
Probabilistic Model Checking 
in Practice  

Dave Parker  
Oxford University Computing Laboratory

Quantitative Model Checking PhD School, Copenhagen, March 2010

Overview

•  Tool support for probabilistic model checking

•  The PRISM model checker
−  functionality, features
−  modelling language
−  property specification

•  PRISM tool demo

•  PRISM lab session

Probabilistic model checking

•  Recap…

•  Probabilistic models
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  continuous-time Markov chains (CTMCs)

•  Probabilistic temporal logics
−  PCTL, LTL, PCTL* (discrete-time models)
−  CSL (continuous-time models)

Probabilistic model checkers

•  PRISM (this session)
−  DTMCs, MDPs, CTMCs + costs/rewards

•  Markov chain model checkers
−  MRMC: explicit-state engine for DTMCs, CTMCs + rewards
−  PEPA Plug-in Project: CSL model checking for PEPA (CTMCs)
−  CASPA: symbolic model checking of stochastic process algebra

•  MDP model checkers
−  LiQuor: LTL verification for MDPs (Probmela language)
−  RAPTURE: abstraction/refinement tool for MDPs

•  Many other interesting tools being developed:
−  e.g. for PTAs: UPPAAL PRO, PRISM (soon), mcpta, Fortuna

The PRISM tool

•  PRISM: Probabilistic symbolic model checker
−  developed at Universities of Birmingham/Oxford, since 1999
−  free, open source (GPL), versions for all major OSs

•  Modelling of:
−  DTMCs, CTMCs, MDPs + costs/rewards
−  simple, state-based modelling language

•  Model checking of:
−  PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

•  Features
−  efficient symbolic/explicit implementation techniques
−  approximate verification using simulation + sampling
−  GUI: model editor, simulator/debugger, result visualisation

PRISM modelling language

•  Simple, textual, state-based language
−  modelling of DTMCs, CTMCs and MDPs
−  based on Reactive Modules [Alur/Henzinger]

•  Basic components:
−  modules: components of system being modelled

•  combined through parallel composition
−  variables: local/global, finite-ranging (integers/Booleans)
−  guarded commands: probabilistic updates to variables

•  optional action labels for synchronisation

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

PRISM modelling language

•  Parallel composition
−  synchronous or asynchronous composition of modules
−  process-algebraic operators for e.g. action hiding/renaming

•  Module renaming
−  easy construction of identical/symmetric modules

•  Rewards (or equivalently: costs, prices, …)
−  real-valued quantities assigned to states and/or transitions
−  these can have a wide range of possible interpretations, e.g.:
−  elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

Example: Leader election

•  Randomised leader election protocol
−  due to Itai & Rodeh (1990)

•  Set-up: N nodes, connected in a ring
−  communication is synchronous (lock-step)

•  Aim: elect a leader
−  i.e. one uniquely designated node
−  by passing messages around the ring

•  Protocol operates in rounds. In each round:
−  each node chooses a (uniformly) random id ∈ {0,…,k-1}
−  (k is a parameter of the protocol)
−  all nodes pass their id around the ring
−  the node with the maximum unique id becomes the leader
−  if no unique id exists, try again with a new round

PRISM code…

PRISM property specifications

•  Based on (probabilistic extensions of) temporal logic
−  incorporates PCTL, CSL, LTL, PCTL*
−  also includes: quantitative extensions, costs/rewards 

•  Example properties (leader election)
−  P≥1 [F “elected”]  

”with probability 1, a leader is eventually elected”
−  P≥1 [F G “elected”]  

”with probability 1, a leader is eventually elected permanently”
−  P>0.8 [F≤T “elected”]  

”with probability > 0.8, a leader is elected within T steps” 

•  Usually focus on quantitative properties:
−  P=? [F≤T “elected”]  

”what is the probability that a leader is elected within T steps?”

PRISM property specifications

•  Experiments:
−  ranges of model/property parameters
−  e.g. P=? [F≤T “elected”] for N=1..5, T=1..100

 where N is some model parameter and T a time bound
−  identify patterns, trends, anomalies in quantitative results

PRISM property specifications

•  Rewards/costs
−  expected (instantaneous/cumulative) value of reward
−  e.g. “the expected time for a leader to be elected”
−  e.g. “the expected power consumption over one hour”
−  e.g. “the expected queue size after exactly 90 seconds”

•  Best/worst-case scenarios
−  combining “quantitative” and “exhaustive” aspects
−  for MDPs, quantification over all adversaries/schedulers
−  e.g. Pmin=? [F “terminate”] – “worst-case probability of

termination over all possible schedulers”
−  for any model, compute values for a range of states
−  e.g. R=? [F end {“init”}{max}] - “maximum expected run-time

over all possible initial configurations”

PRISM demo…

More info on PRISM

•  PRISM website: http://www.prismmodelchecker.org/  

−  tool download: binaries, source code (GPL)
−  on-line example repository (50+ case studies)
−  on-line documentation: manual, tutorial, FAQ
−  support: help forum
−  related publications, talks, tutorials, links

•  Practical session using PRISM  

−  upstairs in PC labs 2A52 and 2A54

−  http://www.prismmodelchecker.org/courses/qmc10/

