

Probabilistic model checking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Gran Sasso Science Institute, L'Aquila, June 2015

Part 2

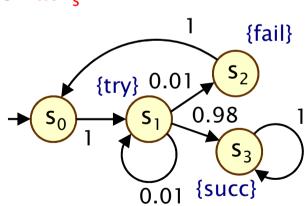
Markov decision processes

Overview (Part 2)

- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - S is a set of states and $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - $P: S \times S \rightarrow [0,1]$ is the transition probability matrix
 - L : S \rightarrow 2^{AP} labels states with atomic propositions
 - define a probability space Pr_s over paths Path_s
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send $\rightarrow P_{\geq 0.95}$ [F deliver]
 - key question: what is the probability of reaching states $T \subseteq S$ from state s?



- reduces to graph analysis + linear equation system

Nondeterminism

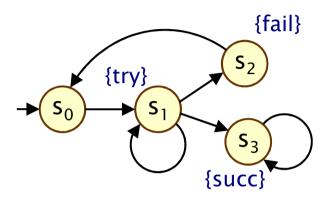
- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
 - Unknown environments
 - e.g. probabilistic security protocols unknown adversary

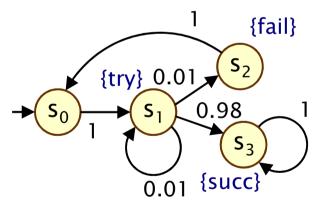
Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where $R \subseteq S \times S$
 - choice is nondeterministic

- (S,s₀,P,L) where P : S×S→[0,1]
- choice is probabilistic

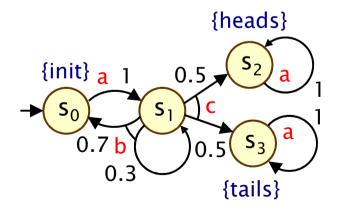
How to combine?





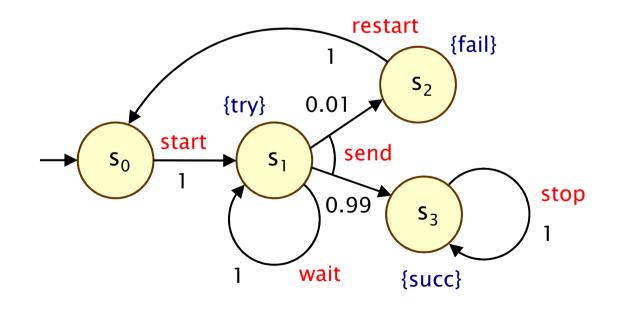
Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states



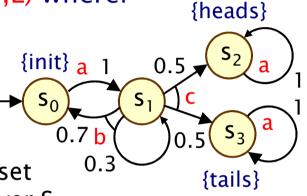
Simple MDP example

- A simple communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart



Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - α is an alphabet of action labels
 - $\delta \subseteq S \times \alpha \times Dist(S) \text{ is the transition}$ probability relation, where Dist(S) is the setof all discrete probability distributions over S



- L : S \rightarrow 2^{AP} is a labelling with atomic propositions

Notes:

- we also abuse notation and use $\boldsymbol{\delta}$ as a function
- i.e. $\delta : S \rightarrow 2^{\alpha \times \text{Dist}(S)}$ where $\delta(s) = \{ (a,\mu) \mid (s,a,\mu) \in \delta \}$
- we assume δ (s) is always non-empty, i.e. no deadlocks
- MDPs, here, are identical to probabilistic automata [Segala] \cdot usually, MDPs take the form: $\delta : S \times \alpha \rightarrow \text{Dist}(S)$

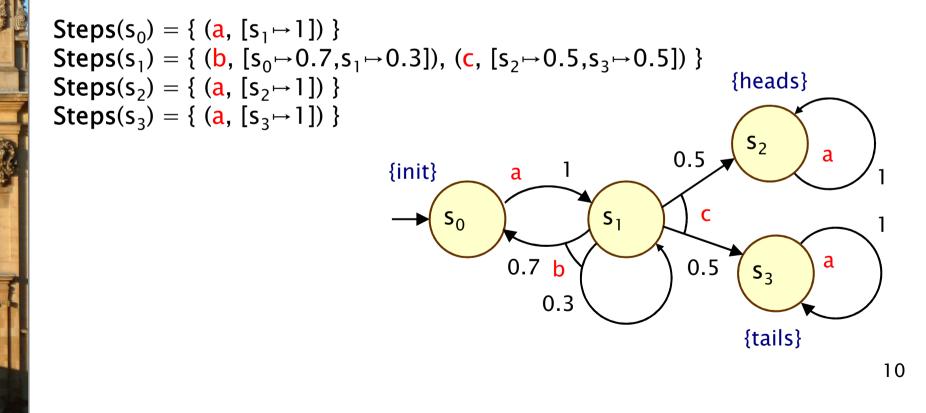
Simple MDP example 2

$$M = (S, s_{init}, Steps, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

 $s_{init} = s_0$

 $\label{eq:AP} \begin{array}{l} \mathsf{AP} = \{ \text{init}, \text{heads}, \text{tails} \} \\ \mathsf{L}(\mathsf{s}_0) = \{ \text{init} \}, \\ \mathsf{L}(\mathsf{s}_1) = \varnothing, \\ \mathsf{L}(\mathsf{s}_2) = \{ \text{heads} \}, \\ \mathsf{L}(\mathsf{s}_3) = \{ \text{tails} \} \end{array}$



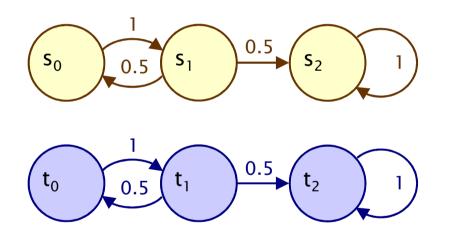
Example – Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

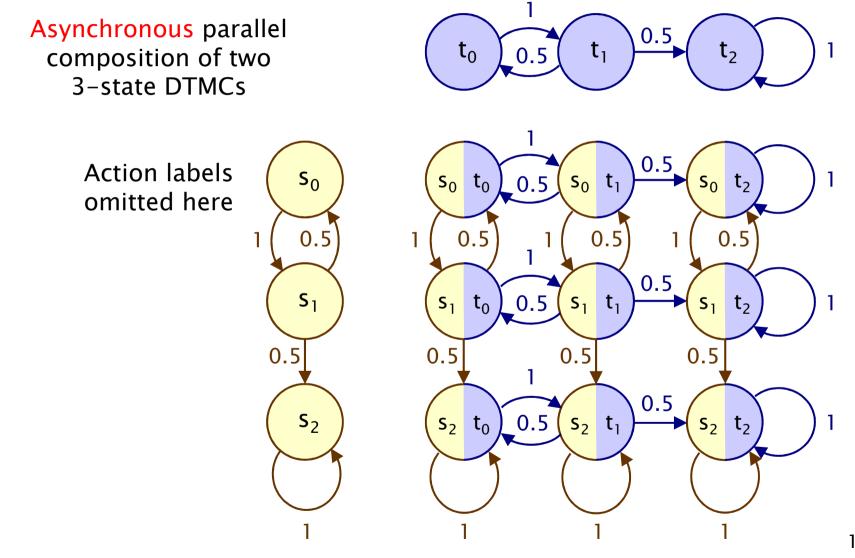
PRISM code:

module M1
s : [0..2] init 0;
[] s=0 -> (s'=1);
[] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);
[] s=2 -> (s'=2);
endmodule

module M2 = M1 [s=t] endmodule

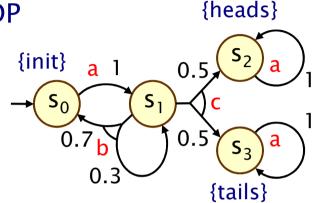


Example – Parallel composition



Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence (s₀...s_n) of (connected) states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices



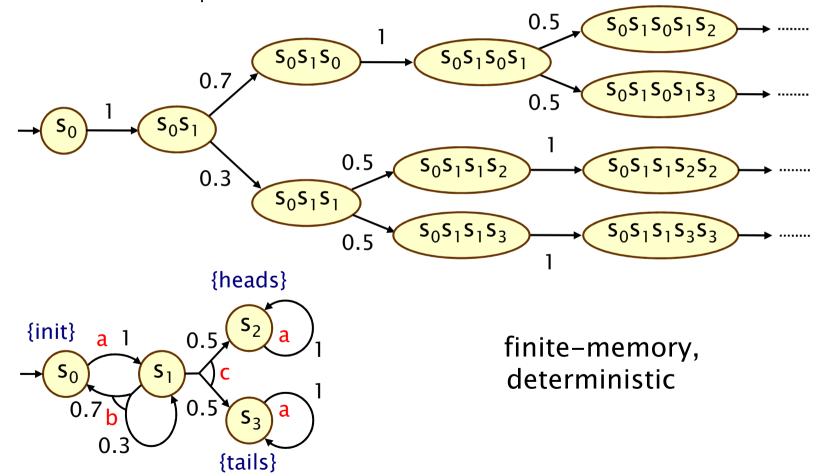
- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions on action-distribution pairs
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies

- Strategies are classified according to
- randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
 - memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_0...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space Pr_{s}^{σ} over $Path^{\sigma}(s)$

Example strategy

 Fragment of induced Markov chain for strategy which picks b then c in s₁



Induced DTMCs

- Strategy σ for MDP induces an infinite-state DTMC D^σ
- $D^{\sigma} = (Path^{\sigma}_{fin}(s), s, P^{\sigma}_{s})$ where:
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P^{\sigma}_{s}(\omega,\omega')=\mu(s')$ if $\omega'=\omega(a, \mu)s'$ and $\sigma(\omega)=(a,\mu)$
 - $\mathbf{P}^{\sigma}_{s}(\omega,\omega')=0$ otherwise
- + 1-to-1 correspondence between Path $^{\sigma}(s)$ and paths of D^{σ}
- This gives us a probability measure Pr_{s}^{σ} over $Path^{\sigma}(s)$
 - from probability measure over paths of D^σ

MDPs and probabilities

- $Prob^{\sigma}(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \vDash \psi \}$
 - for some path formula $\boldsymbol{\psi}$
 - e.g. Prob^{σ}(s, F tails)

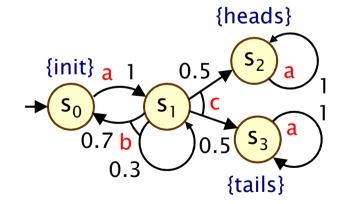
•

MDP provides best-/worst-case analysis

- based on lower/upper bounds on probabilities
- over all possible adversaries

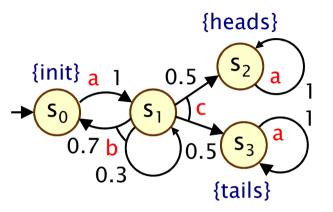
$$p_{\min}(s,\psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s,\psi)$$

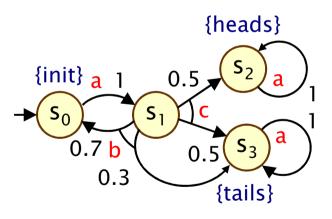
$$p_{\max}(s,\psi) = \sup_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s,\psi)$$



Examples

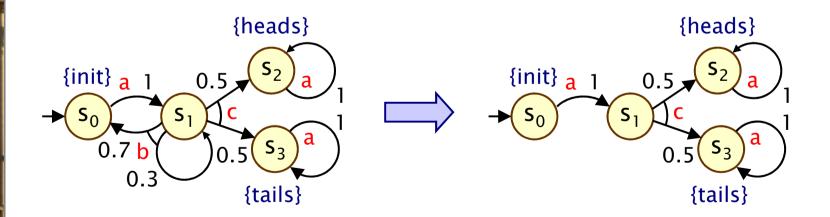
- $Prob^{\sigma 1}(s_0, F tails) = 0.5$
- $Prob^{\sigma_2}(s_0, F tails) = 0.5$
 - (where σ_i picks b i–1 times then c)
- ...
 - $p_{max}(s_0, F \text{ tails}) = 0.5$
- $p_{min}(s_0, F \text{ tails}) = 0$
- $\text{Prob}_{\sigma_1}(s_0, \text{ F tails}) = 0.5$
- $Prob^{\sigma_2}(s_0, F \text{ tails})$ = 0.3+0.7.0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7.0.3+0.7.0.7.0.5 = 0.755
- ...
 - $p_{max}(s_0, F tails) = 1$
- $p_{min}(s_0, F \text{ tails}) = 0.5$





Memoryless strategies

- Memoryless strategies always pick same choice in a state
 - also known as: positional, Markov, simple
 - formally, $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s\in S$
 - induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not



PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators

PCTL syntax:

- $\varphi ::= true \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\sim p} \left[\psi \right] \quad (state \ formulas)$
- $-\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}, k \in \mathbb{N}$
- Example: send $\rightarrow P_{\geq 0.95}$ [true U^{≤ 10} deliver]

PCTL semantics for MDPs

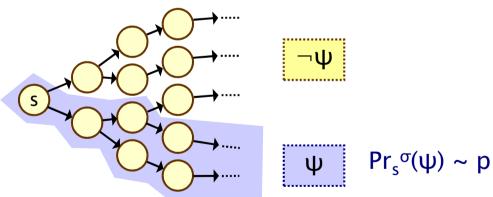
- PCTL formulas interpreted over states of an MDP
 - $s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the MDP (S,s_{init}, α , δ ,L):
 - $s \vDash a \iff a \in L(s)$
 - $s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \text{ and } s \vDash \varphi_2$
 - $s \models \neg \varphi \qquad \Leftrightarrow s \models \varphi \text{ is false}$

Semantics of path formulas:

- for a path $\omega = s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$ in the MDP:
- $\omega \vDash X \varphi \qquad \Leftrightarrow \ s_1 \vDash \varphi$
- $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
- $\omega \vDash \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\le k} \varphi_2$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy $\boldsymbol{\sigma}$
 - $s \models P_{\sim p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ "
 - formally $s \models P_{\sim p} [\psi] \iff Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma} \{ \omega \in Path_s^{\sigma} \mid \omega \vDash \psi \}$



- Some equivalences:
 - $F \varphi \equiv \diamond \varphi \equiv true U \varphi$ (eventually, "future")
 - $G \varphi \equiv \Box \varphi \equiv \neg(F \neg \varphi)$ (always, "globally")

Minimum and maximum probabilities

• Letting:

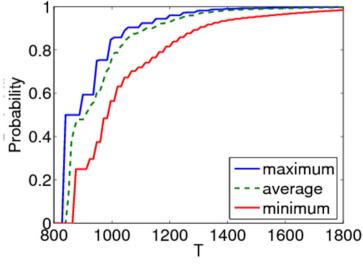
- $\Pr_{s}^{\max}(\psi) = \sup_{\sigma} \Pr_{s}^{\sigma}(\psi)$
- $Pr_s^{min}(\psi) = inf_{\sigma} Pr_s^{\sigma}(\psi)$

• We have:

- $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash P_{\text{~p}} \textbf{[} \textbf{\psi} \textbf{]} \iff Pr_{s}^{\text{min}}(\textbf{\psi}) \textbf{~} \textbf{p}$
- $\text{ if } \textbf{\sim} \in \{ <, \leq \} \text{, then } \textbf{s} \, \vDash \, \textbf{P}_{\textbf{\sim}p} \left[\begin{array}{c} \psi \end{array} \right] \ \Leftrightarrow \ \textbf{Pr}_{\textbf{s}}^{\text{max}}(\psi) \textbf{\sim} p$
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all strategies of either:
 - the minimum probability of $\boldsymbol{\psi}$ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless strategies suffice, i.e. there are always memoryless strategies σ_{min} and σ_{max} for which:
 - $Pr_s^{\sigma_{min}}(\psi) = Pr_s^{min}(\psi) \text{ and } Pr_s^{\sigma_{max}}(\psi) = Pr_s^{min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Some real PCTL examples

- Byzantine agreement protocol
 - $P_{min=?}$ [F (agreement \land rounds \leq 2)]
 - "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - $P_{max=?}$ [F collisions=k]
 - "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $P_{min=?}$ [$F^{\leq t}$ stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 2)

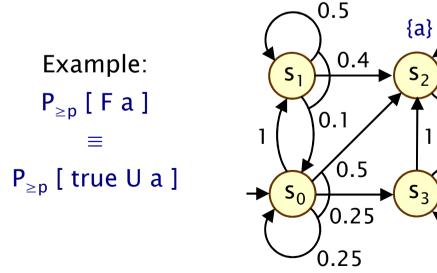
- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(φ) = { s \in S | s $\models \varphi$ } = set of states satisfying φ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - non-probabilistic operators (true, a, $\neg,$ $\wedge)$ straightforward
- Only need to consider P_{-p} [ψ] formulas
 - reduces to computation of $Pr_s{}^{min}(\psi)$ or $Pr_s{}^{max}(\psi)$ for all $s\in S$
 - dependent on whether ~ ${\color{black}{\sim}} \in \{{\color{black}{\geq}},{\color{black}{>}}\}$ or ~ ${\color{black}{\leftarrow}} \{{\color{black}{<}},{\color{black}{\leq}}\}$
 - these slides cover the case $Pr_s^{min}(\phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X φ) and bounded until ($\varphi_1 \ U^{\leq k} \ \varphi_2$) are straightforward extensions of the DTMC case

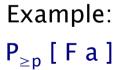
PCTL until for MDPs

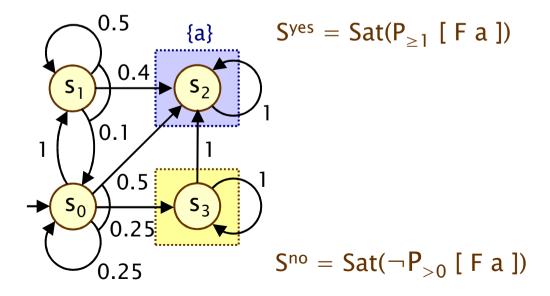
- + Computation of probabilities $Pr_s{}^{min}(\varphi_1 \ U \ \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration



PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\phi_1 \cup \phi_2)$ is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 \cup \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all strategies the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes Sno
 - there exists a strategy for which the probability is 0



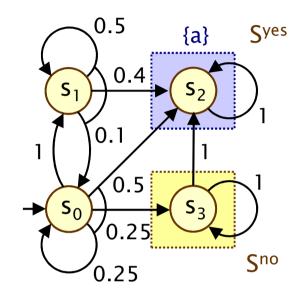


Method 1 – Linear programming

• Probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

 $\begin{array}{ll} \mbox{maximize } \sum_{s \in S^?} x_s \mbox{ subject to the constraints } : \\ x_s \leq \sum_{s' \in S^?} \mu(s') \cdot \ x_{s'} + \sum_{s' \in S^{yes}} \mu(s') \\ \mbox{for all } s \in S^? \mbox{ and for all } (a, \mu) \in \delta(s) \end{array}$

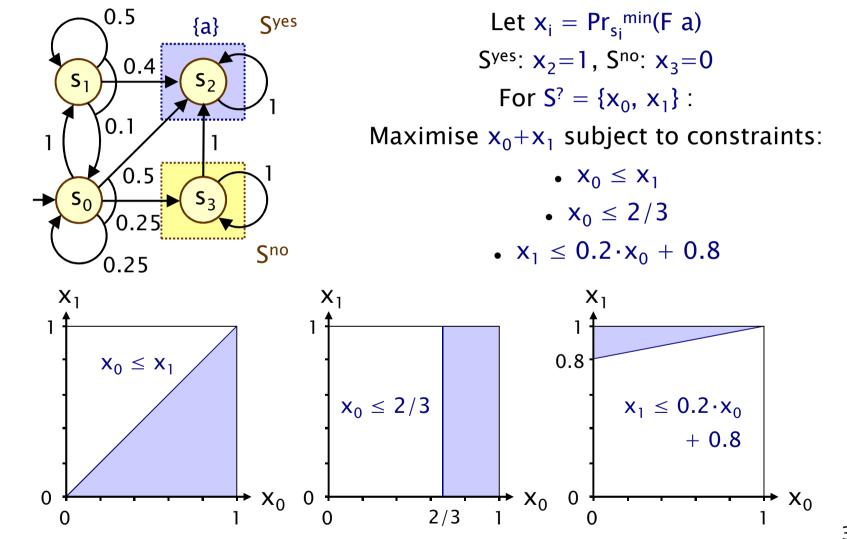
- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

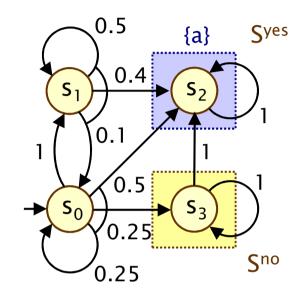


Let $x_i = Pr_{s_i}^{min}(F a)$ S^{yes} : $x_2=1$, S^{no} : $x_3=0$ For $S^? = \{x_0, x_1\}$: Maximise x_0+x_1 subject to constraints: • $x_0 \le x_1$

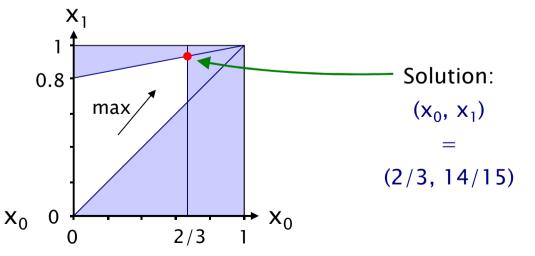
•
$$x_0 \le 0.25 \cdot x_0 + 0.5$$

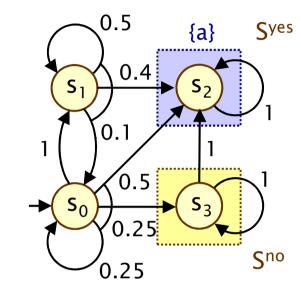
•
$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$



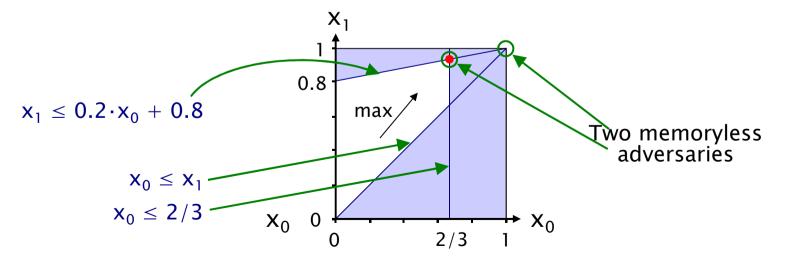


Let $x_i = Pr_{s_i}^{min}(F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$: Maximise x_0+x_1 subject to constraints: $x_0 \le x_1$ $x_0 \le 2/3$ $x_1 \le 0.2 \cdot x_0 + 0.8$





Let $x_i = Pr_{s_i}^{min}(F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$: Maximise x_0+x_1 subject to constraints: $x_0 \le x_1$ $x_0 \le 2/3$ $x_1 \le 0.2 \cdot x_0 + 0.8$



Method 2 - Value iteration

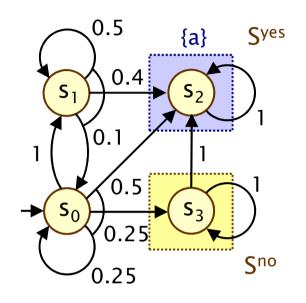
• For probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ it can be shown that:

-
$$Pr_s^{min}(\phi_1 \cup \phi_2) = \lim_{n \to \infty} x_s^{(n)}$$
 where:

$$x_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^{\text{?}} \text{ and } n = 0 \\ \min_{(a,\mu)\in Steps(s)} \left(\sum_{s'\in S} \mu(s')\cdot x_{s'}^{(n-1)}\right) & \text{if } s \in S^{\text{?}} \text{ and } n > 0 \end{cases}$$

- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

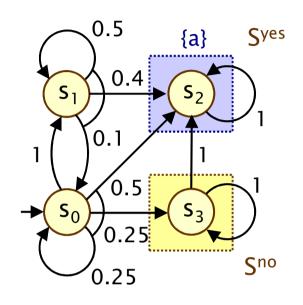
Example – PCTL until (value iteration)



Compute: $Pr_{s_i}^{min}(F a)$ S^{yes} = {x₂}, S^{no} ={x₃}, S[?] = {x₀, x₁}

- $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$ n=0: [0, 0, 1, 0]
- n=1: [min(0,0.25 \cdot 0+0.5), 0.1 \cdot 0+0.5 \cdot 0+0.4, 1, 0] = [0, 0.4, 1, 0]
- n=2: $[\min(0.4, 0.25 \cdot 0 + 0.5),$ $0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0]$ = [0.4, 0.6, 1, 0] $n=3: \dots$

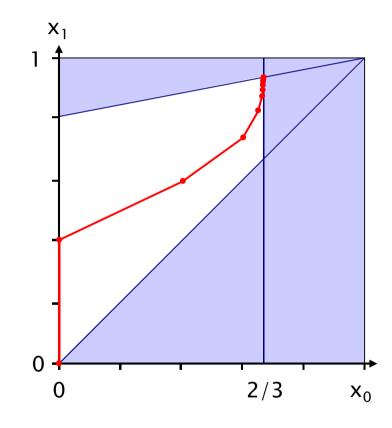
Example – PCTL until (value iteration)



 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$

- n=0: [0.000000, 0.000000, 1, 0]
- n=1: [0.000000, 0.400000, 1, 0]
- n=2: [0.400000, 0.600000, 1, 0]
- n=3: [0.600000, 0.740000, 1, 0]
- n=4: [0.650000, 0.830000, 1, 0]
- n=5: [0.662500, 0.880000, 1, 0]
- n=6: [0.665625, 0.906250, 1, 0]
- n=7: [0.666406, 0.919688, 1, 0]
- n=8: [0.666602, 0.926484, 1, 0]
- n=9: [0.666650, 0.929902, 1, 0]
- n=20: [0.6666667, 0.933332, 1, 0] n=21: [0.6666667, 0.933332, 1, 0] \approx [2/3, 14/15, 1, 0]

Example – Value iteration + LP



- $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
- n=0: [0.000000, 0.000000, 1, 0]
- n=1: [0.000000, 0.400000, 1, 0]
- n=2: [0.400000, 0.600000, 1, 0]
- n=3: [0.600000, 0.740000, 1, 0]
- n=4: [0.650000, 0.830000, 1, 0]
- n=5: [0.662500, 0.880000, 1, 0]
- n=6: [0.665625, 0.906250, 1, 0]
- n=7: [0.666406, 0.919688, 1, 0] n=8: [0.666602, 0.926484, 1, 0]
- n=9: [0.666650, 0.929902, 1, 0]
- n=20: [0.6666667, 0.933332, 1, 0] n=21: [0.6666667, 0.933332, 1, 0] \approx [2/3, 14/15, 1, 0]

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over strategies ("policies")
- + 1. Start with an arbitrary (memoryless) strategy σ
- + 2. Compute the reachability probabilities $\underline{Pr}^{\sigma}(F a)$ for σ
- 3. Improve the strategy in each state
- 4. Repeat 2/3 until no change in strategy
- Termination:
 - finite number of memoryless strategies
 - improvement in (minimum) probabilities each time

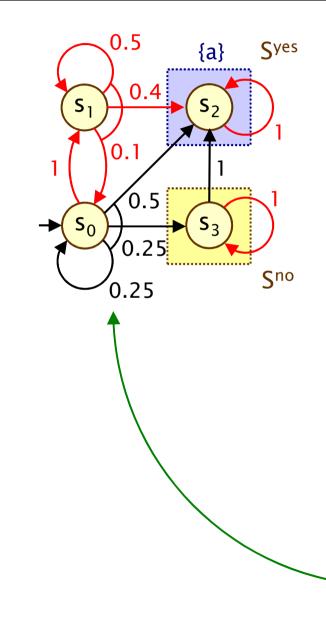
Method 3 – Policy iteration

- + 1. Start with an arbitrary (memoryless) strategy σ
 - pick an element of $\delta(s)$ for each state $s\in S$
- 2. Compute the reachability probabilities $\underline{Pr}^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the strategy in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

4. Repeat 2/3 until no change in strategy

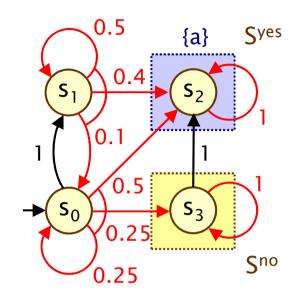
Example – Policy iteration



Arbitrary strategy **o**: Compute: $Pr^{\sigma}(F a)$ Let $x_i = Pr_{s_i}^{\sigma}(F a)$ $x_2 = 1$, $x_3 = 0$ and: • $x_0 = x_1$ $\bullet x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$ Solution: <u>Pr</u>^{σ}(F a) = [1, 1, 1, 0] Refine σ in state s₀: $\min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$ $= \min\{1, 0.75\} = 0.75$

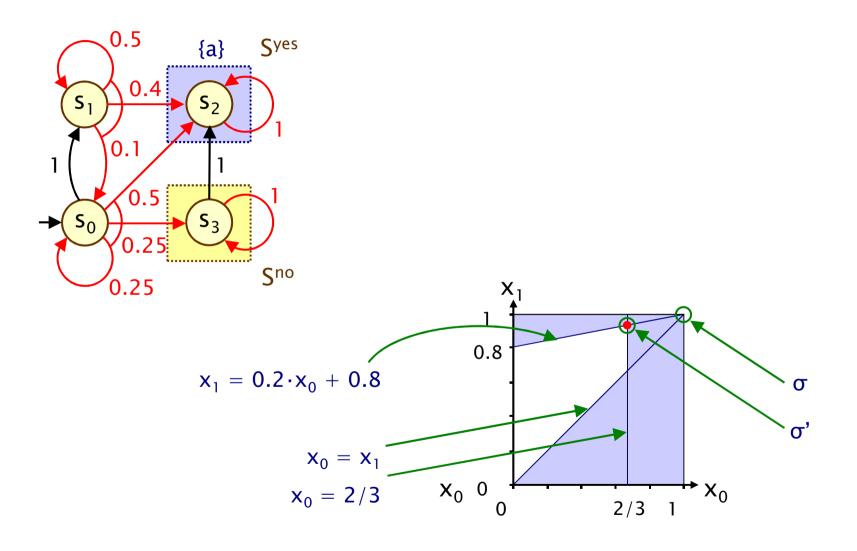
41

Example – Policy iteration



Refined strategy σ' : Compute: $\underline{Pr}^{\sigma'}(F a)$ Let $x_i = Pr_{s_i}^{\sigma'}(F a)$ $x_2=1, x_3=0$ and: $x_0 = 0.25 \cdot x_0 + 0.5$ $x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$ Solution: $\underline{Pr}^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$ This is optimal

Example – Policy iteration



PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation

• Probabilistic operator P:

- X Φ : one matrix-vector multiplication, O(|S|²)
- $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
- $\Phi_1 \cup \Phi_2$: linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in $|\Phi|$ and polynomial in |S|
 - S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 - as for PCTL, either $R_{\rm \sim r}$ [\ldots], $R_{min=?}$ [\ldots] or $R_{max=?}$ [\ldots]
- Some examples:
 - $R_{min=?}$ [$I^{=90}$], $R_{max=?}$ [$C^{\leq 60}$], $R_{max=?}$ [F "end"]
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

Case study: FireWire root contention

• FireWire (IEEE 1394)

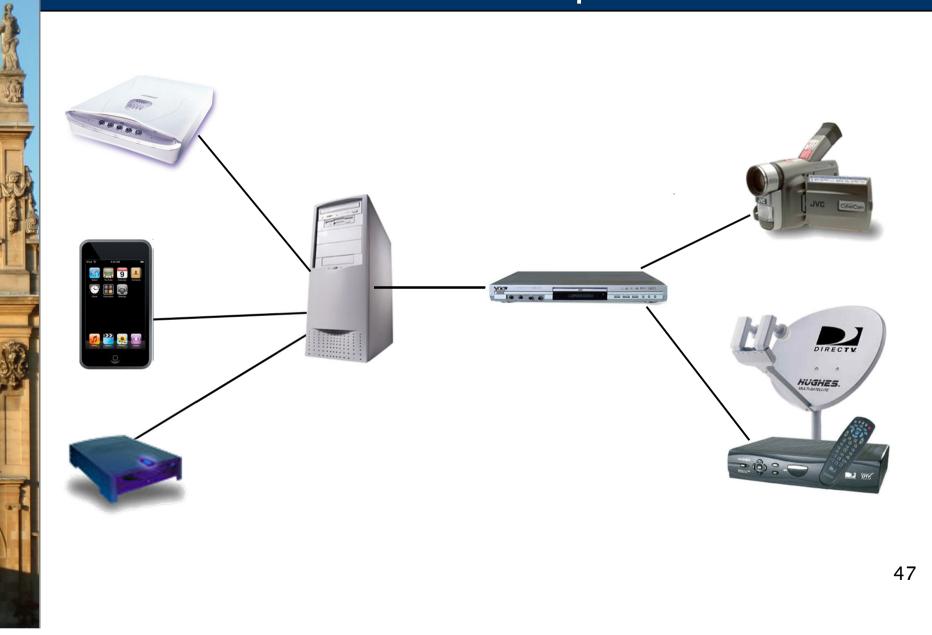
- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" add/remove devices at any time

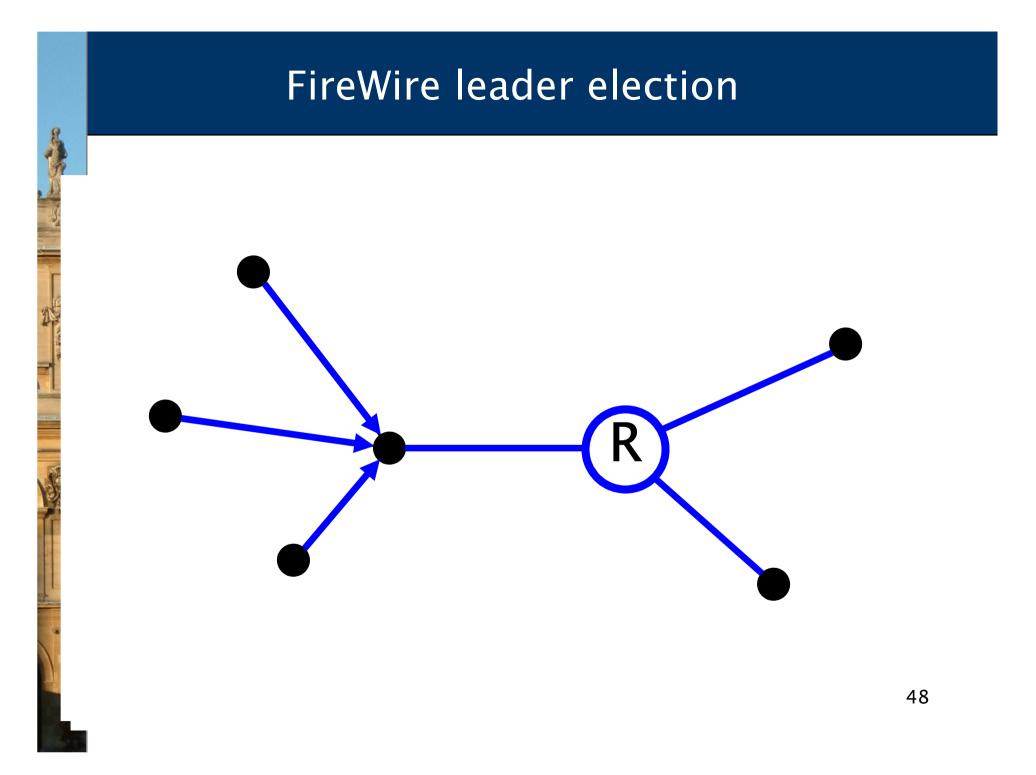
- no requirement for a single PC (but need acyclic topology)

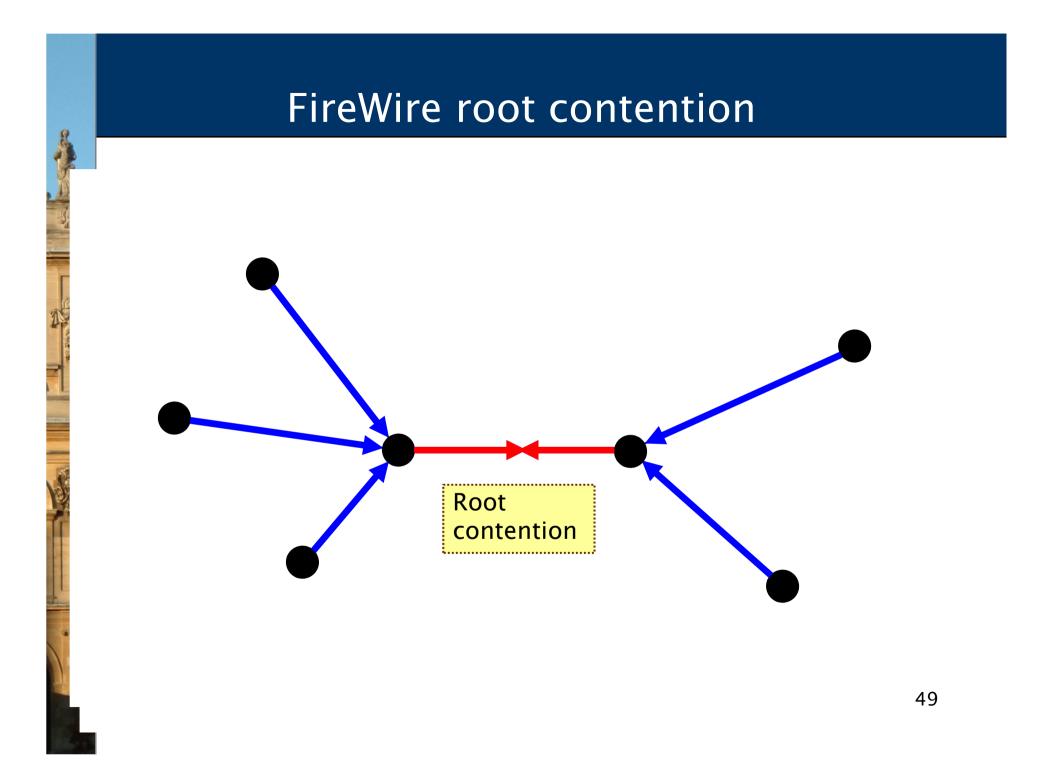
Root contention protocol

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses randomisation (electronic coin tossing) and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

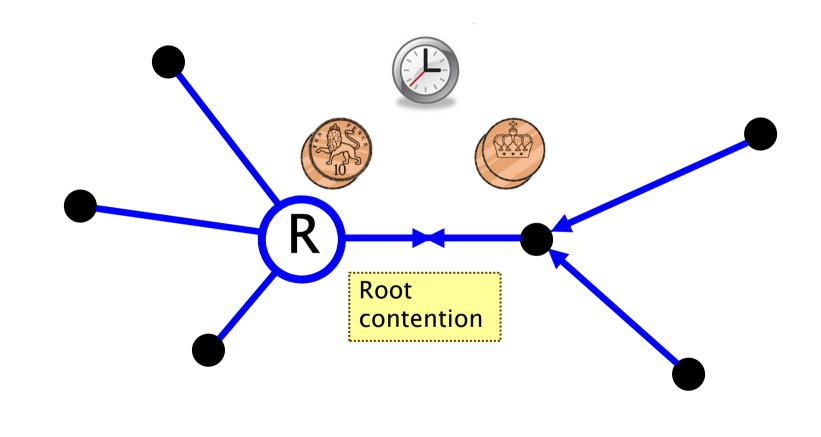
FireWire example





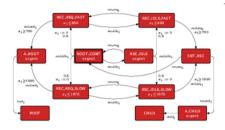


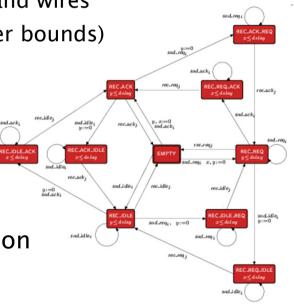
FireWire root contention

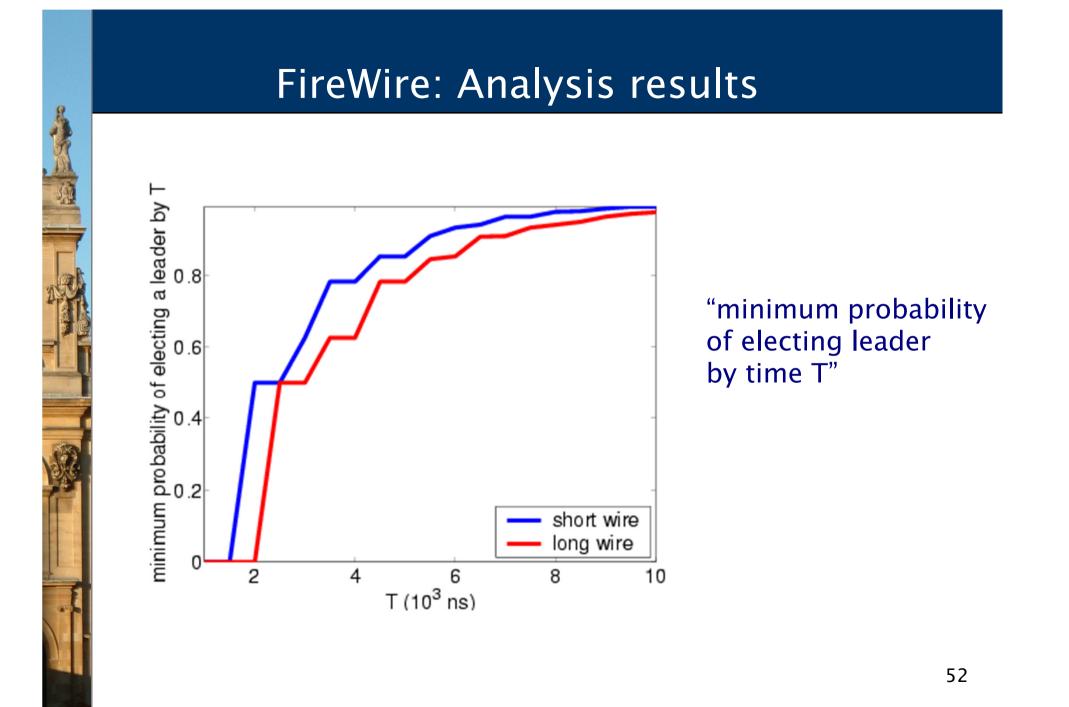


FireWire analysis

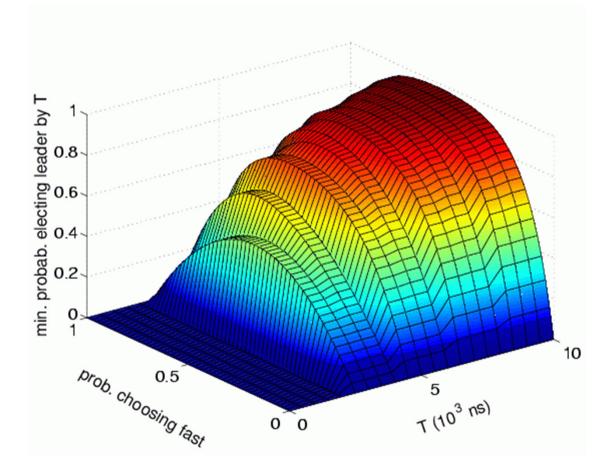
- Probabilistic model checking
 - model constructed and analysed using PRISM
 - timing delays taken from IEEE standard
 - model includes:
 - concurrency: messages between nodes and wires
 - · underspecification of delays (upper/lower bounds)
 - max. model size: 170 million states
- Analysis:
 - verified that root contention always resolved with probability 1
 - investigated time taken for leader election
 - and the effect of using biased coin
 - \cdot based on a conjecture by Stoelinga







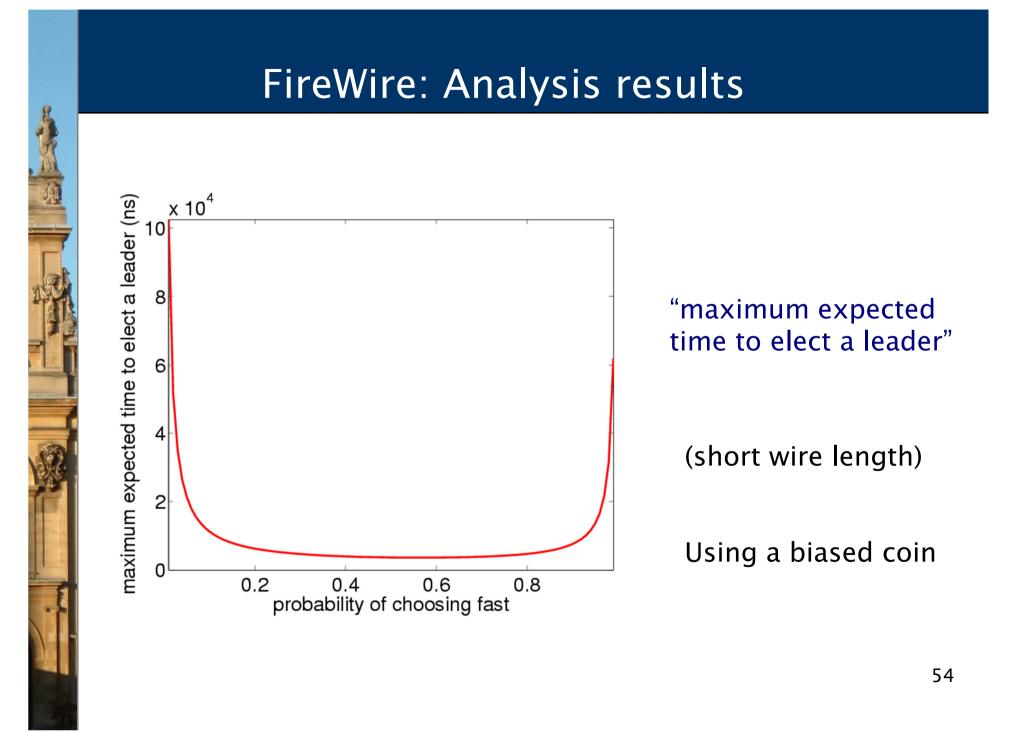
FireWire: Analysis results

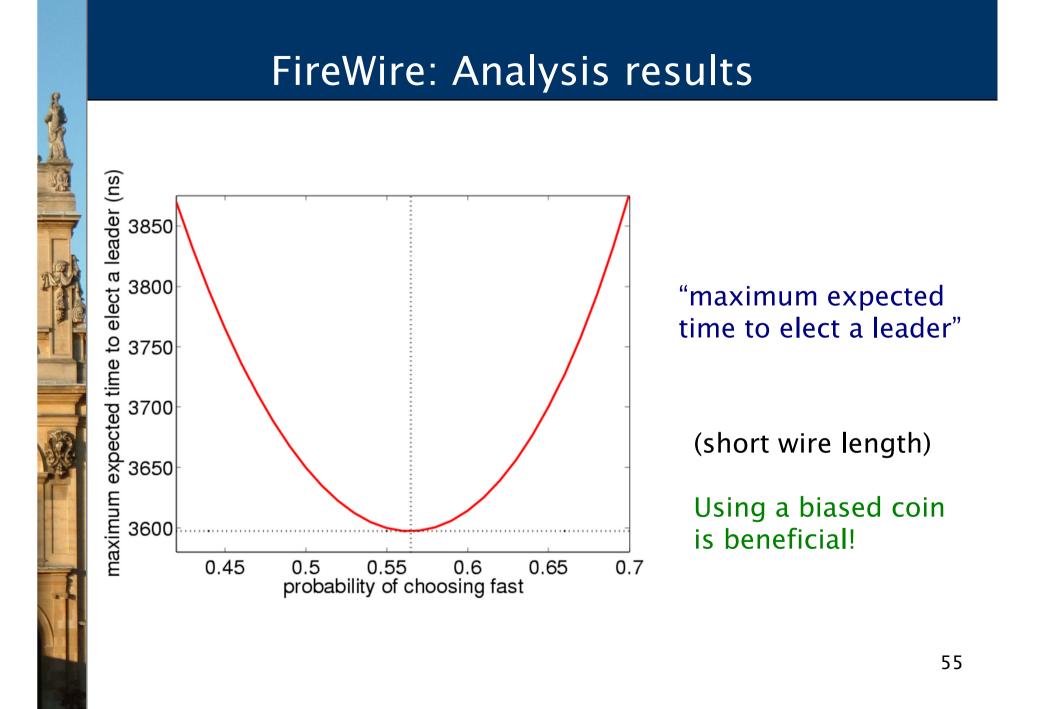


"minimum probability of electing leader by time T"

(short wire length)

Using a biased coin





Overview (Part 2)

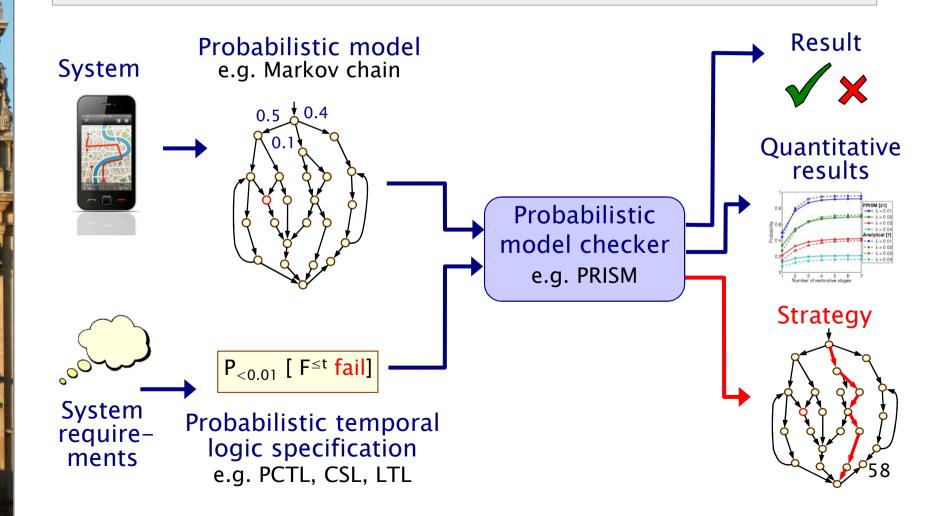
- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

From verification to synthesis

- Shift towards quantitative model synthesis from speciication
 - begin with simpler problems: strategy synthesis, template-based synthesis, etc
 - advantage: correct-by-construction
- Here consider the problem of strategy (controller) synthesis
 - i.e. "can we construct a strategy to guarantee that a given quantitative property is satisfied?"
 - instead of "does the model satisfy a given quantitative property?"
 - also parameter synthesis: "find optimal value for parameter to satisfy quantitative objective"
- Many application domains
 - robotics (controller synthesis from LTL/PCTL)
 - dynamic power management (optimal policy synthesis)

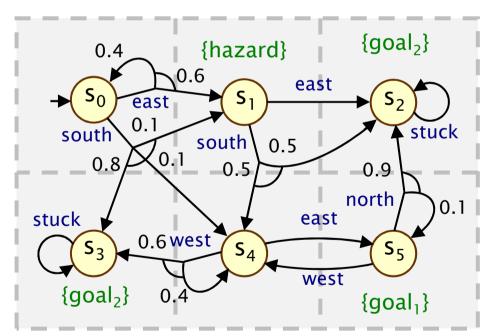
Quantitative (probabilistic) verification

Automatic verification and strategy synthesis from quantitative properties for probabilistic models



Running example

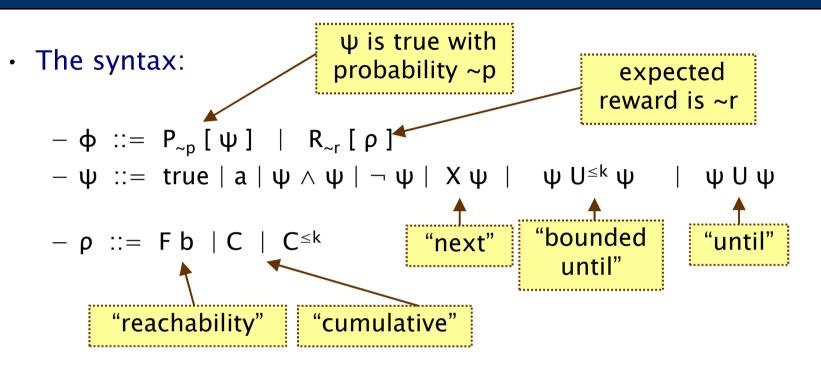
- Example MDP
 - robot moving through terrain divided into 3 x 2 grid



States: s₀, s₁, s₂, s₃, s₄, s₅ Actions: north, east, south, west, stuck Labels (atomic propositions):

hazard, goal₁, goal₂

Properties and objectives



- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{\geq 0}$
- $F b \equiv true U b$
- We refer to φ as property, ψ and ρ as objectives
 - (branching time more challenging for synthesis)

Properties and objectives

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy $\boldsymbol{\sigma}$
 - $s \models P_{\sim p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ "
 - formally $s \models P_{\sim p} [\psi] \iff Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma} \{ \omega \in Path_s^{\sigma} \mid \omega \vDash \psi \}$
- R_{r} [] means "the expected value of satisfies r"
- Some examples:
 - $P_{\geq 0.4}$ [F "goal"] "probability of reaching goal is at least 0.4"
 - $R_{<5}$ [$C^{\leq 60}$] "expected power consumption over one hour is below 5"
 - $R_{\leq 10}$ [F "end"] "expected time to termination is at most 10"

Verification and strategy synthesis

- The verification problem is:
 - Given an MDP M and a property φ , does M satisfy φ under any possible strategy $\sigma?$
- The synthesis problem is dual:
 - Given an MDP M and a property $\varphi,$ find, if it exists, a strategy σ such that M satisfies φ under σ
- Verification and strategy synthesis is achieved using <u>the</u> <u>same techniques</u>, namely computing optimal values for probability objectives:
 - $\Pr_{s}^{\min}(\psi) = \inf_{\sigma} \Pr_{s}^{\sigma}(\psi)$
 - $\operatorname{Pr}_{s}^{\max}(\psi) = \operatorname{sup}_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$
 - and similarly for expectations

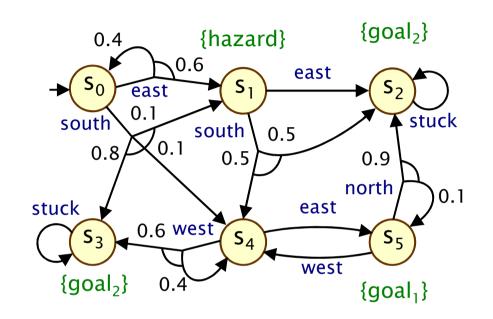
Computing reachability for MDPs

- Computation of probabilities $\text{Pr}_{s}^{\text{max}}(F \text{ b})$ for all $s \in S$
- Step 1: pre-compute all states where probability is 1 or 0
 - graph-based algorithms, yielding sets Syes, Sno
- Step 2: compute probabilities for remaining states (S?)
 - (i) solve linear programming problem
 - (i) approximate with value iteration
 - (iii) solve with policy (strategy) iteration

• 1. Precomputation:

- algorithm Prob1E computes Syes
 - there exists a strategy for which the probability of "F b" is 1
- algorithm Prob0A computes Sno
 - for all strategies, the probability of satisfying "F b" is 0

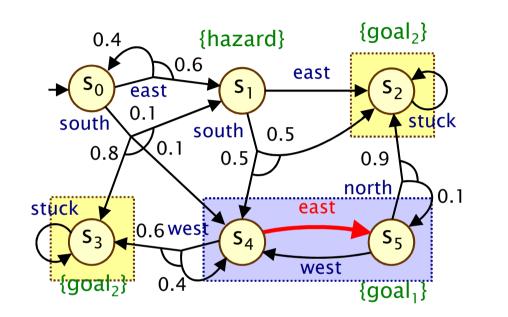
Example – Reachability



Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁)

Example – Precomputation



S^{yes}

.

............

Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁)

Reachability for MDPs

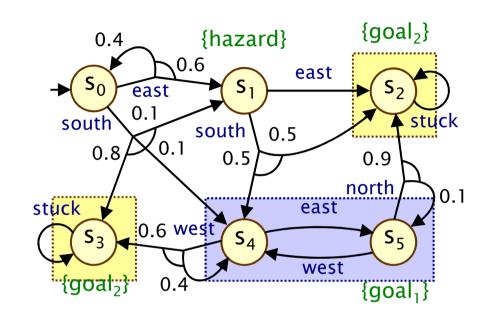
- 2. Numerical computation
 - compute probabilities Pr_s^{max}(F b)
 - for remaining states in $S^{?}$ = S \setminus (S^{yes} \cup S^{no})
 - obtained as the unique solution of the linear programming (LP) problem:

minimize $\sum_{s \in S^{?}} x_{s}$ subject to the constraints: $x_{s} \ge \sum_{s' \in S^{?}} \delta(s,a)(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \delta(s,a)(s')$ for all $s \in S^{?}$ and for all $a \in A(s)$

This can be solved with standard techniques

 e.g. Simplex, ellipsoid method, branch-and-cut

Example – Reachability (LP)



Example: $P_{\geq 0.4}$ [F goal₁]

So compute: Pr_s^{max}(F goal₁) Let $x_i = Pr_{s_i}^{max}(F \text{ goal}_1)$

Syes:
$$x_4 = x_5 = 1$$

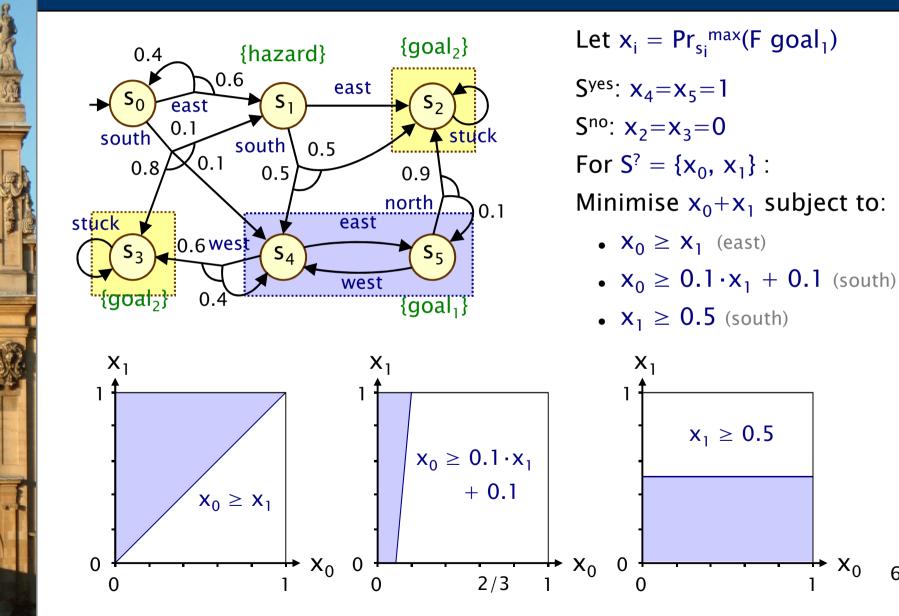
S^{no}:
$$x_2 = x_3 = 0$$

For $S^{?} = \{x_{0}, x_{1}\}$:

Minimise $x_0 + x_1$ subject to:

- $x_0 \ge 0.4 \cdot x_0 + 0.6 \cdot x_1$ (east)
- $x_0 \ge 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \ge 0.5$ (south)
- $x_1 \ge 0$ (east)

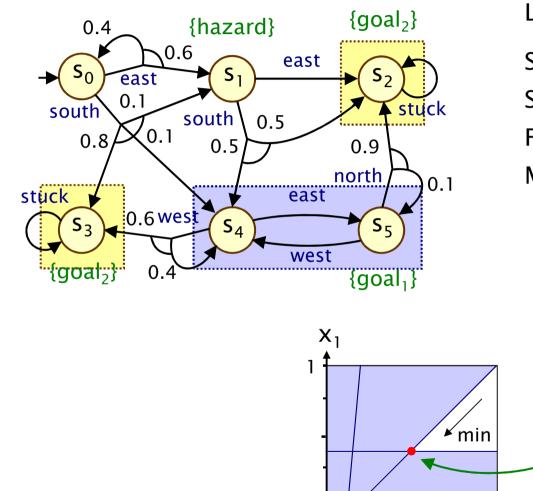
Example – Reachability (LP)



 X_0

68

Example – Reachability (LP)

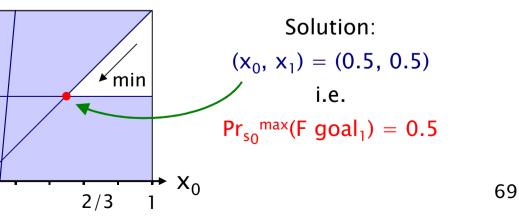


0

0

Let $x_i = Pr_{s_i}^{max}(F \text{ goal}_1)$ $S^{yes}: x_4 = x_5 = 1$ $S^{no}: x_2 = x_3 = 0$ For $S^? = \{x_0, x_1\}$: Minimise $x_0 + x_1$ subject to: • $x_0 \ge x_1$

- $x_0 \ge 0.1 \cdot x_1 + 0.1$
- $x_1 \ge 0.5$



Reachability for MDPs

- 2. Numerical computation (alternative method)
 - value iteration

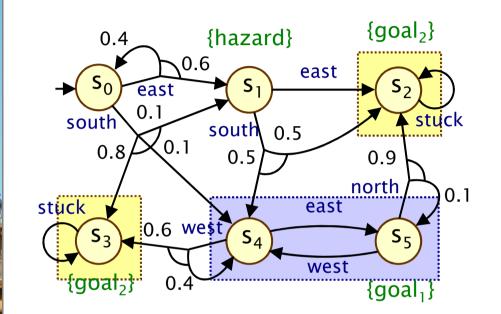
٢

- it can be shown that: $Pr_s^{max}(F b) = \lim_{n \to \infty} x_s^{(n)}$ where:

$$X_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{no} \\ 0 & \text{if } s \in S^{?} \text{ and } n = 0 \\ \max\left\{\sum_{s' \in S} \delta(s, a)(s') \cdot x_{s'}^{(n-1)} \mid a \in A(s)\right\} & \text{if } s \in S^{?} \text{ and } n > 0 \end{cases}$$

- Approximate iterative solution technique
 - iterations terminated when solution converges sufficiently

Example – Reachability (val. iter.)



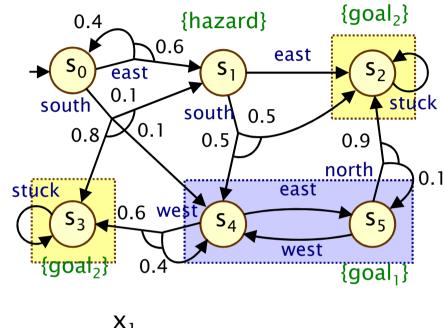
Compute: Pr_s^{max}(F goal₁)

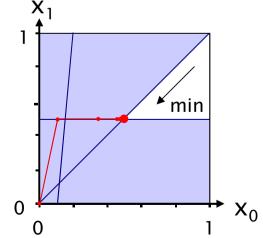
Sves: $x_4 = x_5 = 1$ Sno: $x_2 = x_3 = 0$ S[?] = { x_0, x_1 }

 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, x_4^{(n)}, x_5^{(n)}]$ n=0: [0, 0, 0, 0, 1, 1] n=1: [max(0.6.0+0.4.0, 0.1.0+0.1.1+0.8.0), max(0, 0.5), 0, 0, 1, 1] = [0.1, 0.5, 0, 0, 1, 1] n=2: [max(0.6.0.5+0.4.0.1, 0.1.0.5+0.1.1+0.8.0), max(0, 0.5), 0, 0, 1, 1] = [0.34, 0.5, 0, 0, 1, 1]

71

Example – Reachability (val. iter.)





 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, x_4^{(n)}, x_5^{(n)}]$

- n=0: [0, 0, 0, 0, 1, 1]
- n=1: [0.1, 0.5, 0, 0, 1, 1]
- n=2: [0.34, 0.5, 0, 0, 1, 1]
- n=3: [0.436, 0.5, 0, 0, 1, 1]
- n=4: [0.4744, 0.5, 0, 0, 1, 1]
- n=5: [0.48976, 0.5, 0, 0, 1, 1]
- n=6: [0.495904, 0.5, 0, 0, 1, 1]
- n=7: [0.4983616, 0.5, 0, 0, 1, 1]
- n=8: [0.49934464, 0.5, 0, 0, 1, 1]
- n=16: [0.49999957, 0.5, 0, 0, 1, 1]
- n=17: [0.49999982, 0.5, 0, 0, 1, 1]

 \approx [0.5 0.5, 0, 0, 1, 1]

Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability
 - i.e. there exist memoryless strategies σ_{min} & σ_{max} such that:
 - $Prob^{\sigma_{min}}(s,\,F\,a)$ = $p_{min}(s,\,F\,a)\,$ for all states $s\in S$
 - $Prob^{\sigma_{max}}(s,\,F\,a)$ = $p_{max}(s,\,F\,a)\,$ for all states $s\in S$
- Construct strategies from optimal solution:

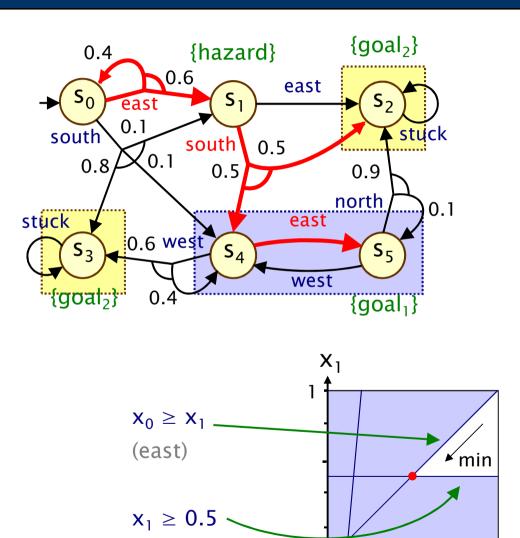
$$\sigma_{\min}(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\min}(s', Fa) \mid (a, \mu) \in \operatorname{Steps}(s) \right\}$$

$$\sigma_{\max}(s) = \operatorname{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\max}(s', Fa) \mid (a, \mu) \in \operatorname{Steps}(s) \right\}$$

Strategy synthesis

- Compute optimal probabilities $\text{Pr}_s^{\text{max}}(F \text{ b})$ for all $s \in S$
- To compute the optimal strategy σ^* , choose the locally optimal action in each state
 - in general depends on the method used to compute the optimal probabilities
- For reachability
 - memoryless strategies suffice
- For step-bounded reachability
 - need finite-memory strategies
 - typically requires backward computation for a fixed number of steps

Example – Strategy



0

0

(south)

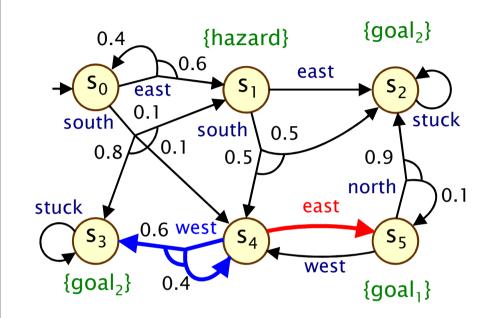
Optimal strategy: s₀ : east s₁ : south s₂ : s₃ : s₄ : east

s₅ : -

X₀

2/3

Example – Bounded reachability



Example: $P_{max=?}$ [$F^{\leq 3}$ goal₂]

So compute: $Pr_s^{max}(F^{\leq 3} \text{ goal}_2) = 0.99$

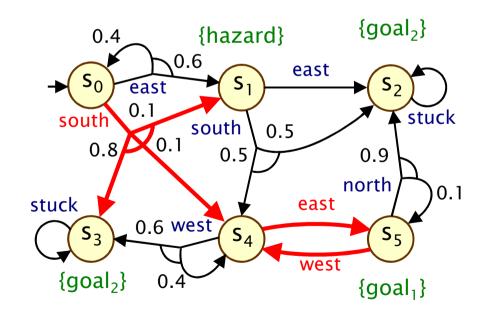
Optimal strategy is finite-memory: s₄ (after 1 step): east s₄ (after 2 steps): west

Strategy synthesis for LTL objectives

- Reduce to the problem of reachability on the product of MDP M and an omega-automaton representing ψ
 - for example, deterministic Rabin automaton (DRA)
- Need only consider computation of maximum probabilities $Pr_s^{max}(\psi)$
 - since $Pr_s^{min}(\psi) = 1 Pr_s^{max}(\neg \psi)$
- To compute the optimal strategy σ^{\ast}
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy with one mode for each state of the DRA for ψ

Example – LTL

- $P_{\geq 0.05}$ [(G \neg hazard) \land (GF goal₁)]
 - avoid hazard and visit $goal_1$ infinitely often
- $Pr_{s_0}^{max}((G \neg hazard) \land (GF goal_1)) = 0.1$

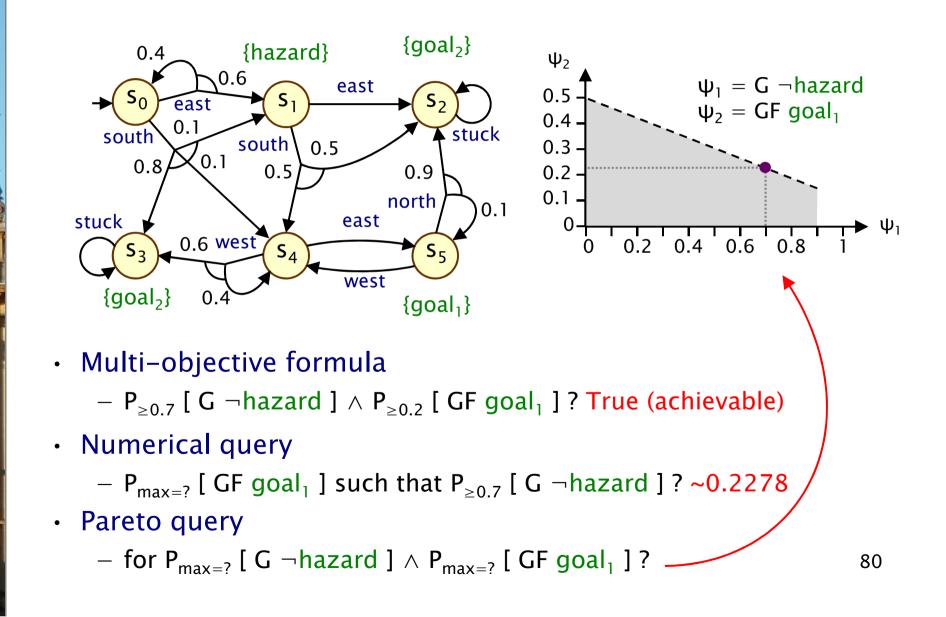


Optimal strategy: (in this instance, memoryless) s_0 : south s_1 : s_2 : s_3 : s_4 : east s_5 : west

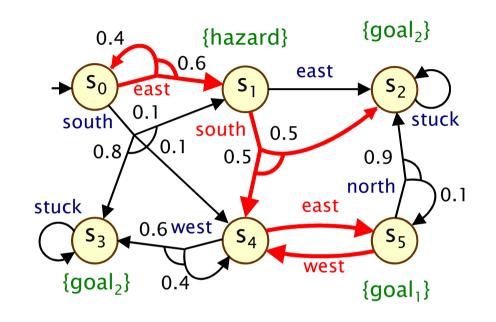
Multi-objective strategy synthesis

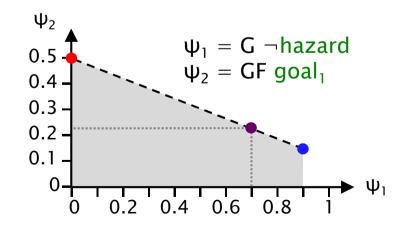
- Consider conjunctions of probabilistic LTL formulas $P_{\sim p}$ [ψ]
 - require all conjuncts to be satisfied
- Reduce to a multi-objective reachability problem on the product of MDP M and the omega-automata representing the conjuncts
 - convert (by negation) to formulas with upper probability bounds (\geq , >), then to DRA
 - need to consider all combinations of objectives
- The problem can be solved using LP methods [TACAS07] or via approximations to Pareto curve [ATVA12]
 - strategies may be finite memory and randomised
- Continue as for single-objectives to compute the strategy σ^{\ast}
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy

Example - Multi-objective



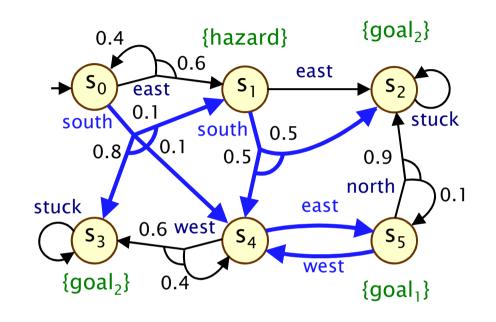
Example – Multi–objective strategies

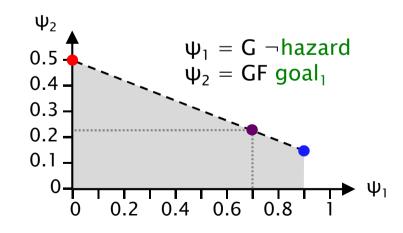




Strategy 1 (deterministic) s_0 : east s_1 : south s_2 : s_3 : s_4 : east s_5 : west

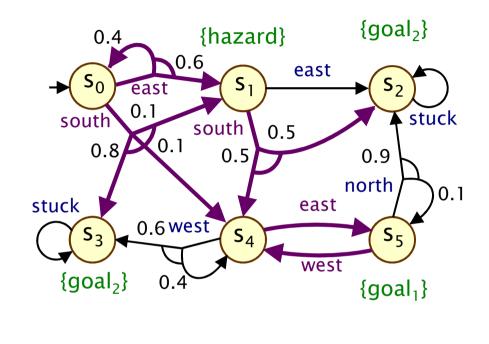
Example – Multi–objective strategies

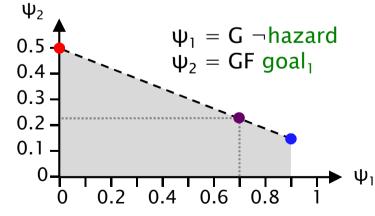




Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

Example – Multi–objective strategies





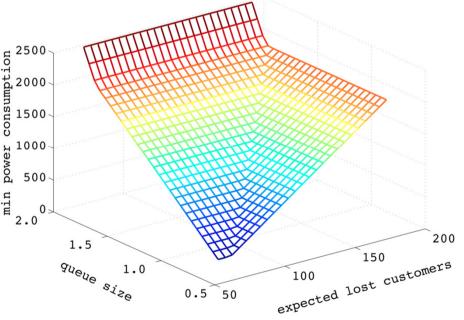
Optimal strategy: (randomised) $s_0 : 0.3226 : east$ 0.6774 : south $s_1 : 1.0 : south$ $s_2 :$ $s_3 :$ $s_4 : 1.0 : east$ $s_5 : 1.0 : west$

Case study: Dynamic power management

- Synthesis of dynamic power management schemes
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlelp, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

Build controllers that

- minimise energy consumption, subject to constraints on e.g.
- probability that a request waits more than K steps
- expected number of lost disk requests



See: lab and http://www.prismmodelchecker.org/files/tacas11/

Summary (Part 2)

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all strategies
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Strategy synthesis
 - can reuse model checking algorithms

PRISM: Recent & new developments

New features:

- 1. parametric model checking
- 2. strategy synthesis
- 3. real-time: probabilistic timed automata (PTAs)

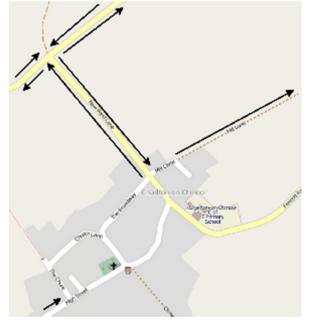
Further new additions:

- enhanced statistical model checking (approximations + confidence intervals, acceptance sampling)
- efficient CTMC model checking (fast adaptive uniformisation)
- benchmark suite & testing functionality
- <u>www.prismmodelchecker.org</u>
- Beyond PRISM...

Case study: Autonomous urban driving

Inspired by DARPA challenge

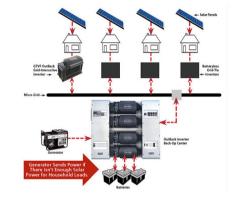
- represent map data as a stochastic game, with environment able to select hazards
- express goals as conjunctions of probabilistic and reward properties
- e.g. "maximise probability of avoiding hazards and minimise time to reach destination"
- Solution (PRISM-games)
 - synthesise a probabilistic strategy to achieve the multi-objective goal

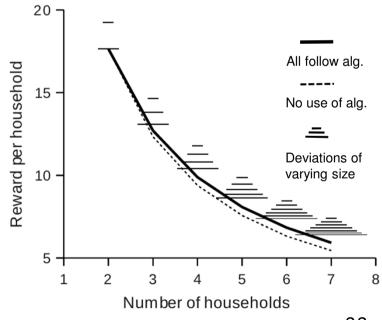


- enable the exploration of trade-offs between subgoals
- Applied to synthesise driving strategies for English villages
 - being developed in PRISM-games

Case study: Energy management

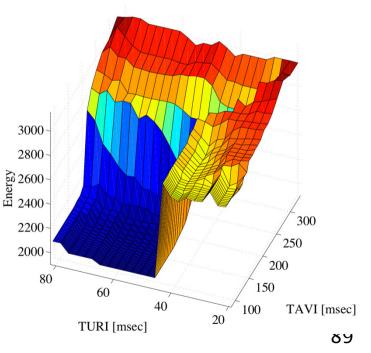
- Energy management protocol for Microgrid
 - Microgrid: local energy management
 - randomised demand management protocol [Hildmann/Saffre'11]
 - probability: randomisation, demand model, ...
- Existing analysis
 - simulation-based
 - assumes all clients are unselfish
- Our analysis
 - stochastic multi-player game
 - clients can cheat (and cooperate)
 - exposes protocol weakness
 - propose/verify simple fix





Case study: Cardiac pacemaker

- Develop model-based framework
 - timed automata model for pacemaker software [Jiang et al]
 - hybrid heart models in Simulink, adopt synthetic ECG model (non-linear ODE) [Clifford et al]
- Properties
 - (basic safety) maintain
 60-100 beats per minute
 - (advanced) detailed analysis
 energy usage, plotted against timing parameters of the pacemaker
 - parameter synthesis: find values for timing delays that optimise energy usage



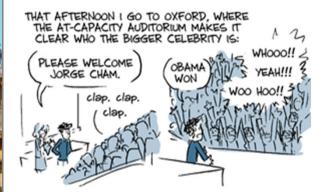
Acknowledgements

- My group and collaborators in this work
- Project funding
 - ERC, EPSRC, Microsoft Research
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - VERWARE <u>www.veriware.org</u>
 - PRISM www.prismmodelchecker.org

PhD Comics and Oxford...

PHD TALES FROM THE "2nd Desserts"

JORGE CHAM @ 2008



- You are welcome to visit Oxford!
- PhD scholarships, postdocs in verification and synthesis, and more