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Abstract. We present automatic verification techniques for concurrent
stochastic multi-player games (CSGs) with rewards. To express proper-
ties of such models, we adapt the temporal logic rPATL (probabilistic
alternating-time temporal logic with rewards), originally introduced for
the simpler model of turn-based games, which enables quantitative rea-
soning about the ability of coalitions of players to achieve goals related to
the probability of an event or reward measures. We propose and imple-
ment a modelling approach and model checking algorithms for property
verification and strategy synthesis of CSGs, as an extension of PRISM-
games. We evaluate the performance, scalability and applicability of our
techniques on case studies from domains such as security, networks and
finance, showing that we can analyse systems with probabilistic, coop-
erative and competitive behaviour between concurrent components, in-
cluding many scenarios that cannot be analysed with turn-based models.

1 Introduction

Stochastic multi-player games are a versatile modelling framework for systems
that exhibit cooperative and competitive behaviour in the presence of adversarial
or uncertain environments. They can be viewed as a collection of players (agents)
with strategies for determining their actions based on the execution so far. These
models combine nondeterminism, representing the adversarial, cooperative and
competitive choices, stochasticity, modelling uncertainty due to noise, failures or
randomness, and concurrency, representing simultaneous execution of interacting
agents. Examples of such systems appear in many domains, from robotics and
autonomous transport, to security and computer networks.

Formal verification for stochastic games provide a means of producing quan-
titative guarantees on the correctness of a system (e.g. “the control software
can always safely stop the vehicle with probability at least 0.99, regardless of
the actions of other road users”), where the required behavioural properties are
specified precisely in quantitative extensions of temporal logic. The closely re-
lated problem of strategy synthesis constructs an optimal strategy for a player,
or coalition of players, that guarantees a property is satisfied.

Automatic verification and strategy synthesis for models exhibiting nonde-
terminism and stochasticity are well established and implemented, e.g., in tools
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such as PRISM [14] and STORM [11]. Recently, these techniques have also been
formulated and implemented in PRISM-games [16], an extension of PRISM,
for turn-based stochastic multi-player games (TSGs), which can be viewed as
Markov decision processes whose states are partitioned among a set of players,
with exactly one player taking control of each state. Properties are specified in
the logic rPATL (probabilistic alternating-time temporal logic with rewards) [9],
a quantitative extension of the game logic ATL [4]. This allows us to specify
that a coalition of players achieve a high-level objective, regarding the probabil-
ity of an event’s occurrence or the expectation of a cumulative reward measure,
irrespective of the strategies of the other players.

Concurrent stochastic multi-player games (CSGs) generalise TSGs by per-
mitting players to choose their actions concurrently in each state of the model.
This can provide a more realistic model of interactive agents operating concur-
rently, and making action choices without already knowing the actions that are
being taken by other agents. However, although algorithms for verification and
strategy synthesis of CSGs have been known for some time (e.g., [2,3,6]), their
implementation and application to real-world examples is lacking.

This paper develops the first approach to modelling, verification and strategy
synthesis for CSGs that is implemented in software and applied to a selection
of in-depth case studies. We first adapt the logic rPATL to CSGs and provide a
formal semantics. Then, we propose a model checking algorithm, building upon
the existing techniques for TSGs and adapting to CSGs by integrating techniques
for solving matrix games. Next, we develop an approach to modelling CSGs as an
extension of the PRISM-games model checking tool and implement algorithms
for construction, verification and strategy synthesis.

Finally, we investigate the performance, scalability and applicability of our
implementation using a selection of real-life case studies. We demonstrate that
our CSG modelling and verification techniques facilitate insightful analysis of
quantitative aspects of systems taken from diverse set of application domains: fi-
nance, computer security, computer networks and communication systems. These
illustrate examples of systems whose modelling and analysis requires stochastic-
ity and competitive or adversarial behaviour between concurrent components
or agents, as provided by CSGs; in several cases, we explicitly highlight the
differences between our use of CSGs and existing models verified using TSGs.

Related work. Various verification algorithms have been proposed for CSGs,
e.g. [2,3,6], but without implementations, tool support or case studies. PRISM-
games [16], upon which we build in this work, provides modelling and verification
for a wide range of properties of stochastic multi-player games, including those
in the logic rPATL, and multi-objective extensions of it, but focuses purely on
the turn-based variant of the model (TSGs). GIST [8] allows the analysis of ω-
regular properties on probabilistic games, but again focuses on turn-based, not
concurrent, games. GAVS+ [10] is a general-purpose tool for algorithmic game
solving, supporting TSGs and (non-stochastic) concurrent games, but not CSGs.
Two further tools, PRALINE [5] and EAGLE [25], allow the computation of Nash
equilibria [20] for the restricted class of (non-stochastic) concurrent games.
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2 Preliminaries

We begin with some basic background from game theory, and then describe
concurrent stochastic games. For any finite set X, we will write Dist(X) for the
set of probability distributions over X. We first introduce normal form games,
which are simple one-shot games where players make their choices concurrently.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(also known as strategic form) is a tuple N = (N,A, u) where:

– N = {1, . . . , n} is a finite set of players;
– A = A1×· · ·×An and Ai is a finite set of actions available to player i ∈ N ;
– u = (u1, . . . , un) and ui : A→ R is a utility function for player i ∈ N .

In a game N, players select actions simultaneously, with player i ∈ N choosing
from the action set Ai. If each player i selects action ai, then player j receives
the utility uj(a1, . . . , an). A (mixed) strategy σi for player i is a distribution over
its actions, i.e. σi ∈ Dist(Ai). Let Σi

N denote the set of strategies for player i. A
strategy profile is a tuple of strategies for each player. Under a strategy profile
σ=(σ1, . . . , σn), the expected utility of player i is defined as follows:

ui(σ)
def
=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)
.

A two-player normal form game N = (N,A, u) is zero-sum if for each action
tuple α ∈ A we have u1(α) + u2(α) = 0. Such a game is often called a matrix
game as it can be represented by a matrix Z ∈ Rl×m where A1 = {a1, . . . , al},
A2 = {b1, . . . , bm} and zij = u1(ai, bj) = −u2(ai, bj).

We require the following classical result concerning matrix games.

Theorem 1 (Minimax theorem [21,22]). For any matrix game Z ∈ Rl×m,
there exists v? ∈ R, called the value of the game and denoted val(Z), such that:

– there is a strategy σ?1 for player 1, called an optimal strategy of player 1, such
that under this strategy the player’s expected utility is at least v? regardless
of the strategy of player 2, i.e. infσ2∈Σ2

N
u1(σ?1 , σ2) > v?;

– there is a strategy σ?2 for 2, called an optimal strategy of player 2, such that
under this strategy the player’s expected utility is at least v? regardless of the
strategy of player 1, i.e. infσ1∈Σ1

N
u2(σ1, σ

?
2) > v?.

The value of a matrix game Z ∈ Rl×m can be found by solving the following
linear programming (LP) problem [21,22]. Maximise v subject to the constraints:

v 6 p1·z1j + · · ·+ pl·zlj for 1 6 j 6 m
pi > 0 for 1 6 i 6 l and p1 + · · ·+ pl = 1

In addition, the solution for (p1, . . . , pl) yields an optimal strategy for player 1.
The value of the game can also be calculated as the solution of the following
dual LP problem. Minimise v subject to the constraints:

v > q1·zi1 + · · ·+ qm·zim for 1 6 i 6 l
qj > 0 for 1 6 j 6 m and q1 + · · ·+ qm = 1
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and the solution (q1, . . . , qm) yields an optimal strategy for player 2.

We next introduce concurrent stochastic games, in which players repeatedly
make choices simultaneously to determine the next state of the game.

Definition 2 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, s̄, A,∆, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and s̄ ∈ S is an initial state;
– A = (A1∪{⊥})× · · ·×(An∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪ni=1Ai;
– ∆ : S → ∪ni=1Ai is an action assignment function;
– δ : S×A→ Dist(S) is a probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

In any state s of a CSG G, each player i ∈ N chooses an action from the set

Ai(s)
def
= ∆(s) ∩ Ai if this set is non-empty and {⊥} otherwise. If each player

i selects action ai, then the next state of the game is chosen according to the
probability distribution δ(s, (a1, . . . , an)). TSGs are a restricted class of CSGs
for which in any state s there is a unique player i such that Ai(s) 6= {⊥}.

A path π of a CSG G is a sequence π = s0
α0−→ s1

α1−→ · · · where si ∈ S,
αi = (ai1, . . . , a

i
n) ∈ A, aij ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1) > 0 for all

i > 0. We denote by π(i) the (i+1)th state of π, π[i] the action associated with
the (i+1)th transition and, if π is finite, last(π) the final state. The length of
a path π, denoted |π|, is the number of transitions appearing in the path. Let
FPathsG and IPathsG (FPathsG,s and IPathsG,s) be the sets of finite and infinite
paths (starting in state s). A strategy σi for player i of G is a way of resolving
the choices of player i based on the execution so far. Formally, a strategy for
player i is a function σi : FPathsG → Dist(Ai) such that if σi(π)(ai)>0, then
ai ∈ Ai(last(π)). The set of all strategies of player i is denoted by Σi

G. A strategy
for player i is deterministic if it always selects actions with probability 1 and
memoryless if it makes the same choice for paths that end in the same state.

A strategy profile for CSG G is a tuple σ = (σ1, . . . , σn) ∈ Σ1
G× · · ·×Σn

G

yielding a strategy for each player of the game. We use FPathsσG,s and IPathsσG,s
for the sets of finite and infinite paths corresponding to the choices made by the
strategy profile σ when starting in state s. For a given strategy profile σ and
starting state s, the behaviour of G is fully probabilistic and we can define a
probability measure ProbσG,s over the set of infinite paths IPathsσG,s [13]. Given a
random variable X : IPathsG → R, the expected value of X with respect to pro-

file σ when starting in state s is given by EσG,s(X)
def
=
∫
π∈IPathsσG,s

X(π) dProbσG,s.

We augment CSGs with reward structures of the form r = (rA, rS) where
rA : S×A→ R is an action reward function (which maps each state and action
tuple pair to a real value that is accumulated when the action tuple is selected
in the state) and rS : S → R is a state reward function (which maps each state
to a real value that is accumulated when the state is reached). We allow both
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s0

s1{win1} s2 {win2}

s3{draw}

(r, r), (p, p), (s, s) (t, t)

(r, s), (p, r), (s, p) (s, r), (p, s), (r, p)

(t, t)

(a) Rock-paper-scissors CSG.


r p s

r 0 −1 1
p 1 0 −1
s −1 1 0


(b) Rock-paper-scissors matrix game.

positive and negative rewards; however, we will later require certain restrictions
to ensure the correctness of the presented model checking algorithm.

Example 1. Consider the CSG shown in Figure 1(a) corresponding to two
players repeatedly playing the rock-paper-scissors game. Transitions are labelled
with action-pairs where A1 = A2 = {r, p, s, t}, with r, p and s representing play-
ing rock, paper and scissors, respectively, and t restarting the game. The CSG
starts in state s0 and states s1, s2 and s3 are labelled with atomic propositions
corresponding to when a player wins or there is a draw in a round of the rock-
paper-scissors game. The matrix game representation of the rock-paper-scissors
game is presented in Figure 1(b). The optimal value for the matrix game is the
solution to the following LP problem. Maximise v subject to the constraints:

v 6 p2 − p3, v 6 p3 − p1, v 6 p1 − p2, p1 + p2 + p3 = 1, p1, p2, p3 > 0

which yields the solution v? = 0 with corresponding optimal strategy σ?1 =
(1/3, 1/3, 1/3) for player 1 (the optimal strategy for player 2 is the same).

3 rPATL for Concurrent Stochastic Games

In this section, we discuss the temporal logic rPATL, previously proposed for
specifying properties of TSGs [9], and adapt it to CSGs.

Definition 3 (rPATL syntax). The syntax of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ ] | 〈〈C〉〉Rr∼x[ ρ ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | C | Fc φ

where a ∈ AP is an atomic proposition, C ⊆ N is a coalition of players, ∼∈ {<
,6,>, >}, q ∈ [0, 1], x ∈ R, r is a reward structure and k ∈ N.

The rPATL syntax distinguishes between state (φ), path (ψ) and reward (ρ) for-
mulae. State formulae are evaluated over states of a CSG, while path and reward
formulae are both evaluated over paths. A state satisfies a formula 〈〈C〉〉P∼q[ψ ]
if the coalition of players C can ensure the probability of the path formula ψ
being satisfied is ∼ q, and satisfies a formula 〈〈C〉〉Rr∼x[ ρ ] if the players in C
can ensure the expected value of the reward formula ρ for rewards structure r is
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∼ x. For path formulae, we allow next (Xφ), time-bounded until (φ U6k φ) and
unbounded until (φ U φ). For reward formulae, we allow instantaneous (state)
reward at the kth step (I=k), reward accumulated over k steps (C6k), total cu-
mulative reward (C) and reward accumulated until a formula is satisfied (Fc φ).

There are two differences from the rPATL syntax of [9]. First, we add several
reward operators (I=k, C6k, C), adapted from the property specification language
of PRISM [14]. These proved to be useful for the case studies we present later
in Section 6. On the other hand, for simplicity, we restricted our attention to a
single variant (c) of the reward operator F? φ: two other variants are included
in [9], labelled 0 and∞, which define the accumulated reward to be 0 or infinity,
respectively, if no state satisfying φ is reached along a path. We intend to add
these variants to our CSG verification implementation at a later date.

To introduce the semantics of rPATL, for any CSG G and coalition of players
C ⊆ N , we require the following definition of a two-player coalition game. With-
out loss of generality, we assume the coalition is of the form C = {1, . . . , n′}.

Definition 4 (Coalition game). For CSG G = (N,S, s̄, A,∆, δ,AP ,L) and
coalition C = {1, . . . , n′} ⊆ N , the coalition game induced by C of G is the
two-player game GC = ({1, 2}, S, s̄, AC , ∆, δC ,AP ,L) where:

– AC = AC1 ×AC2 , AC1 = A1× · · ·×An′ and AC2 = An′+1× · · ·×An;
– for any s ∈ S, aC1 = (a1, . . . , an′) ∈ AC1 and aC2 = (an′+1, . . . , an) ∈ AC2 we

have δC(s, (aC1 , a
C
2 )) = δ(s, a1, . . . , an).

Furthermore, for any reward structure r = (rA, rS) of G, the corresponding re-
ward structure rC = (rCA , r

C
S ) of GC is constructed in a similar manner.

Definition 5 (rPATL semantics). For CSG G the satisfaction relation |=
for rPATL is defined inductively on the structure of the formula. The cases of
true, atomic propositions, negations and conjunction of formulae are defined in
the usual way. For temporal operators and s ∈ S we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ ∃σ1 ∈ Σ1
GC . ∀σ2 ∈ Σ

2
GC . P

σ1,σ2

GC ,s
(ψ) ∼ q

s |= 〈〈C〉〉Rr∼x[ ρ ] ⇔ ∃σ1 ∈ Σ1
GC . ∀σ2 ∈ Σ

2
GC . E

σ1,σ2

GC ,s
[rew(rC , ρ)] ∼ x

where Pσ1,σ2

GC ,s
(ψ) = Probσ1,σ2

GC ,s

{
π ∈ IPathsσ1,σ2

GC ,s
| π |=ψ

}
and for π ∈ IPathsGC ,s:

π |= Xφ ⇔ π(1) |=φ

π |=φ1 U6k φ2 ⇔ ∃i 6 k. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

π |=φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

rew(rC , I=k)(π) = rS(π(k))

rew(rC , C6k)(π) =
∑k−1
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(rC , C)(π) =

∑∞
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(rC , Fc φ)(π) =

{∑∞
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
if ∀j ∈ N. π(j) 6|=φ∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise
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and kφ = min{k−1 | π(k) |=φ}.

For CSG G, coalition C, state s, path formula ψ, reward structure r and reward
formula ρ, we define the following optimal values of GC :

PCG,s(ψ)
def
= supσ1∈Σ1

GC
infσ2∈Σ2

GC
Pσ1,σ2

GC ,s
(ψ)

ECG,s(r, ρ)
def
= supσ1∈Σ1

GC
infσ2∈Σ2

GC
Eσ1,σ2

GC ,s
(r, ρ) .

(1)

As in the case of TSGs [9], negated path formulae can be represented by inverting
the probability threshold, e.g.: 〈〈C〉〉P>q[¬ψ ] ≡ 〈〈C〉〉P61−q[ψ ], notably allowing
the ‘globally’ operator to be specified: G φ ≡ ¬(F ¬φ).

As for other probabilistic temporal logics, it is useful to consider numerical
state formulae of the form 〈〈C〉〉Pmin=?[ψ ], 〈〈C〉〉Pmax=?[ψ ], 〈〈C〉〉Rrmin=?[ ρ ] and
〈〈C〉〉Rrmax=?[ ρ ]. For example, for state s we have:

〈〈C〉〉Pmin=?[ψ ]
def
= infσ1∈Σ1

GC
supσ2∈Σ2

GC
Pσ1,σ2

GC ,s
(ψ)

〈〈C〉〉Pmax=?[ψ ]
def
= supσ1∈Σ1

GC
infσ2∈Σ2

GC
Pσ1,σ2

GC ,s
(ψ) .

As CSGs are determined with respect to the properties we consider [18], i.e. the
maximum value coalition C can ensure equals the minimum value coalition N\C
can ensure, the above values are the optimal values for the respective properties
in G. The determinacy result also yields the following equivalences:

〈〈C〉〉Pmax=?[ψ ] ≡ 〈〈N\C〉〉Pmin=?[ψ ] and 〈〈C〉〉Rrmax=?[ ρ ] ≡ 〈〈N\C〉〉Rrmin=?[ ρ ] .

Example 2. Returning to Example 1, we can use rPATL to specify the following
properties of the rock-paper-scissors CSG:

– 〈〈{1}〉〉P>1[ F win1 ] player 1 can ensure it eventually wins a round of the game
with probability 1;

– 〈〈{2}〉〉Pmax=?[¬win1 U win2 ] the maximum probability with which player 2
can ensure it wins a round of the game before player 1;

– 〈〈{2}〉〉Rutility
max=?[ C

62·K ] the maximum expected utility player 2 can ensure over
K rounds (utility is the reward structure that assigns rewards 1, 0 and −1
to the states labelled win2, draw and win1, respectively).

4 Model Checking CSGs against rPATL

Next, we present an algorithm for model checking an rPATL formula φ against a
CSG G. The overall approach is the standard one for branching-time logics, i.e.,
determining the set Sat(φ) recursively. The computation of this set for atomic
propositions and logical connectives is straightforward, and therefore we con-
centrate on formulae of the form 〈〈C〉〉P∼q[ψ ] and 〈〈C〉〉Rr∼x[ ρ ]. For these, the
problem reduces to computing optimal values for the coalition game GC , see (1).
In particular, for ∼∈ {>, >} and s ∈ S we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ PCG,s(ψ) ∼ q and s |= 〈〈C〉〉Rr∼x[ ρ ] ⇔ ECG,s(ρ) ∼ x .
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and, since CSGs are determined for rPATL properties, for ∼∈ {<,6} we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ PN\CG,s (ψ) ∼ q and s |= 〈〈C〉〉Rr∼x[ ρ ] ⇔ EN\CG,s (ρ) ∼ x .

Therefore, for the remainder of this section, we focus on computing PCG,s(ψ) and

ECG,s(ρ) for a fixed CSG G, coalition C and state s. We assume that the available

actions of players 1 and 2 of the (two-player) CSG GC in state s are {a1, . . . , al}
and {b1, . . . , bm}, respectively.

Matrix games. The computation of optimal probabilities and expected reward
values requires finding values of matrix games. These values can be found through
the solution to an LP problem as presented in Section 2. Solution methods for
such problems include Simplex and branch-and-bound.

Probabilistic formulae. We now show how to compute the optimal probability
PCG,s(ψ) for each state s and path formula ψ. If ψ = Xφ, then for any state s we

have that PCG,s(Xφ) = val(Z) where Z ∈ Rl×m is the matrix game with:

zi,j =
∑
s′∈Sat(φ) δ(s, (ai, bj))(s

′) .

If ψ = φ1 U6k φ2, the values can be computed recursively as follows.

– PCG,s(φ1 U60 φ2) = 1 if s ∈ Sat(φ2) and 0 otherwise;

– PCG,s(φ1 U6k+1 φ2) equals 1 if s ∈ Sat(φ2), else equals 0 if s 6∈ Sat(φ1) and

otherwise equals val(Z) where Z ∈ Rl×m is the matrix game with:

zi,j =
∑
s′∈S δ(s, (ai, bj))(s

′) · PCG,s′(φ1 U6k φ2) .

If ψ = φ1 U φ2, the probability values can be computed through value itera-
tion [23], i.e. using the fact that 〈PCG,s(φ1 U6k φ2)〉k∈N is a non-decreasing se-

quence converging to PCG,s(φ1 U φ2) and computing PCG,s(φ1 U6k φ2) for suffi-
ciently large k, i.e. terminating the computation when the difference between
the values for k and k+1 are less than some threshold ε. Alternatively, policy
iteration could be used, e.g., see [6].

Reward formulae. We next show how to compute the expected reward values
ECG,s(r, ρ) for each state s and path formula ρ. If ρ = I=k, the values can be
computed recursively as follows.

– ECG,s(r, I=0) = val(Z) where Z ∈ Rl×m is the matrix game with zi,j=rS(s);

– ECG,s(r, I=k+1) equals val(Z) where Z ∈ Rl×m is the matrix game with:

zi,j =
∑
s′∈S δ(s, (ai, bj))(s

′) · ECG,s′(r, I=k) .

If ρ = C6k, then the values can be computed recursively as follows.

– ECG,s(r, C60) = 0;

– ECG,s(r, C6k+1) equals val(Z) where Z ∈ Rl×m is the matrix game with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑
s′∈S δ(s, (ai, bj))(s

′) · ECG,s′(r, C6k) .
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For the remaining reward formulae we restrict the use of negative rewards to
ensure correctness. For total rewards (ρ = C) we require that all negative rewards
are associated with state-action pairs that reach an absorbing state (a state
where all rewards are zero and which cannot be left) with probability 1. For
reachability rewards (ρ = Fc φ) we require all negative rewards are associated
with state-action pairs that reach a target or absorbing state with probability 1.

If ρ = C, we first find the states for which the optimal expected reward values are
infinite. Similarly to [9], we can use the qualitative algorithms of [1] to find these
states as they can also be defined as those states for which the coalition C can
ensure the probability of reaching states with positive reward infinitely often is
greater than 0. After removing these states from GC , the remaining values can be
computed as the limit of the (non-decreasing sequence of) bounded cumulative
reward values:

ECG,s(r, C) = limk→∞ ECG,s(r, C6k) .

Finally, if ρ = Fc φ, then we first make all states of GC satisfying φ absorbing.
Next, as in the case above, we find the states of GC for which the optimal
expected reward values are infinite and remove them from the game. The values
for the remaining states can then be computed through value iteration where
ECG,s(Fc φ) = limk→∞ ECG,s(Fc φ)k, ECG,s(Fc φ)0 = 1 if s ∈ Sat(φ) and 0 otherwise

and ECG,s(Fc φ)k+1 equals 1 if s ∈ Sat(φ2) and otherwise equals val(Z), and

Z ∈ Rl×m is the matrix game with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑
s′∈S δ(s, (ai, bj))(s

′) · ECG,s′(Fc φ)k .

Strategy synthesis. In addition to verifying rPATL formulae, it is typically
also very useful to perform strategy synthesis, i.e., to construct a witness to the
satisfaction of a property. For example, in the case of the probabilistic property
〈〈C〉〉P∼q[ψ ], this means finding a strategy σ?1 for the coalition C such that:

Pσ
?
1 ,σ

′
2

GC ,s
(ψ) ∼ q for all σ′2 ∈ Σ2

GC

and, in the case of a quantitative probabilistic property 〈〈C〉〉Pmax=?[ψ ], means
finding an optimal strategy σ?1 for the coalition C, i.e. a strategy such that:

Pσ
?
1 ,σ

′
2

GC ,s
(ψ) > PCG,s(ψ) = supσ1∈Σ1

GC
infσ2∈Σ2

GC
Pσ1,σ2

GC ,s
(ψ) for all σ′2 ∈ Σ2

GC .

For unbounded properties, we can synthesise a strategy which is memoryless,
but which needs randomisation; bounded properties require both finite-memory
and randomisation. This differs from TSGs where deterministic strategies are
sufficient in both cases. We can synthesise such strategies using the approach
above for computing optimal values and keeping track of the optimal strategy of
player 1 for the matrix game solved in each state. Since we use value iteration,
only ε-optimal strategies can by synthesised for unbounded properties, where ε
is the convergence criterion used when performing value iteration [24].
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Correctness and complexity. We conclude this section with a discussion of
correctness and complexity. The overall (recursive) approach and the reduction
to solution of a two-player game is essentially the same as for TSGs [9], and
therefore the same correctness arguments apply. The correctness of value itera-
tion for unbounded properties follows from [23] and for bounded properties from
Definition 5 and the solution of matrix games (see Section 2). Regarding com-
plexity, due to the recursive nature of the algorithm, it is linear in the size of the
formula φ, while in the worst case finding the optimal values of a 2-player CSG is
PSPACE [7]. In practice, we use value iteration, which solves an LP problem of
size |A| for each state at each iteration, with the number of iterations depending
on the convergence criterion. The efficiency in practice is reported in Section 6.

5 Implementation and Tool Support

We have implemented support for modelling and automated verification of CSGs
as an extension of PRISM-games [16], which only handled TSGs. The tool, and
the files for the case studies described in the next section, are available from [28].

Modelling. CSGs are specified using the same language as for TSGs, itself an
extension of the original PRISM modelling language (Figure 2 shows an ex-
ample). It allows multiple parallel components, called modules, operating both
asynchronously and synchronously. Each module’s state is defined by a number
of finite-valued variables, and its behaviour by a set of probabilistic guarded com-
mands [a] g → u, comprising an action label a, guard g and probabilistic update
u. If the guard (a predicate over the variables of all modules) is satisfied, then
the module can (probabilistically) update its variables according to u. Modules
interact by either reading the values of each other’s variables, or synchronising
(moving simultaneously) on commands labelled with the same action.

To specify a CSG, the model description must also define a list of players and
the (disjoint) sets of actions each controls. We adopt the syntax from PRISM-
games, but the semantics differs from TSGs. In a state of a CSG, each player
chooses to perform one of the commands that is enabled (its guard is true) and
is labelled by an action under its control (if no such command is enabled, the
player idles, i.e. chooses ⊥). Unlike standard PRISM models, the commands
for all players then execute synchronously, despite being labelled with distinct
actions. Currently, to remain consistent with PRISM’s conventions, we require
that each variable is updated by at most one player and each player’s updates
are independent of the other players’ choices. This has not proven restrictive
(see, e.g., the range of examples modelled in Section 6), but we plan to relax
these constraints in the future.

Example 3. Figure 2 shows a model description for the rock-paper-scissors CSG
of Example 1. Player 1 is represented by module player1 , with variable m1 ,
and its commands are labelled with the actions r1 , p1 , s1 , t1 (corresponding to
r, p, s, t in Figure 1(a)). In this example, the updates are all non-probabilistic.
Player 2 is identical in structure to player 1 and is defined using PRISM’s module
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csg

player player1 [r1 ], [p1 ], [s1 ], [t1 ] endplayer
player player2 [r2 ], [p2 ], [s2 ], [t2 ] endplayer

module player1
m1 : [0..3];
[r1 ] m1=0 → (m1 ′=1); // rock
[p1 ] m1=0 → (m1 ′=2); // paper
[s1 ] m1=0 → (m1 ′=3); // scissors
[t1 ] m1>0 → (m1 ′=0); // restart

endmodule

// second player constructed through renaming
module player2 = player1 [m1=m2 , r1=r2 , p1=p2 , s1=s2 , t1=t2 ] endmodule

label “win1”= (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
label “win2”= (m2=1&m1=3) | (m2=2&m1=1) | (m2=3&m1=2); // player 2 wins round
label “draw”= (m2=1&m1=1) | (m2=2&m1=2) | (m2=3&m1=3); // draw

rewards “utility” // utility for player 1
[t1 ] (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2) : 1; // player 1 wins
[t1 ] (m1=1&m2=2) | (m1=2&m2=3) | (m1=3&m2=1) : −1; // player 2 wins

endrewards

Fig. 2: PRISM language specification of CSG from Example 1.

renaming feature. Labels (defining the atomic propositions from Figure 1(a)) and
reward structures are also defined in the standard way for PRISM models.

Implementation. Our tool constructs a CSG from a given model specification
and implements the rPATL model checking and strategy synthesis algorithms
from Section 4. We adapt the existing modelling/property language parsers and
various other pieces of basic model checking functionality from PRISM-games.
We store and verify CSGs using an extension of PRISM’s explicit-state (sparse
matrix based) model checking engine, which is implemented in Java. A notable
addition to this is the solution of values of matrix games, which is performed via
linear programming (see Section 2) using the LPsolve library [17].

6 Case Studies and Experimental Results

To demonstrate the applicability of our techniques and tool, and to evaluate
their performance, we now present results from a variety of case studies. This
also illustrates the utility of CSGs over TSGs. As mentioned earlier, the tool and
examples (models and properties) are available from [28].

Efficiency and scalability. We begin by presenting a selection of results re-
garding the performance of our implementation. The models on which these are
based are described in more detail in subsequent sections. Table 1 shows results
for a representative selection of models and rPATL properties, verified using a
2.8 GHz Intel X5660 with 32GB RAM. We give model statistics (number of
players, states and transitions) and the times for model construction and veri-
fication (just the numerical part, i.e. value iteration, for the latter). Our tool is
able to analyse models with up to approximately 3 million states. Models with
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Case study & rPATL property Param. CSG statistics Time (s)
[parameters] values Players States Transitions Const. Verif.

Future markets investors

〈〈i1〉〉Rprofit1
max=?[ F

c cashed in1 ]

[months]

1 5 61 92 0.1 0.1
3 5 3,664 13,482 0.4 2.0
5 5 18,671 82,494 1.1 16.1
7 5 53,799 247,807 2.3 55.5
9 5 116,838 561,538 4.7 145.4

User-centric networks

〈〈user〉〉Runpaid
max=?[ F

c services=K ]

[td, K]

1,1 7 1,029 2,386 0.4 0.9
1,3 7 18,218 50,181 1.9 17.5
1,5 7 145,561 458,169 11.0 227.6
1,7 7 755,531 2,651,829 61.6 1,611.0
1,9 7 2,993,308 11,461,723 269.0 7,967.0

Intrusion detection system

〈〈policy〉〉Rdamage
min=?[ C ]

[rounds]

25 4 581 1,616 0.2 2.9
50 4 1,181 3,316 0.3 10.2

100 4 2,381 6,716 0.3 37.1
200 4 4,781 13,516 0.4 139.2

Jamming radio systems

〈〈user〉〉Pmax=?[ F sent>slots/2 ]

[slots]

10 3 7,921 1,038,384 3.8 13.6
15 3 17,281 2,421,504 9.9 43.3
20 3 30,241 4,380,624 13.3 95.7
25 3 46,801 6,915,744 22.8 195.8

Table 1: Statistics for a representative set of CSG verification instances.

10,000 states can be built and verified in under a minute; the largest takes under
2.5 hours. The most significant cost in terms of time is the need to (repeatedly)
solve a matrix game in each state, but verification times are not quite linear in
the model size due to variations in the number of iterations needed.

Futures market investors. The first of our case studies is a futures market
investor model [19], which represents the interactions between investors and a
stock market. For the TSG model of [19], in successive months, a single investor
chooses whether to invest, the market decides whether to bar the investor, and
then the values of shares and a cap on values are updated probabilistically. We
have built and analysed several CSGs variants of the model, analysing optimal
strategies for investors under adversarial conditions. First, we made the investor
and market take their decisions concurrently, and verified that this yielded no
additional gain for the investor (see [28]). This is because the market and investor
have the same information, and so the market knows when it is optimal for the
investor to invest without needing to see its decision.

We next modelled two competing investors who simultaneously decide whether
to invest (and, as above, the market simultaneously decides whether to bar each
of them). If the two investors cash in their shares in the same month, then their
profits are reduced. We also consider several distinct profit models: ‘normal mar-
ket’, ‘later cash-ins’ and ‘later cash-ins with fluctuation’. The first is from [19]
and the latter two reward postponing cashing in shares (see [28] for details).
The CSG has 5 players: one for each investor, one deciding on the barring of
investors, one controlling share values and one updating the month. We study
both the maximum profit of one investor and the maximum combined profit of
both investors. For comparison, we also build a TSG model in which the in-
vestors first take turns to decide whether to invest (the ordering decided by the
market) and then the market decides on whether to bar any of the investors.

Figure 3 shows the maximum expected value over a fixed number of months
under the ‘normal market’ for both the profit of first investor and the combined
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Fig. 3: Futures market investors: normal market.
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Fig. 4: Futures market: later cash-ins without (left) and with (right) fluctuations.

profit of the two investors. For the former, we show results for the first investor
acting alone (〈〈i1〉〉) and when in a coalition with the second investor (〈〈i1, i2〉〉).
We plot the corresponding results from the TSG model for comparison. Figure 4
shows the maximum expected combined profit for the other two profit models.

When investors cooperate to maximise the profit of the first, results for the
CSG and TSG models coincide. This follows from the discussion above since all
the second investor can do is make sure it does not invest at the same time as
the first. For the remaining cases and given sufficient months, there is always a
strategy in the concurrent setting that outperforms all turn-based strategies. The
increase in profit for a single investor in the CSG model is due to the fact that, as
the investors decisions are concurrent, the second cannot ensure it invests at the
same time as the first, and hence decrease the profit of the first. In the case of
combined profit, the difference arises because, although the market knows when
it is optimal for one investor to invest, in the CSG model the market does not
know which one will, and therefore may choose the wrong investor to bar.

We performed strategy synthesis to study the optimal actions of investors.
By way of example, consider 〈〈i1 〉〉Rprofit1

max=?[ F
c cashed in1 ] over three months and

for a normal market (see Figure 3 left). The optimal TSG strategy for the first
investor is to invest in the first month (which the market cannot bar) ensuring
an expected profit of 3.75. The optimal (randomised) CSG strategy is to invest:

– in the first month with probability 0.494949;
– in the second month with probability 1, if the second investor has cashed in;
– in the second month with probability 0.964912, if the second investor did

not cash in at the end of the first month and the shares went up;



14 Kwiatkowska, Norman, Parker, Santos

1 2 3 4 5 6 7 8 9
0

0.25

0.5

0.75

1

Total number of services

F
r
a
c
t
io

n
o
f
u
n
p
a
id

s
e
r
v
ic

e
s

td=1

td=2

td=inf

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Total number of services

N
u
m

b
e
r

o
f
u
n
p
a
id

s
e
r
v
ic

e
s
.

td=1

td=2

td=inf

Fig. 5: User-centric network results (CSG/TSG values as solid/dashed lines).

– in the second month with probability 0.954023, if the second investor did
not cash in at the end of the first month and the shares went down;

– in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼4.33.

Trust models for user-centric networks. Trust models for user-centric net-
works were analysed previously using TSGs in [15]. The analysis considered the
impact of different parameters on the effectiveness of cooperation mechanisms
between service providers. The providers share information on the measure of
trust for users in a reputation-based setting. Each measure of trust is based on
the service’s previous interactions with the user (which services they paid for).
In the original TSG model, a single user can either make a request to one of
three service providers or buy the service directly by paying maximum price.
If the user makes a request to a service provider, then the provider decides to
accept or deny the request based on the user’s trust measure. If the request was
accepted, the provider would next decide on the price again based on the trust
measure, and the user would then decide whether to pay for the service and
finally the provider would update its trust measure based on whether there was
a payment. This sequence of steps would have to take place before any other
interactions occurred between the user and other providers.

Here we consider CSG models allowing the user to make requests and pay
different service providers simultaneously and for the different providers to ex-
ecute requests concurrently. There are 7 players: one for the user’s interaction
with each service provider, one for the user buying services directly and one
for each of the 3 service providers. Three trust models were considered. In the
first, the trust level was decremented by 1 (td=1) when the user does not pay,
decremented by 2 in the second (td=2) and reset to 0 in the third (td=inf ).

Figure 5 presents results for the maximum fraction and number of unpaid
services the user can ensure for each trust model. The results for the orignal TSG
model are included as dashed lines. The results demonstrate that the user can
take advantage of the fact that in the CSG model it can request multiple services
at the same time, and obtain more services without paying before the different
providers get a chance to inform each other about non-payment. In addition,
the results show that having a more severe penalty on the trust measure for
non-payment decreases the unpaid services the user can obtain.
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Intrusion detection policies. In [26], CSGs are used to model the interaction
between an intrusion detection policy and attacker. The policy has a number of
libraries it can use to detect attacks and the attacker has a number of different
attacks which can incur different levels of damage if not detected. Furthermore,
each library can only detect certain attacks. In the model, in each round the
policy chooses a library to deploy and the attacker chooses an attack. A re-
ward structure is specified representing the level of damage when an attack is
not detected. The goal is to find optimal intrusion detection policies which cor-
respond to finding a strategy for the policy that minimises damage. We have
constructed CSG models with 4 players (representing the policy, attacker, sys-
tem and time) for the two scenarios outlined in [26]. We have synthesised optimal
policies which ensure the minimum cumulative damage over a fixed number of
rounds and damage in a specific round. Here concurrency is required for the
game to be meaningful, otherwise it is easy for the player whose turn follows the
other player’s to ‘win’. For example, if the attacker knows what library is being
deployed, then it can simply choose an attack the library cannot detect.

Jamming multi-channel radio systems. A CSG model for jamming multi-
channel cognitive radio systems is presented in [27]. The system consists of a
number of channels which can be an occupied or idle state. The state of each
channel remains fixed within a time slot and between slots is Markovian (i.e. the
state changes randomly based only on the state of the channel in the previous
slot). A secondary user has a subset of available channels and at each time-slot
must decide which to use. There is a single attacker which again has a subset of
available channels and at each time slot decides to send a jamming signal over one
of them. The CSG has 3 players representing the secondary user, attacker and
environment. We synthesise strategies for the secondary user which maximise
the probability of ensuring at least half the messages are sent correctly. Again
concurrency is required as otherwise, e.g., the attacker can observe the user and
then jam the chosen channel.

7 Conclusion

We have designed and implemented an approach for the automatic verification
of CSGs. We have extended the semantics of the temporal logic rPATL to CSGs
and presented a new modelling approach based on the PRISM language to spec-
ify such games. We have proposed and implemented algorithms for property
verification and strategy synthesis as an extension of the PRISM-games model
checker. Finally, we have evaluated the approach on a range of case studies.

There are a number of directions for future work. First, we plan to consider
additional properties (e.g. Nash equilibria and multi-objective queries). We are
also working on extending the implementation to consider alternative solution
methods (e.g. policy iteration and using CPLEX [12] to solve matrix games)
and a symbolic (binary decision diagram based) implementation. Lastly, we are
considering extending the approach to partially observable strategies.
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