
Multi-Agent Verification & Control
with Probabilistic Model Checking

Dave Parker
University of Oxford

QEST @ CONFEST, Antwerp, Sep 2023

Probabilistic model checking
• Models & logics for automatic verification of stochastic systems

• Builds on an (increasingly) wide range of disciplines
§ logic, automata, Markov models, optimisation, SMT, simulation, control, AI, …

• Key strengths: exhaustive + numeric analysis
§ often subtle interplay between probability + nondeterminism
§ numerical results & trends can help identify flaws
§ enabled by advances in scalability, e.g., symbolic (BDD-based) methods

• Exploits flexibility of formal modelling languages & logics
§ consistency across wide range of models & properties

2

P>0.999 [□(trigger → ◇≤20 deploy)]

Example: Bluetooth
• Device discovery between a pair of Bluetooth devices

§ performance essential for this phase

• Complex discovery process
§ two asynchronous 28-bit clocks
§ pseudo-random hopping between 32 frequencies
§ random waiting scheme to avoid collisions

• Probabilistic model checking
§ worst-case expected time and probability for successful discovery
§ 17,179,869,184 initial configurations
§ exhaustive numerical analysis via symbolic model checking
§ highlights flaws in a simpler, analytic analysis

Trends in probabilistic model checking

• Increasingly expressive/powerful classes of model
§ real-time, partial observability, epistemic uncertainty, multi-agent, …
§ leading to ever widening range of application domains

• From verification problems to control/synthesis
§ “correct-by-construction” from temporal logic specifications

• Increasing use/integration of learning
§ either to support modelling/verification
§ or deployed within the systems being verified

4

CTMC, CSG,
DTMC, LTS, MDP,
POMDP, POPTA,

PTA, STPG, SMG,
TPTG, IDTMC,

IMDP

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

Stochastic multi-agent systems
• How do we verify/control stochastic systems with…

§ multiple agents acting autonomous and concurrently
§ competitive or collaborative behaviour between agents, possibly with differing goals
§ learnt components for e.g. control/perception

• This talk:
§ probabilistic model checking with stochastic multi-player games
§ models, logics, algorithms, tools, examples

• Applications:
§ distributed protocols for

consensus/security
§ multi-robot systems
§ autonomous vehicles

Overview

• Stochastic multi-player games

• Concurrent stochastic games

• Equilibria for stochastic games

• Neuro-symbolic games

• Challenges & directions

Stochastic
games

Starting point: MDPs
• Markov decision processes (MDPs)

§ strategies (or policies) σ resolve actions based on history
§ e.g.: Pmax=? [F✓] = supσ Prs

σ (F✓)
§ what is the maximum probability of

reaching ✓ achievable by any strategy σ?

• Key solution method: value iteration
§ values p(s) are the least fixed point of:

§ also amenable to symbolic (BDD-based) implementation

p(s) = 1 if s⊨✓
maxa Σs’ δ(s,a)(s’)⋅p(s’) otherwise

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

f

f

f

0.7

δ : S×A → Dist(S)

Stochastic multi-player games
• (Turn-based) stochastic multi-player games

§ strategies + probability + multiple players
§ player i controls subset of states Si

Markov
decision processes

(MDPs)

Turn-based
stochastic games

(TSGs)

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

f

f

f

0.7

δ : S×A → Dist(S)

S = S1⊎… ⊎Sn

Modelling with turn-based games
• Turn-based stochastic games well suited to some (but not all) scenarios

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8

0.2

0.9

0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6 west
west

east
0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG modelsUncontrollable/unknown
navigation interference

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8

0.2

0.9

0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6 west
west

east
0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

Shared autonomy:
human-robot control

Property specification: rPATL
• rPATL (reward probabilistic alternating temporal logic)

§ zero-sum, branching-time temporal logic for stochastic games
§ coalition operator ⟨⟨C⟩⟩ of ATL

+ probabilistic (P) and reward (R) operators

• Example:
§ ⟨⟨{robot1,robot3}⟩⟩ Pmax=? [F (goal1∨ goal3)]
§ “what strategies for robots 1 and 3 maximise

the probability of reaching their goal locations,
regardless of the strategies of other players”

• Other additions:
§ (co-safe) linear temporal logic

¬zone3 U (room1 ∧ (F room4 ∧ F room5)

§ nested specifications
⟨⟨{robot1,robot3}⟩⟩ Rmin=? [

⟨⟨{robot1}⟩⟩ P≥0.99 [F≤10 base]
U (zone1 ∧ (F zone4))]

“minimise expected time for joint task,
while ensuring base reliably reached”

Can be seen as
a mixture of
control and
verification

Model checking rPATL
• Main task: checking individual P and R operators

§ reduces to solving a (zero-sum) stochastic 2-player game
§ e.g. max/min reachability probability: supσ1

infσ2
 Prs

σ1,σ2 (F✓)
§ complexity: NP ∩ coNP (if we omit some reward operators)

• We again use value iteration
§ values p(s) are the least fixed point of:

§ and more: graph-algorithms, sequences of fixed points, …

p(s) =
1 if s⊨✓
maxa Σs’ δ(s,a)(s’)⋅p(s’) if s⊭✓ and s∈S1
mina Σs’ δ(s,a)(s’)⋅p(s’) if s⊭✓ and s∈S2

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

• Implementation
§ symbolic (BDD-based)

version also developed
§ big gains on some models
§ also benefits for strategy

compactness

Example: Energy protocols
• Demand management protocol for microgrids

§ randomised back-off to minimise peaks

• Stochastic game model + rPATL
§ allow users to collaboratively cheat (ignore protocol)
§ TSGs of up to ~6 million states
§ exposes protocol weakness

(incentive for clients to act selfishly)
§ propose/verify simple fix using penalties

Adding penalties
reverses trend

Incentive for
(individual)
deviations

2

R
ew

ar
d

pe
r h

os
ue

ho
ld

6 753 4
5

10

15

20

Num.
households

Algorithm + penalties

2

Num.
households

R
ew

ar
d

pe
r h

os
ue

ho
ld

6 7543
5

10

15

20 Original algorithm

C
oa

lit
io

n
si

ze

No protocol

7

1

3
4
5
6

2

Deviating
coalition

All follow
protocol

PRISM-games

Concurrent
stochastic

games

Concurrent stochastic games
• Need a more realistic model of components operating concurrently

• Concurrent stochastic games (CSGs)
§ (also known as Markov games, multi-agent MDPs)
§ players choose actions concurrently & independently
§ jointly determines (probabilistic) successor state

Concurrent
stochastic games

(CSGs)s0

t1,t2

w1,t2w1,w2

s1

s2t1,w2

Turn-based
stochastic games

(TSGs) s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5
δ : S×(A1∪{⊥}) ×… × (An∪{⊥}) → Dist(S)

rPATL model checking for CSGs
• Same overall rPATL model checking algorithm

§ key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
§ note that optimal strategies are now randomised

• We again use a value iteration based approach
§ e.g. max/min reachability probabilities
§ supσ1

infσ2
Prs

σ1,σ2 (F ✓) for all states s
§ values p(s) are the least fixed point of:

§ where Z is the matrix game
with zij = Σs’ δ(s,(ai,bj))(s’)⋅p(s’)

p(s) =
1 if s⊨✓
val(Z) if s⊭✓

s0

t1,t2

w1,t2w1,w2

s1

s2t1,w2

• Implementation
§ matrix games solved as linear programs

• (LP problem of size |A|)
§ required for every iteration/state

• which is the main bottleneck

§ but we solve CSGs of ~3 million states

Example: Future markets investor
• 3-player CSG modelling interactions between:

§ stock market, evolves stochastically
§ two investors i1, i2 decide when to invest
§ market decides whether to bar investors
§ various profit models; reduced for simultaneous investments

• Investor strategy synthesis via rPATL model checking
§ ⟨⟨investor1,investor2⟩⟩ Rmax=? [F finished1,2]
§ non-trivial optimal (randomised) investment strategies
§ concurrent game (CSG) yields more realistic results

(market has less observational power over investors)

profit1,2

Too pessimistic:
unrealistic strategy

for adversary

Equilibria for
stochastic games

Equilibria-based properties
• Beyond zero-sum games:

§ players/components may have distinct objectives
but which are not directly opposing (zero-sum)

• We use Nash equilibria (NE)
§ no incentive for any player to unilaterally change strategy
§ actually, we use ε-NE, which always exist for CSGs

• We extend rPATL model checking for CSGs
§ with social-welfare Nash equilibria (SWNE)
§ i.e., NE which also maximise the joint sum Es

σ (X1) + … Es
σ (Xn)

Zero-sum
properties

⟨⟨robot1⟩⟩max=? P [F≤k goal1]

Equilibria-based
properties
(SWNE)

⟨⟨robot1:robot2⟩⟩max=?
(P [F≤k goal1]+P [F ≤k goal2])

σ=(σ1,…,σn) is an ε-NE for objectives X1,…,Xn iff:
for all i : Es

σ (Xi) ≥ sup { Es
σ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε

Model checking for Nash equilibria
• Model checking for CSGs with equilibria

§ needs solution of bimatrix games
§ (basic problem is EXPTIME)
§ strategies need history

and randomisation

• We further extend the value iteration approach:

§ where Z1 and Z2 encode matrix games similar to before
20

p(s) =

(1,1) if s ⊨✓1∧✓2

(1,pmax(s,✓2)) if s ⊨✓1∧¬✓2

(pmax(s,✓1),1) if s ⊨ ¬✓1∧✓2

val(Z1,Z2) if s ⊨ ¬✓1∧¬✓2

standard
MDP analysis

bimatrix game

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

• Implementation
§ we adapt a known approach

using labelled polytopes, and
implement via SMT

§ optimisations: filtering
of dominated strategies

§ solve CSGs of ~2 million states

Example: multi-robot coordination
• 2 robots navigating an m x m gridworld

§ start at opposite corners, goals are
to navigate to opposite corners

§ obstacles modelled stochastically

• We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
§ ⟨⟨robot1:robot2⟩⟩max=? (P [F≤k goal1]+P [F ≤k goal2])
§ and compare to sequential strategy synthesis

Collaboration helps:
better performance

from equilibria

10 x 10 grid

ε-NE found
typically have ε=0

Faster and fairer equilibria
• Limitations of (social welfare) Nash equilibria for CSGs:

1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial to players

• Correlated equilibria
§ correlation: shared (probabilistic) signal + map to local strategies
§ synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
§ experiments: much faster to synthesise (4-20x faster)

• Social fairness
§ alternative optimality criterion: minimise difference in objectives
§ applies to both Nash/correlated: slight changes to optimisation

22

Example: Aloha
communication protocol14 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

0.4 0.6 0.8 1
1

2

3

4

5

q

E
xp

ec
te

d
ti

m
e

two users
SFNEi

SW1

SW2

SFCEi

0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

q

E
xp

ec
te

d
ti

m
e

three users
SW1

SW2

SW3

SFi

0.4 0.6 0.8 1
2
3
4
5
6
7
8
9

10
11

q

E
xp

ec
te

d
ti

m
e

four users
SW1

SW2

SW3

SW4

SFi

Fig. 2: Aloha: 〈〈usr1: · · · :usrm〉〉(!1, !2)min=?(Rtime [F s1]+· · ·+Rtime [F sm])

i for both SWNE and SWCE for the cases of two, three and four users. We see
that the optimal values for the different users under SFNE and SFCE coincide,
while under SWNE and SWCE they are different for each user (with the user
sending first having the lowest and the user sending last the highest). Comparing
the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, while for SFNE there
is a greater difference as the players cannot coordinate, and hence try and send
at the same time.

Power control. This case study is based on a model of power control in cel-
lular networks from [7]. In the network there are a number of users that each
have a mobile phone. The phones emit signals that the users can strengthen by
increasing the phone’s power level up to a bound (powmax). A stronger signal
can improve transmission quality, but uses more energy and lowers the qual-
ity of the transmissions of other phones due to interference. We use the ex-
tended model from [22], which adds a probability of failure (qfail) when a power
level is increased and assumes each phone has a limited battery capacity (emax).
There is a reward structure associated with each phone representing transmis-
sion quality, which is dependent on both the phone’s power level and the power
levels of other phones due to interference. We consider the nonzero-sum prop-
erty 〈〈p1:· · ·:pm〉〉(!1, !2)max=?(Rr1 [F e1]+· · ·+Rrm [F em]), where each user tries
to maximise their expected reward before their phone’s battery is depleted.

In Figure 3 we have presented the expected rewards of the players under
the synthesised SWCE and SFCE joint strategies. When performing strategy
synthesis, in the case of two users the SWNE and SWCE yield the same profile
in which, when the users’ batteries are almost depleted, one user tries to increase
their phone’s power level and, if successful, in the next step, the second user then
tries to increase their phone’s power level. Since the first user’s phone battery
is depleted when the second tries to increase, this increase does not cause any
interference. On the other hand, if the first user fails to increase their power
level, then both users increase their battery levels. For the SFCE, the users
can coordinate and flip a coin as to which user goes first: as demonstrated by
Figure 3 this yields equal rewards for the users, unlike the SWCE. In the case of
three users, the SWNE and SWCE differ (we were only able to synthesise SWNE
for powmax = 2 as for larger values the computation had not completed within

social fairness (SF)
more equitable

than social welfare (WFi)

Signals:
randomised coordination
of next message sender,

adapting over time

s0

t1,t2

w1,t2w1,w2

s1

s2t1,w2

Tool support: PRISM-games
• PRISM-games

§ supports turn-based/concurrent SGs, zero-sum/equilibria
• and more (co-safe LTL, multi-objective, real-time extensions, …)

§ explicit-state and symbolic implementations
§ custom modelling language extending PRISM

• Growing interest: other (TSG) tools becoming available
§ Tempest, EPMC, PET, PRISM-games extensions

• Many other example application domains
§ attack-defence trees, self-adaptive software architectures,

human-in-the-loop UAV mission planning, trust models,
collective decision making, intrusion detection policies prismmodelchecker.org/games/

http://www.prismmodelchecker.org/games/

Neuro-symbolic
games

Deep reinforcement learning
• Tackling more realistic problems

§ continuous state spaces & more complex dynamics

• Verification of learning-based systems
§ e.g., deep reinforcement learning
§ neural network (NN) learnt for strategy actions/values

• First steps: single-agent verification, fixed policy
§ deterministic dynamical system + control faults
§ combine polyhedral abstractions with probabilistic model checking
§ conservative abstraction of NN-controlled dynamics

over a finite horizon, via MILP

System Controller/policy Environment

deep reinforcement learning

pendulum
benchmark

upper bounds on
failure probabilities
for initial regions

Neuro-symbolic games
• Mixture of neural components + symbolic/logical components

§ simpler than end-to-end neural control problem; aids explainability
§ here: neural networks (or similar) for perception tasks
§ plus: local strategies for control decisions

• Neuro-symbolic CSGs
§ finite-state agents + continuous-state environment E

• S = (Loc1×Per1)× (Loc2×Per2) × SE

§ agents use a (learnt) perception function to observe E
• obsi : (Loc1×Loc2) × SE → Peri

§ CSG-like joint actions update state probabilistically

• Example: dynamic vehicle parking
§ NN maps exact vehicle position to perceived grid cell

26

s0

t1,t2

w1,t2w1,w2

s1

s2t1,w2

Model checking neuro-symbolic CSGs
• Strategy synthesis for zero-sum (discounted) expected reward

§ for now, we assume full observability

• Value iteration (VI) approach
§ continuous state-space decomposed into regions
§ further subdivision at each iteration
§ we define a class of piecewise-continuous

value functions, preserved by NNs and VI

• Implementation
§ pre-image computations of NNs
§ polytope representations of regions
§ LPs to solve zero-sum games at each step

27

Dynamic vehicle parking
with larger (8x8) grid and
simpler (regression) perception

Value function
(fragment)

Optimal strategy
(fragment)

Wrapping up

Challenges & directions
• Partial information/observability

§ e.g., leveraging progress on POMDPs

• Managing robustness and uncertainty
§ quantifying model uncertainty, e.g., from learning
§ stability of randomised strategies

• Modelling language design and extensions
§ e.g., more flexible interchange of components and strategies

• Further classes of equilibria
§ e.g. Stackelberg equilibria for automotive/security applications

• Improving scalability & efficiency
§ e.g. symbolic methods for CSGs, compositional solution approaches

M1 A M2A

Running example: Robust control
• An IMDP for the robot example
‣ uncertainty added to two state-action pairs

‣ Note: the degree of uncertainty (e)
in states s1 and s2 is correlated here
(but the actual transition probabilities are not)

52

• Robust control

‣ for any e, we can pick a “robust”
(optimal worst-case) policy

‣ and give a safe lower bound
on its performance

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

Challenges & directions
• Partial information/observability

§ e.g., leveraging progress on POMDPs

• Managing robustness and uncertainty
§ quantifying model uncertainty, e.g., from learning
§ stability of randomised strategies

• Modelling language design and extensions
§ e.g., more flexible interchange of components and strategies

• Further classes of equilibria
§ e.g. Stackelberg equilibria for automotive/security applications

• Improving scalability & efficiency
§ e.g. symbolic methods for CSGs, compositional solution approaches

M1 A M2A

Running example: Robust control
• An IMDP for the robot example
‣ uncertainty added to two state-action pairs

‣ Note: the degree of uncertainty (e)
in states s1 and s2 is correlated here
(but the actual transition probabilities are not)

52

• Robust control

‣ for any e, we can pick a “robust”
(optimal worst-case) policy

‣ and give a safe lower bound
on its performance

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

• Funded by: FUN2MODEL

• Joint work with:
§ Edoardo Bacci, Taolue Chen, Vojtěch Forejt,

Marta Kwiatkowska, Gethin Norman,
Gabriel Santos, Aistis Simaitis, Rui Yan

prismmodelchecker.org/games/

PRISM-games

• More details here:

http://www.prismmodelchecker.org/games/

