there are only a finite number of c-closed zones

10

Operations on zones – Set theoretic

• Intersection of two zones: ζ1∩ζ2

• Similar for other operators

− Union and difference of two zones: ζ1∪ζ2, ζ1\ζ2

− Valuations obtained from by resetting the clocks in Y: ζ[Y:=0]

− Valuations which are in ζ if the clocks in Y are reset: [Y:=0]ζ

− Forwards diagonal projection: ր ζ

(0,0) x

y

(0,0) x

y

ζ1∩ζ2

ζ1

ζ2

11

Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions

12

Probabilistic timed automata (PTAs)

• Probabilistic timed automata (PTAs)

− Markov decision processes (MDPs) + real-valued clocks

− or: timed automata + discrete probabilistic choice

− model probabilistic, nondeterministic and timed behaviour

• Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc is the initial location

− Act is a finite set of actions

− X is a finite set of clocks

− inv : Loc → Zones(X)
is the invariant condition

− prob ⊆ Loc×Zones(X)×Dist(Loc×2X)
is the probabilistic edge relation

− L : Loc → AP is a labelling function

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

13

Probabilistic edge relation

• Probabilistic edge relation

− prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

• Probabilistic edge (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the set of clocks to be reset

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

14

PTA - Example

• Models a simple probabilistic communication protocol

− starts in location di; after between 1 and 2 time units, the
protocol attempts to send the data:

• with probability 0.9 data is sent correctly, move to location sr

• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to resend

• correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

15

PTA Modelling

• Simple extension of guarded commands:

− new variable type clock

− new language construct invariant

• Invariants:

− specified restrictions in clocks of a given module
depending on its discrete variables

− for parallel composition: conjunction of invariants is used

module ptaexample

s : [0..2] init 0;
x : clock;

invariant
(s = 0 => x <= 2) & (s = 2 => x <= 3)

endinvariant

...

endmodule

16

PTA – Example

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

module ptaexample

s : [0..2] init 0;
x : clock;

invariant
(s = 0 => x <= 2) &
(s = 2 => x <= 3)

endinvariant

[send] s = 0 & x >= 1 -> 0.9: (s' = 1) & (x' = 0)
+ 0.1: (s' = 2) & (x' = 0);

[retry] s = 2 & x >= 2 -> 0.95: (s' = 1)
+ 0.05: (s' = 2) & (x' = 0);

endmodule

• Models a simple probabilistic
communication protocol

17

PTAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

• A PTAs start in the initial location with all clocks set to zero

− let 0 denote the clock valuation where all clocks have value 0

• For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of
moving to location l’ and resetting the clocks Y equals p(l’,Y)

− time transition available only if invariant inv(l) is continuously
satisfied while time elapses

18

PTA - Example

(di,x=0)

1.1

(di,x=1.1)

send
0.10.9

(sr,x=0) (si,x=0)

2.7

(si,x=2.7)

retry
0.050.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)

⋮

⋮ ⋮

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

PTA: Example
execution:

19

PTAs - Formal semantics

• Formally, the semantics of a PTA P is an infinite-state MDP
MP = (SP, sinit, StepsStepsStepsSteps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }

• Initial state: sinit = (linit, 0)

• StepsStepsStepsSteps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ StepsStepsStepsSteps(l,v) iff:

− (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob

such that v⊲g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

µ(l',v') = p(l',Y)
Y ⊆X∧v[Y:=0]=v'

∑

actions of MDP MP are the actions
of PTA P or real time delays

multiple resets may give
same clock valuation

20

Probabilistic reachability in PTAs

• For simplicity, in this talk we just consider probabilistic
reachability, rather than logic-based model checking

− i.e. min/max probability of reaching a set of target locations

− can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties

− probabilistic reachability: “with probability at least 0.999, a
data packet is correctly delivered”

− probabilistic invariance: “with probability 0.875 or greater, the
system never aborts”

− probabilistic time-bounded reachability: “with probability 0.01
or less, a data packet is lost within 5 time units”

− bounded response: “with probability 0.99 or greater, a data
packet will always be delivered within 5 time units”

21

Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions

22

Digital Clocks

• Represent clocks as bounded integers

− PTA becomes a regular MDP

• Require two restrictions on PTA:

− no open clock constraints (i.e. no c1 < 3, c2 > 2)

− no diagonals (i.e. no c1 ≤ c2)

• Then the following properties are preserved:

− probabilistic reachability (time- and cost-bounded)

− expected-time / expected-cost reachability

• Problem: State space explosion

− underlying MDP is exponential in
number of clocks and max. constants

23

Zone-based approaches

• Use zones to construct an MDP

• Conventional symbolic model checking relies on computing

− postpostpostpost(S’) the states that can be reached from a state in S’ in a
single step

− prepreprepre(S’) the states that can reach S’ in a single step

• Extend these operators to include time passage

− dpostdpostdpostdpost[e](S’) the states that can be reached from a state in S’
by traversing the edge e

− tposttposttposttpost(S’) the states that can be reached from a state in S’ by
letting time elapse

− prepreprepre[e](S’) the states that can reach S’ by traversing the edge e

− tpretpretpretpre(S’) the states that can reach S’ by letting time elapse

24

Zone-based approaches

• Symbolic states (l, ζ) where

− l ∈ Loc (location)

− ζ is a zone over PTA clocks and formula clocks

• tposttposttposttpost(l,ζ) = (l, րζ∧inv(l))

− րζ can be reached from ζ by letting time pass

− րζ∧inv(l) must satisfy the invariant of the location l

• tpretpretpretpre(l,ζ) = (l, ւζ∧inv(l))

− ւ ζ can reach ζ by letting time pass

− ւ ζ∧ inv(l) must satisfy the invariant of the location l

25

Zone-based approaches

• For an edge e= (l,g,a,p,l’,Y) where

− l is the source

− g is the guard

− a is the action

− l’ is the target

− Y is the clock reset

• dpostdpostdpostdpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0])

− ζ∧g satisfy the guard of the edge

− (ζ∧g)[Y:=0] reset the clocks Y

• dpredpredpredpre[e](l’,ζ’) = (l, [Y:=0]ζ’ ∧ (g ∧ inv(l)))

− [Y:=0]ζ’ the clocks Y were reset

− [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

26

Forwards reachability

• Based on the operation postpostpostpost[e](l,ζ) = tposttposttposttpost(dpostdpostdpostdpost[e](l,ζ))

− (l’,v’) ∈ postpostpostpost[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after
traversing edge e and letting time pass one can reach (l’,v’)

• Forwards algorithm (part 1)

− start with initial state SF={tposttposttposttpost((linit,0))} then iterate

for each symbolic state (l,ζ) ∈ SF and edge e

add postpostpostpost[e](l,ζ) to SF

− until set of symbolic states SF does not change

• To ensure termination need to take c-closure of each zone
encountered (c is the largest constant in the PTA)

27

Forwards reachability

• Forwards algorithm (part 2)

− construct finite state MDP (SF,(linit,0),StepsStepsStepsStepsF,LF)

− states SF (returned from first part of the algorithm)

− LF(l,ζ)=L(l) for all (l,ζ) ∈ SF

− µ ∈ StepsStepsStepsStepsF(l,ζ) if and only if

there exists a probabilistic edge (l,g,a,p) of PTA
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that
applying post post post post to (l,ζ) leads to the symbolic state (l’,ζ’)

|})'ζ,'l()ζ,l([e])p(edges)X,'l,p,σ,g,l(|)X,'l(p{|)'ζ,'l(µ =∧∈=∑ postpostpostpost

28

Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:

29

Forwards reachability - Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities

− caused by when edges are combined

• Suppose postpostpostpost[e1](l,ζ)=(l1,ζ1) and postpostpostpost[e2](l,ζ)=(l2, ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of postpostpostpost

− there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be
reached by traversing the edge ei and letting time pass

• Problem

− we combine these transitions but are (l,v1) and (l,v2) the same?

− may not exist states in (l,ζ) for which both edges are enabled

30

Forwards reachability - Example

• Maximum probability of reaching l3 is 0.5 in the PTA

− for the left branch need to take the first transition when x=1

− for the right branch need to take the first transition when x=0

• However, in the forwards reachability graph probability is 1

− can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:

31

Abstraction Refinement

• Distinguish nondeterminism from model and abstraction

− yields stochastic game instead of MDP

− provides lower/upper bounds for min/max probabilities

• If the difference (“error”) is too great, refine the abstraction

− split zones

− a finer partition yields a more precise abstraction

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract

32

Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions

33

Timed automata do not always suffice

• Probabilistic timed automata do not always suffice

• Systems with complex dynamics

− e.g. control processes, vehicle dynamics

• Need general continuous variables instead of clocks

− behaviour over time given by differential equations

34

Probabilistic hybrid automata (PHAs)

• Probabilistic hybrid automata (PHAs)

− extend PTAs by complex dynamics in locations

• Syntax: A PHA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc×ℝX is the initial condition

− Act is a finite set of actions

− X is a finite set of continuous variables

− inv : Loc → 2ℝX
is the invariant condition

− flow : (Loc × ℝX) → ℝX

is the flow condition

− prob ⊆ Loc×2ℝX
×Dist(Loc×ℝX)

is the probabilistic edge relation

− L : Loc → AP is a labelling function

• More general definitions possible

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

[Spr01]

35

Probabilistic edge relation

• Probabilistic edge relation

− prob ⊆ Loc×2ℝX
×Act×Dist(Loc×ℝX)

• Probabilistic edge (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the assignment of continuous variables

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

36

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

PHA - Example

• Models a simple temperature control

− starts in location He(at);

− changes between He(at) and Co(ol) to adjust temperature

− occasionally moves to Ch(eck), where

• with probability 0.95 can continue its operation

• with probability 0.05 an Er(ror) occurs

invariant

guard

assignment action

37

PHAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that
v ∈ inv(l)

• A PTAs start in the initial location with variable assignment

given by initial condition

• For any state (l,v), there is a nondeterministic choice
between making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of
moving to location l’ and setting variables to v’ equals p(l’,v’)

− time transition available only if invariant inv(l) is continuously
satisfied while time elapses and the derivate of the trajectory
of continuous variables satisfies the invariant

38

PHA - Example

(He,t=0.5,T=10)

1

chk
0.050.95

(He,t=0,T=7.016) (Er,t=0,T=7.016)

1.25

⋮

PHA: Example
execution:

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

(He,t=0,T=9)
0.5

chg

(Co,t=0,T=10)
⋮

(Ch,t=0.5,T=7.016)

2

39

PHA Modelling

• Two more extensions to guarded commands:

− continuous variables (type var)

− derivative operator der for use in invariants

• Continuous variables

− evolve over time according to constraints in invariants

− on transitions, take any value from their domain
nondeterministically unless explicitly assigned to

T : var init 9;

invariant
T <= 10 & der(T) = -0.5 * T

endinvariant

[chg] T >= 9 -> (T' = T);

40

module thermostat

s : [0..3] init 0;
t : var init 0;
T : var init 9;

invariant
(s = 0 => (der(t) = 1 & der(T) = 2 & T <= 10 & t <= 3))

& (s = 1 => (der(t) = 1 & der(T) = -T & T >= 0))
& (s = 2 => (der(t) = 1 & der(T) = -0.5 * T & t <= 1))
& (s = 3 => (der(t) = 0 & der(T) = 0))
endinvariant

[chg] s = 0 & T >= 9 -> (s' = 1) & (t' = 0) & (T' = T);
[chg] s = 0 & t >= 2 -> (s' = 2) & (t' = 0) & (T' = T);
[chg] s = 1 & T <= 6 -> (s' = 0) & (t' = 0) & (T' = T);
[chk] s = 2 & t >= 0.5 ->

0.95: (s' = 0) & (t' = 0) & (T' = T);
+ 0.05: (s' = 3) & (t' = 0) & (T' = T);

endmodule

PHA – Example

T�=
2T≤10

He

t≤3

T�=-
T

Co

T≥5

T�=-T/2

Ch

t≤1
Er

T≥9

T≤9

t:=
0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=
0

chg

0 1

2 3

41

PHAs - Formal semantics

• Semantics of PHA P MDP MP = (SP, sinit, StepsStepsStepsSteps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ∈ inv(l) }

• Initial state: sinit = linit

• StepsStepsStepsSteps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ StepsStepsStepsSteps(l,v) iff:

− (time transition) α=t∈ℝ,
ex. differentiable flow r:[0,t]�ℝX with r(0)=v, r(t’) ∈ inv(l),
r�(t’) ∈ flow(l,r(t’)) for all t’≤t and µ(l,r(t))=1

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob
such that v ∈ g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

)v',p(l’)v’,l’(=µ

actions of MDP MP are the actions
of PHA P or real time delays

42

Deciding properties of PHAs

• Problem: even for nonprobabilistic hybrid automata,
reachability is undecidable

• Solutions in some cases using overapproximation:

• As for PTAs, subsume concrete states to abstract states

• Cannot represent exact behaviour in abstraction

• Rather, build abstraction which simulates the semantics

− for each step which the semantics can perform,
the abstraction has a corresponding step

• Provides upper bound for maximal reachability

0.10.3
0.6

a

b

1

0.3
0.7

a

b
1simulates

semantics abstraction

43

Abstraction methods for PHAs

• Abstract states: set of finite states

• Have A�B if there is a∈A and b∈B so that a�b

• Similar for probabilistic case by summing up probabilities

• Construct abstractions for PHAs

by adapting existing methods for nonprobabilistic HAs

0.3

0.1

0.6

0.3

0.1+0.6=0.7

44

Abstraction methods for PHAs

• Different abstraction methods: e.g. using rectangles

• Start with bounded variable space

• Divide into rectangles

• Check which ones are connected

• To refine: split rectangles, or disprove paths

flow

0.3

0.1

0.6

probabilistic jump

0.3

0.7

e.g. [RS07]

45

Abstraction methods for PHAs

• Other methods based on polyhedra [HH94,Frehse05]

• Forward or backward reachability analysis

• Enclose flows by polyhedra

• Jumps similar to PTA

• To refine: decrease split length

flow

0.3
0.1

0.6

0.30.7

probabilistic jump

split

46

Abstraction methods for PHAs

• Other methods based on predicates [ADI06b]

• Fix finite set of predicates over variables

− E.g. {Loc=Heat∧T≤t, Loc=Check∧t=T-2, … }

• Each abstract state assigns truth value to each predicate

• Transitions can then be decided by

Satisfiability Modulo Theories (SMT)

• Refinement: introduce new predicates

− similar to non-hybrid predicate abstraction

p1=(Loc=Heat∧T≤t)

p2=(Check∧t=T-2)

p3=(…)

0.30.7

000

010

001

011 110 111

100 101

47

Continuous nondeterminism

• Can extend to continuous nondeterminism in jumps

• And to differential inequations

1≤T�≤2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=[0,1]

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

on update, t can
become any value
between 0 and 1

derivative of T is
any value between

1 and 2

48

Continuous distributions

• Often continuous probability distributions of interest

− Measurements (normal distribution)

− random delays (exponential distribution)

.

0.2 0.2 0.2 0.2 0.2

[FHH+11]

density of
normal distribution

can state
probability of
certain set of
successors

but individual
successors have

probability 0

x:=0

x�=0 x�=0
x:=M

x�=0

true x ∈ V

49

Well-definedness

• Semantics: nondeterministic Markov process (NLMP)

• no PA, because of issues with measurability

• restrictions on transitions necessary

• M: normal distribution

• V: some Vitali set

• Probability to reach rightmost mode?

• Does not exist!

• Because V is not measurable

• Thus: restrictions on automaton components necessary

• Carries over to well-definedness of semantics

x:=0

x�=0 x�=0
x:=M

x�=0

true x ∈ V

50

Solution methods

• Solution methods no longer apply directly

− divide continuous support into fixed number of parts

• Afterwards, can apply methods discussed for PHAs

.

0.2 0.2 0.2 0.2 0.2

Ch

0.2
0.2

0.2

0.20.2

Nondet. choice
of concrete succ

51

Rewards

• So far, considered only reachability

• Extension to reward-based properties possible

• Extend simulation relation to take reward into account

− basically, reward in abstraction higher than in semantics

• Extend abstraction by reward structure

• Can analyse similar properties as for basic MDPs

− cumulative, long-run, etc.

0.10.3
0.6

a

b

1

0.3
0.7

a

b
1

simulates

semantics abstraction

5 7

11 13

[HH13]

52

Game-based Abstraction

• Also game-based abstraction possible

• Allows also to bound reachability probability from both
below and above

• Using similar methods as in the PTA case

[HNP+11]

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract

53

Other notions of PHAs

• Many other notions of PHAs exist

• All of them have some discrete-continuous features

• But all with different behaviours and definitions

54

Piecewise-deterministic Markov processes

• No nondeterminism in basic notion (extensions exist)

• But rate-driven jumps

• In each mode have vector field for continuous behaviour

• Jumps occur when border of mode hit

• Or according to a certain rate

− Which may depend on time and valuation of variables

55

Stochastic Hybrid Systems by Hu et al

• No nondeterminism

• But stochastic differential equations within modes

− dX(t) = f(Q(τn),X(t)) dt + g(Q(τn),X(t)) dBt

• Different solution methods exists for different properties

• E.g. time-discretisation

Stochastic
process

Brownian motion

Standard integral
Stochastic integral

[HLS00]

56

Discrete-time SHS by Abate et al

• State: mode + evaluation of continuous variables

• Discrete-time model

− E.g. by time-discretisation of SHS

• each step choose successor mode and variable valuation

• Solution method: discretisation

• Divide to finitely many regions, transform to Markov model

[APLS08]

m1

s2
s1 s3

s4 s5 s6

s8s7 s9

State

…

mn

Choose by
density function

Choose mode

s1

s9

…
p1

p9

Integrate
density

57

PHA model checking - Summary

• Basic idea for PTAs

− reduce to the analysis of a finite-state model

− in most cases, this is a Markov decision process (MDP)

• Approaches:

− digital clocks [KNPS06]

− forwards reachability [KNSS02]

− game-based abstraction refinement [KNP09c]

• For PHAs

− more general behaviours possible than in PTAs

− can not reduce to equivalent finite model (undecidability)

− can compute overapproximation

− a number of abstraction methods exist

− continuous distributions, rewards, game-based abstraction

• A number of related approaches exists

