Advances in Probabilistic Model Checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Marktoberdorf, August 2011
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs) (probabilistic automata)</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTMDPs/IMCs</td>
</tr>
</tbody>
</table>
Overview

• Lecture 4
 – Introduction
 – 1 – Discrete time Markov chains
 – 2 – Markov decision processes
 – 3 – Compositional probabilistic verification
 – 4 – Probabilistic timed automata

• Course materials available here:
 – http://www.prismmodelchecker.org/courses/marktoberdorf11/
 – lecture slides, reference list, exercises
Part 4

Probabilistic timed automata
Recap: MDPs

- **Markov decision processes (MDPs)**
 - mix probability and nondeterminism
 - in a state, there is a nondeterministic choice between multiple probability distributions over successor states

- **Adversaries**
 - resolve nondeterministic choices based on history so far
 - properties quantify over all possible adversaries
 - e.g. $P_{<0.1}[\Diamond \text{err}]$ – maximum probability of an error is < 0.1
Real-world protocol examples

- Systems with probability, nondeterminism and real-time
 - e.g. communication protocols, randomised security protocols

- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)

- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire

- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)

- Random choice of a destination
 - Crowds anonymity, gossip-based routing
Overview (Part 4)

- Time, clocks and zones

- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence

- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics

- Model checking for PTAs
 - the region graph
 - digital clocks
• **Dense time domain:** non-negative reals $\mathbb{R}_{\geq 0}$
 – from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}

• **Finite set of clocks** $x \in X$
 – variables taking values from time domain \mathbb{R}
 – increase at the same rate as real time

• **A clock valuation is a tuple** $v \in \mathbb{R}^X$. Some notation:
 – $v(x)$: value of clock x in v
 – $v+t$: time increment of t for v
 - $(v+t)(x) = v(x)+t \quad \forall x \in X$
 – $v[Y:=0]$: clock reset of clocks $Y \subseteq X$ in v
 - $v[Y:=0](x) = 0$ if $x \in Y$ and $v(x)$ otherwise
Zones (clock constraints)

- **Zones (clock constraints)** over clocks \(X \), denoted \(\text{Zones}(X) \):

\[
\zeta ::= x \leq d \mid c \leq x \mid x + c \leq y + d \mid \neg \zeta \mid \zeta \lor \zeta
\]

- where \(x, y \in X \) and \(c, d \in \mathbb{N} \)
- used for both syntax of PTAs/properties and algorithms

- **Can derive:**
 - logical connectives, e.g. \(\zeta_1 \land \zeta_2 \equiv \neg (\neg \zeta_1 \lor \neg \zeta_2) \)
 - strict inequalities, through negation, e.g. \(x > 5 \equiv \neg (x \leq 5) \)...

- **Some useful classes of zones:**
 - closed: no strict inequalities (e.g. \(x > 5 \))
 - diagonal-free: no comparisons between clocks (e.g. \(x \leq y \))
 - convex: define a convex set, efficient to manipulate
Zones and clock valuations

• A clock valuation \(v \) satisfies a zone \(\zeta \), written \(v \triangleright \zeta \) if
 – \(\zeta \) resolves to true after substituting each clock \(x \) with \(v(x) \)

• The semantics of a zone \(\zeta \in \text{Zones}(X) \) is the set of clock valuations which satisfy it (i.e. a subset of \(\mathbb{R}^X \))
 – NB: multiple zones may have the same semantics
 – e.g. \((x \leq 2) \land (y \leq 1) \land (x \leq y + 2)\) and \((x \leq 2) \land (y \leq 1) \land (x \leq y + 3)\)

• We consider only canonical zones
 – i.e. zones for which the constraints are as ‘tight’ as possible
 – \(O(|X|^3) \) algorithm to compute (unique) canonical zone [Dil89]
 – allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any $x,y \in X$
 - either $v(x) = v'(x)$, or $v(x) > c$ and $v'(x) > c$
 - either $v(x) - v(y) = v'(x) - v'(y)$ or $v(x) - v(y) > c$ and $v'(x) - v'(y) > c$

- The c-closure of the zone ζ, denoted $\text{close}(\zeta,c)$, equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$,
 there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constraints which are greater than c
 - for a given c, there are only a finite number of c-closed zones
Operations on zones – Set theoretic

- Intersection of two zones: \(\zeta_1 \cap \zeta_2 \)
Operations on zones – Set theoretic

- Union of two zones: $\zeta_1 \cup \zeta_2$
Operations on zones – Set theoretic

- Difference of two zones: $\zeta_1 \setminus \zeta_2$
Operations on zones – Clock resets

• \(\zeta[Y:=0] = \{ v[Y:=0] \mid v \triangleright \zeta \} \)
 – clock valuations obtained from \(\zeta \) by resetting the clocks in \(Y \)
Operations on zones – Clock resets

- \([Y:=0] \zeta = \{ v \mid v[Y:=0] \supseteq \zeta \}\)
 - clock valuations which are in \(\zeta\) if the clocks in \(Y\) are reset
Operations on zones: Projections

- Forwards diagonal projection
- \(\rhd \zeta = \{ v \mid \exists t \geq 0 . (v-t) \rhd \zeta \} \)
 - contains the clock valuations that can be reached from \(\zeta \) by letting time pass
Operations on zones: Projections

• Backwards diagonal projection

\[\zeta' \zeta = \{ v | \exists t \geq 0 . ((v+t) \zeta \land \forall t' < t . ((v+t') \zeta'))) \} \]

contains the clock valuations that, by letting time pass, reach a clock valuation in \(\zeta \) and remain in \(\zeta' \) until \(\zeta \) is reached.
Operations on zones: \(c\)-closure

- \(c\)-closure: \(\text{close}(\zeta, c)\)
 - ignores all constraints which are greater than \(c\)
Overview (Part 4)

- Time, clocks and zones
- **Probabilistic timed automata (PTAs)**
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
Probabilistic timed automata (PTAs)

- **Probabilistic timed automata (PTAs)**
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model **probabilistic**, **nondeterministic** and **timed** behaviour

- **Syntax: A PTA is a tuple** \((\text{Loc}, l_{\text{init}}, \text{Act}, X, \text{inv}, \text{prob}, L)\)
 - \text{Loc} is a finite set of **locations**
 - \(l_{\text{init}} \in \text{Loc}\) is the **initial location**
 - \text{Act} is a finite set of **actions**
 - \(X\) is a finite set of **clocks**
 - \text{inv} : \text{Loc} \to \text{Zones}(X)
 - is the **invariant condition**
 - \text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Dist}(\text{Loc} \times 2^X)
 - is the **probabilistic edge relation**
 - \(L : \text{Loc} \to 2^{\text{AP}}\) is a **labelling function**
Probabilistic edge relation

- **Probabilistic edge relation**
 - $\text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Act} \times \text{Dist}((\text{Loc} \times 2^X))$

- **Probabilistic edge** $(l, g, a, p) \in \text{prob}$
 - l is the source location
 - g is the guard
 - a is the action
 - p target distribution

- **Edge** (l, g, a, p, l', Y)
 - from probabilistic edge (l, g, a, p) where $p(l', Y) > 0$
 - l' is the target location
 - Y is the set of clocks to be reset (to zero)
• **Models a simple probabilistic communication protocol**
 – starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location sr
 - with probability 0.1 data is lost, move to location si
 – in location si, after 2 to 3 time units, attempts to resend
 - correctly sent with probability 0.95 and lost with probability 0.05
PTAs – Behaviour

- A state of a PTA is a pair \((l,v) \in \text{Loc} \times \mathbb{R}^X\) such that \(v \triangleright inv(l)\)

- A PTAs start in the initial location with all clocks set to zero
 - let \(0\) denote the clock valuation where all clocks have value 0

- For any state \((l,v)\), there is nondeterministic choice between making a discrete transition and letting time pass
 - discrete transition \((l,g,a,p)\) enabled if \(v \triangleright g\) and probability of moving to location \(l'\) and resetting the clocks \(Y\) equals \(p(l',Y)\)
 - time transition available only if invariant \(inv(l)\) is continuously satisfied while time elapses
PTA – Example

PTA:

Example execution:

(di, x=0) → 1.1
(di, x=1.1) → (di, x=0)

(send x ≥ 2) → 0.9

(si, x=0) → (sr, x=0)

(x := 0) → 0.95

 retry (x := 0)

(sr, x=0) → (sr, x=8.66)

(retry x ≥ 3) → 0.05

(si, x=0) → (si, x=2.7)

8.66 → 2.7

⋮ → 0.95

⋮ → 0.05

⋮
Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, \alpha_P, \delta_P, L_P)$ with:

- **States**: $S_P = \{ (l,v) \in \text{Loc} \times \mathbb{R}^X \text{ such that } v \triangleright \text{inv}(l) \}$
- **Initial state**: $s_{init} = (l_{init}, 0)$
- **Actions**: $\alpha_P = \text{Act} \cup \mathbb{R}$
- **Transition relation** $\delta_P \subseteq S_P \times \alpha_P \times \text{Dist}(S_P)$ such that $(s, a, \mu) \in \delta_P$ iff:
 - (time transition) $a \in \mathbb{R}$, $\mu(l,v+t)=1$ and $v+t' \triangleright \text{inv}(l)$ for all $t' \leq t$
 - (discrete transition) $a \in \text{Act}$ and there exists $(l,g,a,p) \in \text{prob}$ such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l',v') = \sum_{Y \subseteq X \land v[Y:=0]=v'} p(l', Y)$
- **Labelling**: $L_P(l,v) = L(l)$

Actions of MDP M_P are the actions of PTA P or real time delays.

Multiple resets may give same clock valuation.
Time divergence

- **We restrict our attention to time divergent behaviour**
 - a common restriction imposed in real-time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
 - also called non-zeno behaviour

- **For a path** $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2(a_2, \mu_2)$... in the MDP M_P
 - $D_\omega(n)$ denotes the duration up to state s_n
 - i.e. $D_\omega(n) = \sum \{|a_i| \mid 0 \leq i < n \land a_i \in \mathbb{R} \}$

- **A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$:**
 - there exists $j \in \mathbb{N}$ such that $D_\omega(j) > t$

- **Example of non-divergent path:**
 - $s_0(1, \mu_0)s_0(0.5, \mu_0)s_0(0.25, \mu_0)s_0(0.125, \mu_0)s_0...$
Time divergence

• An adversary of M_p is **divergent** if, for each state $s \in S_p$:
 – the probability of divergent paths under A is 1
 – i.e $\Pr_A^s\{ \omega \in \text{Path}^A(s) \mid \omega \text{ is divergent} \} = 1$

• Motivation for probabilistic definition of divergence:

 In this PTA, any adversary has one non-divergent path:
 • takes the loop in l_0 infinitely often, without 1 time unit passing
 • but the probability of such behaviour is 0
 • a stronger notion of divergence would mean no divergent adversaries exist for this PTA
Overview (Part 4)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence

• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics

• Model checking for PTAs
 – the region graph
 – digital clocks
PTCTL – Syntax

- **PTCTL**: Probabilistic timed computation tree logic
 - derived from PCTL [BdA95] and TCTL [AD94]

- **Syntax**:
 - $\phi ::= \text{true} | a | \zeta | z. \phi | \phi \land \phi | \neg \phi | P_{\sim p} [\phi U \phi]$

 - $\phi U \phi$ is true with probability $\sim p$

- **where**:
 - where Z is a set of formula clocks, $\zeta \in \text{Zones}(X \cup Z)$, $z \in Z$,
 - a is an atomic proposition, $p \in [0,1]$ and $\sim \in \{<,>,\leq,\geq\}$
PTCTL – Examples

• \(z \cdot P_{>0.99} [\text{packet2unsent} \lor \text{packet1delivered} \land (z<5)] \)
 – “with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime”

• \(z \cdot P_{>0.95} [(x\leq3) \lor (z=8)] \)
 – “with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse”

• \(z \cdot P_{\leq0.1} [G (\text{failure} \lor (z\leq60))] \)
 – “the system fails after the first 60 time units have elapsed with probability at most 0.01”
• Let \((l,v) \in S_p\) and \(\mathcal{E} \in \mathbb{R}^\mathcal{Z}\) be a formula clock valuation.

combined clock valuation of \(v\) and \(\mathcal{E}\) satisfies \(\zeta\)

- \((l,v),\mathcal{E} \models a\) \iff a \in L(l,v)
- \((l,v),\mathcal{E} \models \zeta\) \iff v,\mathcal{E} \triangleright \zeta
- \((l,v),\mathcal{E} \models z.\phi\) \iff (l,v),\mathcal{E}[z:=0] \models \phi
- \((l,v),\mathcal{E} \models \phi_1 \land \phi_2\) \iff (l,v),\mathcal{E} \models \phi_1\) and (l,v),\mathcal{E} \models \phi_2
- \((l,v),\mathcal{E} \models \neg \phi\) \iff (l,v),\mathcal{E} \models \phi\) is false
- \((l,v),\mathcal{E} \models P_{\sim p}[\psi]\) \iff Pr_{A_{(l,v)}}\{ \omega \in \text{Path}_{A(l,v)} \mid \omega,\mathcal{E} \models \psi \} \sim p \text{ for all adversaries } A \in \text{Adv}_{M_p}

after resetting \(z\), \(\phi\) is satisfied

the probability of a path satisfying \(\psi\) meets \(\sim p\) for all divergent adversaries
Let ω be a path in M_p and \mathcal{E} be a formula clock valuation

- $\omega, \mathcal{E} \models \psi$ satisfaction of ψ by ω, assuming \mathcal{E} initially

$\omega, \mathcal{E} \models \phi_1 U \phi_2$ if and only if there exists $i \in \mathbb{N}$ and $t \in D_\omega(i+1)-D_\omega(i)$ such that

- $\omega(i)+t, \mathcal{E}+(D_\omega(i)+t) \models \phi_2$
- $\forall t' \leq t . \omega(i)+t', \mathcal{E}+(D_\omega(i)+t') \models \phi_1 \lor \phi_2$
- $\forall j<i . \forall t' \leq D_\omega(j+1)-D_\omega(j). \omega(j)+t', \mathcal{E}+(D_\omega(j)+t') \models \phi_1 \lor \phi_2$

Condition “$\phi_1 \lor \phi_2$” different from PCTL and CSL

- usually ϕ_2 becomes true and ϕ_1 is true until this point
- difference due to the density of the time domain
- to allow for open intervals use disjunction $\phi_1 \lor \phi_2$
- for example consider $x \leq 5 U x > 5$ and $x < 5 U x \geq 5$
Probabilistic reachability in PTAs

• For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking
 – i.e. min/max probability of reaching a set of target locations
 – can also encode time–bounded reachability (with extra clock)

• Still captures a wide range of properties
 – probabilistic reachability: “with probability at least 0.999, a data packet is correctly delivered”
 – probabilistic invariance: “with probability 0.875 or greater, the system never aborts”
 – probabilistic time–bounded reachability: “with probability 0.01 or less, a data packet is lost within 5 time units”
 – bounded response: “with probability 0.99 or greater, a data packet will always be delivered within 5 time units”
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
PTA model checking – Summary

- Several different approaches developed
 - basic idea: reduce to the analysis of a finite-state model
 - in most cases, this is a Markov decision process (MDP)

- Region graph construction [KNSS02]
 - shows decidability, but gives exponential complexity

- Digital clocks approach [KNPS06]
 - (slightly) restricted classes of PTAs
 - works well in practice, still some scalability limitations

- Zone-based approaches:
 - (preferred approach for non-probabilistic timed automata)
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
 - game-based abstraction refinement [KNP09c]
The region graph

• **Region graph construction for PTAs** [KNSS02]
 – adapts region graph construction for timed automata [ACD93]
 – partitions PTA states into a *finite* set of *regions*
 – based on notion of clock equivalence
 – construction is also dependent on PTCTL formula

• **For a PTA P and PTCTL formula** ϕ
 – construct a *time-abstract, finite-state MDP* $R(\phi)$
 – translate PTCTL formula ϕ to PCTL formula ϕ'
 – ϕ is preserved by region equivalence
 – i.e. ϕ holds in a state of M_P if and only if ϕ' holds in the corresponding state of $R(\phi)$
 – model check $R(\phi)$ using standard methods for MDPs
The region graph – Clock equivalence

- **Regions** are sets of **clock equivalent** clock valuations

- **Some notation:**
 - let c be largest constant appearing in PTA or PTCTL formula
 - let $\lfloor t \rfloor$ denotes the integral part of t
 - t and t' agree on their integral parts if and only if
 1. $\lfloor t \rfloor = \lfloor t' \rfloor$
 2. t and t' are both integers or neither is an integer

- **The clock valuations v and v' are clock equivalent ($v \cong v'$) if:**
 - for all clocks $x \in X$, either:
 1. $v(x)$ and $v'(x)$ agree on their integral parts
 2. $v(x) > c$ and $v'(x) > c$
 - for all clock pairs $x, y \in X$, either:
 1. $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 2. $v(x) - v(x') > c$ and $v'(x) - v'(x') > c$
Region graph – Clock equivalence

• Example regions (for 2 clocks \(x \) and \(y \))

- \(x=1 \land y=2 \)
- \(x<y \land 1<x<2 \land 1<y<2 \)
- \(x=y \land 0<x<1 \)
- \(y=1 \land 2<x<3 \)
Region graph – Clock equivalence

• Fundamental result: if \(v \cong v' \), then \(v \triangleright \zeta \iff v' \triangleright \zeta \)
 – it follows that \(r \triangleright \zeta \) is well defined for a region \(r \)

• \(r' \) is the successor region of \(r \), written \(\text{succ}(r) = r' \), if
 – for each \(v \in r \), there exists \(t > 0 \) such that \(v + t \in r' \)
 and \(v + t' \in r \cup r' \) for all \(t' < t \)
The region graph

- The region graph MDP is \((S_R, s_{\text{init}}, \text{Steps}_R, L_R)\) where...
 - the set of states \(S_R\) comprises pairs \((l,r)\) such that \(l\) is a location and \(r\) is a region over \(X \cup Z\)
 - the initial state is \((l_{\text{init}}, 0)\)
 - the set of actions is \(\{\text{succ}\} \cup \text{Act}\)
 - \(\text{succ}\) is a unique action denoting passage of time
 - the probabilistic transition function \(\text{Steps}_R\) is defined as:
 - \(S_R \times 2^{(\{\text{succ}\} \cup \text{Act}) \times \text{Dist}(S_R)}\)
 - \((\text{succ}, \mu) \in \text{Steps}_R(l,r)\) iff \(\mu(l, \text{succ}(r)) = 1\)
 - \((a, \mu) \in \text{Steps}_R(l,r)\) if and only if \(\exists (l,g,a,p) \in \text{prob}\) such that
 - \(r \triangleright g\) and, for any \((l',r') \in S_R:\)
 \[
 \mu(l', r') = \sum_{Y \subseteq X \land [Y := 0] = r'} p(l', Y)
 \]
 - the labelling is given by: \(L_R(l,r) = L(l)\)
Region graph – Example

- PTCTL formula: \(z \cdot P_{\sim p}[\text{true} U (sr<4)] \)

\[
\begin{align*}
(d_i, x=z=0) & \xrightarrow{\text{succ}} (d_i, 0<x=z<1) & \xrightarrow{\text{succ}} (d_i, x=z=1) & \xrightarrow{\text{succ}} (d_i, 1<x=z<2) \\
& & & 0.9 \\
& & & 0.1 \\
(sr, x=0 \land z=1) & \quad & (si, x=0 \land z=1) \\
\end{align*}
\]
Region graph construction

- **Region graph**
 - useful for establishing *decidability* of model checking
 - or proving *complexity* results for model checking algorithms

- **But**...
 - the number of regions is *exponential* in the number of clocks and the size of largest constant
 - so model checking based on this is extremely expensive
 - and so not implemented (even for timed automata)

- **Improved approaches based on:**
 - digital clocks
 - zones (unions of regions)
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Digital clocks

• Simple idea: Clocks can only take integer (digital) values
 – i.e. time domain is \mathbb{N} as opposed to \mathbb{R}
 – based on notion of ϵ-digitisation [HMP92]

• Only applies to a restricted class of PTAs; zones must be:
 – closed – no strict inequalities (e.g. $x>5$)

• Digital clocks semantics yields a finite-state MDP
 – state space is a subset of $\text{Loc} \times \mathbb{N}^X$, rather than $\text{Loc} \times \mathbb{R}^X$
 – clocks bounded by c_{max} (max constant in PTA and formula)
 – then use standard techniques for finite-state MDPs
Example – Digital clocks

MDP: (digital clocks)

(di, x=z=0) → (di, x=z=1) → (di, x=z=2)

(sr, x=0 ∧ z=1) → (si, x=0 ∧ z=1) → (sr, x=0 ∧ z=2)

(si, x=1 ∧ z=2) → (si, x=2 ∧ z=3)

PTA:

di

send

x≤2

0.9

x≥1

0.1

sr

ttrue

x:=0

0.9

retry

x≥2

0.95

x:=0

0.1

si

x≤3

0.05

x:=0

0.05

x:=0

0.95

0.05

...
Digital clocks

• **Digital clocks approach preserves:**
 – minimum/maximum reachability probabilities
 – a **subset of PTCTL** properties
 – (no nesting, only closed zones in formulae)
 – only works for the initial state of the PTA
 – (but can be extended to any state with integer clock values)
 – also: **expected rewards** (priced PTAs)

• **In practice:**
 – translation from PTA to MDP can often be done manually
 – (by encoding the PTA directly into the PRISM language)
 – automated translations exist: mcpta and PRISM
 – many case studies, despite “closed” restriction
 – potential problem: can lead to very large MDPs
 – alleviated partially by efficient symbolic model checking
Digital clocks do not preserve PTCTL

Consider the PTCTL formula \(\phi = z.P_{<1} [\text{true U (a} \land z \leq 1)] \)

- a is an atomic proposition only true in location \(l_1 \)

Digital semantics:

- no state satisfies \(\phi \) since for any state we have
 \[
 \text{Prob}^A(s, \epsilon [z:=0], \text{true U (a} \land z \leq 1)) = 1
 \]
 for some adversary A
- hence \(P_{<1} [\text{true U } \phi] \) is trivially true in all states
Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.P_{<1} [\text{true U (a } \land \text{ z} \leq 1)]$
 - a is an atomic proposition only true in location l_1
- Dense time semantics:
 - any state (l_0, v) where $v(x) \in (1, 2)$ satisfies ϕ
 - more than one time unit must pass before we can reach l_1
 - hence $P_{<1} [\text{true U } \phi]$ is not true in the initial state
Overview (Part 4)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing
 – $\text{post}(S')$ the states that can be reached from a state in S' in a single step
 – $\text{pre}(S')$ the states that can reach S' in a single step

• Extend these operators to include time passage
 – $\text{dpost}[e](S')$ the states that can be reached from a state in S' by traversing the edge e
 – $\text{tpost}(S')$ the states that can be reached from a state in S' by letting time elapse
 – $\text{pre}[e](S')$ the states that can reach S' by traversing the edge e
 – $\text{tpre}(S')$ the states that can reach S' by letting time elapse
Zone-based approaches

- **Symbolic states** \((l, \zeta) \) where
 - \(l \in \text{Loc} \) (location)
 - \(\zeta \) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

- \(t\text{post}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l)) \)
 - \(\neg \zeta \) can be reached from \(\zeta \) by letting time pass
 - \(\neg \zeta \land \text{inv}(l) \) must satisfy the **invariant** of the location \(l \)

- \(t\text{pre}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l)) \)
 - \(\neg \zeta \) can reach \(\zeta \) by letting time pass
 - \(\neg \zeta \land \text{inv}(l) \) must satisfy the **invariant** of the location \(l \)
Zone-based approaches

- For an edge $e = (l, g, a, p, l', Y)$ where
 - l is the source
 - g is the guard
 - a is the action
 - l' is the target
 - Y is the clock reset

- $d_{post}[e](l, \zeta) = (l', (\zeta \land g)[Y:=0])$
 - $\zeta \land g$ satisfy the guard of the edge
 - $(\zeta \land g)[Y:=0]$ reset the clocks Y

- $d_{pre}[e](l', \zeta') = (l, [Y:=0]\zeta' \land (g \land inv(l)))$
 - $[Y:=0]\zeta'$ the clocks Y were reset
 - $[Y:=0]\zeta' \land (g \land inv(l))$ satisfied guard and invariant of l
Forwards reachability

- Based on the operation \(\text{post}[e](l, \zeta) = \text{tpost}(\text{dpost}[e](l, \zeta)) \)

 - \((l', v') \in \text{post}[e](l, \zeta)\) if there exists \((l, v) \in (l, \zeta)\) such that after traversing edge \(e\) and letting time pass one can reach \((l', v')\)

- **Forwards algorithm (part 1)**

 - start with initial state \(S_F = \{\text{tpost}((l_{\text{init}}, 0))\}\) then iterate for each symbolic state \((l, \zeta) \in S_F\) and edge \(e\)

 add \(\text{post}[e](l, \zeta)\) to \(S_F\)

 - until set of symbolic states \(S_F\) does not change

- To ensure termination need to take \(c\)-closure of each zone encountered (\(c\) is the largest constant in the PTA)
• **Forwards algorithm (part 2)**
 – construct **finite state MDP** \((S_F,(l_{init},0),Steps_F,L_F)\)
 – states \(S_F\) (returned from first part of the algorithm)
 – \(L_F(l,\zeta) = L(l)\) for all \((l,\zeta) \in S_F\)
 – \(\mu \in Steps_F(l,\zeta)\) if and only if
 there exists a probabilistic edge \((l,g,a,p)\) of PTA
 such that for any \((l',\zeta') \in Z:\n\mu(l',\zeta') = \sum \{ \mid p(l',X) \mid (l,g,\sigma,p,l',X) \in \text{edges}(p) \land \text{post}[e](l,\zeta) = (l',\zeta') \}\)

summation over all the edges of \((l,g,a,p)\) such that applying \textbf{post} to \((l,\zeta)\) leads to the symbolic state \((l',\zeta')\)
Forwards reachability – Example

PTA:

- $x=0 \land y=1$
- $y:=0$
- $x:=0$
- 0.5
- 0.5
- true

MDP:

- $(l_0, x \leq y)$
- $(l_0, x=y)$
- 0.5
- 0.5
- $(l_0, x=y)$
Forwards reachability – Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities
 – caused by when edges are combined

• Suppose $\text{post}[e_1](l, \zeta) = (l_1, \zeta_1)$ and $\text{post}[e_2](l, \zeta) = (l_2, \zeta_2)$
 – where e_1 and e_2 from the same probabilistic edge

• By definition of post
 – there exists $(l, v_i) \in (l, \zeta)$ such that a state in (l_i, ζ_i) can be reached by traversing the edge e_i and letting time pass

• Problem
 – we combine these transitions but are (l, v_1) and (l, v_2) the same?
 – may not exist states in (l, ζ) for which both edges are enabled
• Maximum probability of reaching l_3 is 0.5 in the PTA
 – for the left branch need to take the first transition when $x=1$
 – for the right branch need to take the first transition when $x=0$
• However, in the forwards reachability graph probability is 1
 – can reach l_3 via either branch from $(l_0,x=y)$
Backwards reachability

- An alternative zone-based method: backwards reachability
 - state-space exploration in opposite direction, from target to initial states; uses \textit{pre} rather than \textit{post} operator

- Basic ideas: (see [KNSW07] for details)
 - construct a finite-state MDP comprising symbolic states
 - need to keep track of branching structure and take conjunctions of symbolic states if necessary
 - MDP yields maximum reachability probabilities for PTA
 - for min. probs, do graph-based analysis and convert to max.

- Advantages:
 - gives (exact) minimum/maximum reachability probabilities
 - extends to full PTCTL model checking

- Disadvantage:
 - operations to implement are expensive, limits applicability
 - (requires manipulation of non-convex zones)
Overview (Part 4)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Abstraction

• **Very successful in (non-probabilistic) formal methods**
 – essential for verification of large/infinite-state systems
 – hide details irrelevant to the property of interest
 – yields smaller/finite model which is easier/feasible to verify
 – loss of precision: verification can return “don’t know”

• **Construct abstract model of a concrete system**
 – e.g. based on a partition of the concrete state space
 – an **abstract state** represents a set of **concrete states**

• **Automatic generation of abstractions using refinement**
 – start with a simple coarse abstraction; iteratively refine
Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

- We construct abstractions of MDPs using stochastic games

 - yields lower/upper bounds for min/max probabilities
Abstraction refinement

- **Consider (max) difference between lower/upper bounds**
 - gives a *quantitative measure* of the abstraction’s *precision*

- **If the difference (“error”) is too great, refine the abstraction**
 - a finer partition yields a more precise abstraction
 - lower/upper bounds can tell us *where* to refine (which states)
 - (memoryless) strategies can tell us *how* to refine
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

 - Refinements yield strictly finer partition
 - Guaranteed to converge for finite models
 - Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement for PTAs

- Model checking for PTAs using abstraction refinement

- Initial abstraction from forwards reachability

- Splitting of zones (DBMs)

- Guaranteed convergence for any $\epsilon \geq 0$
Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs
 – minimum or maximum, exact values ("error" $\varepsilon=0$)
 – also time-bounded reachability, with extra clock

• Integrated in PRISM 4.0
 – PRISM modelling language extended with clocks
 – implemented using DBMs

• In practice, performs very well
 – faster than digital clocks or backwards on large example set
 – (sometimes by several orders of magnitude)
 – handles larger PTAs than the digital clocks approach
Summary (Part 4)

- **Probabilistic timed automata (PTAs)**
 - combine probability, nondeterminism, real-time
 - well suited for e.g. for randomised communication protocols
 - MDPs + clocks (or timed automata + discrete probability)

- **PTCTL: Temporal logic for properties of PTAs**
 - but many useful properties expressible with just reachability

- **PTA model checking**
 - region graph: decidability results, exponential complexity
 - digital clocks: simple and effective, some scalability issues
 - forwards reachability: only upper bounds on max. prob.s
 - backwards reachability: exact results but often expensive
 - abstraction refinement using stochastic games: performs well
 - tool support: PRISM, mcpta, UPPAAL-Pro
Thanks for your attention

More info here:
www.prismmodelchecker.org