What is PRISM?

- **PRISM**: Probabilistic (symbolic) model checker

- **PRISM today**
 - 12 types of probabilistic models, many probabilistic temporal logics
 - uses: logic, automata, Markov models, optimisation, SMT, simulation, game theory, artificial intelligence, learning...
 - >400 case studies across a broad range of application domains

- **PRISM development**: driven by challenges, applications, users
PRISM: A brief history

- **1998:** tool development begins (Birmingham)
 - symbolic probabilistic model checking
- **2001:** first official public release of PRISM
- **2004 & 2006:** PRISM 2.0 & 3.0
 - new GUI, logics, cost/reward models, simulator engines
- **2011:** PRISM 4.0
 - probabilistic real-time systems, PRISM benchmark suite
 - multi-objective model checking & assume-guarantee
- **2013:** first release of PRISM-games
- **2016 & 2020:** PRISM-games 2.0 & 3.0
 - multi-objective, concurrent stochastic games, equilibria
- **2020-2024:** policy/strategy synthesis, POMDPs, uncertain MDPs, ...
PRISM: A brief history

• 1998: tool development begins (Birmingham)
 • symbolic probabilistic model checking [TACAS’00,’02]

• 2001: first official public release of PRISM

• 2004 & 2006: PRISM 2.0 & 3.0 [TACAS’06]
 • new GUI, logics, cost/reward models, simulator engines [TACAS’04]

• 2011: PRISM 4.0
 • probabilistic real-time systems, PRISM benchmark suite
 • multi-objective model checking & assume-guarantee [TACAS’07,’10,’11]

• 2013: first release of PRISM-games [TACAS’12,’13]

• 2016 & 2020: PRISM-games 2.0 & 3.0
 • multi-objective, concurrent stochastic games, equilibria [TACAS’15,’16,’22]

• 2020-2024: policy/strategy synthesis, POMDPs, uncertain MDPs, ...
Early applications of PRISM

- Randomised distributed algorithms/protocols
 - modelled as MDPs/probabilistic automata
 - key motivating example for probabilistic verification

- Performance modelling & biochemical reactions
 - modelled as Markov chains

- FireWire protocol
- Bluetooth device discovery
- Herman’s self-stabilisation
- FGF cell signalling pathway experiments
- Reliable multiplexing in nanotechnology

Multiple flaws, bugs, anomalies found...
Enabling technologies

• Challenge-driven tool development
 - Symbolic model checking
 • [TACAS'00] [TACAS'02] [STTT'04] [CAV'06] ...
 - Real-time probabilistic verification
 • [TCS'02] [FMSD'06] [Info&Comp'07] [FORMATS'09] ...
 - Game-based abstraction refinement
 • [QEST’06] [VMCAI’09] [FMSD’10] [QEST’11] ...
 - Multi-objective & compositional verification
 • [TACAS’10] [QEST’10] [FASE’11] [Info&Comp’13] ...
 - Multi-agent model checking (stochastic games)
 • [TACAS’12] [Inf-&Comp’17] [FMSD’21] [TACAS’22] ...

\[
M_1 \models \langle A \rangle \geq q \quad \langle A \rangle \geq q \quad M_2 \models \langle G \rangle \geq p
\]
\[
M_1 \parallel M_2 \models \langle G \rangle \geq p
\]
PRISM models

• Increasing variety (and complexity) of probabilistic models supported

 • discrete-time Markov chains
 • probabilistic automata + concurrency
 • continuous-time Markov chains + exponential delays
 • Markov decision processes (MDPs) + policies / control
 • probabilistic timed automata + real-time clocks
 • partially observable MDPs + observability
 • stochastic multi-player games + multi-agent & strategies
 • concurrent stochastic games + concurrency & equilibria
 • interval Markov chains & MDPs + epistemic uncertainty
• Increasing variety (and complexity) of applications tackled
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

 ▪ Long-running autonomous mobile robots [IJRR’19]
 - via multi-objective MDPs

 ▪ Real-time task scheduling with faulty processors [FMSD’13]
 - probabilistic timed automata

 ▪ Human trust models for automated driving [TCPS’22]
 - via multi-objective POMDPs
PRISM applications

- Increasing variety (and complexity) of applications tackled
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

Verification + game theory

Computer security
- attack-defence scenarios
 - stochastic games strategies

Distributed energy protocols
- flaws fixed via incentives

[CSF’16]

[FMSD’13]
PRISM applications

Increasing variety (and complexity) of applications tackled

- discrete-time Markov chains
- probabilistic automata
- continuous-time Markov chains
- Markov decision processes
- probabilistic timed automata
- partially observable MDPs
- stochastic multi-player games
- concurrent stochastic games
- interval Markov chains & MDPs

Verification & epistemic uncertainty

- Robust AUV control [JAIR’23]
 - continuous-space + unknown noise → IMDP

- Robust anytime learning [NeurIPS’22]
 - MDP policies learnt from samples
 - IMDPs used for robust guarantees

- Deep reinforcement learning [FORMATS’22]
 - verified probabilistic policies from neural nets, via IMDPs
Who uses PRISM? (and how/why)

• PRISM bibliography\(^1\) lists >850 papers relating to PRISM
 - 375 “case studies”, >100 “extensions”, >250 “connections”

• PRISM applications & users
 - very wide (often non-expert) user base
 - broad applicability of PMC techniques/models
 - easy, self-contained install \(\text{Apple} \quad \text{Linux} \quad \text{Windows}\)
 - user interface: model editor, simulator, debugger, graph plotting, …
 - documentation, tutorials, examples

• General aims
 - stable, usable, flexible, coherent framework

• PRISM for teaching
 - common basis for the practical component of taught courses on (non-)probabilistic model checking
Diverse applications of PRISM

• Cloud computing
 ▪ live migration of VMs
 ▪ plan optimisation for performance guarantees

[Kikuchi/Matsumoto (Fujitsu), CLOUD’11] (Best paper)

• Football tactics
 ▪ team strategies learnt from data
 ▪ tactical efficiency analysed via probabilistic model checking

[Van Roy et al., JAIR’23, MIT-SSAC’24]

• Human-cell conversion
 ▪ for disease models, gene therapies
 ▪ design tool for optimisation and prediction, based on model checking

[Jung et al., Nature Communications’21]
Building on PRISM

- **Extending PRISM**
 - open-source codebase (GPL)
 - primarily implemented in Java
 - (some C code and various native libraries)
 - accessibility for student/external contributors
 - “explicit” engine is an easy entry point

- **Connections & tool chains**
 - via PRISM modelling language
 - e.g. PEPA, bigraphs, RoboChart, SBML
 - via explicit (textual) model files
 - programmatically via API
 - Java, Python, model generators
The PRISM language

- PRISM modelling language
 - simple textual language based on guarded commands
 - inspired by: SMV language, Reactive modules
 - de-facto standard for probabilistic verification

- Key ingredients
 - the basics: modules (variables + guarded commands), parallel composition, costs/rewards, parameters (constants)
 - also: clocks, observations, players, epistemic uncertainty, ...

- Some design decisions
 - consistent modelling language for many model types
 - (deliberately) simple/low-level, general-purpose language
The PRISM language

- **PRISM modelling language**
 - simple textual language based on guarded commands
 - inspired by: SMV language
 - de-facto standard for probabilistic verification

- **Key ingredients**
 - the basics: modules (variables + guarded commands), parallel composition, costs/rewards, parameters (constants)
 - also: clocks, observations, players, epistemic uncertainty, …

- **Some design decisions**
 - consistent modelling language for many model types
 - (deliberately) simple/low-level, general-purpose language

- **PRISM models as benchmarks**
 - **open data**: >15 years of supplementary materials pages on PRISM publications (~60)
 - **benchmark suite**: 36 scalable benchmarks & property queries classified by type

1 See also: Quantitative Verification Benchmark Set
PRISM: Where next?

• Coming soon (ish) to PRISM
 - modelling/property language extensions
 - more flexible compositional model specifications
 - improved API access (Java, Python, ...)
 - better tool interoperability

• Research advances in model checking functionality
 - epistemic uncertainty (e.g., intervals)
 - learning models/parameters from data,
 - neuro-symbolic models
 - stochastic games & equilibria
Summary

- **PRISM (& PRISM-games)**
 - approx. 25 years of continuous development
 - challenge-, application- and user-driven tool evolution
 - stable, usable, coherent framework for wide user base
 - many enhancements to come and challenges to tackle

PRISM contributors:

(and many more contributors to underlying theory and techniques)

prismmodelchecker.org