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e Stochastic games
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unknown parts of the system can be modelled adversarially

Zero-sum turn-based (or concurrent) stochastic games

dynamic programming (value iteration) generalises

Uncertain MDPs
MDPs plus epistemic uncertainty: set of transition functions
each P € & is a transition function P : S X A X § — [0,1]
rectangularity (dependencies)

control policies + robust control V*#(s) = max min V=(s)

. . rell PeS
environment policies
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e Uncertain MDPs

4

robust dynamic programming, interval MDPs,
uncertainty set representation, challenges, tools

e Sampling-based uncertain MDPs

» removing the transition independence assumption

e Bayes-adaptive MDPs

» maintaining a distribution over the possible models



Robust control



« Now we consider a more dynamic approach to resolving uncertainty

» (which we will need to extend dynamic programming to this setting)

 An environment policy (or nature policy, or adversary) 7 € &
v isamapping7: (S XA)* X (SXA)— Dist(S)

» such that 7(sy, ag, - .., S,, a,) € P}

» note: this assumes (s,a)-rectangularity!

e Policies &, T yield

» a probability space Pr**

» random variables E*(X)

v and value functions V**




 Quantifying over environment policies T € I is more exhaustive

[0.7,0.8] @
» than quantifying over transition probabilities P € 0.4.0.6] < 0.2,03]

, {Pr*" Pe Py C P 1€ T ) @ @
. . . G [0.4,0.6] @
« Memoryless (stationary) environment policies 7, € 7,

» are mappings 7,, : S X A — Dist(S) such that 7, (s, a) € 9

» INn this case, the semantics now coincide:
, {Pr*" P e Py ={(PrF:t € T,)

« We call this dynamic uncertainty (z € ) vs. static uncertainty (P € &)
» which to use is a modelling decision (e.g., on the timing of events)
» but there are also implications for tractability

» similar situation to rectangularity (uncertainty set independence)
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* Robust control S 07-
S 0.6-
» but quantitying over policies (rather than uncertainty sets) S )5t
8 0_4_\ south‘
g 0.3 -
* Now we have S ood4——— 5
0 0.1 0.2

» optimal worst-case value

V#(s) = VI (5) = max min VZ(s)

V&\ nell €9

notation for optimal value for sets of control/environment policy sets I, &

» optimal worst-case policy

7 = argmax min V**(s)
rell €9

* Note that we may want to quantify over mismatching sets of policies, e.g.:

V!L7n(s) = max min V7%(s) = max min V*(s) e.g. for static uncertainty

rell 7, €5, rell P



UMDPSs vs stochastic games
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Let’'s again focus on optimising MaxProb (the situation is similar for SSP)

and recall: we need to assume (s,a)-rectangularity

Memoryless policies suffice, for pboth the controller and the environment

VL7 (59) = Vien(sg) = V7 (s50) = VI n(s)

Perfect duality:

yiLs (8p) = max min V**(s,) = min max V”**(s,)
rell €T €I nell

he optimal value function satisties the Bellman equation:

1 f s € goal

Vi(s) = VB (s) = {

MaX,, 5 iNfpic o 3 Pi(s) - VB (s")  otherwise



* Optimal values for uMDPs can be obtained using robust value iteration (robust VI)

» from the limit of the vector sequence defined below

. VE(s) = lim,_, _ x* where:

1
0

k _
Xy = 0

We will re-use graph-based
¢~ pre computation for MDPs

fs e S!
if s € SO
fseS’ andk=0

MaX (s ifpoc g X o PE(s") - x5~ otherwise

* Again, this Bellman operator is (i) monotonic (i) a contraction in the L. norm

» needs (s-a)-rectangularity, but no assumptions on convexity

» (it suffices to take convex hull of each &%)
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The core step of robust VI comprises two nested optimisation problems:

max ing P(s) - x, » Outer problem (optimal control action)
acA(s) P/eS; © . _
S'ES * |Inner problem (worst-case transition probabilities)

where x IS some vector of values

Computational cost: robust VI potentially not much more expensive than VI for MDPs
» If the inner problem can solved efticiently

» note: uncertainty sets 9P are usually infinite

Definition/representation of uncertainty sets?

» trade off statistical accuracy vs. computation efficiency”

First example: intervals, a simple uncertainty set representation

» which suit statistical estimates of confidence intervals for individual transition probabillities
11



INnterval MDPS



e An interval MD

> (IM

D

P) is of the form = (S, sy, A, P, P) where:

» states 3, initial state s, and actions A are as for MDPs

» S XAXS — [0,1] gives transition probability lower bounds

» P:SXAXS — |0,1] gives transition probability upper bounds 0108 @

such that P(s, a, s") < P(s,a, s’) for all s, a, s’

* IMDP uncertainty sets

[0.4,0.6] ﬂ 0.2,0.3]

[0.4,0.6] é\

, P4 = {P% € Dist(S) | P(s,a,s’) < PXs") < P(s,a,s’) for all s'}

probabilities are independent (except for the need to sum to 1)

» P = ><(S,a)ESXA ‘@?

e., IMDPs are (s-a)-rectangular

13



e Interval uncertainty sets @g’ are convex subsets of [0,1]‘5 |

A Do

1
e (1/2,1/2) = (1/6,1/6) e (1/3,1/3,1/3) + (1/6,1/6,1/6)

= | )I \ =

1 P3

e \We can delimit the intervals

» 1.e., trim the Iinterval bounds such that at least one
possible distribution takes each extremal value

, e.g., P(s) := max[P(s"),] — Z . P(s)]

e.g. [0.1,0.4], [0.5,0.8] = [0.2,0.4], [0.6,0.8]

14



 Assumption: IMDPs have a fixed underlying transition graph

» i.e., for each s,a,s" either: (i) P(s, a, s") > 0; or

(i) P(s,a,s) = P(s,a,s") =0

 Otherwise behaviour can be qualitatively different for small changes in P(s, a, s')

b b

[801] 9’ @. [0,€] 9.

[0.9,1-€] {goal; [1-€,1] wgoaly

»  For e > (), the probability to reach goal is always 1
» For € = 0, the probability to reach goal can be 0

» (contrast to, e.q., a finite-horizon property MaxProb=k(goal)



. The inner problem for each iteration, and each (s, a) is: 10t ZS,ESPf(S') + Xy

P!e%

* Can be solved via a linear programming problem:

» let p be| S |variables for the chosen probabilities P;'(s’)

minimise 2. p/ - X, such that:

Pi(s") < py < PY(s") forall s’and Z ypy = 1

 \We can also solve this more directly by sorting

» sort the values X, into ascending order

» for increasing values x; assign the maximum possible value to p.
l l

, which is bounded by 1 - (the sum of actual/min values for otherpsj)

W
1
P1
——C— P
1
A P>
’
P1
—>
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Running example: IMDPs and robust Vi

» Example: MaxProb(goal)

oal
0.6 east

east S @'
A 0.1*e/4 ek

sout Stuc

e=0.04 ’ 0.5*e
0.5 ' 0.9

el 22, 05+ north [N 5
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Qo
0.4

{goal,; {goal}



Running example: IMDPs and robust Vi

e=0.04

—xample: MaxProb(goalh)
0.4 {hazard} ~1goaly}
0-6 east
east S ; @ﬂ
[0.09,0.11 :
souh IS 1039, 50[352 046054 ... 2R StUck
[0.49, 0.41
0.51] ! 0.54] 0.9
s N PO e

ﬁ@ 0.6 west @

{goa'lz} 0.4 =
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RuNNiNg example

-xample: Max

Prob(goals)

[0.4,0.4]
Xo=0 X1=0 Xo=()
[0.6,0.6] oast
@ east oy W\ 1) @
south \ ©2=
<7 south \[0.46,0.54]
[0.49, [> /0.0@ 0.46, 1~
0.51] ‘0_ 0.54]
%

X3=0 @ @ Xq=1

- IMDPs and robust VI

e Fix x4u=1 and x»>=x3=0, jUSt solve for Xo, X1

e [teration k=0: xo=x1=0

e [teration k=1:

Xo 1= max(min(0-0.4 + 0-0.6),

subject to:

min(O-p1 + 0-ps + 1-p4)) 4~ 828?;;8;
= max(0, 0.39) 0 39<01<0.4-
= 0.39 P4 =999, - D1+P3+P4=11

X1 := max(min(0-1), ~ subject to:
min(0-p2 + 1:p4)) 4~ 46<p,<0.54
= max(0, 0.46) 0.46<p4<0.54
— 046 04 =0.46, ... po+pa=1

19



Running example: IMDPs and robust Vi

» Example: MaxProb(goal)

(0.4,0.4]
X0=0.39 X1=0.46  x»=0
[0.6,0.6] cast
@ east o) @
south \ ©
<7 south \[0.46,0.54]
(X,

7

X3=0 @ @ Xq=1

[0.49, [0.46,
0.51] “?0,7 0.54] »
2

lteration k=2:

%o = max(min(0.39:0.4 + 0.46-0.6) Suobéi(;t L% N
min(0.46-p+1 + O- 1:pg)) 4= ~HI=PI=Y
( DT b P4) 0.49<p3<0.5°
’ 0.39<p4<0.4
- max(0.432, 0.436) D=
— 0.436 ’
X3:O P3 = 0.51

«1=0 46 P+ =min(0.11, 1-(0.51+0.39)) = 0.1
04 = 1-(0.51+0.1) = 0.39

X4=1

(47

X1 := 0.46 (as before)




Max. prob. reach goal;

Running example: IMDPs and robust Vi

» Example: MaxProb(goal:) * lteration k=2:

m4oq

—(s2) Xo '= max(min(0.39:0.4 + 0.46-0.6) éuobéi(;t L% N
\009 u 0.46,0.54 | . ° ¥ & ' =pM1=Y.
N south \o.¢6022 min(0.46-p1 + 0-p3 + 1:p4)) 0.49<05<0 5
| . | 0.39<p4<0.41
N - max(0.432, 0.436) D=
= 0.436 '
________ K (X% X
O 0 0 |
e X3=0 p3 = 0.51
4 e=004 ; --------------- 0043396 ---------- 822 ----------- x1=0.46 P1=min(0.11, 1-(0.51+0.39)) = 0.1 @
P 3 oasos 046 X4=1 p4=1-(0.51+0.1) = 0.39
4 045616 046
________ ° .. 0Dasgaed ¢ 046
________ 6 1.0499386 | 046
7 | 045975424 | 0.46 X1 :=0.46 (as before)

2. 04590000784 | 048 + Finally: xo=0.46, x1=0.46

10 | 0.45998427136  0.46



* Robust control is computationally efficient (robust value iteration)

» (s,a)-rectangular and inner problem is easy to solve

» another possibility not discussed here: convex optimisation [Puggelli et al.’13]

e For Max

Prob (and SS

P), optimal policies are memoryless (and deterministic)

» SO computed policies are optimal worst case with respect to static uncertainty

What about objectives that need memory? (e.g. finite horizon, or temporal logic)

* Intervals are a simple, natural way to model transition probability uncertainty

How do we generate the intervals?

Are there better models of uncertainty sets”

22



* Quantitying over memoryless environment policies

» gives us worst-case behaviour over static uncertainty

Vi-7n(s) = max min V% (s) = max min V*/(s)
rell 7,€5, rnell PEY

e But for objectives that require non-memoryless control policies

» computation methods typically also assume non-memoryless environment policies

VL7 (5) = max min V%(s)
rell 7,€T

» |.e., worst-case behaviour over dynamic uncertainty

» which is often (but not always) unrealistic (depends on time-scales)

* This however gives a conservative bound over static uncertainty

VL7 () < max min VA(s)
rell Pe&

23



L . . |
* Objective: MaxProb=2(goal), i.e., get to goal in exactly 2 steps - ¥ ) 190
0/ a (040
» SO we need time-dependent strategies for the controller " '040@
» computable via k steps of value iteration . 0.2 .
* Worst-case probabilities (time-dependent environment strategies) ) - <
. 2 3

» “b,b" 0.2 (optimal)
» "a,b": 0
» "a,a: mingp (1 —p,) : pr.p, €10.4,0.6]} =0.4-(1 —0.6) =0.16 (too conservative)

from value iteration; dynamic uncertainty; maybe unrealistic

* Worst-case probabilities (memoryless environment strategies)
» bbb 0.2
» "a,n”: 0
» “g,a”min{p(l —p) : p€[04,0.6]} =04-(1—-0.4)=0.24 (better bound) (now optimal)

static uncertainty; may be more realistic; hard to compute

24



* Temporal logic (in particular LTL) allows more complex objectives, e.Q.:

»  Pmax=2 [ (G=hazard) A (GF goali) | - “maximise probability of avoiding hazard and also visiting
goal 1 infinitely often”

»  Pmax=2 | =zones U (zone1 A (F zones)) | - "maximise probability of patrolling zone 1 (whilst avoiding
zone 3) then zone 47

 For MDPs, we generate optimal policies by:
» converting the LTL formula to a deterministic automaton
» building a product of the MDP and the automaton

» optimising a simpler objective (e.g. MaxProb) on the product MDP

* The techniques extend to uMDPs/IMDPs [Wolff et al.”12]

»  but (like for MDPs), optimal policies need memory

29



-0or co-safe LTL (satisfaction occurs

in finite time), we use finite automata

-zones U (zone+t A (F zones))

(avoiding hazard and also
visiting goal 1 infinitely often)

-or general LTL, we use e.g.

Rabin automata

(G=hazard) A (GF goal4)

(visit zone 1 (whilst avoiding
zone 3) then zone 4)

20



MDP M 0.4 {hazard} {goal,} Automaton & for

0.6 east (G—nhazard) A (GF goah)
OB ORSO®
0.1
south south \ .5 stuck

</
0.5 o.ti gsA—h
nor
stuck east 0.1
SO O
west
{goal,} 0.4

{goali}

Product MDP M & <f

Optimal memoryless
policy of M @ A
corresponds to
finite-memory optimal
policy of MDP M

27



Generating IMDP intervals

e Some examples of IMD

@@ Low turbulence
2888 High turbulence

Unmanned aerial vehicle
»  robust control In turbulence

» continuous-space dynamical
model with unknown noise

» discrete abstraction + finite
“scenarios” of sampled noise
vields IMDP abstraction

[Badings et al.’23]

2 generation

Deep reinforcement learning

worst-case analysis of
abstractions of probabilistic
policies tfor neural networks

Intervals between IMDP
abstract states constructed
by sampling the policy

[Bacci&Parker'20]

Bandit

Estimation Error

—0.3 1

10° 10! 102 103 10° 10° 106
Trajectory

Robust anytime MDP learning

v

sampled MDP trajectories

»  IMDPs constructed and solved
periodically to yield robust
predictions on current model

»  PAC or Bayesian interval learning

[Suilen et al.’22]

28



 One approach: sampling from the (fixed, but unknown) “true™ MDP

» generate sample paths and keep separate counts of transition frequencies

» Gives confidence intervals around point estimates for transition probabilities Py'(s;)
» using probably approximately correct (PAC) guarantees
» we fix an error rate y and compute an error 0

» standard method of maximum a-posteriori probability (MAP) estimation
to infer point estimates of probabilities

» For each state s, we have sample counts N = #(s, a) and k; = #(s, a, s;)

. point estimate of the transition probability P4(s;) is: P/(s.) ~ k./N

, confidence interval for the transition probability: ]3?(51-) + 0 where 0 = \/log(Z/y)/ZN

» then we have: P’”(Pf(si) c P?(Si) to)=1-y (via Hoetftding's inequality)



It desired, we can lift the PAC guarantee from individual transitions to the uMD

Distribute the chosen error rate y across all transitions:
v yp=7y/(Z(s,a) € S X A|Succ, ((s,a)|)
» where Succ, ((s,a) = (s € S5 :0<P/(s) <1} [0.7,0.8] @

s the set of successor states of each (s, a) 10.4,0.6] <
[0.2,0.3]

with more than one successor
0 construct the IMDP, we use:
| § ps0a (=)

, PYs) = min(ﬁ?(sl-) + 0p,1)

Thenwe have: Pr(P € ) >1—vy

[Suilen et al.’22]




[NIlim&Ghaoui’05]

e [ kellhood models suit experimentally determined transition probabilities

» and are less conservative than interval representations

* Uncertainty sets are :

» are derived from empirical frequencies F{'(s’) of a transition to s’ after action a in state s

, are described by likelihood regions: & = { P € Dist(S) | Z F{(sHlog(P(s") = pg)}
\)

» where [ is the uncertainty level (can be estimated for a desired confidence level)

B < B Where B2 = ZS, F4(s"log(F%s") is the optimal log-likelihood

* Inner optimisation problems Inf Z Pe(s’) - xg
Pie g s'ES

» can be solved (approximately) using a bisection algorithm

» to within an accuracy 0 in time O(log(x,,,.,/0)) where x_.. is the maximum value in vector x

aXx

31



* |ntervals & likelihood models
» pboth quite computationally tractable and statistically meaningful

» interval models are more conservative (sometimes projected to as an estimate)

. Finite scenarios (“sampled”): P¢ = { P, Pl

. a /
» inner optimisation is simple (min over finite set) Pigga ZS’ES Pg(s’) - xg

» but worst-case choice can be very conservative

* Many other possibilities, e.g.:
»  maximum a posteriorl models, entropy models, ellipsoidal models, ...
» most have similar (approximate) optimisation approaches to likelihood models

v see: [NiIlim&Ghaoui’'05] for details

32



 PRISM: probabilistic model checking tool
» formal modelling and analysis (using temporal logic properties) of:
Markov chains, Markov decision processes,
interval Markov chains, interval Markov decision processes,

stochastic games (via PRISM-games), and much more...

e See: www.prismmodelchecker.org

» download, documentation, tutorials, papers, case studies, ...

* Supporting files for ESSAI examples here:

www.prismmodelchecker.org/courses/essai?23/

33


https://www.prismmodelchecker.org/
https://www.prismmodelchecker.org/courses/essai23/

>

4

RC-tfunded project

~UN2MO

lead by Marta Kwiatkowska

-, based at Oxford

model-based reasoning for learning and uncertainty

4

<

Postdoc position available now

http://www.fun2model.org/

hitp://www.prismmodelchecker.org/news.php

European Research Council

Established by the European Commission

—maill:

david.parker@cs.ox.ac.uk

marta.kwiatkowska@cs.ox.ac.uk
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Uncertain MDPs

environment policies - static vs dynamic uncertainty
robust value iteration (robust dynamic programming)
implementation with interval MDPs (IMDPs)
non-memoryless policies (static uncertainty)
generating / learning intervals

uncertainty set representations

tool support: PRISM

 Up next: Sampling-based uncertain MDPs

4

removing the transition independence assumption (rectangularity)

35



e IMDPs and uMDPs

» G. N. lyengar, Robust dynamic programming, Mathematics of Operations Research, 30(2),
2005

» A. Nilim and L. Ghaoul, Robust control of Markov decision processes with uncertain
transition matrices, Operations Research, 53(5), 780-798, 2005

» E. Woltf, U. Topcu, and R. Murray, Robust control of uncertain Markov decision processes
with temporal logic specitications, In Proc. 51th IEEE Conference on Decision and Control

(CDC’12), pp. 3372-3379, 2012

» W, Wiesemann, D. Kuhn and B. Rustem, Robust Markov Decision Processes, Math. Oper.
Res., 38(1), 153-183, 2013

» A. Puggelli, W. Li, A. Sangiovanni-Vincentelli and S. Seshia, Polynomial-time verification of
PCTL properties of MDPs with convex uncertainties, In Proc. 25th International Conference
on Computer Aided Verification (CAV’'13), LNCS, vol. 8044, Springer, 2013
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* [earning and using IMDPs

>

>

T. Badings, L.
Robust Contro

Romao, A. Abate, D.

for Dynamical Syste

Parker, H. A. Poonawala, M. Stoe

ms with Non-Gaussian Noise via

Journal of Artificial Intelligence Research, 76, pages 341-391, 2023

iInga and N. Jansen,

—ormal Abstractions,

. Bacci and D. Parker, Veritied Probabillistic Policies for Deep Reintorcement Learning,
n Proc. 14th International Symposium NASA Formal Methods (NFM'22), volume 13260 of
NCS, pages 193-212, Springer, 2022

M. Suilen, T. D. Simé&o, N. Jansen and D. Parker, Robust Anytime Learning of Markov
Decision Processes, In Proc. 36th Annual Conference on Neural Information Processing
Systems (NeurlPS522), 2022
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