I I Multi-Agent Verification & Control
with Probabilistic Model Checking

Dave Parker

University of Oxford

QEST @ CONFEST, Antwerp, Sep 2023

Il| Probabilistic model checking

Models & logics for automatic verification of stochastic systems

Builds on an (increasingly) wide range of disciplines
= |ogic, automata, Markov models, optimisation, SMT, simulation, control, Al, ...

Key strengths: exhaustive + numeric analysis

= often subtle interplay between probability + nondeterminism

= numerical results & trends can help identify flaws

= enabled by advances in scalability, e.g., symbolic (BDD-based) methods

Exploits flexibility of formal modelling languages & logics
= consistency across wide range of models & properties

Il Example: Bluetooth

* Device discovery between a pair of Bluetooth devices

72 00 RO, »\Y),L
% gq\\q,’\q\’rﬂ%%%ﬁ?’;\ iéo\%;\%
- i o X %ﬂ%{’%@ N\ \%%;1%9,;5%&;\?6\’\2%
» performance essential for this phase R Y
SR AR R S,

)
@
AT G T3 N B R i N,
N ke % B qu;?@g"ﬂ\q’ R0 N Ue 00
KR8 3, BOTWTE Y S BB NN e R0 W o

! A\ 1 Q NN 92,99, A A9,)
 Complex discovery process U R R A
L)

AX N

" two asynchronous 28-bit clocks R R LR RS
= pseudo-random hopping between 32 frequencies " RS ARA

= random waiting scheme to avoid collisions T
* Probabilistic model checking - —
= worst-case expected time and probability for successful discovery %0-8 J !
= 17,179,869,184 initial configurations 5" 5
= exhaustive numerical analysis via symbolic model checking g:: - _
= highlights flaws in a simpler, analytic analysis g - -derived

OO
—_
N
w
H
()}

Il| Trends in probabilistic model checking

. . CTMC, CSG
* Increasingly expressive/powerful classes of model DTMC, LTS, MDP
. POMDP, POPTA,
= real-time, partial observability, epistemic uncertainty, multi-agent, ... PTA, STPG, SMG,
] .] . . . TPTG, IDTMC,
= |eading to ever widening range of application domains IMDP

* From verification problems to control/synthesis

= “correct-by-construction” from temporal logic specifications

* |ncreasing use/integration of learning
= ejther to support modelling/verification

= or deployed within the systems being verified

I}l Stochastic multi-agent systems

How do we verify/control stochastic systems with...

= multiple agents acting autonomous and concurrently

= competitive or collaborative behaviour between agents, possibly with differing goals

= |earnt components for e.g. control/perception

This talk:

= probabilistic model checking with stochastic multi-player games
= models, logics, algorithms, tools, examples

Applications:

= distributed protocols for
consensus/security

= multi-robot systems
= agutonomous vehicles

Il Overview

e Stochastic multi-player games
e Concurrent stochastic games

* Equilibria for stochastic games
 Neuro-symbolic games

* Challenges & directions

Stochastic
games

I}l Starting point: MDPs

* Markov decision processes (MDPs)
= strategies (or policies) o resolve actions based on history
" e.g.:P, > [FV] = sup,Pre(FV)

= what is the maximum probability of
reaching v achievable by any strategy o?

* Key solution method: value iteration 5:SxA — Dist(S)
= values p(s) are the least fixed point of:
1 if sev
p(s) = , : .
max, 2o 0(s,a)(s’)-p(s’) otherwise

= also amenable to symbolic (BDD-based) implementation

I}l Stochastic multi-player games

e (Turn-based) stochastic multi-player games
= strategies + probability + multiple players
= player i controls subset of states S,

Markov Turn-based
decision processes |:> stochastic games
(MDPs) (TSGs)

0 : SXA — Dist(S)

S =5w... WS,

Ill Modelling with turn-based games

* Turn-based stochastic games well suited to some (but not all) scenarios

Uncontrollable/unknown Shared autonomy:
navigation interference human-robot control
{hazard}

east {goal,} 0.2
0.8 _

slow
east °! \—P@~

s fast
0 g, fast _
S2 slow S4

-~

0.9
0.1

I}l Property specification: rPATL

* rPATL (reward probabilistic alternating temporal logic)

= zero-sum, branching-time temporal logic for stochastic games

= coalition operator ((C)) of ATL

+ probabilistic (P) and reward (R) operators

e Other additions:
 Example:

= ({{robot;,robots})) P> [F(goal;V goals)]
= “what strategies for robots 1 and 3 maximise

= (co-safe) linear temporal logic
-zone; U (room; A (F room, A F room;)

the probability of reaching their go=' locations, " nested specifications
regardless of the strategies of oth<i players” ({({roboty,robots})) Riin=: [
(({robot;})) P.o g9 [F*'° base]
\ / U (zone,; A (F zoney)) |
Can be seen as “minimise expected time for joint task,
a mixture of while ensuring base reliably reached”
control and

verification

Il Model checking rPATL

* Main task: checking individual P and R operators
» reduces to solving a (zero-sum) stochastic 2-player game

= e.g. max/min reachability probability: supolim‘o2 Pr.°1% (Fv)

" complexity: NP N coNP (if we omit some reward operators)

 We again use value iteration
= values p(s) are the least fixed point of:

] if sev
p(s) = { max, Z¢ 8(s,a)(s’)-p(s’) if s and seS;
min, 2o 0(s,a)(s’)-p(s’) if s=v and seS,

= and more: graph-algorithms, sequences of fixed points, ...

* Implementation

symbolic (BDD-based)
version also developed

big gains on some models

also benefits for strategy
compactness

Ill Example: Energy protocols

* Demand management protocol for microgrids 20 - Original algorithm 'E‘I;Zrl‘\t:‘éi:l’)r
= randomised back-off to minimise peaks S deviations
315 -
e Stochastic game model + rPATL Deviating g ‘ /
coalition =]
= allow users to collaboratively cheat (ignore protocol) 1 5 0
= TSGs of up to ~6 million states Sq 3 L
Sa 1 5 » Num.
= exposes protocol weakness ° e @ > % 4 & & 1y households
(incentive for clients to act selfishly)
. .))) All follow 20 Algorithm + penalties
= propose/verify simple fix using penalties protocol
No protocol

15 — Adding penalties
reverses trend

» 7 . 4
| -

PRISM-games 5

Reward per hosuehold

i Num.

T T T T T households
2 3 4 5 6 7

0 3 6 9 12 15 18 21 24
Time of the day (hours)

Concurrent
stochastic
games

I}l Concurrent stochastic games

 Need a more realistic model of components operating concurrently

e Concurrent stochastic games (CSGs)
= (also known as Markov games, multi-agent MDPs)
= players choose actions concurrently & independently
= jointly determines (probabilistic) successor state

Turn-based
stochastic games
(TSGs)

W] ’t2
W] ’WZ

Concurrent
stochastic games
(CSGs)

5:Sx(AU{L}) X ... X (A,U{L}) — Dist(S)

Il rPATL model checking for CSGs

 Same overall rPATL model checking algorithm

* We again use a value iteration based approach

key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
note that optimal strategies are now randomised

e.g. max/min reachability probabilities
sup,, inf_ Pro1a (F v') for all states s

values p(s) are the least fixed point of: * Implementation
_ " matrix games solved as linear programs
1 if sev :
p(s) = _ * (LP problem of size |A])
val(Z) if sV

= required for every iteration/state

* which is the main bottleneck
where Z is the matrix game

with z, = %, 8(s,(a,b)(s')-p(s") = but we solve CSGs of ~3 million states

||| Example: Future markets investor

e 3-player CSG modelling interactions between:

= stock market, evolves stochastically \ }
" two investors iy, i, decide when to invest ;
= market decides whether to bar investors PR

1 2 3 4 5 6 7 8 9

= various profit models; reduced for simultaneous investments

* Investor strategy synthesis via rPATL model checking

= ((investor,,investor,)) RE:Z]:L?[F finished, ,]

= non-trivial optimal (randomised) investment strategies

= concurrent game (CSG) yields more realistic results
(market has less observational power over investors)

Too pessimistic:

~ unrealistic strategy

—m— CSG (i1, i2)) for adversary
—e— TSG ((il, i2))

Max combined profit
=
o
at

1 2 3 4 5 6 7 8 9

Number of months

Equilibria for
stochastic games

I}l Equilibria-based properties

e Beyond zero-sum games:

= players/components may have distinct objectives
but which are not directly opposing (zero-sum)

 We use Nash equilibria (NE)

" no incentive for any player to unilaterally change strategy
= actually, we use e-NE, which always exist for CSGs

o=(o, _,0,) is an e-NE for objectives X,..., X, iff:
foralli:EC°(X)=sup{EX (X) | o’=0.[c/landc/€E 3 }—¢

 We extend rPATL model checking for CSGs

= with social-welfare Nash equilibria (SWNE)
" j.e., NE which also maximise the joint sum E.° (X;) + ... E.°(X,,)

Zero-sum
properties

<<r0b0t1>>max=? P [FSk goal1]

!

((robot:robot,))max=>
(P [F=< goal,]+P [F = goal,])

Equilibria-based
properties
(SWNE)

Il Model checking for Nash equilibria

* Model checking for CSGs with equilibria
= needs solution of bimatrix games * Implementation

. : t,t
= (basic problem is EXPTIME) p o - - = we adapt a known approach
= strategies need history 9\' using labelled polytopes, and
and randomisation '%Q -- implement via SMT

wow, 0t = optimisations: filtering
of dominated strategies
* We further extend the value iteration approach: . <olve CSGs of ~2 million states
((.I,.I) ifS|=\/1/\\/2
p(S) _ < (] ;pmax(s;\/z)) If S F ‘/1/_'/2 <\ Standard .
(Prax(s, /), 1) ifs e/ Ay, «— MPPanaes
L Val(z],22) if s e _'/1/_'\/2

<€4— bimatrix game

* where Z, and Z, encode matrix games similar to before

20

Ill Example: multi-robot coordination

* 2 robots navigating an m x m gridworld

NS
% A

= start at opposite corners, goals are
to navigate to opposite corners

[
I
NS
Nk

|
Q
N

= obstacles modelled stochastically

Ot

* We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
= ((robotl:robot2))....- (P [F*¢ goal,]+P [F < goal,])
= and compare to sequential strategy synthesis

10 x 10 grid

Collaboration helps:
better performance
from equilibria

e-NE found /

typically have €=0

B

—m— Equilibria | |
—@— Zero-sum

Average success probability
o
o

| | I \
9 10 11 12 13 14

k

I}l Faster and fairer equilibria

Limitations of (social welfare) Nash equilibria for CSGs:
1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial to players

Correlated equilibria

= correlation: shared (probabilistic) signal + map to local strategies
= synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
= experiments: much faster to synthesise (4-20x faster)

Social fairness
= alternative optimality criterion: minimise difference in objectives
= applies to both Nash/correlated: slight changes to optimisation

Example: Aloha
communication protocol

social fairness (SF)
more equitable
than social welfare (WF,)

22

Il Tool support: PRISM-games

* PRISM-games
= supports turn-based/concurrent SGs, zero-sum/equilibria E

player p1 userl endplayer
« and more (co-safe LTL, multi-objective, real-time extensions, ...) R
module user1
s1:[0..11init O; // has player I sent?

u eXpIiCit_State and SymbO“C implementations el : [0..emax] init emax; // energy level of player 1

[w1] true -> (s1'=0); // wait

[t1] e1>0-> (s1'=c’?0: 1) & (el'=el-1); // transmit

= custom modelling language extending PRISM

module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2 | endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel
¢ : bool init false; // /s there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true —> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits

* Growing interest: other (TSG) tools becoming available

endmodule

= Tempest, EPMC, PET, PRISM-games extensions

 Many other example application domains v

= attack-defence trees, self-adaptive software architectures,
human-in-the-loop UAV mission planning, trust models,
collective decision making, intrusion detection policies prismmodelchecker.org/games/

http://www.prismmodelchecker.org/games/

Neuro-symbolic
games

Ill Deep reinforcement learning

* Tackling more realistic problems

continuous state spaces & more complex dynamics

* Verification of learning-based systems System Controfler/policy. ___Environment

e.g., deep reinforcement learning deep reinforcement learning

neural network (NN) learnt for strategy actions/values

FIrSt StepSZ Slngle'agent Ver|flcat|0n, leEd pO|ICY Rectangle Octago ’ {81, 02, d3 }-polyhedron

(a) (b) (c)
deterministic dynamical system + control faults

combine polyhedral abstractions with probabilistic model checking
conservative abstraction of NN-controlled dynamics

over a finite horizon, via MILP / e L)
upper bounds on o

failure probabilities % bpeenncdhli:]uarpk
for initial regions

Ill Neuro-symbolic games

Mixture of neural components + symbolic/logical components
= simpler than end-to-end neural control problem; aids explainability

* here: neural networks (or similar) for perception tasks
= plus: local strategies for control decisions

Neuro-symbolic CSGs

= finite-state agents + continuous-state environment E
* S = (Locy X Pery) X (Loc, X Per,) X Sg

= agents use a (learnt) perception function to observe E 4 7__d2<_|5,
e obs;: (Loc; X Loc,) X Sg— Per; 3 al/!
= (CSG-like joint actions update state probabilistically 2 |
L
Example: dynamic vehicle parking 0 1 2 3

= NN maps exact vehicle position to perceived grid cell

26

I}l Model checking neuro-symbolic CSGs

» Strategy synthesis for zero-sum (discounted) expected reward

= for now, we assume full observability

Value iteration (VI) approach

= continuous state-space decomposed into regions

4.0

= further subdivision at each iteration 35
3.0

= we define a class of piecewise-continuous 251
value functions, preserved by NNs and VI 201

1.5 1

1.0 1

0.5 1

Implementation 00
" pre-image computations of NNs

= polytope representations of regions

= |Ps to solve zero-sum games at each step

T 4.0
T 3.5
T 3.0

Dynamic vehicle parking
with larger (8x8) grid and
simpler (regression) perception

25
v 2.0
1.5
1.0

0.5

00 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0

+
!
t
t
t
t

—
—
—

| = -

- = -

R vl

! 1 - — —

= = = = = -
?

RN

0.0
00 05 1.0 1.5 20 25 3.0 3.5 4.0

1000 1500 2000 0.0

Value function
(fragment)

06 08 1.0

Optimal strategy
(fragment)

27

Wrapping up

Il Challenges & directions

.oy . o . 4 EDRRES -
Partial information/observability 40| s W =
. 1-a| -4 ; Dy ' A%M&
= e.g., leveraging progress on POMDPs Ly 1_& | o T
G - ~
Managing robustness and uncertainty 0 1 2 3 4
= A
= quantifying model uncertainty, e.g., from learning 5 074
S 0.6-
= stability of randomised strategies § O T
= oa-
Modelling language design and extensions T TR

= e.g., more flexible interchange of components and strategies

Further classes of equilibria

= e.g. Stackelberg equilibria for automotive/security applications — 5 |
B, | o= fwm. |

Improving scalability & efficiency
= e.g.symbolic methods for CSGs, compositional solution approaches

Il Challenges & directions

e Joint work with:

= Edoardo Bacci, Taolue Chen, Vojtéch Forejt,
Marta Kwiatkowska, Gethin Norman, .
Gabriel Santos, Aistis Simaitis, Rui Yan

More details here:

\‘ PRISM-games

° Fund-e_'d- by: FUN2MODEL prismmodelchecker.org/games/

http://www.prismmodelchecker.org/games/

