
Probabilistic model checking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Gran Sasso Science Institute, L’Aquila, June 2015

2

What is probabilistic model checking?

• Probabilistic model checking (aka
probabilistic/quantitative verification)…

− is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

3

Why formal verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps
(2010)

Patients die because
of incorrect dosage.

Cause: software
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

4

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

5

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

6

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

7

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

8

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

9

Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements:

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy?

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?

10

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

11

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

12

Course material

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/gran-sasso15/

• Reading

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

• See also

− 20 lecture course taught at Oxford

− http://www.prismmodelchecker.org/lectures/pmc/

• PRISM website www.prismmodelchecker.org

Discrete-time Markov chains

Part 1

14

Overview (Part 1)

• Introduction

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case studies: Bluetooth, DNA programming

• Summary

15

Probability example

• Modelling a 6-sided die using a fair coin

− algorithm due to Knuth/Yao:

− start at 0, toss a coin

− upper branch when H

− lower branch when T

− repeat until value chosen

• Is this algorithm correct?

− e.g. probability of obtaining a 4?

− obtain as disjoint union of events

− THH, TTTHH, TTTTTHH, …

− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

0

3

2

1

6

4

5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

16

Example…

• Other properties?

− “what is the probability of termination?”

• e.g. efficiency?

− “what is the probability of needing
more than 4 coin tosses?”

− “on average, how many
coin tosses are needed?”

• Probabilistic model checking provides a framework for
these kinds of properties…

− modelling languages

− property specification languages

− model checking algorithms, techniques and tools

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

17

Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

18

Simple DTMC example

• Modelling a very simple communication protocol

− after one step, process starts trying to send a message

− with probability 0.01, channel unready so wait a step

− with probability 0.98, send message successfully and stop

− with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

19

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,P,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− P : S × S → [0,1] is the transition probability matrix

where Σs’∈S P(s,s’) = 1 for all s ∈ S

− L : S → 2AP is function labelling states with atomic
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− can add self loops to represent

final/terminating states

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

20

Simple DTMC example

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

D = (S,sinit,P,L)

S = {s0, s1, s2, s3}
sinit = s0



















=

1000

0001

98.001.001.00

0010

P

AP = {try, fail, succ}
L(s0)=∅,
L(s1)={try},
L(s2)={fail},
L(s3)={succ}

21

Some more terminology

• P is a stochastic matrix, meaning it satisifes:

− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S

• A sub-stochastic matrix satisfies:

− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S

• An absorbing state is a state s for which:

− P(s,s) = 1 and P(s,s’) = 0 for all s≠s’

− the transition from s to itself is sometimes called a self-loop

• Note: Since we assume P is stochastic…

− every state has at least one outgoing transition

− i.e. no deadlocks (in model checking terminology)

22

DTMCs: An alternative definition

• Alternative definition… a DTMC is:

− a family of random variables { X(k) | k=0,1,2,… }

− where X(k) are observations at discrete time-steps

− i.e. X(k) is the state of the system at time-step k

− which satisfies…

• The Markov property (“memorylessness”)

− Pr(X(k)=sk | X(k-1)=sk-1, … , X(0)=s0)

= Pr(X(k)=sk | X(k-1)=sk-1)

− for a given current state, future states are independent of past

• This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

23

Other assumptions made here

• We consider time-homogenous DTMCs

− transition probabilities are independent of time

− P(sk-1,sk) = Pr(X(k)=sk | X(k-1)=sk-1)

− otherwise: time-inhomogenous

• We will (mostly) assume that the state space S is finite

− in general, S can be any countable set

• Initial state sinit ∈ S can be generalised…

− to an initial probability distribution sinit : S → [0,1]

• Focus on path-based properties

− rather than steady-state

24

Paths and probabilities

• A (finite or infinite) path through a DTMC

− is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s

25

Probability spaces

• Let Ω be an arbitrary non-empty set

• A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω
closed under complementation and countable union, i.e.:

− if A ∈ Σ, the complement Ω ∖ A is in Σ

− if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ

− the empty set ∅ is in Σ

• Theorem: For any family F of subsets of Ω, there exists a
unique smallest σ-algebra on Ω containing F

• Probability space (Ω, Σ, Pr)

− Ω is the sample space

− Σ is the set of events: σ-algebra on Ω

− Pr : Σ → [0,1] is the probability measure:

Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

26

Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all
finite paths ω starting in s

• Probability measure Prs

− define probability Ps(ω) for finite path ω = ss1…sn as:

• Ps(ω) = 1 if ω has length one (i.e. ω = s)

• Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise

• define Prs(C(ω)) = Ps(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details

27

Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− Ps0(ω) = P(s0,s1) · P(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = Ps0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

= Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898…

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

28

Reachability

• Key property: probabilistic reachability

− probability of a path reaching a state in some target set T ⊆ S

− e.g. “probability of the algorithm terminating successfully?”

− e.g. “probability that an error occurs during execution?”

• Dual of reachability: invariance

− probability of remaining within some class of states

− Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”)

− e.g. “probability that an error never occurs”

• We will also consider other variants of reachability

− time-bounded, constrained (“until”), …

29

Reachability probabilities

• Formally: ProbReach(s, T) = Prs(Reach(s, T))

− where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i }

• Is Reach(s, T) measurable for any T ⊆ S ? Yes…

− Reach(s, T) is the union of all basic cylinders
Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T)

− Reachfin(s, T) contains all finite paths s0s1…sn such that:
s0=s, s0,…,sn-1 ∉ T, sn ∈ T (reaches T first time)

− set of such finite paths s0s1…sn is countable

• Probability

− in fact, the above is a disjoint union

− so probability obtained by simply summing…

30

Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:

− ProbReach(s0, {4})

= Prs0(Reach(s0, {4}))

− Finite path fragments:

− s0(s2s6)
ns2s54 for n ≥ 0

− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

31

Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:

− ProbReach(s0, {4})

= Prs0(Reach(s0, {4}))

− Finite path fragments:

− s0(s2s6)
ns2s54 for n ≥ 0

− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

32

Computing reachability probabilities

• Alternative: derive a linear equation system

− solve for all states simultaneously

− i.e. compute vector ProbReach(T)

• Let xs denote ProbReach(s, T)

• Solve:

xs =

1

0

P (s, s') ⋅ xs'

s'∈S

∑

if s ∈ T

if T is not reachable from s

otherwise













33

Example

• Compute ProbReach(s0, {4})

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

34

Unique solutions

• Why the need to identify states that cannot reach T?

• Consider this simple DTMC:

− compute probability of reaching {s0} from s1

− linear equation system: xs0
= 1, xs1

= xs1

− multiple solutions: (xs0
, xs1

) = (1,p) for any p ∈ [0,1]

s1s0 1

1

35

Bounded reachability probabilities

• Probability of reaching T from s within k steps

• Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where:

− Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k }

• ProbReach≤k(T) = x(k+1) from the previous fixed point

− which gives us…

ProbReach≤k(s, T) =

1

0

P(s,s')⋅ ProbReach≤k-1(s' , T)
s'∈S

∑

if s ∈ T

if k = 0 & s ∉ T

if k > 0 & s ∉ T













36

(Bounded) reachability

• ProbReach(s0, {1,2,3,4,5,6}) = 1

• ProbReach≤k (s0, {1,2,3,4,5,6}) = …

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

37

Qualitative properties

• Quantitative properties:

− “what is the probability of event A?”

• Qualititative properties:

− “the probability of event A is 1” (“almost surely A”)

− or: “the probability of event A is > 0” (“possibly A”)

• For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph

− e.g. to determine “is target set T reached with probability 1?”
(see DTMC model checking later)

38

Aside: Infinite Markov chains

• Infinite-state random walk

• Value of probability p does affect qualitative properties

− ProbReach(s, {s0}) = 1 if p ≤ 0.5

− ProbReach(s, {s0}) < 1 if p > 0.5

s1s0
1-p

p

s2

1-p

p

s3

1-p

p

• •
•1-p

39

Temporal logic

• Temporal logic

− formal language for specifying and reasoning about how the
behaviour of a system changes over time

− defined over paths, i.e. sequences of states s0s1s2s3… such
that P(si,si+1) > 0 ∀i

• Logics used in this course are probabilistic extensions of
temporal logics devised for non-probabilistic systems (CTL,
LTL)

− So we revert briefly to (labelled) state-transition diagrams

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1s0

s2

s3

{fail}

{succ}

{try}

40

CTL semantics

• Intuitive semantics:

− of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red
E [yellow U red]

AF red AG red A [yellow U red]

40

41

PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

42

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

43

PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC (S,sinit,P,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples

− s3 ⊨ succ

− s1 ⊨ try ∧ ¬fail
s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

44

PCTL semantics for DTMCs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the DTMC:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

45

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

− example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

− formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

46

More PCTL…

• Usual temporal logic equivalences:

− false ≡ ¬true (false)

− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)

− φ1 → φ2 ≡ ¬φ1 ∨ φ2 (implication)

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

− bounded variants: F≤k φ, G≤k φ

• Negation and probabilities

− e.g. ¬P>p [φ1 U φ2] ≡ P≤p [φ1 U φ2]

− e.g. P>p [G φ] ≡ P<1-p [F ¬φ]

47

Quantitative properties

• Consider a PCTL formula P~p [ψ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ψ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [F err/total>0.1]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

48

Reachability and invariance

• Derived temporal operators, like CTL…

• Probabilistic reachability: P~p [F φ]

− the probability of reaching a state satisfying φ

− F φ ≡ true U φ

− “φ is eventually true”

− bounded version: F≤k φ ≡ true U≤k φ

• Probabilistic invariance: P~p [G φ]

− the probability of φ always remaining true

− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)

− “φ is always true”

− bounded version: G≤k φ ≡ ¬(F≤k ¬φ)

strictly speaking,
G φ cannot be
derived from the
PCTL syntax in
this way since
there is no
negation of path
formulae

49

Qualitative vs. quantitative properties

• P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

• Qualitative PCTL properties

− P~p [ψ] where p is either 0 or 1

• Quantitative PCTL properties

− P~p [ψ] where p is in the range (0,1)

• P>0 [F φ] is identical to EF φ

− there exists a finite path to a φ-state

• P≥1 [F φ] is (similar to but) weaker than AF φ

− a φ-state is reached “almost surely”

− see next slide…

50

Example: Qualitative/quantitative

• Toss a coin repeatedly until “tails” is thrown

• Is “tails” always eventually thrown?

− CTL: AF “tails”

− Result: false

− Counterexample: s0s1s0s1s0s1…

• Does the probability of eventually
throwing “tails” equal one?

− PCTL: P≥1 [F “tails”]

− Result: true

− Infinite path s0s1s0s1s0s1… has zero probability

s0

s1

s2

0.5

0.5

1

1

{heads}

{tails}

51

Overview (Part 1)

• Introduction

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case studies: Bluetooth, DNA programming

• Summary

52

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs: DTMC D=(S,sinit,P,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [F error]

− e.g. compute result of P=? [F≤k error] for 0≤k≤100

53

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

54

Probability computation

• Three temporal operators to consider:

• Next: P~p[X φ]

• Bounded until: P~p[φ1 U≤k φ2] (omitted)

− adaptation of bounded reachability for DTMCs

• Until: P~p[φ1 U φ2]

− adaptation of reachability for DTMCs

− graph-based “precomputation” algorithms

− techniques for solving large linear equation systems

55

PCTL next for DTMCs

• Computation of probabilities for PCTL next operator

− Sat(P~p[X φ]) = { s ∈ S | Prob(s, X φ) ~ p }

− need to compute Prob(s, X φ) for all s ∈ S

• Sum outgoing probabilities for
transitions to φ-states

− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• Compute vector Prob(X φ) of
probabilities for all states s

− Prob(X φ) = P · φ

− where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ

− computation requires a single matrix-vector multiplication

s

φ

56

PCTL next - Example

• Model check: P≥0.9 [X (¬try ∨ succ)]

− Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

− Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

• Results:

− Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]

− Sat(P≥0.9 [X (¬try ∨ succ)]) = {s1, s2, s3}



















=



















⋅



















=

1

1

0.99

0

1

1

0

1

1000

0001

0.980.010.010

0010

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

57

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])

− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve linear equation system for remaining states

• Running example:

P>0.8 [¬a U b] 0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9

1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5

58

Precomputation

• We refer to the first phase (identifying sets Syes and Sno) as
“precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− ensures unique solution to linear equation system

• only need Prob0 for uniqueness, Prob1 is optional

− reduces the set of states for which probabilities must be
computed numerically

− gives exact results for the states in Syes and Sno (no round-off)

− for model checking of qualitative properties (P~p[·] where p is
0 or 1), no further computation required

59

Sno = Sat(P≤0 [¬a U b])

0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9

0.1

Sat(P>0 [¬a U b])Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :

− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])

− i.e. find all states which can, with non-zero probability, reach
a φ2-state without leaving φ1-states

− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:

P>0.8 [¬a U b]

1

a

b
s0

s1 s3

s2 s4

s5

60

Syes =

Sat(P≥1 [¬a U b])

Sat(P<1 [¬a U b])Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :

− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation

− subtract the resulting set from S

Example:

P>0.8 [¬a U b]

1

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

0.1

0.5
s0

s1 s3

s2 s4

s5

61

PCTL until - linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations

− essentially the same as for probabilistic reachability

• Can also be reduced to a system in |S?| unknowns instead
of |S| where S? = S \ (Syes ∪ Sno)

Prob(s, φ1 U φ2) =

1

0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑













if s ∈ Syes

if s ∈ Sno

otherwise

62

PCTL until - linear equations

• Example: P>0.8 [¬a U b]

• Let xi = Prob(si, ¬a U b)

x1 = x3 = 0

x4 = x5 = 1

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x0 = 0.1x1+0.9x2 = 0.8

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b])

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

s0

s1 s3

s2 s4

s5

63

PCTL Until – Example 2

• Example: P>0.5 [G¬b]

• Prob(si, G¬b)
= 1 - Prob(si, ¬(G¬b))
= 1 - Prob(si, F b)

• Let xi = Prob(si, F b)

x3 = 0 and x4 = x5 = 1

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x1 = 0.6x3+0.4x0 = 0.4x0

x0 = 0.1x1+0.9x2 = 5/6 and x1= 1/3

Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]

Sat(P>0.5 [G¬b]) = { s1,s3 }

Sno = Sat(P≤0 [F b])

Syes =

Sat(P≥1 [F b])

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5

s0

s1 s3

s2 s4

s5

64

Linear equation systems

• Solution of large (sparse) linear equation systems

− size of system (number of variables) typically O(|S|)

− state space S gets very large in practice

• Two main classes of solution methods:

− direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

− iterative methods, e.g. Power, Jacobi, Gauss-Seidel, …

− the latter are preferred in practice due to scalability

• General form: A·x = b

− indexed over integers,

− i.e. assume S = { 0,1,…,|S|-1 }

65

PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity:

− linear in |Φ| and polynomial in |S|

66

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

− supported by PRISM

− (not covered in this lecture)

• Another direction: extend DTMCs with costs and rewards…

67

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we will consistently use the terminology “rewards” regardless

68

Reward-based properties

• Properties of DTMCs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

69

DTMC reward structures

• For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of
jobs in the queue in that state, ι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ι is zero

(equivalently, ρ is zero and ι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ι as the energy cost of

each transition

70

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

71

Types of reward formulas

• Instantaneous: R~r [I=k]

− “the expected value of the state reward at time-step k is ~r”

− e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]

− “the expected reward cumulated up to time-step k is ~r”

− e.g. “the expected power consumption over one hour”

• Reachability: R~r [F φ]

− “the expected reward cumulated before reaching a state
satisfying φ is ~r”

− e.g. “the expected time for the algorithm to terminate”

72

Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r

− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r

− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs

73

Reward formula semantics

• Definition of random variables:

− for an infinite path ω= s0s1s2…

− where kφ =min{ j | sj ⊨ φ }

 otherwise

0k if

)s,s()s(ρ

0
)ω(X 1k

0i 1iii
kC

=

+



=
∑

−

= +

≤ ι

)s(ρ)ω(X kkI ==

otherwise

 0i all for)φSat(s if

)φSat(s if

)s,s()s(ρ

0

)ω(X i

0

1-k

0i 1iii

φF

φ

≥∉

∈

+

∞










=

∑ = +ι

74

Model checking reward properties

• Instantaneous: R~r [I=k]

• Cumulative: R~r [C≤k]

− variant of the method for computing bounded until
probabilities

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL

75

Overview (Part 1)

• Introduction

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case studies: Bluetooth, DNA programming

• Summary

76

PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…

− discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, …

• Simple but flexible high-level modelling language

− based on guarded commands; see later…

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

77

PRISM…

• Model checking for various temporal logics…

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

− quantitative extensions, costs/rewards, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …

78

PRISM modelling language

• Simple, textual, state-based modelling language

− used for all probabilistic models supported by PRISM

− based on Reactive Modules [AH99]

• Language basics

− system built as parallel composition of interacting modules

− state of each module given by finite-ranging variables

− behaviour of each module specified by guarded commands

• annotated with probabilities/rates and (optional) action label

− transitions are associated with state-dependent probabilities

− interactions between modules through synchronisation

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

79

Simple example

dtmc

module M1

x : [0..3] init 0;

[a] x=0 -> (x’=1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’=3);

endmodule

module M2

y : [0..3] init 0;

[a] y=0 -> (y’=1);

[b] y=1 -> 0.4 : (y’=2) + 0.6 : (y’=3);

endmodule

80

Probabilistic models

dtmc

module die

// local state s : [0..7] init 0;

// value of the dice d : [0..6] init 0;

[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);

…

[] s=3 ->

0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);

[] s=4 ->

0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

…

[] s=7 -> (s'=7);

endmodule

rewards "coin_flips"

[] s<7 : 1;

endrewards

Given in PRISM’s guarded commands modelling notation

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

81

Probabilistic models

int s, d;

s = 0; d = 0;

while (s < 7) {

bool coin = Bernoulli(0.5);

if (s = 0)

if (coin) s = 1 else s = 2;

...

else if (s = 3)

if (coin) s = 1 else {s = 7; d = 1;}

else if (s = 4)

if (coin) {s = 7; d = 2} else {s = 7; d = 3;}

…

}

return (d)

Given as a probabilistic program

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

82

Costs and rewards

• We augment models with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we consistently use the terminology “rewards” regardless

• Properties (see later)

− reason about expected cumulative/instantaneous reward

83

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

rewards “total_queue_size”
true : queue1+queue2;

endrewards

rewards “time”
true : 1;

endrewards

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;
[wake] true : 3.2;

endrewards

rewards "dropped"
[receive] q=q_max : 1;

endrewards

84

PRISM – Property specification

• Temporal logic-based property specification language

− subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”

− S>0.999 [“up”] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [F “crash”]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary

85

PRISM – Property specification

• Properties can combine numerical + exhaustive aspects

− Pmax=? [F≤10 “fail”] – “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators

− e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

86

PRISM GUI: Editing a model

87

PRISM GUI: The Simulator

88

PRISM GUI: Model checking and graphs

89

PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies

90

Case study: Bluetooth device discovery

• Bluetooth: short-range low-power wireless protocol

− widely available in phones, PDAs, laptops, ...

− open standard, specification freely available

• Uses frequency hopping scheme

− to avoid interference (uses unregulated 2.4GHz band)

− pseudo-random selection over 32 of 79 frequencies

• Formation of personal area networks (PANs)

− piconets (1 master, up to 7 slaves)

− self-configuring: devices discover themselves

• Device discovery

− mandatory first step before any communication possible

− relatively high power consumption so performance is crucial

− master looks for devices, slaves listens for master

91

Master (sender) behaviour

• 28 bit free-running clock CLK, ticks every 312.5µs

• Frequency hopping sequence determined by clock:

− freq = [CLK16-12+k+ (CLK4-2,0-
CLK16-12) mod 16] mod 32

− 2 trains of 16 frequencies
(determined by offset k),
128 times each, swap between
every 2.56s

• Broadcasts “inquiry packets” on
two consecutive frequencies,
then listens on the same two

92

Slave (receiver) behaviour

• Listens (scans) on frequencies for inquiry packets

− must listen on right frequency at right time

− cycles through frequency sequence at much slower speed
(every 1.28s)

• On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

− avoid repeated collisions with other slaves

93

Bluetooth – PRISM model

• Modelled/analysed using PRISM model checker [DKNP06]

− model scenario with one sender and one receiver

− synchronous (clock speed defined by Bluetooth spec)

− model at lowest-level (one clock-tick = one transition)

− randomised behaviour so model as a DTMC

− use real values for delays, etc. from Bluetooth spec

• Modelling challenges

− complex interaction between sender/receiver

− combination of short/long time-scales – cannot scale down

− sender/receiver not initially synchronised, so huge number of
possible initial configurations (17,179,869,184)

94

Bluetooth - Results

• Huge DTMC – initially, model checking infeasible

− partition into 32 scenarios, i.e. 32 separate DTMCs

− on average, approx. 3.4 x 109 states (536,870,912 initial)

− can be built/analysed with PRISM's MTBDD engine

• We compute:

− R=? [F replies=K {“init”}{max}]

− “worst-case expected time to hear K replies over all possible
initial configurations”

• Also look at:

− how many initial states for each possible expected time

− cumulative distribution function (CDF) for time, assuming
equal probability for each initial state

95

Bluetooth - Time to hear 1 reply

• Worst-case expected time = 2.5716 sec

− in 921,600 possible initial states

− best-case = 635 µs

96

Bluetooth - Time to hear 2 replies

• Worst-case expected time = 5.177 sec

− in 444 possible initial states

− compare actual CDF with derived version which assumes times
to reply to first/second messages are independent

97

Beyond DTMCs

• Continuous-time Markov chains

− transitions taken
with real-valued
rate (parameter of
exponential distribution)

− suitable for reliability,
availability, performance modelling

• Temporal logic CSL – similar to PCTL, except real-valued
time

− P=? [F[4,5.6] outOfPower] - the (transient) probability of being
out of power in time interval of 4 to 5.6 time units

− S=? [minQoS] – the steady-state probability of satisfying
minimum QoS

− R<10 [C≤5] – cumulated reward up to time 5 is less than 10

• Model checking via discretisation (uniformisation)

s
1

s
0

3/2

1

{full}{empty}

s
2

s
3

3/2 3/2

333

98

DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− probability essential!

99

Case study: DNA programming

• DNA: easily accessible, cheap to synthesise information
processing material

• DNA Strand Displacement language, induces CTMC models

− for designing DNA circuits [Cardelli, Phillips, et al.]

− accompanying software tool for analysis/simulation

− now extended to include auto-generation of PRISM models

• Transducer: converts input <t^ x> into output <y t^>

• Formalising correctness: does it finish successfully?…

− A [G "deadlock" => "all_done"]

− E [F "all_done"] (CTL, but probabilistic also…)

100

Transducer flaw

• PRISM identifies a 5-step trace to the
“bad” deadlock state

− problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

101

Summary (Part 1)

• Discrete-time Markov chains (DTMCs)

− state transition systems + discrete probabilistic choice

− probability space over paths through a DTMC

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL, LTL

− also: expected value of costs/rewards

• Model checking algorithms

− combination of graph-based algorithms, numerical
computation, automata constructions

− also applicable to continuous-time Markov chains via
discretisation

• Case studies: Bluetooth and DNA computing

• Next: Markov decision processes (MDPs)

