

Recap
• Stochastic games

‣ unknown parts of the system can be modelled adversarially

‣ zero-sum turn-based (or concurrent) stochastic games

- dynamic programming (value iteration) generalises 

• Uncertain MDPs

‣ MDPs plus epistemic uncertainty: set of transition functions

- each is a transition function

‣ rectangularity (dependencies)

‣ control policies + robust control

‣ environment policies

P ∈ 𝒫 P : S × A × S → [0,1]

2

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

23

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

a

1

b
1

b
c

f

f

f

0.7

V*(s) = max
π∈Π

min
P∈𝒫

Vπ,P(s)

Course contents
• Markov decision processes (MDPs) and stochastic games

‣ MDPs: key concepts and algorithms

‣ stochastic games: adding adversarial aspects

• Uncertain MDPs

‣ MDPs + epistemic uncertainty, robust control, 

robust dynamic programming, interval MDPs, 
uncertainty set representation, challenges, tools

• Sampling-based uncertain MDPs

‣ removing the transition independence assumption

• Bayes-adaptive MDPs

‣ maintaining a distribution over the possible models

3

Robust control

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Resolving uncertainty
• Now we consider a more dynamic approach to resolving uncertainty

‣ (which we will need to extend dynamic programming to this setting)

• An environment policy (or nature policy, or adversary)

‣ is a mapping

‣ such that

‣ note: this assumes (s,a)-rectangularity!

• Policies yield

‣ a probability space

‣ random variables

‣ and value functions

τ ∈ 𝒯
τ : (S × A)* × (S × A) → Dist(S)

τ(s0, a0, …, sn, an) ∈ 𝒫a
s

π, τ
Prπ,τ

s

𝔼π,τ
s (X)
Vπ,τ

5

10

IMDP

s0

0.45
a

1
ac0.55
0.72

0.28

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Dynamic vs. static uncertainty
• Quantifying over environment policies is more exhaustive

‣ than quantifying over transition probabilities

‣

• Memoryless (stationary) environment policies

‣ are mappings such that

‣ in this case, the semantics now coincide:

‣

• We call this dynamic uncertainty () vs. static uncertainty ()

‣ which to use is a modelling decision (e.g., on the timing of events)

‣ but there are also implications for tractability

‣ similar situation to rectangularity (uncertainty set independence)

τ ∈ 𝒯
P ∈ 𝒫

{Prπ,P
s : P ∈ 𝒫} ⊆ {Prπ,τ

s : τ ∈ 𝒯}

τm ∈ 𝒯m

τm : S × A → Dist(S) τm(s, a) ∈ 𝒫a
s

{Prπ,P
s : P ∈ 𝒫} = {Prπ,τm

s : τm ∈ 𝒯m}

τ ∈ 𝒯 P ∈ 𝒫

6

Robust control (revisited)
• Robust control

‣ but quantifying over policies (rather than uncertainty sets)

• Now we have

‣ optimal worst-case value 

 
 
 

‣ optimal worst-case policy 
 

• Note that we may want to quantify over mismatching sets of policies, e.g.:

7

VΠ,𝒯m(s) = max
π∈Π

min
τm∈𝒯m

Vπ,τm(s) = max
π∈Π

min
P∈𝒫

Vπ,P(s)

notation for optimal value for sets of control/environment policy sets Π, 𝒯

 V*(s) = VΠ,𝒯(s) = max
π∈Π

min
τ∈𝒯

Vπ,τ(s)

π* = argmax
π∈Π

min
τ∈𝒯

Vπ,τ(s)

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e.g. for static uncertainty

uMDPs vs stochastic games

8

23

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

a

1

b
1

b
c

f

f

f

0.7

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Robust dynamic programming
• Let’s again focus on optimising MaxProb (the situation is similar for SSP)

‣ and recall: we need to assume (s,a)-rectangularity

• Memoryless policies suffice, for both the controller and the environment

• Perfect duality:

• The optimal value function satisfies the Bellman equation:

9

VΠ,𝒯(s0) = VΠm,𝒯m(s0) = VΠm,𝒯(s0) = VΠ,𝒯m(s0)

VΠ,𝒯(s0) = max
π∈Π

min
τ∈𝒯

Vπ,τ(s0) = min
τ∈𝒯

max
π∈Π

Vπ,τ(s0)

V*(s) = VΠ,𝒯(s) = {
1 if s ∈ goal
maxa∈A(s) infPa

s ∈𝒫a
s
∑s′￼∈S Pa

s (s′￼) ⋅ VΠ,𝒯(s′￼) otherwise

Robust value iteration
• Optimal values for uMDPs can be obtained using robust value iteration (robust VI)

‣ from the limit of the vector sequence defined below

‣ where: 
 
 
 
 
 
 

• Again, this Bellman operator is (i) monotonic (ii) a contraction in the L∞ norm

‣ needs (s-a)-rectangularity, but no assumptions on convexity

‣ (it suffices to take convex hull of each)

V*(s) = limk→∞ xk
s

𝒫a
s

10

xk
s =

1 if s ∈ S1

0 if s ∈ S0

0 if s ∈ S? and k = 0
maxa∈A(s) infPa

s ∈𝒫a
s
∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

We will re-use graph-based 
pre computation for MDPs

Uncertainty set representations
• The core step of robust VI comprises two nested optimisation problems: 

 
 
 
 

• Computational cost: robust VI potentially not much more expensive than VI for MDPs

‣ if the inner problem can solved efficiently

‣ note: uncertainty sets are usually infinite

• Definition/representation of uncertainty sets?

‣ trade off statistical accuracy vs. computation efficiency?

• First example: intervals, a simple uncertainty set representation

‣ which suit statistical estimates of confidence intervals for individual transition probabilities 

𝒫a
s

11

where is some vector of valuesx

 max
a∈A(s)

inf
Pa

s ∈𝒫a
s
∑
s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

• Outer problem (optimal control action)
• Inner problem (worst-case transition probabilities)

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Interval MDPs

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Interval MDPs
• An interval MDP (IMDP) is of the form where:

‣ states , initial state and actions are as for MDPs

‣ gives transition probability lower bounds

‣ gives transition probability upper bounds

- such that for all , ,  

• IMDP uncertainty sets

‣

- probabilities are independent (except for the need to sum to 1)

‣

- i.e., IMDPs are (s-a)-rectangular

ℳ = (S, s0, A, P, P)
S s0 A

P : S × A × S → [0,1]
P : S × A × S → [0,1]

P(s, a, s′￼) ≤ P(s, a, s′￼) s a s′￼

𝒫a
s = {Pa

s ∈ Dist(S) | P(s, a, s′￼) ≤ Pa
s (s′￼) ≤ P(s, a, s′￼) for all s'}

𝒫 = ×(s,a)∈S×A 𝒫a
s

13

IMDP uncertainty sets
• Interval uncertainty sets are convex subsets of  

 
 
 
 
 
 
 

• We can delimit the intervals

‣ i.e., trim the interval bounds such that at least one 

possible distribution takes each extremal value

‣ e.g.,

- e.g. [0.1,0.4], [0.5,0.8] [0.2,0.4], [0.6,0.8] 

𝒫a
s [0,1]|S|

P(s′￼) := max[P(s′￼),1 − Σs≠s′￼
P(s)]

→
14

(p1,p2) ∈ (1/2,1/2) ± (1/6,1/6)

= ([1/3,2/3], [1/3,2/3])

35

(p1,p2) = (1/2,1/2] ± [1/6,1/6]

[1/6,1/2], [1/6,1/2], [1/6,1/2]

1

1

1

1

1

([1/3,2/3], [1/3,2/3]) [p1,p2,p3] = [1/3,1/3,1/3] ± [1/6,1/6,1/6]

1

1

p1

p2

1

1

1

p1

p2

p3

35

(p1,p2) = (1/2,1/2] ± [1/6,1/6]

[1/6,1/2], [1/6,1/2], [1/6,1/2]

1

1

1

1

1

([1/3,2/3], [1/3,2/3]) [p1,p2,p3] = [1/3,1/3,1/3] ± [1/6,1/6,1/6]

1

1

p1

p2

1

1

1

p1

p2

p3

(p1,p2,p3) ∈ (1/3,1/3,1/3) ± (1/6,1/6,1/6)

= ([1/6,1/2], [1/6,1/2], [1/6,1/2])

An assumption on IMDPs
• Assumption: IMDPs have a fixed underlying transition graph

‣ i.e., for each , , either: 

 

• Otherwise behaviour can be qualitatively different for small changes in  
 
 
 
 

‣ For , the probability to reach goal is always 1

‣ For , the probability to reach goal can be 0

‣ (contrast to, e.g., a finite-horizon property MaxProb≤k(goal)

s a s′￼

P(s, a, s′￼)

ε > 0
ε = 0

15

(i) ; or

(ii)

P(s, a, s′￼) > 0

P(s, a, s′￼) = P(s, a, s′￼) = 0

38

s0 s1
{goal}

b

[0.9,1-ɛ]

[ɛ,0.1]a

38

s0 s1
{goal}

b

[0.9,1-ɛ]

[ɛ,0.1]a s0 s1
{goal}

b

[1-ɛ,1]

[0,ɛ]a

Robust value iteration for IMDPs
• The inner problem for each iteration, and each is:

• Can be solved via a linear programming problem:

‣ let be variables for the chosen probabilities  

 
 
 

• We can also solve this more directly by sorting

‣ sort the values into ascending order

‣ for increasing values assign the maximum possible value to

‣ which is bounded by 1 - (the sum of actual/min values for other)

(s, a)

ps′￼
|S | Pa

s (s′￼)

xs′￼

xsi
psi

psj

16

inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

minimise such that:

 for all and

Σs′￼
ps′￼

⋅ xs′￼

Pa
s(s′￼) ≤ ps′￼

≤ Pa
s(s′￼) s′￼ Σ s′￼ps′￼

= 1

46

1

1

1

p1

p2

p3

46

1

1

1

p1

p2

p3

1

1

p1

p2

Running example: IMDPs and robust VI

17

• Example: MaxProb(goal1)

39

s0

s4s3

[0.46,0.54]

east s1
south
[0.49,
0.51]

[0.09,0.11]

{goal1}

s2

s5

{hazard}

[0.39,
0.41]

{goal2}

{goal2}

south
[0.46,
0.54]

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04

39

s0

s4s3

[0.46,0.54]

east s1
south
[0.49,
0.51]

[0.09,0.11]

{goal1}

s2

s5

{hazard}

[0.39,
0.41]

{goal2}

{goal2}

south
[0.46,
0.54]

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04

Running example: IMDPs and robust VI

18

• Example: MaxProb(goal1)

39

s0

s4s3

[0.46,0.54]

east s1
south
[0.49,
0.51]

[0.09,0.11]

{goal1}

s2

s5

{hazard}

[0.39,
0.41]

{goal2}

{goal2}

south
[0.46,
0.54]

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04

39

s0

s4s3

[0.46,0.54]

east s1
south
[0.49,
0.51]

[0.09,0.11]

{goal1}

s2

s5

{hazard}

[0.39,
0.41]

{goal2}

{goal2}

south
[0.46,
0.54]

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04

Running example: IMDPs and robust VI
• Fix x4=1 and x2=x3=0, just solve for x0, x1

• Iteration k=0: x0=x1=0

• Iteration k=1:

19

x0 := max(subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0·0.4 + 0·0.6),

min(0·p1 + 0·p3 + 1·p4))

x1 := max(min(0·1),

min(0·p2 + 1·p4))

subject to:

0.46≤p2≤0.54

0.46≤p4≤0.54

p2+p4=1

41

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04
s0

s4s3

east s1
south

s2
south

east

[0.46,0.54]
[0.49,
0.51]

[0.09
,0.11

]

[0.39,0.41]

[0.46,
0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]

x0=0 x1=0 x2=0

x3=0 x4=1

• Example: MaxProb(goal1)

p4 = 0.39, …
= max(0, 0.39)

= 0.39

p4 = 0.46, …
= max(0, 0.46)

= 0.46

• Iteration k=2:

Running example: IMDPs and robust VI

20

x0 := max(subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0.39·0.4 + 0.46·0.6),

min(0.46·p1 + 0·p3 + 1·p4))

x1 := 0.46 (as before)

41

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04
s0

s4s3

east s1
south

s2
south

east

[0.46,0.54]
[0.49,
0.51]

[0.09
,0.11

]

[0.39,0.41]

[0.46,
0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]

x0=0.39 x1=0.46 x2=0

x3=0 x4=1

• Example: MaxProb(goal1)

= max(0.432, 0.436)

= 0.436

p3 = 0.51 
p1 = min(0.11, 1-(0.51+0.39)) = 0.1

p4 = 1-(0.51+0.1) = 0.39

x3=0

x1=0.46

x4=1

• Iteration k=2:

Running example: IMDPs and robust VI

21

x0 := max(subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0.39·0.4 + 0.46·0.6),

min(0.46·p1 + 0·p3 + 1·p4))

x1 := 0.46 (as before)

k x0 x1

0 0 0
1 0.39 0.46
2 0.436 0.46
3 0.4504 0.46
4 0.45616 0.46
5 0.458464 0.46
6 0.4593856 0.46
7 0.45975424 0.46
8 0.459901696 0.46
9 0.4599606784 0.46
10 0.45998427136 0.46

39

x0

x1

0
0

1

1

min

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

e=0.04

• Example: MaxProb(goal1)

= max(0.432, 0.436)

= 0.436

p3 = 0.51 
p1 = min(0.11, 1-(0.51+0.39)) = 0.1

p4 = 1-(0.51+0.1) = 0.39

x3=0

x1=0.46

x4=1

• Finally: x0=0.46, x1=0.46

42

e=0.04
s0

s4s3

east s1
south

s2
south

east

[0.46,0.54]
[0.49,
0.51]

[0.09
,0.11

]

[0.39,0.41]

[0.46,
0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]

Interval MDPs - so far…
• Robust control is computationally efficient (robust value iteration)

‣ (s,a)-rectangular and inner problem is easy to solve

‣ another possibility not discussed here: convex optimisation [Puggelli et al.’13]

• For MaxProb (and SSP), optimal policies are memoryless (and deterministic)

‣ so computed policies are optimal worst case with respect to static uncertainty 

• Intervals are a simple, natural way to model transition probability uncertainty

22

What about objectives that need memory?

How do we generate the intervals?

Are there better models of uncertainty sets?

(e.g. finite horizon, or temporal logic)

Policies with memory
• Quantifying over memoryless environment policies

‣ gives us worst-case behaviour over static uncertainty 

 
 

• But for objectives that require non-memoryless control policies

‣ computation methods typically also assume non-memoryless environment policies 

 

‣ i.e., worst-case behaviour over dynamic uncertainty

‣ which is often (but not always) unrealistic (depends on time-scales)

• This however gives a conservative bound over static uncertainty

23

VΠ,𝒯m(s) = max
π∈Π

min
τm∈𝒯m

Vπ,τm(s) = max
π∈Π

min
P∈𝒫

Vπ,P(s)

VΠ,𝒯(s) = max
π∈Π

min
τm∈𝒯

Vπ,τm(s)

VΠ,𝒯(s) ≤ max
π∈Π

min
P∈𝒫

Vπ,P(s)

Memory (time dependencies)
• Objective: MaxProb=2(goal), i.e., get to goal in exactly 2 steps

‣ so we need time-dependent strategies for the controller

‣ computable via k steps of value iteration

• Worst-case probabilities (time-dependent environment strategies)

‣ “b,b”: 0.2

‣ “a,b”: 0

‣ “a,a”: = 0.16 (too conservative)

• Worst-case probabilities (memoryless environment strategies)

‣ “b,b”: 0.2

‣ “a,b”: 0

‣ “a,a”: = 0.24 (better bound) (now optimal)

min{p1(1 − p2) : p1, p2 ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.6)

min{p(1 − p) : p ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.4)
24

48

s0

s3s2

a s1
b

{goal}

0.2

[0.4,0.6]

b0.8

b

[0.4,0.6]

static uncertainty; may be more realistic; hard to compute

from value iteration; dynamic uncertainty; maybe unrealistic
0.2 (optimal)

Memory (temporal logic objectives)
• Temporal logic (in particular LTL) allows more complex objectives, e.g.:

‣ Pmax=? [(G¬hazard) ∧ (GF goal1)] - “maximise probability of avoiding hazard and also visiting

goal 1 infinitely often”

‣ Pmax=? [¬zone3 U (zone1 ∧ (F zone4))] - “maximise probability of patrolling zone 1 (whilst avoiding

zone 3) then zone 4”

• For MDPs, we generate optimal policies by:

‣ converting the LTL formula to a deterministic automaton

‣ building a product of the MDP and the automaton

‣ optimising a simpler objective (e.g. MaxProb) on the product MDP

• The techniques extend to uMDPs/IMDPs [Wolff et al.’12]

‣ but (like for MDPs), optimal policies need memory

25

Automata for LTL objectives
• For co-safe LTL (satisfaction occurs 

in finite time), we use finite automata 
 
 
 
 

• For general LTL, we use e.g. Rabin automata

26

(G¬hazard) ∧ (GF goal1)

(visit zone 1 (whilst avoiding 
zone 3) then zone 4)

• DFA and DBA

21

q0 q2

z3∧
¬z1

¬z1∧
¬z3

q3
true

q1
z4

¬z4

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

¬zone3 U (zone1 ∧ (F zone4))

(avoiding hazard and also 
visiting goal 1 infinitely often)

• DFA and DBA

21

q0 q2

z3∧
¬z1

¬z1∧
¬z3

q3
true

q1
z4

¬z4

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Optimising for LTL on a product MDP

27

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

0.1

0.5

east
south

0.8

0.1

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

{goal1}

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

0.1

0.5

east
south

0.8

0.1

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

{goal1}

MDP M Automaton for

(G¬hazard) ∧ (GF goal1)

𝒜
s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

0.1

0.5

east
south

0.8

0.1

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

{goal1}

Product MDP M ⊗ 𝒜

Optimal memoryless 
policy of  
corresponds to 
finite-memory optimal 
policy of MDP

M ⊗ 𝒜

M

Generating IMDP intervals
• Some examples of IMDP generation

28

• Unmanned aerial vehicle

‣ robust control in turbulence

‣ continuous-space dynamical
model with unknown noise

‣ discrete abstraction + finite
“scenarios” of sampled noise
yields IMDP abstraction

[Badings et al.’23]

1.0

0.25

0.0

0.5

0.75

Fig. 1: Sampled policy probabilities for one action in an abstract state (left)
and the template polyhedra partition generated through refinement (right).

then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeo↵. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing candidate directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set �
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S̃ be the set of sampled points and Ỹs denote the true probability of
choosing action a in each point s 2 S̃, as extracted from the probabilistic policy.
For a direction �, we project all points in S̃ onto � and sort them accordingly,
i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and index i is sorted by h�, sii.
We determine the optimal boundary for splitting in direction � by finding the
optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we
first define the function Y

k,�
i classifying the ith point according to this split:

Y
k,�
i =

⇢
1 if i 6 k

0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k,�
, Ỹ) = � 1

m

Xm

i=1

⇣
Y

k,�
i log(Ỹsi) + (1� Y

k,�
i) log(1� Ỹsi)

⌘

11

• Deep reinforcement learning

‣ worst-case analysis of

abstractions of probabilistic
policies for neural networks

‣ intervals between IMDP 
abstract states constructed 
by sampling the policy

[Bacci&Parker’20]

• Robust anytime MDP learning

‣ sampled MDP trajectories

‣ IMDPs constructed and solved
periodically to yield robust
predictions on current model

‣ PAC or Bayesian interval learning

[Suilen et al.’22]

Learning IMDP intervals
• One approach: sampling from the (fixed, but unknown) “true” MDP

‣ generate sample paths and keep separate counts of transition frequencies

• Gives confidence intervals around point estimates for transition probabilities

‣ using probably approximately correct (PAC) guarantees

‣ we fix an error rate and compute an error

‣ standard method of maximum a-posteriori probability (MAP) estimation 
to infer point estimates of probabilities

• For each state , we have sample counts and

‣ point estimate of the transition probability is:

‣ confidence interval for the transition probability: where

‣ then we have:

Pa
s (si)

γ δ

s N = #(s, a) ki = #(s, a, si)
Pa

s (si) P̃a
s(si) ≈ ki/N

P̃a
s(si) ± δ δ = log(2/γ)/2N

Pr(Pa
s (si) ∈ P̃a

s(si) ± δ) ≥ 1 − γ
29

(via Hoeffding’s inequality)

9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Learning IMDP intervals
• If desired, we can lift the PAC guarantee from individual transitions to the uMDP

• Distribute the chosen error rate across all transitions:

‣

‣ where  
is the set of successor states of each  
with more than one successor

• To construct the IMDP, we use:

‣

‣

• Then we have:

γ
γP = γ/(Σ(s, a) ∈ S × A |Succ>1(s, a) |)

Succ>1(s, a) = {s ∈ S : 0 < Pa
s (s′￼) < 1}

(s, a)

Pa
s(si) = max(ε, P̃a

s(si) − δP)

Pa
s(si) = min(P̃a

s(si) + δP,1)

Pr(P ∈ 𝒫) ≥ 1 − γ

30

[Suilen et al.’22]

Likelihood uncertainty sets
• Likelihood models suit experimentally determined transition probabilities

‣ and are less conservative than interval representations

• Uncertainty sets are :

‣ are derived from empirical frequencies of a transition to after action in state

‣ are described by likelihood regions:

‣ where is the uncertainty level (can be estimated for a desired confidence level)

‣ where is the optimal log-likelihood

• Inner optimisation problems

‣ can be solved (approximately) using a bisection algorithm

‣ to within an accuracy in time where is the maximum value in vector

Fa
s (s′￼) s′￼ a s

𝒫a
s = {Pa

s ∈ Dist(S) | ∑s′￼

Fa
s (s′￼)log(Pa

s (s′￼)) ≥ βa
s)}

βa
s

βa
s < βa

s, max βa
s, max = ∑s′￼

Fa
s (s′￼)log(Fa

s (s′￼))

δ O(log(xmax/δ)) xmax x

31

inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

[Nilim&Ghaoui’05]

Uncertainty set models - Summary
• Intervals & likelihood models

‣ both quite computationally tractable and statistically meaningful

‣ interval models are more conservative (sometimes projected to as an estimate)

• Finite scenarios (“sampled”):

‣ inner optimisation is simple (min over finite set)

‣ but worst-case choice can be very conservative

• Many other possibilities, e.g.:

‣ maximum a posteriori models, entropy models, ellipsoidal models, …

‣ most have similar (approximate) optimisation approaches to likelihood models

‣ see: [Nilim&Ghaoui’05] for details

𝒫a
s = {Pa

s,1, …, Pa
s,k}

32

inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

Tool support: PRISM
• PRISM: probabilistic model checking tool

‣ formal modelling and analysis (using temporal logic properties) of:

- Markov chains, Markov decision processes,

- interval Markov chains, interval Markov decision processes,

- stochastic games (via PRISM-games), and much more…

• See:

‣ download, documentation, tutorials, papers, case studies, … 

• Supporting files for ESSAI examples here:

33

PRISM

www.prismmodelchecker.org

www.prismmodelchecker.org/courses/essai23/

Running example

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

https://www.prismmodelchecker.org/
https://www.prismmodelchecker.org/courses/essai23/

Advertisement
• ERC-funded project FUN2MODEL, based at Oxford

‣ lead by Marta Kwiatkowska

‣ model-based reasoning for learning and uncertainty

• Postdoc position available now

‣ http://www.fun2model.org/

‣ http://www.prismmodelchecker.org/news.php

34

david.parker@cs.ox.ac.uk Email:
marta.kwiatkowska@cs.ox.ac.uk

http://www.fun2model.org/
http://www.prismmodelchecker.org/news.php
mailto:david.parker@cs.ox.ac.uk
mailto:marta.kwiatkowska@cs.ox.ac.uk

Summary (part 3)
• Uncertain MDPs

‣ environment policies - static vs dynamic uncertainty

‣ robust value iteration (robust dynamic programming)

‣ implementation with interval MDPs (IMDPs)

‣ non-memoryless policies (static uncertainty)

‣ generating / learning intervals

‣ uncertainty set representations

‣ tool support: PRISM 

• Up next: Sampling-based uncertain MDPs

‣ removing the transition independence assumption (rectangularity)

35

References (part 3)
• IMDPs and uMDPs

‣ G. N. Iyengar, Robust dynamic programming, Mathematics of Operations Research, 30(2),

2005

‣ A. Nilim and L. Ghaoui, Robust control of Markov decision processes with uncertain

transition matrices, Operations Research, 53(5), 780–798, 2005

‣ E. Wolff, U. Topcu, and R. Murray, Robust control of uncertain Markov decision processes

with temporal logic specifications, In Proc. 51th IEEE Conference on Decision and Control
(CDC’12), pp. 3372–3379, 2012

‣ W. Wiesemann, D. Kuhn and B. Rustem, Robust Markov Decision Processes, Math. Oper.
Res., 38(1), 153-183, 2013

‣ A. Puggelli, W. Li, A. Sangiovanni-Vincentelli and S. Seshia, Polynomial-time verification of
PCTL properties of MDPs with convex uncertainties, In Proc. 25th International Conference
on Computer Aided Verification (CAV’13), LNCS, vol. 8044, Springer, 2013 

36

References (part 3)
• Learning and using IMDPs

‣ T. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N. Jansen,

Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions,
Journal of Artificial Intelligence Research, 76, pages 341-391, 2023

‣ E. Bacci and D. Parker, Verified Probabilistic Policies for Deep Reinforcement Learning,
In Proc. 14th International Symposium NASA Formal Methods (NFM'22), volume 13260 of
LNCS, pages 193-212, Springer, 2022

‣ M. Suilen, T. D. Simão, N. Jansen and D. Parker, Robust Anytime Learning of Markov
Decision Processes, In Proc. 36th Annual Conference on Neural Information Processing
Systems (NeurIPS’22), 2022 

37

