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Probabilistic model checking

e Construction and analysis of probabilistic models
— probability: failures, uncertainty, noise, randomisation, ...
— time: delays, time-outs, failure rates, ...
— costs: energy, resources, ...

* Quantitative correctness properties
expressed in temporal logic, e.g.:
— trigger = Pyggg9 [ F20 deploy ]

— “the probability of the airbag
deploying within 20 milliseconds
of being triggered is at least 0.999”

— reliability, timeliness, performance, efficiency, ...



PRISM 4

* A (brief) history
— late 80s, early 90s: first underlying theory developed
— 2001: first official public release of PRISM
— 2011: version 4.0 - probabilistic real time systems
— 2013: PRISM-games — stochastic multi-player games

 PRISM today
— used in 100+ institutions; 50,000+ downloads

— broadly applicable; many diverse use cases

— many non-expert (and non-CS) users
— 300 external papers (no involvement from PRISM team)
— flaws found in real-systems; industrial usage



What can we do with PRISM?

* |dentify flaws in existing analyses

PRISM
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— e.g. reliability of NAND multiplexing
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* Investigate conjectures/models et
— e.g. Herman’s self-stabilisation Kz frecneoes
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— e.g. FireWire root contention NAND

— e.g. cell signalling pathways (FGF)
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Themes and trends

* Themes in the development of PRISM
— theory-to-practice (and practice-to-theory)
— wide collaboration (theory, algorithms, case studies)
— open source software (and data)
— overlaps/interacts with many other disciplines

* Trends
— improvement in scalability to larger models
— increasingly expressive/powerful classes of model
— from verification problems to control problems
— ever widening range of application domains



Trends

Models

discrete-time Markov chains
probabilistic automata
continuous-time Markov chains
Markov decision processes
probabilistic timed automata

stochastic multi-player games

Application domains

randomised distributed algorithms
network/communication protocols
computer security
performance/reliability

systems biology

DNA computing

robotics & autonomous vehicles

wearable/implantable devices



Enabling technologies

Symbolic model checking

— [TACAS’00] [TACAS’02] [STTT’04] [CAV’06] ...

Real-time probabilistic verification
— [TCS’02] [FMSD’06] [Info&Comp’07] [FORMATS’09] ...

Quantitative abstraction refinement ties—o

— [QEST’06] [VMCAI'09] [FMSD’10] [QEST’11] ...

Compositional verification
— [TACAS’10] [QEST’10] [FASE’11] [Info&Comp’13] ...

And more...

— statistical model checking, symmetry
reduction, bisimulation minimisation, ...
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Case study: Bluetooth

e Device discovery between a pair of Bluetooth devices

— performance essential for this phase
freq = [CLK16_12+k+
(CLKy:20-CLK 542)

* Detailed model from official specification *~ 161 mad 32

— two asynchronous 28-bit clocks
— pseudo-random hopping between 32 frequencies
— random waiting scheme to avoid collisions
— 32 Markov chains, over 3x1010 states each
— 17,179,869,184 initial configurations
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* Symbolic probabilistic model checking

— “worst-case expected discovery time is at most 5.17s”



Strategy/controller synthesis

 Verification vs. control

— verify that a system is “correct”,
for any environment/adversaryy/... @

(counterexample yields flaw/attack/...)

— synthesise a "correct-by-construction” &+ o= =
controller from formal specification SRR CoLoSSSeeS
(witness yields strategy/controller) s R

Task schedule [FMSD’13]

* Applications

' P2 3 P4

— dynamic power management, ._,,_,<F
. . . L o o R 5

robots/autonomous vehicle navigation, % ~¢— < ; T<._w,,=

. : N e aan

task/network scheduling, security, ... o e

Attack-defence tree [CSE)16]



Multiple objectives

* Multi-objective controller synthesis [Lmcs08] [Tacas'11]

— trade-offs between conflicting objectives '5”';__

o ‘)\\
* Mix of optimisation and guarantees o
— e.g. “what strategy maximises probability of b & ‘\__’
message transmission, whilst guaranteeing " obi,

expected battery life-time is > 10 hrs?”
— Pareto curve generation/approximation

e Extensions

— permissive controller synthesis
of multi-strategies for MDPs [Lmcs'15]

— multiple objectives for multi-player games (see later)
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Robots & autonomous systems

* Navigation for mobile service robots

— learnt probabilistic navigation maps
— LTL task specifications + controller synthesis
— ROS-based runtime planning implementation

— multi-objective probabilistic guarantees on
task completion/duration [IROS'14/1)CAI'15/CDC’16]

e Autonomous underwater vehicle navigation

— incremental/parametric verification + controller synthesis

— probabilistic programming + machine learning to generate
realistic component/environment models at runtime

12



Parameter synthesis

* Synthesising models that are guaranteed to satisfy
guantitative correctness properties is difficult

— but we can synthesise controllers and parameters

 Parameter synthesis

— given a parametric model and a property ©...

— find the optimal parameter values, with respect to an

objective function O, such that the property ¢ is satisfied,
if such values exist

* Quantitative parameter synthesis
— parameters: timing delays, rates

— objectives: optimise probability, reward/volume

13



Quantitative parameter synthesis

Timed/hybrid automata

— find optimal timing delays [EMSOFT2014] [HSB’15] [HSCC’16]
— constraint solving, discretisation + sampling

Probabilistic timed automata
— find delays to optimise probability [RP2014]
— parametric symbolic abstraction-refinement °

Continuous-time Markov chains

— find optimal rates [CMSB’14] [Actalnf'16], PRISM-PSY [TACAS’16]
— constraint solving, uniformisation + sampling

Focus: practical implementation, real-world usage

14



Pacemaker verification
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Mobile autonomy challenge

* Autonomous systems N R

— interact with their |
environment, which is /
possibly adversarial |

— have goals/objectives,
which may conflict

— take decisions

 Model as stochastic games
— well known from, e.g., decision making in economics

— many application domains: security, energy grid, etc

e Tool PRISM-games, extension of PRISM [Tacas’16]
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Stochastic multi-player games

* Probabilistic temporal logic with coalitions

— probabilities, rewards (reachability,

total, mean-payoffs/ratios, ...)
[FMSD’13] [ICALP’16] [ECC’16]

* Multi-objective strategy synthesis | = = =

— Pareto set computation and —
optimal achievable trade-offs [MFcs13] [QEST'13] [TACAS'15]

e Compositional strategy synthesis [concur'14] [Inf & Comp’16]

— assume-guarantee + multi-objective strategy synthesis

— e.g. local strategies for G, F b, , G, = b, = by
compose to a global strategy for G, | |G, = &;
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Applications

* UAV path planning [iccps’is]

— human operator + low-level piloting

- -

— guantitative mission objectives: * j
minimise time/fuel, restricted zones,” |
operator fatigue/workload

| |
[ —_—"

— multi-objective MDPs, stoch. games

— compositional strategy synthesis in
stochastic games (PRISM-games)

— specify control objectives in LTL
using mean payoff

RN B B 0-@--—@*..
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Are games sufficient?

Complex decisions! L end o Bl car s o

not and that can be exploi ted

By Samuel English Anthony

— goals
— perception
— situation awareness

— context (social, regulatory)

What about social subtleties?
What to do in emergency?
— moral decisions, handover to driver, obey traffic rules

Need to make robots human-like...

— need multi-modal communication, cognitive reasoning,
trust, ethics, ...
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Quantitative verification for trust?

e Social trust: fundamental for mobile autonomy [Lk16b]

— influenced by external factors, such as social norms
— also internal: personality, motivation, preferences

— subjective: would you trust an autonomous taxi to take
your child to school?

 Formulate a temporal logic to express X’s trust in Y
for G, based on probabilistic belief [Hk17]

* Admits a model checking procedure, which can:

— be used in decision-making for robots
— explain decisions, i.e. who is accountable for the action

20



Perception software

Credits: Oxford Robotics Institute

21



Things that can go wrong...

e ...in perception software

— sensor failure
— object detection failure

 Machine learning software

— not clear how it works

— does not offer guarantees

- Verification for machine learning?

- some progress towards safety verification for
neural networks

22



Personalisation challenge

e Device must adapt to physiology of human wearer

— achieved through model parameterisation
— parameter estimation, optimal parameter synthesis

 Multiple uses
— automation of personalised medical intervention
— device safety assurance, for testing
— reproduce the unique characteristics for authentication

* Focus on ECG based devices
— pacemaker models, heart models, synthetic ECGs

— future work on anxiety monitoring and control

23



Pacemaker verification/optimisation

* Hybrid model-based framework
— timed automata model for pacemaker

— hybrid heart models in Simulink
(non-linear ODEs)

* Properties

— (basic safety) maintain
60-100 beats per minute

.’,%lllll'lllll

3000+

— optimisation of energy usage & 2800

cardiac output [HSB’16] [HSCC’16] 2 o

2200+

— in-silico analysis of rate-adaptive 200,
pacemakers [ICHI'14] 50

\
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— hardware in the loop [EMBC’15]
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DNA computation challenge

Moore’s law, hence need to make devices smaller...

DNA computation, directly at the molecular level
— DNA logic circuit designs & programmable nanorobotics
— asynchronous DNA circuit designs [DNA'16]

Many applications envisaged

— e.g. bio-sensing, point of care diagnostics, ...

Apply quantitative verification and synthesis to
— find design flaws in DNA computing devices [JRSI"12]
— analyse reliability and performance of molecular walkers

— automatically synthesise reaction rates to guarantee a
specified level of reliability
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DNA nanostructures

* DNA origami [Rothemund, Nature 2006]

— DNA can self-assemble into structures — “molecular IKEA?”

— programmable self-assembly (can form tiles, nanotubes,
boxes that can open, etc.)

Adenine Thymine 95-20 °C
Ko o (<2h)

Guanine  Cytosine Annealing

Sugar phosphate
backbone
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DNA walker circuits

e Computing with DNA walkers [Natcomp’14]

Decision circuits

Finalt Final2
g v

— branching tracks laid out
on DNA origami tile

— starts at ‘initial’, signals

. (a)
when reaches ‘final’

— can control HERNE
‘left’/'right’ decision
— any Boolean function

(c)
 Parameter synthesis of rates

— for guaranteed reliability level [CMSB’14]
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DNA origami tiles

* DNA origami tiles

a b

monomer

* Aim: understand how to control the folding pathway
— formulate an abstract Markov chain model

— vyields predictions; perform a range of experiments,
consistent with predictions [Nature’15]
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Conclusions

* Probabilistic model checking & PRISM

— 15 years since first official tool release
— significant advances in underlying theory & technologies
— successfully deployed in many application domains

 Many research challenges and applications ahead
— verification, synthesis, learning, trust, cognitive models, ...

— autonomous systems, DNA computing,
personalised wearable/implantable devices, ...

\‘ http://www.prismmodelchecker.org/
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