
Probabilistic	Model
Checking with	PRISM

Marta	Kwiatkowska Gethin Norman							Dave	Parker

University	of
Birmingham

University
of	Glasgow

University
of	Oxford

HVC	2016,	Haifa,	November	2016

Past,	Present	&	Future

1

Outline

• Probabilistic	model	checking	and	PRISM

• Themes	and	trends

• Advances	and	applications

• Current	research	topics

• Challenges	&	future	directions

2

Probabilistic	model	checking
• Construction	and	analysis	of	probabilistic	models

– probability:	failures,	uncertainty,	noise,	randomisation,	…
– time:	delays,	time-outs,	failure	rates,	…
– costs:	energy,	resources,	…

• Quantitative	correctness	properties
expressed	in	temporal	logic,	e.g.:
– trigger	→	P≥0.999	[F≤20 deploy]
– “the	probability	of	the	airbag
deploying	within	20	milliseconds
of	being	triggered	is	at	least	0.999”

– reliability,	timeliness,	performance,	efficiency,	…

0.4
0.5

0.1

3

PRISM
• A	(brief)	history

– late	80s,	early	90s:	first	underlying	theory	developed
– 2001:	first	official	public	release	of	PRISM
– 2011:	version	4.0	- probabilistic	real	time	systems
– 2013:	PRISM-games	– stochastic	multi-player	games

• PRISM	today
– used	in	100+	institutions;	50,000+	downloads
– broadly	applicable;	many	diverse	use	cases
– many	non-expert	(and	non-CS)	users
– 300	external	papers	(no	involvement	from	PRISM	team)
– flaws	found	in	real-systems;	industrial	usage

4

What	can	we	do	with	PRISM?
• Identify	flaws	in	existing	analyses

– e.g.	reliability	of	NAND	multiplexing

• Investigate	conjectures/models
– e.g.	Herman’s	self-stabilisation
– e.g.	FireWire	root	contention
– e.g.	cell	signalling	pathways	(FGF)

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Number of restorative stages

Pr
ob

ab
ilit

y

 λ = 0.01
 λ = 0.02
 λ = 0.03
 λ = 0.04

 λ = 0.01
 λ = 0.02
 λ = 0.03
 λ = 0.04

 PRISM

 Analytical

Herman FireWire	 FGF

NAND

5

Themes	and	trends
• Themes	in	the	development	of	PRISM

– theory-to-practice (and	practice-to-theory)
– wide	collaboration (theory,	algorithms,	case	studies)
– open	source software	(and	data)
– overlaps/interacts	with	many	other	disciplines

• Trends
– improvement	in	scalability to	larger	models
– increasingly	expressive/powerful	classes	of	model
– from	verification	problems	to	control problems
– ever	widening	range	of	application	domains

6

Trends

• discrete-time Markov chains

• probabilistic automata

• continuous-time Markov chains

• Markov decision processes

• probabilistic timed automata

• stochastic multi-player games

• …

Models

• randomised distributed algorithms

• network/communication protocols

• computer security

• performance/reliability

• systems biology

• DNA computing

• robotics & autonomous vehicles

• wearable/implantable devices

• …

Application	domains

7

Enabling	technologies
• Symbolic	model	checking

– [TACAS’00]	[TACAS’02]	[STTT’04]	[CAV’06] …

• Real-time	probabilistic	verification
– [TCS’02]	[FMSD’06]	[Info&Comp’07]	[FORMATS’09] …

• Quantitative	abstraction	refinement
– [QEST’06]	[VMCAI’09]	[FMSD’10]	[QEST’11]	...

• Compositional	verification
– [TACAS’10]	[QEST’10]	[FASE’11]	[Info&Comp’13]	...

• And	more...
– statistical	model	checking,	symmetry
reduction,	bisimulation	minimisation,	... M1 ||	M2 ⊨ ⟨G⟩≥p

⟨A⟩≥q M2 ⟨G⟩≥p
M1 ⊨ ⟨A⟩≥q

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1

8

Case	study:	Bluetooth
• Device	discovery	between	a	pair	of	Bluetooth	devices

– performance	essential	for	this	phase

• Detailed	model	from	official	specification
– two	asynchronous	28-bit	clocks
– pseudo-random	hopping	between	32	frequencies
– random	waiting	scheme	to	avoid	collisions
– 32	Markov	chains,	over	3x1010 states	each
– 17,179,869,184	initial	configurations

• Symbolic	probabilistic	model	checking
– “worst-case	expected	discovery	time	is	at	most	5.17s”

freq = [CLK16-12+k+
(CLK4-2,0-CLK16-12)
mod 16] mod 32

9

Strategy/controller	synthesis
• Verification	vs.	control

– verify that	a	system	is	“correct”,
for	any	environment/adversary/…
(counterexample yields	flaw/attack/...)

– synthesise a	"correct-by-construction”
controller	from	formal	specification
(witness yields strategy/controller)

• Applications
– dynamic	power	management,
robots/autonomous	vehicle	navigation	,
task/network	scheduling,	security,	…

p1 p2 p3 p4

{se,usb} p1?

T

F

;

;

p2?
T

F

p2?
T

F

{ef}

;

;

;

Fig. 9. An attack decision tree for the optimal attacker strategy highlighted
in the stochastic game shown in Figure 7.

If the state is an attacker state, s = s

A

2 S

A

, and the order
of the players is AD, we just move to the next probabilistic
state s

P

. The state s

P

is chosen nondeterministically. Note,
that for any choice of s

P

further construction on the decision
tree is the same. If the order of the players is DA, this means
that there is no defender action in the current phase. Thus, we
create an empty set in the decision tree and move to the next
probabilistic state s

P

.
On probabilistic states, the function generateDD behaves

the same as the function generateAD, as described above.
Finally, we note that the decision tree constructed as above

can subsequently be optimised by merging identical subtrees
and removing decision nodes with identical then/else branches.
Randomisation. As described in Sect. III, we also consider
decision trees that incorporate randomisation. This is because
optimal strategies for multi-objective properties may be ran-
domised. Here, that means that strategy �

A

(or �

D

) may
select a distribution over actions in a state s

A

(or s
D

), rather
than a single action. The decision tree synthesis algorithms in
Tables VI and V thus remain unchanged but the rules for s

A

and s

D

states, respectively generate random action nodes.

Example 7 The stochastic game in Figure 7 also shows an
optimal attacker strategy marked in bold. We show in Figure 9
the (optimised) attacker decision tree corresponding to the
optimal attacker strategy.

V. IMPLEMENTATION AND RESULTS

We have developed a prototype implementation of our
techniques, comprising a converter from attack-defence trees,
specified in XML, into stochastic games modelled in the input
language of PRISM-games [15], available from [21]. The
output of the tool can then be used to perform verification
and strategy synthesis as described earlier.

We applied our approach to a real-life scenario studied
in [5]: we consider part of a Radio-Frequency Identification
(RFID) goods management system for a warehouse, modified
by introducing temporal dependencies between actions.

The warehouse uses RFID tags to electronically identify
all goods. In the attack-defence scenario that we consider,

0 0.1 0.2 0.3 0.4

0

100

200

300

400

500

Attack success probability

Ex
pe

ct
ed

at
ta

ck
co

st

Fig. 10. Pareto curve illustrating the trade-off between attack success
probability and expected attack cost over strategies for the RFID example.

the attacker aims to physically remove some RFID tags after
infiltrating the building.

In order to achieve this goal, the attacker has to first get
into the premises and then into the warehouse. For getting
into the premises the attacker can climb over the fence or
enter through the main gate. The defender can protect against
climbing by setting some barbed wire on the fence. To protect
against the barbed wire the attacker can guard against barbs
either by using a carpet over the barbs or by wearing protective
cloths. Once the attacker succeeds in accessing the premises,
they have to get into the warehouse. The attacker can achieve
this subgoal either by entering through the door or by entering
through the loading dock. The former action can be defended
against by monitoring the door with biometric sensors.

The defender can prevent the attacker from attaining the
main goal by monitoring the premises with security cameras.
In order to overcome the camera issue the attacker can disable
them either by shooting a strong laser at the cameras or by
video looping the camera feed. The defender, in turn, can
employ guards in order to patrol the premises and counter
this kind of attack.

The corresponding attack-defence tree is given in Figure 11.
The leaves (basic attack and defence actions) of the tree are
decorated with success probability and cost values. The attack-
defence tree has three phases: the first phase corresponds to the
sub-tree with the root “get into premises”, the second phase
is the “get into warehouse” sub-tree, and the last phase is the
sub-tree on the right of the main goal with the defender action
on the root. The syntactic term corresponding to each phase
and to the full tree is:

t1 = _(^(ef,⇠ ^(bw,⇠ _(uc, pc))), tg)
t2 = _(^(ed,⇠ bs), ld)
t3 = ⇠ ^(sc,⇠ _(lc,^(vc,⇠ eg)))

t =
�!̂
(
�!̂
(t1, t2), t3)

The resulting stochastic game generated from the attack-
defence by our approach has 1072 states and 2052 transitions.
We verified a variety of properties, including the numerical
property hhAiiP

max=?[F success]) that computes the maxi-
mum success probability of an attack (equal to 0.41), and the

12

Attack-defence tree	[CSF’16]

Task	schedule	[FMSD’13]

0.1

s0 s1slow

fast

s3

off on

0.9

s4

0.1

s2slow

fast
0.9

off on

MDP

10

Multiple objectives
• Multi-objective	controller	synthesis	[LMCS’08]	[TACAS’11]

– trade-offs	between	conflicting	objectives

• Mix	of	optimisation	and	guarantees
– e.g.	“what	strategy	maximises	probability of
message	transmission,	whilst	guaranteeing
expected	battery	life-time	is	>	10	hrs?”

– Pareto	curve	generation/approximation

• Extensions
– permissive	controller	synthesis
of	multi-strategies	for	MDPs	[LMCS’15]

– multiple	objectives	for	multi-player	games	(see	later)

obj1

ob
j 2

11

Robots	&	autonomous	systems
• Navigation	for	mobile	service	robots

– learnt	probabilistic	navigation	maps	
– LTL	task	specifications	 +	controller	synthesis
– ROS-based	runtime	planning	implementation
– multi-objective	probabilistic	guarantees	on
task	completion/duration	[IROS’14/IJCAI’15/CDC’16]

• Autonomous	underwater	vehicle	navigation
– incremental/parametric	verification	+	controller	synthesis
– probabilistic	programming	+	machine	learning	to	generate	
realistic	component/environment	models	at	runtime

12

Parameter	synthesis
• Synthesising	models	that	are	guaranteed	to	satisfy	
quantitative	correctness	properties	is	difficult
– but	we	can	synthesise	controllers and	parameters

• Parameter	synthesis	
– given	a	parametric model	and	a	property	ɸ…
– find	the	optimal	parameter	values,	with	respect	to	an	
objective	function	O,	such	that	the	property	ɸ is	satisfied,	
if	such	values	exist

• Quantitative	parameter	synthesis
– parameters:	timing	delays,	rates
– objectives:	optimise	probability,	reward/volume

13

Quantitative	parameter	synthesis
• Timed/hybrid	automata

– find	optimal	timing	delays	[EMSOFT2014]	[HSB’15]	[HSCC’16]

– constraint	solving,	discretisation	+	sampling

• Probabilistic	timed	automata
– find	delays	to	optimise	probability [RP2014]

– parametric	symbolic	abstraction-refinement

• Continuous-time	Markov	chains
– find	optimal	rates [CMSB’14]	[ActaInf'16], PRISM-PSY [TACAS’16]

– constraint	solving,	uniformisation +	sampling

• Focus:	practical	implementation,	real-world	usage
14

Applications

P
ki kr

k r

ki

k

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

r

Epidemic	modellingPacemaker	verification

ɸ:	infection	lasts	at	least	100	time	units
and	ends	within	120	time	units

Maximal
volume
objective

15

Mobile	autonomy	challenge
• Autonomous	systems	

– interact with	their	
environment,	which	is
possibly adversarial

– have	goals/objectives,
which	may conflict

– take	decisions	

• Model	as	stochastic	games	
– well	known	from,	e.g.,	decision	making	in	economics
– many	application	domains:	security,	energy	grid,	etc

• Tool	PRISM-games,	extension	of	PRISM	[TACAS’16]
16

Stochastic	multi-player	games
• Probabilistic	temporal	logic with	coalitions

– probabilities,	rewards	(reachability,
total,	mean-payoffs/ratios,	…)
[FMSD’13]	[ICALP’16]	[ECC’16]

• Multi-objective strategy	synthesis
– Pareto	set	computation	and
optimal	achievable	trade-offs	[MFCS’13]	[QEST’13]	[TACAS’15]

• Compositional strategy	synthesis	[CONCUR’14]	[Inf &	Comp’16]

– assume-guarantee	+	multi-objective	strategy	synthesis
– e.g.	local	strategies	for	G1 ⊨ φA ,	G2 ⊨ φA⇒ φB
compose	to	a	global	strategy	for	G1||G2 ⊨ φB

17

Applications
• UAV	path	planning	[ICCPS’15]

– human	operator	+	low-level	piloting
– quantitative	mission	objectives:
minimise	time/fuel,	restricted	zones,
operator	fatigue/workload

– multi-objective MDPs,	stoch.	games

• Aircraft	power	distribution [CONCUR’14]

– compositional	strategy	synthesis	in
stochastic	games	(PRISM-games)

– specify	control	objectives	in	LTL	
using	mean	payoff

18

Are	games	sufficient?
• Complex	decisions!

– goals
– perception
– situation	awareness
– context	(social,	regulatory)

• What	about	social	subtleties?
• What	to	do	in	emergency?	

– moral decisions,	handover to	driver,	obey	traffic	rules

• Need	to	make	robots	human-like…
– need	multi-modal	communication,	cognitive	reasoning,	

trust,	ethics,	…
19

Quantitative	verification	for	trust?	
• Social	trust:	fundamental	for	mobile	autonomy	[LK16b]

– influenced	by	external factors,	such	as	social	norms
– also	internal:	personality,	motivation,	preferences
– subjective:	would	you trust	an	autonomous	taxi	to	take	
your	child	to	school?

• Formulate	a	temporal	logic	to	express	X’s	trust	in	Y	
for	G,	based	on	probabilistic	belief	[HK17]

• Admits	a	model	checking	procedure,	which	can:
– be	used	in	decision-making for	robots
– explain decisions,	i.e.	who	is	accountable	for	the	action

20

Perception	software

• Lidar, prior map,
object recognition –
relies on machine
learning

Credits:	Oxford	Robotics	Institute

21

Things	that	can	go	wrong…
• …in	perception	software

– sensor	failure
– object	detection		failure

• Machine	learning	software
– not	clear	how	it	works
– does	not	offer	guarantees

- Verification	for	machine	learning?
- some	progress	towards	safety	verification	for
neural	networks

22

Personalisation	challenge
• Device	must	adapt to	physiology	of	human	wearer

– achieved	through	model	parameterisation
– parameter	estimation,	optimal	parameter	synthesis

• Multiple	uses
– automation of	personalised	medical	intervention	
– device	safety	assurance,	for	testing	
– reproduce	the	unique	characteristics	for	authentication

• Focus	on	ECG	based	devices
– pacemaker	models,	heart	models,	synthetic	ECGs
– future	work	on	anxiety	monitoring	and	control

23

Pacemaker	verification/optimisation
• Hybrid	model-based	framework

– timed	automata	model		for	pacemaker
– hybrid	heart	models	in	Simulink
(non-linear	ODEs)	

• Properties
– (basic	safety)	maintain	
60-100	beats	per	minute

– optimisation	of	energy	usage &
cardiac	output	[HSB’16]	[HSCC’16]

– in-silico	analysis	of	rate-adaptive
pacemakers	[ICHI’14]

– hardware	in	the	loop	[EMBC’15]
24

DNA	computation	challenge
• Moore’s	law,	hence	need	to	make	devices	smaller…
• DNA	computation,	directly	at	the	molecular	level

– DNA	logic	circuit	designs	&	programmable	nanorobotics
– asynchronous	DNA	circuit	designs	[DNA’16]

• Many	applications	envisaged
– e.g.	bio-sensing,	point	of	care	diagnostics,		…

• Apply	quantitative	verification	and	synthesis	to
– find	design	flaws	in	DNA	computing	devices	[JRSI’12]
– analyse reliability	and	performance	of	molecular	walkers
– automatically	synthesise reaction	rates to	guarantee a	
specified	level	of	reliability

25

DNA	nanostructures
• DNA	origami [Rothemund,	Nature 2006]

– DNA	can	self-assemble	into	structures	– “molecular	IKEA?”
– programmable	self-assembly	(can	form	tiles,	nanotubes,	
boxes	that	can	open,	etc.)

26

DNA	walker	circuits
• Computing	with	DNA	walkers	[NatComp’14]

– branching	tracks	laid	out
on	DNA	origami	tile

– starts	at	‘initial’,	signals
when	reaches	‘final’

– can	control	
‘left’/’right’	decision

– any	Boolean		function

• Parameter	synthesis	of	rates
– for	guaranteed	reliability	level	[CMSB’14]

27

DNA	origami	tiles
• DNA	origami	tiles

• Aim:	understand	how	to	control	the	folding	pathway
– formulate	an	abstract	Markov	chain	model
– yields	predictions;	perform	a	range	of	experiments,	
consistent	with	predictions	[Nature’15]

28

50nm

Conclusions
• Probabilistic	model	checking	&	PRISM

– 15	years	since	first	official	tool	release
– significant	advances	in	underlying	theory	&	technologies	
– successfully	deployed	in	many	application	domains

• Many	research	challenges	and	applications	ahead
– verification,	synthesis,	learning,	trust,	cognitive	models,	…
– autonomous	systems,	DNA	computing,
personalised	wearable/implantable	devices,	…

http://www.prismmodelchecker.org/

29

Acknowledgements
• Contributors (to	PRISM	&	its	underlying	theory)

– Aistis Simaitis,	Alberto	Puggelli,	Alessandro	Bruni,	Alexandru Mereacre,	Alistair	John	Strachan,	Andrej	
Tokarčík,	Andrew	Hinton,	Antonio	Pacheco,	Archit Taneja,	Ashutosh Trivedi,	Benoit	Barbot,	Bruno	
Lacerda,	Carlos	Bederian,	Charles	Harley,	Chris	Thachuk,	Christel	Baier,	Christian	Dehnert,	Christian	
von	Essen,	Christopher	Ziegler,	Chunyan Mu,	Clemens	Wiltsche,	Dave	Parker,	Ernst	Moritz	Hahn,	Frits	
Dannenberg,	Fuzhi Wang,	Ganindu Prabhashana,	Gethin Norman,	Håkan Younes,	Holger	Hermanns,	
Hongyang Qu,	Jan	Křetínský,	Jens	Katelaan,	Jeremy	Sproston,	Joachim	Klein,	Joachim	Meyer-Kayser,	
Joost-Pieter	Katoen,	Kenneth	Chan,	Klaus	Draeger,	Kousha Etessami,	Lovejeet Singh,	Lu	Feng,	Luca	de	
Alfaro,	Marcin	Copik,	Marco	Diciolla,	Maria	Svorenova,	Mark	Kattenbelt,	Markus	Siegle,	Marta	
Kwiatkowska,	Mateusz	Ujma,	Maximilian	Probst,	Mihalis Yannakakis,	Mike	Arthur,	Milan	Ceska,	
Moshe	Vardi,	Muhammad	Omer	Saeed,	Nick	Hawes,	Nicola	Paoletti,	Nicolas	Basset,	Nicolas	Del	
Piano,	Nishan Kamaleson,	Paolo	Ballarini,	Pedro	D'Argenio,	Qixia Yuan,	Radu Calinescu,	Rashid	
Mehmood,	Roberto	Segala,	Sebastian	Vermehren,	Sergio	Giro,	Steffen	Märcker,	Stephen	Gilmore,	
Taolue Chen,	Tingting Han,	Vincent	Nimal,	Vojtěch Forejt,	Xueyi Zou,	Yi	Zhang,	Zak	Cohen,	…

(and	many	more	collaborators	on	case	studies	&	projects)

• Project	funders

30

