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Abstract. The paper presents a survey of out-of-core methods avail-
able for the analysis of large Markov chains on single workstations. First,
we discuss the main sparse matrix storage schemes and review iterative
methods for the solution of systems of linear equations typically used in
disk-based methods. Next, various out-of-core approaches for the steady
state solution of CTMCs are described. In this context, serial out-of-
core algorithms are outlined and analysed with the help of their imple-
mentations. A comparison of time and memory requirements for typical
benchmark models is given.

1 Introduction

Computer and communication systems are being used in a variety of applica-
tions ranging from stock markets, information services to aeroplane and car
control systems. Discrete-state models have proved to be a valuable tool in the
analysis of these computer systems and communication networks. Modelling of
such systems involves the description of the system’s behaviour by the set of
different states the system may occupy, and identifying the transition relation
among the various states of the system. Uncertainty is an inherent feature of
real-life systems and, to take account of such behaviour, probability distribu-
tions are associated with the possible events (transitions) in each state, so that
the model implicitly defines a stochastic process. If the probability distributions
are restricted to be either geometric or exponential, the stochastic process can
be modelled as a discrete time (DTMC) or a continuous time (CTMC) Mar-
kov chain respectively. A Markov decision process (MDP) admits a number of
discrete probability distributions enabled in a state which are chosen nondeter-
ministically by the environment. We concentrate in this paper on continuous
time Markov chains.

A CTMC may be represented by a set of states and a transition rate matrix
Q containing state transition rates as coefficients. The matrix coefficients deter-
mine transition probabilities and state sojourn times. A CTMC is usually stored
as a sparse matrix, where only the nonzero entries are stored. In general, when
analysing CTMCs, the performance measure of interest corresponds to either
the probability of being in a certain state at a certain time (transient) or the
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long-run (steady state) probability of being in a state. Transient state probabil-
ities can be determined by solving a system of ordinary differential equations.
The computation of steady state probabilities involves the solution of a system of
linear equations. We focus in this paper on the steady state solution of a CTMC.

The overall process of the state based analytical modelling for CTMCs in-
volves the specification of the system, the generation of the state space, and the
numerical computation of all performance measures of interest. Specification of a
system at the level of a Markov chain, however, is difficult and error-prone. Con-
sequently, a wide range of high-level formalisms have been developed to specify
abstractions of such systems. These formalisms, among others, include queueing
networks (QN) [13], stochastic Petri nets (SPN) [32], generalised SPNs (GSPN)
[28, 29], stochastic process algebras (SPA), such as PEPA [20], EMPA [7] and
TIPP [18], mixed forms such as queueing Petri nets (QPN) [4], and stochastic
automata networks (SAN) [34, 35]. See for example [38], for a survey of model
representations.

Once a system is specified using some suitable high-level formalism, the en-
tire1 state space needs to be generated from this specification. In this paper, we
do not discuss state space generation algorithms and techniques.

The size of a system (number of states) is typically exponential in the number
of parallel components in the system. This problem is known as the state-space
explosion or the largeness problem, and has motivated researchers to tread a
number of directions for the numerical solution of a Markov chain. These can
be broadly classified into explicit and implicit techniques. The so-called explicit
methods store a CTMC explicitly, using a data structure of size proportional to
the number of states and transitions. The implicit methods, on the other hand,
use some kind of symbolic data structure for the storage of a CTMC.

The focus of this paper is the serial disk-based performance analysis of CT-
MCs, and hence we will discuss here those out-of-core2 techniques that store all
or a part of the data structure on disk for the numerical solution of a CTMC.
The term in-core is used when the data is in the main memory of a computer.
The term “serial” indicates that the numerical computations are performed on
a single processor, as opposed to in “parallel”, where the computational task is
distributed between a number of processors.

The paper is organised as follows. The numerical solution methods used in
the serial disk-based approaches are discussed in Section 2. A compact sparse
matrix representation is at the heart of the analysis techniques for large Mar-
kov chains, especially considering that the time required for disk read/write
determines the overall solution time for out-of-core methods. The main storage
schemes for sparse matrices are reviewed in Section 3. The out-of-core algorithms
are presented in Section 4. These algorithms are further analysed in Section 5

1 With the exception of product-form queueing networks [3]. On-the-fly techniques
[16], to some extent, are also an exception.

2 Algorithms that are designed to achieve high performance when their data structures
are stored on disk are known as out-of-core algorithms; see [40], for example.
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with the help of results of their implementations applied to typical benchmark
models. We conclude with Section 6.

2 Numerical Methods

Performance measures for stochastic models are traditionally derived by gen-
erating and solving a Markov chain obtained from some high-level formalism.
Let Q ∈ R

n×n be the infinitesimal generator matrix; the order of Q equals the
number of states in the CTMC. The off-diagonal elements of the matrix Q sat-
isfy qij ∈ R≥0, and the diagonal elements are given by qii = −

∑
j �=i qij . The

matrix element qij gives the rate of moving from state i to state j. The matrix
Q is usually sparse; further details about the properties of these matrices can be
found in [39]. The steady state behaviour of a CTMC is given by:

πQ = 0,
n−1∑

i=0

πi = 1, (1)

where π is the steady state probability vector. A sufficient condition for the
unique solution of the equation (1) is that the CTMC is finite and irreducible.
A CTMC is irreducible if every state can be reached from every other state
[39]. For the remainder of the paper, we restrict attention to solving only ir-
reducible CTMCs; for details of the solution in the general case see [39]. The
equation (1) can be reformulated as QT πT = 0, and hence well-known methods
for the solution of systems of linear equations of the form Ax = b can be used.

The numerical solution methods for linear systems of the form Ax = b are
broadly classified into direct methods and iterative methods. For large systems,
direct methods become impractical due to the phenomenon of fill-in, caused by
the generation of new matrix entries during the factorisation phase. Iterative
methods do not modify matrix A; rather, they involve the matrix only in the
context of the matrix-vector product (MVP). The term “iterative methods” re-
fers to a wide range of techniques that use successive approximations to obtain
more accurate solutions to a linear system at each step [2].

Before we move on to the next section, where we discuss the basic iterative
methods for the solution of the system of equations Ax = b, we mention the
Power method. Given the generator matrix Q, setting P = I +Q/α in Equation
(1), where α ≥ maxi | qii |, leads to:

πP = π. (2)

Using π(0) as the initial estimate, an approximation of the steady state probabili-
ty vector after k transitions is given by π(k) = π(k−1)P . This method successively
multiplies the steady state probability vector with the matrix P until conver-
gence is reached. It is guaranteed to converge (for irreducible CTMCs), though
convergence can be very slow. Below we consider alternative iterative methods,
which may fail to converge for some models but, in practice, converge much
faster than the Power method.
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2.1 Basic Iterative Methods

We discuss, in this section, the so-called stationary iterative methods for the
solution of the system of equations Ax = b, that is, the methods that can be
expressed in the simple form x(k) = Bx(k−1) + c, where neither B nor c depend
upon the iteration count k [2]. Beginning with a given approximate solution,
these methods modify the components of the approximation in each iteration,
until a required accuracy is achieved. In the k-th iteration of the Jacobi method,
for example, we calculate element-wise:

x
(k)
i = a−1

ii



bi −
∑

j �=i

x
(k−1)
j aij



 , 0 ≤ i < n, (3)

where aij denotes the element in row i and column j of matrix A. It can be
seen in equation (3) that the new approximation of the iteration vector (x(k)) is
calculated using only the old approximation of the vector (x(k−1)). This makes
the Jacobi method suitable for parallelisation. However, Jacobi method exhibits
slow convergence.

The Gauss-Seidel (GS) iterative method, which in practice converges faster
than the Jacobi method, uses the most recently computed approximation of the
solution:

x
(k)
i = a−1

ii



bi −
∑

j<i

x
(k)
j aij −

∑

j>i

x
(k−1)
j aij



 , 0 ≤ i < n. (4)

Another advantage of the Gauss-Seidel method is that it can be implemented
with a single iteration vector, whereas the Jacobi method requires two.

Finally, we mention the successive over-relaxation (SOR) method. An SOR
iteration is of type

x
(k)
i = ωx̂

(k)
i + (1 − ω)x(k−1)

i , 0 ≤ i < n, (5)

where x̂ denotes a Gauss-Seidel iterate, and ω ∈ (0, 2) is a relaxation factor.
The method is under-relaxed for 0 < ω < 1, and is over-relaxed for ω > 1; the
choice ω = 1 reduces SOR to Gauss-Seidel. It is shown in [22] that SOR fails
to converge if ω /∈ (0, 2). For a good choice of ω, SOR can have consider-
ably better convergence behaviour than Gauss-Seidel, but unfortunately a priori
computation of an optimal value for ω is not feasible.

2.2 Block Iterative Methods

Consider a partitioning of the state space S of a CTMC into B contiguous par-
titions S0, . . . , SB−1 of sizes n0, . . . , nB−1, such that n =

∑B−1
i=0 ni. Using this,

the matrix A can be divided into B2 blocks, {Aij | 0 ≤ i, j < B}, where the rows
and columns of block Aij correspond to the states in Si and Sj , respectively,
i.e., block Aij is of size ni × nj . We also define nmax = max{ni | 0 ≤ i < B}.
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Using such a partitioning of the state space for B = 4, the system of equations
Ax = b can be partitioned as:







A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33













X0

X1

X2

X3





 =







B0

B1

B2

B3





 (6)

Given the partitioning introduced above, block iterative methods essentially
involve the solution of B sub-systems of linear equations of sizes n0, . . . , nB−1

within a global iterative structure, say Gauss-Seidel. Hence, from (4) and (6),
the block Gauss-Seidel method for the solution of the system Ax = b is given by:

X
(k)
i = A−1

ii



Bi −
∑

j<i

Aij X
(k)
j −

∑

j>i

Aij X
(k−1)
j



 , 0 ≤ i < B, (7)

where X
(k)
i , X

(k−1)
i and Bi are the i-th blocks of vectors x(k), x(k−1) and b

respectively, and, as above, Aij denotes the (i, j)-th block of matrix A. Hence,
in each of the B phases of the k-th iteration of the block Gauss-Seidel iterative
method, we solve the equation (7) for X

(k)
i . These sub-systems can be solved

by either direct or iterative methods. It is not necessary even to use the same
method for each sub-system. If iterative methods are used to solve these sub-
systems then we have several inner iterative methods within a global or outer
iterative method. Each sub-system of equations can receive either a fixed or
varying number of inner iterations. Such block methods (with an inner iterative
method) typically require fewer iterations, but each iteration requires more work
(multiple inner iterations). Block iterative methods are well known and are an
active area of research; see [39], for example.

2.3 Test for Convergence

Usually, a test for convergence is carried out in each iteration of an iterative
method and the method is stopped when the convergence criterion is met; [2]
discusses this subject in some details. In the context of the steady state solution
of a CTMC, a widely used test is the relative error criterion:

max
i

(
| x

(k)
i − x

(k−1)
i |

| x
(k)
i |

)

< ε � 1. (8)

3 Matrix Storage Considerations

An n × n dense matrix is usually stored in a two-dimensional n × n array.
For sparse matrices, in which most of the entries are zero, storage schemes are
sought which can minimise the storage while keeping the computational costs to
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a minimum. Consequently, a number of sparse storage schemes exist which ex-
ploit various matrix properties, e.g., the sparsity pattern of a matrix. The sparse
schemes we will discuss in this section are not exhaustive; for more schemes see,
for instance, [2].

The simplest of sparse schemes which makes no assumption about the matrix
is the so-called coordinate format [37, 19]. Figure 1 gives an 4× 4 sparse matrix
with a off-diagonal nonzero entries and its storage in coordinate format. The
scheme uses three arrays. The first array Val (of size a + n doubles) stores the
matrix nonzero entries in any order, while the arrays Col and Row, both of size
a+n ints, store the column and row indices for these entries, respectively. Given
an 8-byte floating point number representation (double) and a 4-byte integer
representation (int), the coordinate format requires 16(a + n) bytes to store the
whole sparse matrix, including diagonal and off-diagonal entries.

 

0

0.5−0.9

0.6

−0.2

0.9

0.7

−0.9

0

0

0

0

0.2

0.4

−0.13

0

a = 6
n = 4,

1          2          3 0          30          2

−0.9      0.4      0.5 0.9      0.7     −0.13

0          1          2

0.6      −0.9−0.2      0.2

0          0 1          1          1 3          2          2 2          3

Val

Row

Col
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Fig. 1. A 4 × 4 sparse matrix and its storage in the coordinate format

Figure 2(a) illustrates the storage of the matrix in Figure 1(a) in the com-
pressed sparse row (CSR) [37] format. All the a + n nonzero entries are stored
row by row in the array Val, while Col contains column indices of these nonzero
entries; the elements within a row can be stored in any order. The i-th element
of the array Starts (of size n ints) contains the index in Val (and Col) of the
beginning of the i-th row. The CSR format requires 12a+16n bytes to store the
whole sparse matrix including the diagonal.
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(a) The CSR format (b) The MSR format

Fig. 2. Storage in the CSR and MSR formats of the matrix in Figure 1(a)

3.1 Separate Diagonal Storage

A second dimension for sparse schemes is added if we consider that many iter-
ative algorithms treat diagonal entries of a matrix differently. This gives us the
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following two additional choices for sparse storage schemes; an alternative choice
will be mentioned in Section 3.2.

Case A: The diagonal entries may be stored separately in an array of n doubles.
Storage of column indices of diagonal entries in this case is not required, which
gives us a saving of 4n bytes over the CSR format. This scheme is known as the
modified sparse row (MSR) format [37] (a modification of CSR), see Figure 2(b).
We note that the MSR scheme essentially is the same as the CSR format except
that the diagonal elements are stored separately. The scheme requires 12(a + n)
bytes to store the whole sparse matrix. Some computational advantage may be
obtained by storing the diagonal entries as 1/aii instead of aii, which replaces n
division operations with n multiplications.

Case B: In certain contexts, such as for the steady state solution of a Markov
chain, it is possible to avoid the in-core storage of the diagonal entries. Given R =
QT D−1, the system QT πT = 0 can be equivalently written as QT D−1DπT =
Ry = 0, with y = DπT . The matrix D is defined as the diagonal matrix with
dii = qii, for 0 ≤ i < n. Consequently, the equivalent system Ry = 0 can be
solved with all the diagonal entries of the matrix R being 1. The original diag-
onal entries can be stored on disk for computing π from y. This saves 8n bytes
of the in-core storage, along with computational savings of n divisions per each
step in an iterative method such as Gauss-Seidel.

3.2 Exploiting Matrix Properties

The number of distinct values in a generator matrix depends on the model. This
characteristic can lead to significant memory savings if one considers indexing
the nonzero entries in the above mentioned formats. Consider the MSR format.
Let MaxD be the number of distinct values the off-diagonal entries of a ma-
trix can take, where MaxD ≤ 216; then MaxD distinct values can be stored as
double Val[MaxD ]. The indices to this array of distinct values cannot exceed
216, and, in this case, the array double Val[a] in MSR format can be replaced
with short Val−i[a]. In the context of CTMCs, in general, the maximum num-
ber of entries per row of a generator matrix is also small, and is limited by the
maximum number of transitions leaving a state. If this number does not ex-
ceed 28, the array int Starts[n] in MSR format can be replaced by the array
char row−entries[n].

Consequently, in addition to the array of distinct values, Val[MaxD ], the in-
dexed variation of MSR mentioned above uses three arrays: the array Val−i[a]
of length 2a bytes for the storage of a short (2-byte integer representation) indi-
ces to the MaxD entries, an array of length 4a bytes to store a column indices as
int (as in MSR), and the n-byte long array row−entries[n] to store the number
of entries in each row. The total in-core memory requirement for this scheme is
6a + n bytes plus the storage for the actual distinct values in the matrix. Since
the storage for the actual distinct values is relatively small for large models,
we do not consider it in future discussions. Such variations of the MSR format,
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based on indexing the matrix elements, have been used in the literature [15, 5,
23, 6, 24] under different names. We call it the indexed MSR format.

We note that, in general, for any of the above-mentioned formats, it is possible
to replace the array double Val[a] with short Val−i[a], or with char Val−i[a],
if MaxD equals 216, or 28, respectively. In fact, �log2(MaxD)� bits suffice for each
index. Similarly, it is also possible to index diagonal entries of a matrix provided
the diagonal vector has relatively few distinct entries. This justifies an alternative
choice for separate diagonal storage (see Section 3.1).

We describe here another variation of the MSR scheme. It has been mentioned
that the indexed MSR format exploits the fact that the number of entries in a
generator matrix is relatively small. We have also seen that the indexed MSR for-
mat (this is largely true for all the formats considered here) stores the column in-
dex of a nonzero entry in a matrix as an int. An int usually uses 32 bits, which can
store a column index as large as 232. The size of the models which can be stored
within the RAM of a modern workstation are much smaller than 232. For exam-
ple, it is evident from Table 1 that using an in-core method such as Gauss-Seidel,
54 million states is a limit for solving a CTMC on a typical single workstation.
The column index for a model with 54 million states requires at most 26 bits,
leaving 6 bits unused. Even more bits can be made available if we consider that,
for out-of-core and for parallel solutions, it is common practice (or, at least it is
possible) to use local numbering for a column/row index inside each matrix block.

The compact MSR format [24] exploits the above mentioned facts and stores
the column index of a matrix entry along with the index to the actual value of
this entry in a single int. This is depicted in Figure 3. The storage and retrieval
of these indices into, and from, an int can be carried out efficiently using bit
operations. Since the operation QT D−1 increases the number of distinct values
in the resulting matrix R, matrix Q and the diagonal vector d can be stored
separately. As mentioned earlier, the diagonal entries can be indexed, and the
distinct entries can be stored as 1/aii to save n divisions per iteration; indices
to these distinct values may be stored as short. The compact MSR scheme us-
es three arrays: the array Col−i[a] of length 4a bytes which stores the column
positions of matrix entries as well as the indices to these entries, the n-byte
long array row−entries[n] to store the number of entries in each row, and the
2n-byte long array Diag−i[n] of short indices to the original values in the diag-
onal. We do not consider the storage for the original matrix entries. The total
memory requirements in the compact MSR format is thus 4a+3n bytes, around
30% more compact than the indexed MSR format.

0130 ... ..........31

int Column index of a matrix nonzero entry Index to the matrix entry

Fig. 3. Storage of an index to a matrix distinct value using available space in int
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Table 1. Storage requirements for the FMS models in various formats

k states off-diagonal a/n memory required for Q (MB) MB
(n) nonzero (a) MSR format Indexed MSR Compact MSR per π

8 4,459,455 38,533,968 8.64 489 225 160 34
9 11,058,190 99,075,405 8.96 1,260 577 409 84
10 25,397,658 234,523,289 9.23 2,962 1,366 967 194
11 54,682,992 518,030,370 9.47 6,554 3,016 2,133 417
12 111,414,940 1,078,917,632 9.68 13,563 6,279 4,433 850
13 216,427,680 2,136,215,172 9.87 32,361 15,149 10,580 1,651

Table 1 summarises a fact sheet for the model of a flexible manufacturing
system (FMS) [11] comparing storage requirements in MSR, indexed MSR, and
compact MSR formats. The first column in Table 1 gives the parameter k (num-
ber of tokens in the system); the second and third columns list the resulting num-
ber of reachable states and the number of transitions respectively. The number
of states and the number of transitions increase with an increase in the param-
eter k. The largest model generated is FMS (k = 13) with over 216 million
reachable states and 2.1 billion transitions. The fourth column (a/n) gives the
average number of the off-diagonal nonzero entries per row, which serves as an
indication of the matrix sparsity. Columns 5–7 give storage requirements for the
matrices in MB for the MSR, the indexed MSR and the compact MSR schemes
respectively. Finally, the last column lists the memory required to store a single
iteration vector of doubles (8 bytes) for the solution phase.

3.3 Alternatives for Matrix Storage

We have discussed various explicit sparse matrix schemes for CTMCs. Anoth-
er approach, which has been very successful in model checking, is the implicit
storage of the matrix. The term implicit methods is used because these da-
ta structures do not require size proportional to the number of states. Implicit
methods include multi-terminal binary decision diagrams (MTBDDs) [12, 1], the
Kronecker approach [34], matrix diagrams (MDs) [9] and on-the-fly methods [16].
A brief explanation of MTBDDs, for which a vector out-of-core implementation
will be discussed in 4.5, is given in the following paragraph; further discussion of
the implicit methods is beyond the scope of this paper, and the interested reader
is invited to consult the individual references, or see [31, 8] for recent surveys of
such data structures.

Multi-Terminal Binary Decision Diagrams (MTBDDs)
MTBDDs [12, 1] are an extension of binary decision diagrams (BDDs). An MT-
BDD is a rooted, directed acyclic graph, which represents a function mapping
Boolean variables to real numbers. MTBDDs can be used to encode real-val-
ued matrices (and vectors) by encoding their indices as Boolean variables. The
prime reason for using MTBDDs is that they can provide extremely compact
storage for the generator matrices of very large CTMCs, provided that struc-
ture and regularity derived from their high-level description can be exploited.
Here, we describe a slight variant of MTBDDs called offset-labelled MTBDDs
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[27, 33]. This data structure additionally allows information about which states
of a CTMC are reachable. Techniques which use data structures based on BDDs
are often called symbolic approaches.
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Fig. 4. An offset-labelled MTBDD representation of a matrix

Figure 4 shows a matrix, its representation as an offset-labelled MTBDD,
and a table explaining how the information is encoded. To preserve structure
in the symbolic representation of a CTMC’s generator matrix, its diagonal el-
ements are stored separately as an array. Hence, the diagonal of the matrix in
Figure 4 is shown to be zero. The offset-labelled MTBDD in the figure repre-
sents a function over four Boolean variables x1, y1, x2, x2. For a given valuation
of these variables, the value of this function can be computed by tracing a path
from the top of the offset-labelled MTBDD to the bottom, taking the dotted
edge if the Boolean variable on that level is 0 and the solid edge if the variable is
1. The value can be read from the label of the bottom (terminal) node reached.
For example, if x1 = 1, y1 = 0, x2 = 1, y2 = 1, the function returns 0.9.

To represent the matrix, the offset-labelled MTBDD in Figure 4 uses the vari-
ables x1, x2 to encode row indices and y1, y2 to encode column indices. Notice
that these are ordered in an interleaved fashion in the figure. This is a common
heuristic in BDD-based representations to reduce their size. In the example, row
and column indices are encoded using the standard binary representation of in-
tegers. For example, the row index 3 is encoded as 11 (x1 = 1, x2 = 1) and the
column index 1 is encoded as 01 (y1 = 0, y2 = 1). To determine the value of the
matrix entry, we read the value of the function represented by the MTBDD for
x1 = 1, y1 = 0, x2 = 1, y2 = 1. Hence, the matrix entry (3, 1) is 0.9.

The integer values on the nodes of the data structure are offsets, used to
compute the actual row and column indices of the matrix entries (in terms of
reachable states only). This is typically essential since the potential state space
can be much larger than the actual state space. The actual row index is deter-
mined by summing the offsets on xi nodes from which the solid edge is taken
(i.e. if xi = 1). The actual column index is computed similarly for yi nodes. In
the example in Figure 4, state 2 is not reachable. For the previous example of
matrix entry (3,1), the actual row index is 2+0=2 and the column index is 1
(using only the offset on the y2 level).

Note that each node of an MTBDD can be seen to represent a submatrix of
the matrix represented by the whole MTBDD. Since an MTBDD is based on
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binary decisions, descending each level (each pair of xi and yi variables) of the
data structure splits the matrix into 4 submatrices. Hence, descending l levels,
gives a decomposition into (2l)2 blocks. For example, descending one level of the
MTBDD in Figure 4, gives a decomposition of the matrix into 4 blocks and we
see that each x2 node represents a 2 × 2 submatrix of the 4 × 4 matrix. This
allows convenient and fast access to individual submatrices. However, since the
MTBDD actually encodes a matrix over its potential state space and the distri-
bution of the reachable states across the state space is unpredictable, descending
l levels of the MTBDD actually results in blocks of varying and uneven sizes.

Numerical solution of CTMCs can be performed purely using MTBDDs (see
e.g. [17]). This is done by representing both the matrix and the vector as MTB-
DDs and using an MTBDD-based matrix-vector multiplication algorithm ([12,
1]). However, this approach is often very inefficient because the MTBDD repre-
sentation of the vector is irregular and grows quickly during solution. A better
approach in general is to use offset-labelled MTBDDs to store the matrix and an
array to store the vector ([27, 33]). Computing the actual row and column indi-
ces of matrix entries is important in this case because they are needed to access
the elements of the array storing the vector. All matrix entries can be extracted
from an offset-labelled MTBDD in a single pass using a recursive traversal of
the data structure.

4 Out-of-Core Iterative Solution Methods

We survey here the serial out-of-core methods for the steady state solution of
CTMCs, i.e., the methods which store whole or part of the data structure on
disk. We begin with an in-core block Gauss-Seidel algorithm in the next section.
We then present and explain a matrix and a complete out-of-core Gauss-Seidel
algorithm in Sections 4.2 and 4.4, respectively. The matrix out-of-core approach
of [15] is described in Section 4.3, and the symbolic out-of-core solution of [25]
is discussed in Section 4.5.

4.1 The In-Core Approach

We give an in-core block Gauss-Seidel algorithm for the solution of the system
Ax = 0, where A = QT and x = πT . Block iterative methods are described in
Section 2.2 and the block Gauss-Seidel method was formulated in equation (7).

A typical iteration of the block Gauss-Seidel method is shown in Figure 5.
The algorithm requires an array x of size n (number of states) to store the it-
eration vector, the i-th block of which is denoted Xi, and another array X̃i of
size nmax to accumulate the sub-MVPs, AijXj , i.e., the multiplication of a single
matrix block by a single vector block; see Section 2.2. The subscript i of X̃i in
the algorithm is used to make the description intuitive and to keep the vector
block notation consistent; it does not imply that we have used B such arrays.

Each iteration of the algorithm is divided into B phases. In the i-th phase,
the method updates elements in the i-th block of the iteration vector. The up-
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1. for i = 0 to B − 1

2. X̃i ← 0
3. for j = 0 to B − 1
4. if j �= i

5. X̃i = X̃i − AijXj

6. Solve AiiXi = X̃i

7. Test for convergence
8. Stop if converged

Fig. 5. An iteration of the block Gauss-Seidel algorithm

date of the i-th block, Xi, only requires access to entries from the i-th row of
blocks in A, i.e., Aij for 0 ≤ j < B. This is illustrated in Figure 6 for B = 4 and
i = 1; the matrix and vector blocks used in the calculation are shaded grey. In
the figure, all blocks are of equal size but this is generally not the case. Line 5
of the algorithm in Figure 5 performs a unit of computation, a sub-MVP, and
accumulates these products. Finally, line 6 corresponds to solving a system of
equations, either by direct or iterative methods (see Section 2.2). We use the
Gauss-Seidel iterative method to solve AiiXi = X̃i. More precisely, we apply the
following to update each of the ni elements of the i-th vector block, Xi:

( 1,1 ) ( 1,3 )

( 0,0 )

( 1,0 ) ( 1,2 )

A Sub−MVP

( i,j ) X j

1 1

0

2

3( 3,3 )

Fig. 6. Matrix vector multiplication at block level

for p = 0 to ni − 1
Aii[p, p] Xi[p] = X̃i[p] −

∑
q �=p Aii[p, q] Xi[q],

where Xi[p] is the p-th entry of the vector block Xi, and Aii[p, q] denotes the
(p, q)-th element of the diagonal block (Aii). We note that applying one inner
Gauss-Seidel iteration for each Xi in the global Gauss-Seidel iterative structure
reduces the block Gauss-Seidel method to the standard Gauss-Seidel method,
although the method is based on block sub-MVPs.

4.2 A Matrix Out-of-Core Approach

In an implementation of the block Gauss-Seidel algorithm mentioned in the
previous subsection, the matrix can be stored using some sparse storage scheme
(see Section 3) and the vector can be stored as an array of doubles. However,
this makes the total memory requirements for large CTMCs well above the size
of the RAM available in standard workstations. One possible solution is to store
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the matrix on disk and read blocks of matrix into RAM when required. In each
iteration of an iterative method, we can do the following:

while there is a block to read
read a matrix block
do computations using the matrix and vector blocks

We note that, in this disk-based approach, the processor will remain idle until a
block has been read into RAM. We also note that the next disk read operation
will not be initiated until the computations have been performed. It is not an
efficient approach, particularly for large models and iterative methods, because
they require a relatively large amount of data per floating point operation. We
would like to use a two-process approach, where the disk I/O and the computa-
tion can proceed concurrently. We begin with a basic out-of-core algorithm and
explain its working. In the coming sections we discuss the out-of-core approaches
pursued in the literature.

Figure 7 presents a high-level description of a typical, matrix out-of-core al-
gorithm which uses the block Gauss-Seidel method for the solution of the system
Ax = 0. The term “matrix out-of-core” implies that only the matrix is stored
out-of-core and the vector is kept in-core. The algorithm is implemented using
two separate concurrent processes: the DiskIO Process and the Compute Pro-
cess. The two processes communicate via shared memory and synchronise with
semaphores.

Integer constant: B (number of vector blocks)
Semaphores: S1, S2: occupied
Shared variables: R0, R1 (To read matrix A blocks into RAM)

DiskIO Process

1. Local variables: i, j, t = 0
2. while not converged
3. for i ← 0 to B − 1
4. Rt = read( Aij , j = 0 : B − 1 )
5. Signal(S1)
6. Wait(S2)
7. t = (t + 1) mod 2

Compute Process

1. Local variables: p, q, t = 0
2. while not converged
3. for i ← 0 to B − 1
4. Wait(S1)
5. Signal(S2)

6. X̃i = subMVPs(−
∑0:B−1

j �=i AijXj , Rt)

7. Solve( AiiXi = X̃i, Rt)
8. Test for convergence
9. t = (t + 1) mod 2

Fig. 7. A matrix out-of-core block Gauss-Seidel algorithm

The algorithm of Figure 7 assumes that the (n-state) CTMC matrix to be
solved is divided into B2 blocks of size n/B × n/B, and is stored on disk. For
intuitive reasons, in Figure 7, the vector x is also shown to be divided into B
blocks, although a single array of doubles is used to keep the whole vector. An-
other vector X̃i of size n/B is required to accumulate the sub-MVPs (line 6).
The algorithm assumes that, before it commences, the array x holds an initial
approximation to the solution.
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Each iteration of the algorithm given in Figure 7 is divided into B phases,
where the i-th phase computes the next approximation for the i-th block of
the iteration vector. To update the i-th block, Xi, the Compute Process requires
access to entries from the i-th row of blocks in A, i.e., Aij for 0 ≤ j < B; see Fig-
ure 6. The DiskIO Process helps the Compute Process with this task and fetches
from disk (line 4) the required row of the blocks in matrix A. The algorithm uses
two shared memory buffers, R0 and R1, to achieve the communication between
the two processes. At a certain point in time during the execution, the DiskIO
Process is reading a block of matrix into one shared buffer, say R0, while the
Compute Process is consuming a matrix block from the other buffer, R1. Both
processes alternate the value of a local variable t between 0 and 1, in order to
switch between the two buffers R0 and R1. The two semaphores S1 and S2 are
used to synchronise the two processes, and to prevent inconsistencies.

The high-level structure of the algorithm, given in Figure 7, is that of a pro-
ducer-consumer problem. In each execution of its for loop, the i-th phase (lines
3 − 7), the DiskIO Process reads the i-th row of blocks in A, into one of the
shared memory buffers Rt, and issues a Signal(·) operation on S1 (line 5). Since
the two semaphores are occupied initially, the Compute Process has to wait on
S1 (line 4). On receiving this signal, the Compute Process issues a return signal
on S2 (line 5) and then advances to update the i-th vector block (lines 6 − 7).
The DiskIO process, on receiving this signal from the Compute Process, advanc-
es to read the next i-th row of blocks in A. This activity of the two processes
is repeated until all of the vector blocks have been updated; the processes then
advance to the next iteration.

Implementation
We have used the compact MSR storage scheme (see Section 3) to store the
matrix in our implementation of the matrix out-of-core algorithm. The blocks
have been stored on disk in the order they are required during the numerical
computation. Hence, the DiskIO Process is able to read the file containing the
matrix sequentially throughout an iteration of the algorithm.

4.3 The Deavours and Sanders’ Approach

Deavours and Sanders [14] were the first to consider a matrix out-of-core tech-
nique for the steady state solution of Markov models. They used the block Gauss-
Seidel method in their tool to reduce the amount of disk I/O. They partitioned
the matrix into a number of sub-systems (or blocks) and applied multiple Gauss-
Seidel inner iterations on each block (see Section 2.2 and 4.1). The number of
inner iterations was a tunable parameter of their tool. They analysed the tool
by presenting results for a fixed and varying number of inner iterations.

Deavours and Sanders reported the solution of models with up to 15 million
states on a workstation with 128MB RAM. Later, in [15], they improved their
earlier work by applying a compression technique on the matrix before storing it
to disk, thus reducing the file I/O time. For our implementations of the explicit
in-core and out-of-core methods, we have used the compact MSR scheme for
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matrix storage, which can also be considered as a compression technique. The
compact MSR scheme provides 30% or more saving over conventional schemes.
Furthermore, Deavours and Sanders report that the decompression time ac-
counts for 50% of the computation time; therefore, in our case, we do not expect
any overall gain from matrix compression.

The other notable papers on the matrix out-of-core solution are [23, 6]. How-
ever, the main emphasis of these papers is on the parallelisation of the out-of-core
approach of Deavours and Sanders which is not the subject of this paper.

4.4 A Complete Out-of-Core Approach

The limitation of the Deavours and Sanders’ approach is the in-core storage
of the iteration vector. In [24], Kwiatkowska and Mehmood extend the earlier
out-of-core methods and present the complete out-of-core method which stores
the matrix as well the iteration vector on disk. They solved the system πQ = 0
using the block Gauss-Seidel method.

We reformulate the system πQ = 0 as Ax = 0, as in Section 4.2, and give the
complete out-of-core block Gauss-Seidel algorithm for the solution in Figure 8.
The algorithm assumes that the vector and the matrix are divided into B and
B2 blocks of equal size, respectively. It also assumes that, before it commences,
an initial approximation for the probability vector x has been stored on disk and
that the approximation for the last block, XB−1, is already in-core.

The complete out-of-core algorithm of Figure 8 uses two shared memory
buffers, R0 and R1, to read blocks of matrix into RAM from disk (line 9). Sim-
ilarly, vector blocks are read (line 11) from disk into shared memory buffers,
Xbox0 and Xbox1. Another array X̃i, which is local to the Compute Process, is
used to accumulate the sub-MVPs (line 12, Compute Process). As in Section 4.2,
a local variable t can be used to switch between the pair of shared buffers, Rt and
Xboxt. Although the shared memory buffers are mentioned in the shared storage
requirements of the algorithm, these buffers and the related local variables have
been abstracted from the algorithm for the sake of simplicity.

The vector blocks corresponding to the empty matrix blocks are not read
from disk (line 8, DiskIO Process). Moreover, to reduce disk I/O, the algorithm
reads only the range of those elements in a vector block which are required for a
sub-MVP. Once a vector block has been updated, this new approximation of the
block must be updated on disk (line 15, DiskIO Process). The variable k (line
2, 18, DiskIO Process) is used to keep track of the index of the vector block
to be written to disk during an inner iteration (line 7 − 17, DiskIO Process).
The variable j (line 5 − 6 and 16 − 17, DiskIO Process) is used to keep track
of the indices of the matrix and vector blocks to be read from disk. The matrix
blocks are stored on disk in such a way that a diagonal block (Aii) follows all
the off-diagonal blocks (all Aij , 0 ≤ j < B, j �= i) in a row of matrix blocks,
implying that the diagonal block will always be read and used for computation
when h = B − 1 (or when j = i). Similarly, the Compute Process uses the var-
iable j (line 4 − 5 and 16 − 17) to ensure that all the off-diagonal sub-MVPs
are accumulated (line 12) before the sub-system AiiXi = X̃i (line 14) is solved.
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Integer constant: B (number of vector blocks)
Semaphores: S1, S2: occupied
Shared variables: R0, R1 (To read matrix A blocks into RAM)
Shared variables: Xbox0, Xbox1 (To read iteration vector x blocks into RAM)

DiskIO Process

1. Local variable: h, i, j, k
2. k ← B − 1
3. while not converged
4. for i ← 0 to B − 1
5. if i = 0 then j ← B − 1
6. else j ← i − 1
7. for h ← 0 to B − 1
8. if not an empty block
9. read Aij from disk

10. if h �= 0
11. read Xj from disk
12. Signal(S1)
13. Wait(S2)
14. if h = 0
15. write Xk to disk
16. if j = 0 then j ← B − 1
17. else j ← j − 1
18. k ← k + 1 mod B

Compute Process

1. Local variable: i, j, h
2. while not converged
3. for i ← 0 to B − 1
4. if i = 0 then j ← B − 1
5. else j ← i − 1

6. X̃i ← 0
7. for h ← 0 to B − 1
8. Wait(S1)
9. Signal(S2)

10. if j �= i
11. if not an empty block

12. X̃i ← X̃i − AijXj

13. else

14. Solve AiiXi = X̃i

15. Test for convergence
16. if j = 0 then j ← B − 1
17. else j ← j − 1

Fig. 8. A complete out-of-core block Gauss-Seidel iterative algorithm

In the light of this discussion, and the explanation of the matrix out-of-core
algorithm given in Section 4.2, the Compute Process is self-explanatory.

Implementation
We have used two separate files to store the matrix (in compact MSR) and the
iteration vector on disk. As for the matrix out-of-core solution, the matrix blocks
for the complete out-of-core method have been stored on disk in an order which
enables the DiskIO Process to read the file sequentially throughout an iteration.
However, the case for reading through the file which keeps the vector is more
involved because, in this case, the DiskIO Process has to skip those vector blocks
which correspond to empty blocks of the matrix.

Finally, the complete out-of-core implementation uses an array of size B2 to
keep track of the zero and nonzero matrix blocks. A sparse scheme may also be
used to store this information. The number of blocks B for the complete out-of-
core solution is small, usually less than 100, and therefore the memory required
for the array is negligible.

4.5 A Symbolic Out-of-Core Solution Method

In the complete out-of-core method, the out-of-core scheduling of both the ma-
trix and the iteration vector incurs a huge penalty in terms of disk I/O. Keeping
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the matrix in-core, in a compact representation, can significantly reduce this
penalty while at the same time allowing for larger models to be analysed. This
motivates the symbolic out-of-core method [25].

The idea of the symbolic out-of-core approach for the steady state solution
of CTMCs is to keep the matrix in-core, in an appropriate symbolic data struc-
ture, and to store the probability vector on disk. The iteration vector is divided
into a number of blocks. During the iterative computation phase, these blocks
can be fetched from disk, one after another, into main memory to perform the
numerical computation. Once a vector block has been updated with the next
approximation, it is written back to disk. The symbolic out-of-core solution uses
offset-labelled MTBDDs [27] to store the matrix, while the iteration vector for
numerical computation is kept on disk as an array. An improved implementation
of the symbolic out-of-core method is reported in [30].

Implementation
We have used a block iterative method to implement the symbolic out-of-core
method. In this block method, we partition the system into a number of sub-
systems and apply one (inner) iteration of the Jacobi iterative method3 on each
sub-system, in a global Gauss-Seidel iterative structure (see Section 2.2). This
method is referred to in [33] as the pseudo Gauss-Seidel method.

The basic operation of the symbolic out-of-core block Gauss-Seidel method
is the computation of the sub-MVPs, as was the case for the explicit out-of-core
methods explained in earlier secions. The matrix is stored in an offset-labelled
MTBDD. To implement each sub-MVP, we need to extract the matrix entries
for a given matrix block from the MTBDD. We have seen in Section 3.3 that
a matrix represented by an MTBDD can be decomposed into (2l)2 blocks by
descending l levels of the MTBDD. Hence, in our implementation of the sym-
bolic method, we select a value of l, take the number of blocks B = 2l and use
the natural decomposition of the matrix given by the MTBDD. To access each
block we simply need to store a pointer to the relevant node of the offset-labelled
MTBDD. For large l, many of the matrix blocks may be empty. Therefore, in-
stead of using a B×B array of pointers, a sparse scheme may be used to store the
pointers to the nonzero matrix blocks; we select the compact MSR sparse scheme
for this purpose. The extraction of matrix blocks, as required for each sub-MVP
in the symbolic method, is therefore simple and fast; see [30] for further details
on this implementation.

5 Results

In this section, we compare performance of the out-of-core solution methods dis-
cussed in Section 4. We have implemented the algorithms on an UltraSPARC-II

3 The offset-labelled MTBDDs do not admit an efficient use of the Gauss-Seidel
method, and therefore we use the Jacobi method to solve each sub-system.
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440MHz CPU machine running SunOS 5.8 with 512MB RAM, and a 6GB local
disk. We tested the implementations on three widely used benchmark models:
a flexible manufacturing system (FMS) [11], a Kanban system [10] and a cyclic
server Polling system [21]. These models were generated using PRISM [26], a
probabilistic model checker developed at the University of Birmingham. More
information about these models, a wide range of other PRISM case studies and
the tool itself can be found at the PRISM web site [36].

The times to generate the files for the out-of-core solution phase are propor-
tional to the times required to convert a model from BDD representation (see
Section 3.3 on Page 238) to a sparse format. This file generation process can be
optimised either for time or for memory. Optimising for memory can be achieved
by allocating in RAM a data structure of the size of a submatrix of Q which is
written to disk repeatedly as the conversion progresses. The generation process
can be optimised for time by carrying out the entire process stated above in one
step, i.e, converting the whole model into sparse format and then writing to file.
We do not discuss the generation process any further, and hereon concentrate
on the numerical solution phase.

The organisation of this section is as follows. In Section 5.1, we present and
compare times per iteration for in-core and out-of-core versions for both explic-
it and symbolic approaches. In Section 5.2, we further analyse the out-of-core
solutions with the help of performance graphs.

5.1 A Comparison of In-Core and Out-of-Core Solutions

Table 2 summarises results for the Kanban, FMS and Polling system case stud-
ies. The parameter k in column 2 denotes the number of tokens in the Kanban
and FMS models, and the number of stations in the Polling system models.
The resulting number of reachable states are given in column 3. Column 4 lists
the average number of off-diagonal entries per row, giving an indication of the
sparsity of the matrices.

Columns 5–7 in Table 2 list the time per iteration results for “Explicit” imple-
mentations: these include the standard in-core, where the matrix and the vector
are kept in RAM; the matrix out-of-core (see Section 4.2), where only the matrix
is stored on disk and the vector is kept in RAM; and the complete out-of-core
(Section 4.4), where both the matrix and the vector are stored on disk. We have
used the Gauss-Seidel method for the three reported explicit implementations
and the resulting number of iterations are reported in column 8. The matrices
for the explicit methods are stored in the compact MSR scheme, which requires
4a + 3n bytes to store the matrix. The entries “a/n” in column 4 can be used
to calculate the memory required to store the matrices.

Table 2 reports the time per iteration results for “Symbolic” implementations
in columns 9–10: both in-core, where both the matrix and the iteration vector
are stored in RAM, and out-of-core (Section 4.5), where the matrix is kept in
RAM and the vector is stored on disk. The matrix for these symbolic implemen-
tations has been stored using the offset-labelled MTBDD data structure, and
the vector is kept as an array. We have used a block iterative method for the
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Table 2. Comparing times per iteration for in-core and out-of-core methods

Model k States a/n Time (seconds per iteration)
(n) Explicit Symbolic

In-core Out-of-core Iter. In-core Out-of-core Iter.
Matrix Complete

FMS 6 537,768 7.8 0.3 0.5 1.1 812 1.0 1.3 916
7 1,639,440 8.3 1.1 1.7 3.8 966 3.0 3.2 1,079
8 4,459,455 8.6 3.2 5.1 10.7 1,125 8.9 10.4 1,245
9 11,058,190 8.9 – 24 51.8 1,287 39.6 35.9 1,416
10 25,397,658 9.2 – 69 146 1,454 149 142 1,591
11 54,682,992 9.5 – – 374 1,624 – 708 1,770
12 111,414,940 9.7 – – – – – 1,554 >50
13 216,427,680 9.9 – – – – – 3,428 >50

Kanban 4 454,475 8.8 0.3 0.5 1.0 323 0.5 0.8 373
system 5 2,546,432 9.6 1.8 3.0 6.0 461 3.1 4.5 532

6 11,261,376 10.3 – 30 68.6 622 15.6 22.6 717
7 41,644,800 10.8 – 180 283 802 – 143 924
8 133,865,325 11.3 – – – – – 601 1,151

Polling 15 737,280 8.3 0.5 0.7 1.2 32 0.8 0.8 263
system 16 1,572,864 8.8 1.1 1.9 2.9 33 1.7 2.0 276

17 3,342,336 9.3 2.4 3.9 6.4 34 3.9 4.6 289
18 7,077,888 9.8 5.5 15.8 20.4 34 8.3 10.5 302
19 14,942,208 10.3 – 41 71 35 20.3 23.8 315
20 31,457,280 10.8 – 101 162 36 – 52 328
21 66,060,288 11.3 – – 359 36 – 177 340
22 138,412,032 11.8 – – – – – 374 353

symbolic implementations (see Section 4.5), and the respective number of itera-
tions are reported in column 11. The run times for the FMS system (k = 12, 13)
are taken for 50 iterations; we were unable to wait for their convergence, and
hence the total numbers of iterations are not reported in the table.

The convergence criterion we have used in all our implementations is given
by the equation (8) for ε = 10−6. All reported run times are wall clock times.

We note, in Table 2, that the in-core explicit method provides the fastest
run-times. However, pursuing this approach, the largest model solvable on a
512MB workstation is the Polling system with 7 million states. The in-core sym-
bolic solution can solve larger models because, in this case, the matrix is stored
symbolically. The largest model solvable with this symbolic in-core approach
is the FMS system with 25.3 million states. We now consider the out-of-core
approaches. The matrix out-of-core solution requires in-core storage for one iter-
ation vector and two blocks of the matrix. The memory required for these matrix
blocks can, in general, be reduced by increasing the number of blocks. However,
in this case, the largest solvable model is limited by the size of the iteration
vector. Pursuing the matrix out-of-core approach, the largest model solvable on
the workstation is the Kanban system with 41.6 million states.

The out-of-core storage of both matrix and vector can solve even larger mod-
els. This is reported in column 7, and the largest model reported in this case is
the Polling system with 66 million states. The limit in this case is the size of the
available disk (here 6GB). Finally, the largest solvable model on the available
machine is attributed to the symbolic out-of-core approach, i.e., the FMS system
with 216 million states. This is possible because, in this case, only the vector
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is stored on disk and the symbolic data structure provides a compact in-core
representation for the matrix.

The matrix out-of-core and the symbolic in-core methods both provide a so-
lution to the matrix storage problem, and hence it is interesting to compare the
run times for the two approaches. We note in Table 2, for the Polling and Kan-
ban systems, that the run times per iteration for the symbolic in-core are faster
than the marix out-of-core method. However, for the FMS system, matrix out-
of-core method provides better run times. Similarly, we note that the symbolic
out-of-core method provides faster run times for Polling and Kanban systems,
but is slower than the complete out-of-core approach for the FMS system.

We observe that the results for explicit solutions are quite consistent for all
three example models. However, the performance of symbolic solutions, both
in-core and out-of-core, depends on the particular system under study. This is
because the symbolic methods exploit model structure through sharing (sub-
graphs of the MTBDD). The FMS system is the least structured of the three
models which equates to a large MTBDD to store it; the larger the MTBDD,
the more time is required to perform its traversal. The Polling system, on the
other hand, is very structured and therefore results in a smaller MTBDD. We
conclude with our observation of Table 2 that, for large models, the symbolic
out-of-core solution provides the best overall results for the examples considered.

5.2 Further Analysis of the Solution Methods

In this section, we investigate performance for the out-of-core solution meth-
ods by analysing the memory and time properties plotted against the number of
blocks. All experiments reported in this section have been performed on the same
machine as in Section 5.1. We begin by analysing the matrix out-of-core solution
and then move on to the complete and the symbolic out-of-core solutions.

The Matrix Out-of-Core Method
A matrix out-of-core algorithm was given in Section 4.2 and the time per iter-
ation results presented in Table 2. In Figure 9(a), we have plotted the memory
requirements of the matrix out-of-core solution for three CTMCs, one from each
case study. The plots display the total amount of memory used against the num-
ber of vector blocks B of equal size (B × B matrix blocks). Consider the plot
for the Polling system. The memory required to store the vector and matrix in
this case, if kept completely in RAM, is approximately 26MB and 135MB respec-
tively. Decomposing the matrix into blocks, keeping it on disk, and reading one
block at a time reduces the total in-core memory requirement of the solution.
The memory required for the case B = 4 is 85MB. Increasing the number of
blocks up to B = 64 reduces the memory requirements to nearly 30MB. This
minimum is bounded by the storage required for the iteration vector. Similar
properties are evident in the plots for the FMS and Kanban system CTMCs.

In Figure 9(b), we analyse the time per iteration characteristics for the same
three CTMCs, plotted against the number of vector blocks. We note a slight de-
crease in the time per iteration for all three CTMCs. The reason for this slight
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Fig. 9. The matrix out-of-core method: effects of varying the number of blocks

decrease in time is the decrease in the memory requirement of the solution pro-
cess, as demonstrated in the corresponding Figure 9(a). This effect would be
more obvious for larger models. Another reason for this effect is that increasing
the number of blocks typically results in smaller blocks, which possibly have less
variations4 in their sizes, consequently resulting in a better balance between the
disk I/O and the computation. However, increasing the number of blocks to a
very high number will possibly result in an increase in solution time due to the
higher number of synchronisation points (see Section 4.2).

The Complete Out-of-Core Method
Figure 10(a) illustrates the total memory requirement of the complete out-of-core
solution against the number of blocks for the same three CTMCs. The vector
and the CTMC are partitioned into B and B × B blocks respectively, and, in
this case, both are stored on disk. We note that the memory plots in the figure
show a similar trend as in Figure 9(a).

The time per iteration properties of the complete out-of-core solution are
plotted in Figure 10(b). In contrast to the matrix out-of-core method, we note a
significant increase in solution time for the complete out-of-core method with an
increase in the number of blocks. This is due to the fact that, for the complete
out-of-core method, the iteration vector5 must be read B times in each itera-
tion. Consequently, an increase in the number of blocks generally results in an
increase in the amount of disk I/O, and hence an increase in the solution time.

The Symbolic Out-of-Core Method
In Figure 11, we analyse the performance of the symbolic out-of-core method
by plotting the memory and time properties against the number of blocks for

4 Although the blocks have an equal number of rows, they can still have a varying and
unequal number of nonzero entries.

5 Of course, the vector blocks corresponding to the zero matrix blocks are not read.
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Fig. 10. The complete out-of-core method: effects of varying the number of blocks
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Fig. 11. The symbolic out-of-core method: effects of varying the number of blocks

the same three CTMCs as in Figure 10. To further explore the behaviour of the
symbolic out-of-core method, in Figure 12, we plot similar properties for larger
CTMCs. We note in the two figures that the range for the numbers of blocks is
much higher compared to the earlier graphs for explicit solutions. The reason is
that the MTBDD actually encodes a matrix over its potential state space, which
typically includes many unreachable states (see Section 3.3). In the following, we
explain the plots for Figure 12; in the light of this discussion, Figure 11 should
be self-explanatory.

The total memory requirement of the symbolic out-of-core solution against
the number of blocks for three CTMCs is plotted in Figure 12(a) (compare with
Figure 11(a)). We explain the plot for the Kanban system (k = 6). The memory
required for the case B = 2 is above 650MB. The increase in the number of blocks
reduces the memory requirements for the Kanban system to nearly 140MB. A
similar properties are evident for the other plots in Figure 12(a). For large num-
bers of blocks (i.e. the rightmost portions of the plots), we note an increase in
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Fig. 12. The symbolic out-of-core method: effects of varying the number of blocks

the amount of memory. This is because the memory overhead required to store
information about the blocks of the MTBDD dominates the overall memory in
these cases.

The time per iteration properties of the symbolic out-of-core solution are
analysed in Figure 12(b), plotted against the number of vector blocks. Consider
the plot for the Kanban system. Initially, for B = 2, the memory required (see
Figure 12(a)) for the iteration vector is more than the available RAM. This caus-
es thrashing and results in a high solution time. An increase in the number of
blocks removes this problem and explains the initial downward jump in the plot.
From this point on, however, the times vary. The rationale for this is as follows.
As we explained in Section 3.3, our decomposition of the MTBDD matrix into
blocks can result in a partitioning such that the resulting matrix (and hence
vector) blocks are of unequal sizes. This can affect the overlap of computation
and disk I/O, effectively increasing the solution time. The sizes of the partitions
are generally unpredictable, being determined both by the sparsity pattern of
the matrix and by the encoding of the matrix into the MTBDD. Finally, we note
that the end of the plot shows an increase in the solution time. This is due to
the overhead of manipulating a large number of blocks of the matrix and the
increased memory requirements that this imposes, as is partially evident from
Figure 12(a). Note that, for the symbolic implementations, we use a block itera-
tive method where we apply one Jacobi (inner) iteration on each sub-system, in
a global Gauss-Seidel iterative structure (see Section 4.5). Increasing the num-
ber of blocks, therefore, typically causes a reduction in the required number of
iterations for a CTMC to converge.

We conclude this section here with the observation that among the many
factors which affect performance of the out-of-core solutions are the data struc-
tures that hold the matrix, and the number of blocks, B, that the matrix (and
vector) are partitioned into. We have also found that, under different values of
k (see Table 2) for each case study, similar patterns for the memory and time
plots against the number of blocks are observed. This can, in fact, be useful for
predicting good choices of B for larger values of k. A useful direction for future
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work would be to investigate more fully what constitutes a good choice for the
number of blocks.

6 Conclusions

In this paper, serial out-of-core algorithms for the analysis of large Markov chains
have been surveyed. Earlier work, in this context, has focussed on implicit and
parallel explicit solutions. During the last five or so years, some progress has been
made, beginning with the solution of a 15 million states system on a workstation
with 128MB RAM, with no assumption on its structure [14, 15]. This approach
was parallelised in 1999 [23], leading to the solution of 724 million states on a
26-node dual-processor cluster [6]. A number of solution techniques had been
devised by the late 1990s to cope with the matrix storage problems. Howev-
er, explicit storage of the solution vector(s) hindered further progress for both
implicit and explicit methods. These limitations were later relaxed by the out-
of-core storage of the vector. The complete out-of-core solution of a 41 million
states system on a 128MB RAM machine was demonstrated in [24]. Furthermore,
a combination of MTBDD-based in-core symbolic storage of matrix and out-of-
core storage of the vector allowed the solution of a 216 million states system on
a single workstation with 512MB RAM [25, 30].

We surveyed the out-of-core approaches in this paper. The algorithms were
analyzed using tabular and graphical results of their implementations with the
help of benchmark case studies. Our focus in this paper has been the steady state
solution of an (irreducible) CTMC. We intend to generalise these techniques to
other numerical computation problems, such as transient analysis of CTMCs and
analysis of DTMCs and MDPs. Another direction for future research is to extend
the complete out-of-core and the symbolic out-of-core approaches by employing
parallelisation.

The Kronecker approach provides a space-efficient representation of a Mar-
kov chain. Representations based on such an approach have increasingly gained
popularity. These methods, however, still require explicit storage of the solu-
tion vector(s). The out-of-core storage of the solution vector can also provide a
solution in this case.

Further improvements in out-of-core techniques can be achieved with the help
of redundant arrays of independent disks (RAID). In future, we anticipate that
a combination of parallel and out-of-core techniques will play an important role
in the analysis of large stochastic models.
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