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Probabilistic Hybrid Systems

Part 2
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Recall – MDPs

• Markov decision processes (MDPs)

− both probability and nondeterminism

− in a state, there is a nondeterministic choice between multiple 
probability distributions over successor states

• Adversaries

− resolve nondeterministic choices based on history so far

− properties quantify over all possible adversaries

− e.g. P<0.1[◊err] – maximum probability of an error is < 0.1
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Real-world protocol examples

• Systems with probability, nondeterminism and real-time

− e.g. communication protocols, randomised security protocols

• Randomised back-off schemes

− Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time

− Bluetooth device discovery phase

− Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses

− IPv4 dynamic configuration (link-local addressing) 

• Random choice of a destination

− Crowds anonymity, gossip-based routing 
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Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions
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Time, clocks and clock valuations

• Dense time domain: non-negative reals ℝ≥0

− from this point on, we will abbreviate ℝ≥0 to ℝ

• Finite set of clocks x ∈ X 

− variables taking values from time domain ℝ

− increase at the same rate as real time

• A clock valuation is a tuple v ∈ ℝX. Some notation:

− v(x) : value of clock x in v

− v+t : time increment of t for v

• (v+t)(x) = v(x)+t  ∀x ∈ X

− v[Y:=0] : clock reset of clocks Y ⊆ X in v

• v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise
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Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

− where x, y ∈ X and c, d ∈ ℕ

− used for both syntax of PTAs/properties and algorithms

• Can derive:

− logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)

− strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

• Some useful classes of zones:

− closed: no strict inequalities (e.g. x>5)

− diagonal-free: no comparisons between clocks (e.g. x≤y)

− convex: define a convex set, efficient to manipulate

ζ ::= x ≤ d  | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ
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Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written v ⊲ ζ if

− ζ resolves to true after substituting each clock x with v(x)

• The semantics of a zone ζ ∈ Zones(X) is the set of clock 
valuations which satisfy it (i.e. a subset of ℝX)

− NB: multiple zones may have the same semantics

− e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3) 

• We consider only canonical zones

− i.e. zones for which the constraints are as ‘tight’ as possible

− O(|X|3) algorithm to compute (unique) canonical zone [Dil89]

− allows us to use syntax for zones interchangeably with 
semantic, set-theoretic operations
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c-equivalence and c-closure

• Clock valuations v and v’ are c-equivalent if for any x,y∈X

− either v(x) = v’(x), or v(x) > c and v’(x) > c

− either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c 

• The c-closure of the zone ζ, denoted close(ζ,c), equals

− the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’,

there exists v ∈ ζ and v and v’ are c-equivalent

− c-closure ignores all constraints which are greater than c

− for a given c, there are only a finite number of c-closed zones
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Operations on zones – Set theoretic

• Intersection of two zones: ζ1∩ζ2

• Similar for other operators

− Union and difference of two zones: ζ1∪ζ2, ζ1\ζ2

− Valuations obtained from by resetting the clocks in Y: ζ[Y:=0]

− Valuations which are in ζ if the clocks in Y are reset: [Y:=0]ζ

− Forwards diagonal projection: ր ζ

(0,0) x

y

(0,0) x

y

ζ1∩ζ2

ζ1

ζ2
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Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions
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Probabilistic timed automata (PTAs)

• Probabilistic timed automata (PTAs)

− Markov decision processes (MDPs) + real-valued clocks

− or: timed automata + discrete probabilistic choice

− model probabilistic, nondeterministic and timed behaviour

• Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc is the initial location

− Act is a finite set of actions

− X is a finite set of clocks

− inv : Loc → Zones(X)
is the invariant condition

− prob ⊆ Loc×Zones(X)×Dist(Loc×2X)
is the probabilistic edge relation

− L : Loc → AP is a labelling function

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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Probabilistic edge relation

• Probabilistic edge relation

− prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

• Probabilistic edge (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the set of clocks to be reset

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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PTA - Example

• Models a simple probabilistic communication protocol

− starts in location di; after between 1 and 2 time units, the 
protocol attempts to send the data:

• with probability 0.9 data is sent correctly, move to location sr

• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to resend

• correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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PTA Modelling

• Simple extension of guarded commands:

− new variable type clock

− new language construct invariant

• Invariants:

− specified restrictions in clocks of a given module
depending on its discrete variables

− for parallel composition: conjunction of invariants is used

module ptaexample

s : [0..2] init 0;
x : clock;

invariant
(s = 0 => x <= 2) & (s = 2 => x <= 3)

endinvariant

...

endmodule
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PTA – Example

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

module ptaexample

s : [0..2] init 0;
x : clock;

invariant
(s = 0 => x <= 2) &
(s = 2 => x <= 3)

endinvariant

[send]  s = 0 & x >= 1 -> 0.9: (s' = 1) & (x' = 0)
+ 0.1: (s' = 2) & (x' = 0);

[retry] s = 2 & x >= 2 -> 0.95: (s' = 1)
+ 0.05: (s' = 2) & (x' = 0);

endmodule

• Models a simple probabilistic
communication protocol
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PTAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

• A PTAs start in the initial location with all clocks set to zero

− let 0 denote the clock valuation where all clocks have value 0

• For any state (l,v), there is nondeterministic choice between 
making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of 
moving to location l’ and resetting the clocks Y equals p(l’,Y)

− time transition available only if invariant inv(l) is continuously 
satisfied while time elapses
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PTA - Example

(di,x=0)

1.1

(di,x=1.1)

send
0.10.9

(sr,x=0) (si,x=0)

2.7

(si,x=2.7)

retry
0.050.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)

⋮

⋮ ⋮

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

PTA: Example
execution:
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PTAs - Formal semantics

• Formally, the semantics of a PTA P is an infinite-state MDP 
MP = (SP, sinit, StepsStepsStepsSteps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }

• Initial state: sinit = (linit, 0)

• StepsStepsStepsSteps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ StepsStepsStepsSteps(l,v) iff: 

− (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob

such that v⊲g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

  

µ(l',v' ) =  p(l',Y)
Y ⊆X∧v[Y:=0]=v'

∑

actions of MDP MP are the actions
of PTA P or real time delays

multiple resets may give
same clock valuation
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Probabilistic reachability in PTAs

• For simplicity, in this talk we just consider probabilistic 
reachability, rather than logic-based model checking

− i.e. min/max probability of reaching a set of target locations

− can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties

− probabilistic reachability: “with probability at least 0.999, a 
data packet is correctly delivered”

− probabilistic invariance: “with probability 0.875 or greater, the 
system never aborts”

− probabilistic time-bounded reachability: “with probability 0.01 
or less, a data packet is lost within 5 time units”

− bounded response: “with probability 0.99 or greater, a data 
packet will always be delivered within 5 time units”
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Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions
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Digital Clocks

• Represent clocks as bounded integers

− PTA becomes a regular MDP

• Require two restrictions on PTA:

− no open clock constraints (i.e. no c1 < 3, c2 > 2)

− no diagonals (i.e. no c1 ≤ c2)

• Then the following properties are preserved:

− probabilistic reachability (time- and cost-bounded)

− expected-time / expected-cost reachability

• Problem: State space explosion

− underlying MDP is exponential in
number of clocks and max. constants
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Zone-based approaches

• Use zones to construct an MDP

• Conventional symbolic model checking relies on computing

− postpostpostpost(S’) the states that can be reached from a state in S’ in a 
single step

− prepreprepre(S’) the states that can reach S’ in a single step

• Extend these operators to include time passage

− dpostdpostdpostdpost[e](S’) the states that can be reached from a state in S’ 
by traversing the edge e

− tposttposttposttpost(S’) the states that can be reached from a state in S’ by 
letting time elapse

− prepreprepre[e](S’) the states that can reach S’ by traversing the edge e

− tpretpretpretpre(S’) the states that can reach S’ by letting time elapse



24

Zone-based approaches

• Symbolic states (l, ζ) where 

− l ∈ Loc (location)

− ζ is a zone over PTA clocks and formula clocks

• tposttposttposttpost(l,ζ) = (l, րζ∧inv(l) )

− րζ can be reached from ζ by letting time pass

− րζ∧inv(l) must satisfy the invariant of the location l

• tpretpretpretpre(l,ζ) = (l, ւζ∧inv(l) ) 

− ւ ζ can reach ζ by letting time pass

− ւ ζ∧ inv(l) must satisfy the invariant of the location l
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Zone-based approaches

• For an edge e= (l,g,a,p,l’,Y) where

− l is the source

− g is the guard

− a is the action

− l’ is the target 

− Y is the clock reset

• dpostdpostdpostdpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0] )

− ζ∧g satisfy the guard of the edge

− (ζ∧g)[Y:=0] reset the clocks Y

• dpredpredpredpre[e](l’,ζ’) = (l,  [Y:=0]ζ’ ∧ (g ∧ inv(l)) )

− [Y:=0]ζ’ the clocks Y were reset

− [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l
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Forwards reachability

• Based on the operation postpostpostpost[e](l,ζ) = tposttposttposttpost(dpostdpostdpostdpost[e](l,ζ))

− (l’,v’) ∈ postpostpostpost[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after 
traversing edge e and letting time pass one can reach (l’,v’)

• Forwards algorithm (part 1)

− start with initial state SF={tposttposttposttpost((linit,0))} then iterate

for each symbolic state (l,ζ) ∈ SF and edge e 

add postpostpostpost[e](l,ζ) to SF

− until set of symbolic states SF does not change

• To ensure termination need to take c-closure of each zone 
encountered (c is the largest constant in the PTA)
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Forwards reachability

• Forwards algorithm (part 2)

− construct finite state MDP (SF,(linit,0),StepsStepsStepsStepsF,LF)

− states SF (returned from first part of the algorithm)

− LF(l,ζ)=L(l) for all (l,ζ) ∈ SF

− µ ∈ StepsStepsStepsStepsF(l,ζ) if and only if 

there exists a probabilistic edge (l,g,a,p) of PTA
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that 
applying post post post post to (l,ζ) leads to the symbolic state (l’,ζ’)

|})'ζ,'l()ζ,l([e])p(edges)X,'l,p,σ,g,l(|)X,'l(p{|)'ζ,'l(µ =∧∈=∑ postpostpostpost
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Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:
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Forwards reachability - Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities

− caused by when edges are combined

• Suppose postpostpostpost[e1](l,ζ)=(l1,ζ1) and postpostpostpost[e2](l,ζ)=(l2, ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of postpostpostpost

− there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be 
reached by traversing the edge ei and letting time pass

• Problem

− we combine these transitions but are (l,v1) and (l,v2) the same?

− may not exist states in (l,ζ) for which both edges are enabled
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Forwards reachability - Example

• Maximum probability of reaching l3 is 0.5 in the PTA

− for the left branch need to take the first transition when x=1

− for the right branch need to take the first transition when x=0

• However, in the forwards reachability graph probability is 1

− can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:
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Abstraction Refinement

• Distinguish nondeterminism from model and abstraction

− yields stochastic game instead of MDP

− provides lower/upper bounds for min/max probabilities

• If the difference (“error”) is too great, refine the abstraction

− split zones

− a finer partition yields a more precise abstraction

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract
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Overview (Part 2)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, reachability

• Model checking for PTAs

− digital clocks

− zone-based approaches

− forwards reachability

• Probabilistic hybrid automata (PHAs)

− definition, examples, semantics, extensions
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Timed automata do not always suffice

• Probabilistic timed automata do not always suffice

• Systems with complex dynamics

− e.g. control processes, vehicle dynamics

• Need general continuous variables instead of clocks

− behaviour over time given by differential equations
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Probabilistic hybrid automata (PHAs)

• Probabilistic hybrid automata (PHAs)

− extend PTAs by complex dynamics in locations

• Syntax: A PHA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc×ℝX is the initial condition

− Act is a finite set of actions

− X is a finite set of continuous variables

− inv : Loc → 2ℝX 
is the invariant condition

− flow : (Loc × ℝX ) → ℝX

is the flow condition

− prob ⊆ Loc×2ℝX 
×Dist(Loc×ℝX )

is the probabilistic edge relation

− L : Loc → AP is a labelling function

• More general definitions possible

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

[Spr01]
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Probabilistic edge relation

• Probabilistic edge relation

− prob ⊆ Loc×2ℝX 
×Act×Dist(Loc×ℝX )

• Probabilistic edge (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the assignment of continuous variables

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg
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T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

PHA - Example

• Models a simple temperature control

− starts in location He(at);

− changes between He(at) and Co(ol) to adjust temperature

− occasionally moves to Ch(eck), where

• with probability 0.95 can continue its operation

• with probability 0.05 an Er(ror) occurs

invariant

guard

assignment action
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PHAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that
v ∈ inv(l)

• A PTAs start in the initial location with variable assignment

given by initial condition

• For any state (l,v), there is a nondeterministic choice
between making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of 
moving to location l’ and setting variables to v’ equals p(l’,v’)

− time transition available only if invariant inv(l) is continuously 
satisfied while time elapses and the derivate of the trajectory 
of continuous variables satisfies the invariant
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PHA - Example

(He,t=0.5,T=10)

1

chk
0.050.95

(He,t=0,T=7.016) (Er,t=0,T=7.016)

1.25

⋮

PHA: Example
execution:

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

(He,t=0,T=9)
0.5

chg

(Co,t=0,T=10)
⋮

(Ch,t=0.5,T=7.016)

2
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PHA Modelling

• Two more extensions to guarded commands:

− continuous variables (type var)

− derivative operator der for use in invariants

• Continuous variables

− evolve over time according to constraints in invariants

− on transitions, take any value from their domain
nondeterministically unless explicitly assigned to

T : var init 9;

invariant
T <= 10 & der(T) = -0.5 * T

endinvariant

[chg] T >= 9 -> (T' = T);
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module thermostat

s : [0..3] init 0;
t : var init 0;
T : var init 9;

invariant
(s = 0 => (der(t) = 1 & der(T) = 2 & T <= 10 & t <= 3))

& (s = 1 => (der(t) = 1 & der(T) = -T & T >= 0))
& (s = 2 => (der(t) = 1 & der(T) = -0.5 * T & t <= 1))
& (s = 3 => (der(t) = 0 & der(T) = 0))
endinvariant

[chg] s = 0 & T >= 9   -> (s' = 1) & (t' = 0) & (T' = T);
[chg] s = 0 & t >= 2   -> (s' = 2) & (t' = 0) & (T' = T);
[chg] s = 1 & T <= 6   -> (s' = 0) & (t' = 0) & (T' = T);
[chk] s = 2 & t >= 0.5 ->

0.95: (s' = 0) & (t' = 0) & (T' = T);
+ 0.05: (s' = 3) & (t' = 0) & (T' = T);

endmodule

PHA – Example

T�=
2T≤10

He

t≤3

T�=-
T

Co

T≥5

T�=-T/2

Ch

t≤1
Er

T≥9

T≤9

t:=
0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=
0

chg

0 1

2 3
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PHAs - Formal semantics

• Semantics of PHA P MDP MP = (SP, sinit, StepsStepsStepsSteps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ∈ inv(l) }

• Initial state: sinit = linit

• StepsStepsStepsSteps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ StepsStepsStepsSteps(l,v) iff: 

− (time transition) α=t∈ℝ,
ex. differentiable flow r:[0,t]�ℝX with r(0)=v, r(t’) ∈ inv(l),
r�(t’) ∈ flow(l,r(t’))  for all t’≤t and µ(l,r(t))=1

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob
such that v ∈ g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

)v',p(l’)v’,l’( =µ

actions of MDP MP are the actions
of PHA P or real time delays
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Deciding properties of PHAs

• Problem: even for nonprobabilistic hybrid automata, 
reachability is undecidable

• Solutions in some cases using overapproximation:

• As for PTAs, subsume concrete states to abstract states

• Cannot represent exact behaviour in abstraction

• Rather, build abstraction which simulates the semantics

− for each step which the semantics can perform,
the abstraction has a corresponding step

• Provides upper bound for maximal reachability

0.10.3
0.6

a

b

1

0.3
0.7

a

b
1simulates

semantics abstraction
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Abstraction methods for PHAs

• Abstract states: set of finite states

• Have A�B if there is a∈A and b∈B so that a�b

• Similar for probabilistic case by summing up probabilities

• Construct abstractions for PHAs

by adapting existing methods for nonprobabilistic HAs

0.3

0.1

0.6

0.3

0.1+0.6=0.7
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Abstraction methods for PHAs

• Different abstraction methods: e.g. using rectangles

• Start with bounded variable space

• Divide into rectangles

• Check which ones are connected

• To refine: split rectangles, or disprove paths

flow

0.3

0.1

0.6

probabilistic jump

0.3

0.7

e.g. [RS07]
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Abstraction methods for PHAs

• Other methods based on polyhedra [HH94,Frehse05]

• Forward or backward reachability analysis

• Enclose flows by polyhedra

• Jumps similar to PTA

• To refine: decrease split length

flow

0.3
0.1

0.6

0.30.7

probabilistic jump

split
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Abstraction methods for PHAs

• Other methods based on predicates [ADI06b]

• Fix finite set of predicates over variables

− E.g. {Loc=Heat∧T≤t, Loc=Check∧t=T-2, … }

• Each abstract state assigns truth value to each predicate

• Transitions can then be decided by

Satisfiability Modulo Theories (SMT)

• Refinement: introduce new predicates

− similar to non-hybrid predicate abstraction

p1=(Loc=Heat∧T≤t)

p2=(Check∧t=T-2)

p3=(…)

0.30.7

000

010

001

011 110 111

100 101
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Continuous nondeterminism

• Can extend to continuous nondeterminism in jumps

• And to differential inequations

1≤T�≤2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=0

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

T�=2
T≤10

He

t≤3

T�=-T
Co

T≥5

T�=-T/2
Ch

t≤1
Er

T≥9

T≤9
t:=0

0.05

t:=[0,1]

0.95
t:=0

chk

chg

chg

t≥0.5

t≥2
t:=0 chg

on update, t can 
become any value 
between 0 and 1

derivative of T is 
any value between 

1 and 2
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Continuous distributions

• Often continuous probability distributions of interest

− Measurements (normal distribution)

− random delays (exponential distribution)

. . . . . .

0.2 0.2 0.2 0.2 0.2

[FHH+11]

density of
normal distribution

can state 
probability of 
certain set of 
successors

but individual
successors have

probability 0

x:=0

x�=0 x�=0
x:=M

x�=0

true x ∈ V
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Well-definedness

• Semantics: nondeterministic Markov process (NLMP)

• no PA, because of issues with measurability

• restrictions on transitions necessary

• M: normal distribution

• V: some Vitali set

• Probability to reach rightmost mode?

• Does not exist!

• Because V is not measurable

• Thus: restrictions on automaton components necessary

• Carries over to well-definedness of semantics

x:=0

x�=0 x�=0
x:=M

x�=0

true x ∈ V
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Solution methods

• Solution methods no longer apply directly

− divide continuous support into fixed number of parts

• Afterwards, can apply methods discussed for PHAs

. . . . . .

0.2 0.2 0.2 0.2 0.2

Ch

0.2
0.2

0.2

0.20.2

Nondet. choice
of concrete succ
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Rewards

• So far, considered only reachability

• Extension to reward-based properties possible 

• Extend simulation relation to take reward into account

− basically, reward in abstraction higher than in semantics

• Extend abstraction by reward structure

• Can analyse similar properties as for basic MDPs

− cumulative, long-run, etc.

0.10.3
0.6

a

b

1

0.3
0.7

a

b
1

simulates

semantics abstraction

5 7

11 13

[HH13]



52

Game-based Abstraction

• Also game-based abstraction possible

• Allows also to bound reachability probability from both 
below and above

• Using similar methods as in the PTA case

[HNP+11]

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract
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Other notions of PHAs

• Many other notions of PHAs exist

• All of them have some discrete-continuous features

• But all with different behaviours and definitions
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Piecewise-deterministic Markov processes

• No nondeterminism in basic notion (extensions exist)

• But rate-driven jumps

• In each mode have vector field for continuous behaviour

• Jumps occur when border of mode hit

• Or according to a certain rate

− Which may depend on time and valuation of variables
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Stochastic Hybrid Systems by Hu et al

• No nondeterminism

• But stochastic differential equations within modes

− dX(t) = f(Q(τn),X(t)) dt + g(Q(τn),X(t)) dBt

• Different solution methods exists for different properties

• E.g. time-discretisation

Stochastic
process

Brownian motion

Standard integral
Stochastic integral

[HLS00]
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Discrete-time SHS by Abate et al

• State: mode + evaluation of continuous variables

• Discrete-time model

− E.g. by time-discretisation of SHS

• each step choose successor mode and variable valuation

• Solution method: discretisation

• Divide to finitely many regions, transform to Markov model

[APLS08]

m1

s2
s1 s3

s4 s5 s6

s8s7 s9

State

…

mn

Choose by
density function

Choose mode

s1

s9

…
p1

p9

Integrate
density
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PHA model checking - Summary

• Basic idea for PTAs

− reduce to the analysis of a finite-state model

− in most cases, this is a Markov decision process (MDP)

• Approaches:

− digital clocks [KNPS06]

− forwards reachability [KNSS02]

− game-based abstraction refinement [KNP09c]

• For PHAs

− more general behaviours possible than in PTAs

− can not reduce to equivalent finite model (undecidability)

− can compute overapproximation

− a number of abstraction methods exist

− continuous distributions, rewards, game-based abstraction

• A number of related approaches exists


