Contract signing

- Two parties want to agree on a contract
 - each will sign if the other will sign, but do not trust each other
 - there may be a trusted third party (judge)
 but it should only be used if something goes wrong
- In real life: contract signing with pen and paper
 - sit down and write signatures simultaneously
- On the Internet...
 - how to exchange commitments on an asynchronous network?
 - “partial secret exchange protocol” due to
 Even, Goldreich and Lempel [EGL85]
Contract signing – EGL protocol

- Partial secret exchange protocol for 2 parties (A and B)
- A (B) holds 2N secrets $a_1, ..., a_{2N}$ ($b_1, ..., b_{2N}$)
 - a secret is a binary string of length L
 - secrets partitioned into pairs: e.g. $\{(a_i, a_{N+i}) | i=1, ..., N\}$
 - A (B) committed if B (A) knows one of A’s (B’s) pairs
- Uses “1-out-of-2 oblivious transfer protocol” $\text{OT}(S,R,x,y)$
 - S sends x and y to R
 - R receives x with probability $\frac{1}{2}$ otherwise receives y
 - S does not know which one R receives
 - if S cheats then R can detect this with probability $\frac{1}{2}$
Contract signing – EGL protocol

(step 1)

for (i=1,...,N)

 OT(A,B,a_i,a_{N+i})
 OT(B,A,b_i,b_{N+i})

(step 2)

for (i=1,...,L) (where \(L \) is the bit length of the secrets)

 for (j=1,...,2N)
 A transmits bit \(i \) of secret \(a_j \) to B

 for (j=1,...,2N)
 B transmits bit \(i \) of secret \(b_j \) to A
Contract signing - Results

- Modelled in PRISM as a DTMC (no concurrency) [NS06]
- Discovered a weakness in the protocol:
 - party B can act maliciously by quitting the protocol early
 - this behaviour not considered in the original analysis
- More details:
 - if B stops participating in the protocol as soon as he/she has obtained at least one of A pairs, then, with probability 1, at this point:
 - B possesses a pair of A’s secrets
 - A does not have complete knowledge of any pair of B’s secrets
 - Protocol is therefore not fair under this attack:
 - B has a distinct advantage over A
The protocol is unfair because in step 2: A sends a bit for each of its secret before B does.

Can we make this protocol fair by changing the message sequence scheme?

Since the protocol is asynchronous the best we can hope for is with probability $\frac{1}{2}$ B (or A) gains this advantage.

We consider 3 possible alternate message sequence schemes...
(step 1)

...

(step 2)

for (i=1,...,L)
 for (j=1,...,N) A transmits bit i of secret a_j to B
 for (j=1,...,N) B transmits bit i of secret b_j to A
 for (j=N+1,...,2N) A transmits bit i of secret a_j to B
 for (j=N+1,...,2N) B transmits bit i of secret b_j to A
(step 1)
...

(step 2)

for (i=1,...,L) for (j=1,...,N)
 A transmits bit i of secret a_j to B
 B transmits bit i of secret b_j to A

for (i=1,...,L) for (j=N+1,...,2N)
 A transmits bit i of secret a_j to B
 B transmits bit i of secret b_j to A
Contract signing: EGL4

(step 1)
...

(step 2)
for (i=1,…,L)
 A transmits bit i of secret a_i to B
for (j=1,…,N) B transmits bit i of secret b_j to A
for (j=2,…,N) A transmits bit i of secret a_j to B

for (i=1,…,L)
 A transmits bit i of secret a_{N+1} to B
for (j=N+1,…,2N) B transmits bit i of secret b_j to A
for (j=N+2,…,2N) A transmits bit i of secret a_j to B
Contract signing - Results

- Probability that the other party gains knowledge first (the chance that the protocol is unfair)
Contract signing - Results

- Expected bits a party requires to know a pair once the other knows a pair (quantifies how unfair the protocol is)
Contract signing - Results

- Expected messages a party must receive to know a pair once the other knows a pair (measures the influence the other party has on the fairness, since it can try and delay these messages)
Contract signing - Results

- Expected messages that need to be sent for a party to know a pair once the other party knows a pair (measures the duration of unfairness)
Contract signing - Results

- Results show EGL4 is the ‘fairest’ protocol
- Except for duration of fairness measure:

 Expected messages that need to be sent for a party to know a pair once the other party knows a pair

 - this value is larger for B than for A

 - in fact, as N increases, it increases for B, decreases for A

- Solution: if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as as a single message
Contract signing - Results

- Expected messages that need to be sent for a party to know a pair once the other party knows a pair (measures the duration of unfairness)