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Abstract. Game-theoretic techniques and equilibria analysis facilitate
the design and verification of competitive systems. While algorithmic
complexity of equilibria computation has been extensively studied, prac-
tical implementation and application of game-theoretic methods is more
recent. Tools such as PRISM-games support automated verification and
synthesis of zero-sum and (ε-optimal subgame-perfect) social welfare
Nash equilibria properties for concurrent stochastic games. However,
these methods become inefficient as the number of agents grows and may
also generate equilibria that yield significant variations in the outcomes
for individual agents. We extend the functionality of PRISM-games to
support correlated equilibria, in which players can coordinate through
public signals, and introduce a novel optimality criterion of social fair-
ness, which can be applied to both Nash and correlated equilibria. We
show that correlated equilibria are easier to compute, are more equitable,
and can also improve joint outcomes. We implement algorithms for both
normal form games and the more complex case of multi-player concur-
rent stochastic games with temporal logic specifications. On a range of
case studies, we demonstrate the benefits of our methods.

1 Introduction

Game-theoretic verification techniques can support the modelling and design of
systems that comprise multiple agents operating in either a cooperative or com-
petitive manner. In many cases, to effectively analyse these systems we also need
to adopt a probabilistic approach to modelling, for example because agents oper-
ate in uncertain environments, use faulty hardware or unreliable communication
mechanisms, or explicitly employ randomisation for coordination.

In these cases, probabilistic model checking provides a convenient unified
framework for both formally modelling probabilistic multi-agent systems and
specifying their required behaviour. In recent years, progress has been made in
this direction for several models, including turn-based and concurrent stochastic
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games (TSGs and CSGs), and for multiple temporal logics, such as rPATL [10]
and its extensions [24]. Tool support has been developed, in the form of PRISM-
games [22], and successfully applied to case studies across a broad range of areas.

Initially, the focus was on zero-sum specifications [24], which can be natural
for systems whose participants have directly opposing goals, such as the defender
and attacker in a security protocol minimising or maximising the probability of
a successful attack, respectively. However, agents often have objectives that are
distinct but not directly opposing, and may also want to cooperate to achieve
these objectives. Examples include network protocols and multi-robot systems.

For these purposes, Nash equilibria (NE) have also been integrated into prob-
abilistic model checking of CSGs [24], together with social welfare (SW) opti-
mality criterion, resulting in social welfare Nash equilibria (SWNE). An SWNE
comprises a strategy for each player in the game where no player has an incen-
tive to deviate unilaterally from their strategy and the sum of the individual
objectives over all players is maximised.

One key limitation of SWNE, however, is that, as these techniques are ex-
tended to support larger numbers of players [21], the efficiency and scalability
of synthesising SWNE is significantly reduced. In addition, simply aiming to
maximise the sum of individual objectives may not produce the best perform-
ing equilibrium, either collectively or individually; for example, they can offer
higher gains for specific players, reducing the incentive of the other players to
collaborate and instead motivating them to deviate from the equilibrium.

In this paper, we adopt a different approach and introduce, for the first time
within formal verification, both social fairness as an optimality criterion and
correlated equilibria, and the insights required to make these usable in practical
applications. Social fairness (SF) is particularly novel, as it is inspired by similar
concepts used in economics and distinct from the fairness notions employed in
verification. Correlated equilibria (CE) [3], in which players are able to coordi-
nate through public signals, are easier to compute than NE and can yield better
outcomes. Social fairness, which minimises the differences between the objectives
of individual players, can be considered for both CE and NE.

We first investigate these concepts for the simpler case of normal form games,
illustrating their differences and benefits. We then extend the approach to the
more powerful modelling formalism of CSGs and extend the temporal logic
rPATL to formally specify agent objectives. We present algorithms to synthesise
equilibria, using linear programming to find CE and a combination of back-
wards induction or value iteration for CSGs. We implement our approach in
the PRISM-games tool [22] and demonstrate significant gains in computation
time and that quantifiably more fair and useful strategies can by synthesised
for a range of application domains. An extended version of this paper, with the
complete model checking algorithm, is available [23].

Related work. Nash equilibria have been considered for concurrent systems
in [18], where a temporal logic is proposed whose key operator is a novel path
quantifier which asserts that a property holds on all Nash equilibrium computa-
tions of the system. There is no stochasticity and correlated equilibria are not
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considered. In [2], a probabilistic logic that can express equilibria is formulated,
along with complexity results, but no implementation has been provided.

The notion of fairness studied here is inspired by fairness of equilibria from
economics [33,34] and aims to minimise the difference between the payoffs, as
opposed to maximising the lowest payoff among the players in an NE [25]. Our
notion of fairness can be thought of as a constraint applied to equilibria strate-
gies, similar in style to social welfare, and used to select certain equilibria based
on optimality. This is distinct from fairness used in verification of concurrent
processes, where (strong) fairness refers to a property stating that, whenever a
process is enabled infinitely often, it is executed infinitely often. This notion is
typically defined as a constraint on infinite execution paths expressible in logics
LTL and CTL* and needed to prove liveness properties. For probabilistic models,
verification under fairness constraints has been formulated for Markov decision
processes and the logic PCTL* [5,4]. For games on graphs, fairness conditions
expressed as ω-regular winning conditions can be used to synthesise reactive
processes [8]. Algorithms for strong transition fairness for ω-regular games have
been recently studied in [6]. Both qualitative and quantitative approaches have
been considered for verification under fairness constraints, but no equilibria.

2 Normal Form Games

We start by considering normal form games (NFGs), then define our equilibria
concepts for these games, present algorithms and an implementation for com-
puting them, and finally summarise some experimental results.

We first require the following notation. Let Dist(X) denote the set of prob-
ability distributions over set X. For any vector v ∈ Rn, we use v(i) to refer
to the ith entry of the vector. For any tuple x = (x1, . . . , xn) ∈ Xn, element
x′ ∈ X and i ⩽ n, we define the tuples x−i

def
= (x1, . . . , xi−1, xi+1, . . . , xn) and

x−i[x
′]

def
= (x1, . . . , xi−1, x

′, xi+1, . . . , xn).

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where: N = {1, . . . , n} is a finite set of players;
A = A1× · · ·×An and Ai is a finite set of actions available to player i ∈ N ;
u = (u1, . . . , un) and ui : A→ R is a utility function for player i ∈ N .

We fix an NFG N = (N,A, u) for the remainder of this section. In a play of N,
each player i ∈ N chooses an action from the set Ai at the same time. If each
player i chooses ai, then the utility received by player j equals uj(a1, . . . , an).
We next define the strategies for players of N and strategy profiles comprising
a strategy for each player. We also define correlated profiles, which allow the
players to coordinate their choices through a (probabilistic) public signal.

Definition 2 (Strategy and profile). A strategy σi for player i is an element
of Σi = Dist(Ai) and a strategy profile σ is an element of ΣN = Σ1× · · ·×Σn.

For strategy σi of player i, the support is the set of actions {ai ∈ Ai | σi(ai)>0}
and the support of a profile is the product of the supports of the strategies.
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Definition 3 (Correlated profile). A correlated profile is a tuple (τ, ς) com-
prising τ ∈ Dist(D), where D = D1× · · ·×Dn, Di is a finite set of signals for
player i, and ς = (ς1, . . . , ςn), where ςi : Di → Ai.

For a correlated profile (τ, ς), the public signal τ is a joint distribution over
signals Di for each player i such that, if player i receives the signal di ∈ Di, then
it chooses action ςi(di). We can consider any correlated profile (τ, ς) as a joint
strategy, i.e., a distribution over A1× · · ·×An where:

(τ, ς)(a1, . . . , an) =
∑

{τ(d1, . . . , dn) | di ∈ Di ∧ ς(di) = ai for all i ∈ N} .

Conversely, any joint strategy τ ∈ Dist(A1× · · ·×An) can be considered as a
correlated profile (τ, ς) where Di = Ai and ςi is the identity function for i ∈ N .

Any strategy profile σ can be mapped to an equivalent correlated profile (in
which τ is the joint distribution σ1× · · ·×σn and ςi is the identity function). On
the other hand, there are correlated profiles with no equivalent strategy profile.
Under profile σ and correlated profile (τ, ς) the expected utilities of player i are:

ui(σ)
def
=

∑
(a1,...,an)∈A ui(a1, . . . , an) ·

(∏n
j=1 σj(aj)

)
ui(τ, ς)

def
=

∑
(d1,...,dn)∈D τ(d1, . . . , dn) · ui(ς1(d1), . . . , ςn(dn)) .

Example 1. Consider the two-player NFG where Ai = {ai1, ai2} and a corre-
lated profile corresponding to the joint distribution τ ∈ Dist(A1×A2) where
τ(a11, a

1
2) = τ(a21, a

2
2) = 0.5. Under this correlated profile the players share a fair

coin and both choose their first action if the coin is heads and their second action
otherwise. This has no equivalent strategy profile. ■

Optimal equilibria of NFGs. We now introduce the notions of Nash equilib-
rium [27] and correlated equilibrium [3], as well as different definitions of opti-
mality for these equilibria: social welfare and social fairness. Using the notation
introduced above for tuples, for any profile σ and strategy σ⋆

i , the strategy tuple
σ−i corresponds to σ with the strategy of player i removed and σ−i[σ

⋆
i ] to the

profile σ after replacing player i’s strategy with σ⋆
i .

Definition 4 (Best response). For a profile σ and correlated profile (τ, ς), a
best response for player i to σ−i and (τ, ς−i) are, respectively:

– a strategy σ⋆
i for player i such that ui(σ−i[σ

⋆
i ]) ⩾ ui(σ−i[σi]) for all σi ∈ Σi;

– a function ς⋆i : Di → Ai for player i such that ui(τ, ς−i[ς
⋆
i ]) ⩾ ui(τ, ς−i[ςi])

for all functions ςi : Di → Ai.

Definition 5 (NE and CE). A strategy profile σ⋆ is a Nash equilibrium (NE)
and a correlated profile (τ, ς⋆) is a correlated equilibrium (CE) if:

– σ⋆
i is a best response to σ⋆

−i for all i ∈ N ;
– ς⋆i is a best response to (τ, ς⋆−i) for all i ∈ N ;

respectively. We denote by ΣN and ΣC the set of NE and CE, respectively.
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c1

c2

c3

α u1(α) u2(α) u3(α)
(pro1, pro2, pro3) −1000 −1000 −100
(pro1, pro2, yld3) −1000 −100 −5
(pro1, yld2, pro3) 5 −5 5
(pro1, yld2, yld3) 5 −5 −5
(yld1, pro2, pro3) −5 −1000 −100
(yld1, pro2, yld3) −5 5 −5
(yld1, yld2, pro3) −5 −5 5
(yld1, yld2, yld3) −10 −10 −10

Fig. 1: Example: Cars at an intersection and the corresponding NFG.

Any NE of N is also a CE, while there can exist CEs that cannot be represented
by a strategy profile and therefore are not NEs. For each class of equilibria,
NE and CE, we introduce two optimality criteria, the first maximising social
welfare (SW), defined as the sum of the utilities, and the second maximising
social fairness (SF), which minimises the difference between the players’ utilities.
Other variants of fairness have been considered for NE, such as in [25], where
the authors seek to maximise the lowest utility among the players.

Definition 6 (SW and SF). An equilibrium σ⋆ is a social welfare (SW) equi-
librium if the sum of the utilities of the players under σ⋆ is maximal over all
equilibria, while σ⋆ is a social fair (SF) equilibrium if the difference between the
player’s utilities under σ⋆ is minimised over all equilibria.

We can also define the dual concept of cost equilibria [24], where players try to
minimise, rather than maximise, their expected utilities by considering equilibria
of the game N− = (N,A,−u) in which the utilities of N are negated.

Example 2. Consider the scenario, based on an example from [32], where three
cars meet at an intersection and want to proceed as indicated by the arrows
in Figure 1. Each car can either proceed or yield. If two cars with intersecting
paths proceed, then there is an accident. If an accident occurs, the car having
the right of way, i.e., the other car is to its right, has a utility of −100 and the
car that should yield has a utility of −1000. If a car proceeds without causing an
accident, then its utility is 5 and the cars that yield have a utility of −5. If all
cars yield, then, since this delays all cars, all have utility −10. The 3-player NFG
is given in Figure 1. Considering the different optimal equilibria of the NFG:

– the SWNE and SWCE are the same: for c2 to yield and c1 and c3 to proceed,
with the expected utilities (5,−5, 5);

– the SFNE is for c1 to yield with probability 1, c2 to yield with probability
0.863636 and c3 to yield with probability 0.985148, with the expected utilities
(−9.254050,−9.925742,−9.318182);

– the SFCE gives a joint distribution where the probability of c2 yielding and
of c1 and c3 yielding are both 0.5 with the expected utilities (0, 0, 0).

Modifying u2 such that u2(pro1, pro2, pro3) = −4.5 to, e.g., represent a reckless
driver, the SWNE becomes for c1 and c3 to yield and c2 to proceed with the
expected utilities (−5, 5,−5), while the SWCE is still for c2 to yield and c1 and
c3 to proceed. The SFNE and SFCE also do not change. ■
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Algorithms for computing equilibria. Before we give our algorithm to com-
pute correlated equilibria, we briefly describe the approach of [21,24] for Nash
equilibria computation that this paper builds upon. Finding NE in two-player
NFGs is in the class of linear complementarity problems (LCPs) and we follow
the algorithm presented in [24], which reduces the problem to SMT via labelled
polytopes [28] by considering the regions of the strategy profile space, itera-
tively reducing the search space as positive probability assignments are found
and added as restrictions on this space. To find SWNE and SFNE, we can enu-
merate all NE and then find the optimal NE.

When there are more than two players, computing NE values becomes a more
complex task, as finding NE within a given support no longer reduces to a linear
programming (LP) problem. In [21] we presented an algorithm using support
enumeration [31], which exhaustively examines all sub-regions, i.e., supports,
of the strategy profile space, one at a time, checking whether that sub-region
contains NEs. For each support, finding SWNE can be reduced to a nonlinear
programming problem [21]. This nonlinear programming problem can be modified
to find SFNE in each support, similarly to how the LP problem for SWCEs is
modified to find SFCEs below.

In the case of CE we can first find a joint strategy for the players, i.e.,
a distribution over the action tuples, which, as explained above, can then be
mapped to a correlated profile. A SWCE can be found by solving the following
LP problem. Maximise:

∑
i∈N

∑
α∈A ui(α) · pα subject to:∑

α−i∈A−i
(ui(α−i[ai])− ui(α−i[a

′
i])) · pα−i[ai] ⩾ 0 (1)

0 ⩽ pα ⩽ 1 (2)∑
α∈A pα = 1 (3)

for all i ∈ N , α ∈ A, ai, a′i ∈ Ai, α−i ∈ A−i where A−i
def
= {α−i | α ∈ A}.

The variables pα represent the probability of the joint strategy corresponding
to the correlated profile selecting the action-tuple α. The above LP has |A|
variables, one for each action-tuple, and

∑
i∈N (|Ai|2−|Ai|)+ |A|+1 constraints.

Computation of SFCE can be reduced to the following optimisation problem.
Minimise pmax − pmin subject to: (1), (2) and (3) together with:

pi =
∑

α∈Apα · ui(α) (4)(
∧m∈Np

i ⩾ pm
)
→ (pmax = pi) (5)(

∧m∈Np
i ⩽ pm

)
→ (pmin = pi) (6)

for all i ∈ N , m ̸= i, α ∈ A, aj , al ∈ Ai, α−i ∈ A−i. Again, the variables pα in
the program represent the probability of the players playing the joint action α.
The constraint (4) requires pi to equal the utility of player i. The constraints
(5) and (6) set pmax and pmin as the maximum and minimum values within the
utilities of the players, respectively. Given we use the constraints (1), (2) and
(3), we start with the same number of variables and constraints as needed to
compute SWCEs and incur an additional |N |+2 variables and 3·|N | constraints.
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Game Players |Ai| |A| NE CE
Supports SW SW SF

Majority voting
games

2

4 16 225 0.07 0.02 0.08
6 36 3,969 0.1 0.02 0.1
8 64 65,025 0.4 0.03 0.3

10 100 1,046,529 5.8 0.07 0.7
3 3 27 343 1.2 0.07 0.1

4 81 3,375 25.8 0.08 0.3

Covariant
games

3 3 27 343 8.7 0.08 1.7
4 81 3,375 598.5 0.08 2.9

8 2 256 6,561 TO 0.3 TO
3 6,561 5,764,801 TO 22.8 TO

10 2 1,024 59,049 TO 1.2 TO

Table 1: Times (s) for synthesis of equilibria in NFGs (timeout 30 mins).

Implementation. To find SWNE or SFNE of two-player NFGs, we adopt a
similar approach to [24], using labelled polytopes to characterise and find NE
values through a reduction to SMT in both Z3 [13] and Yices [14]. As an op-
timised precomputation step, when possible we also search for and filter out
dominated strategies, which speeds up the computation and reduces solver calls.

For NFGs with more than two players, solving the nonlinear programming
problem based on support enumeration has been implemented in [21] using a
combination of the SMT solver Z3 [13] and the nonlinear optimisation suite
Ipopt [38]. To mitigate the inefficiencies of an SMT solver for such problems,
we used Z3 to filter out unsatisfiable support assignments with a timeout and
then Ipopt is called to find SWNE values using an interior-point filter line-search
algorithm [39]. To speed up the overall computation, the support assignments are
analysed in parallel. Computing SFNE increases the complexity of the nonlinear
program and, due to the inefficiency in this approach [21], we have not extended
the implementation to compute SFNE.

As shown above, computing SWCE for NFGs reduces to solving an LP, and
we implement this using either the optimisation solver Gurobi [17] or the SMT
solver Z3 [13]. In the case of SFCE, the constraints (5) and (6) include impli-
cations, and therefore the problem does not reduce directly to an LP. When
using Z3, we can encode these constraints directly as it supports assertions that
combine inequalities with logical implications, a feature that linear solvers such
as Gurobi do not have. Section 5 discusses implementing SFCE computation in
Gurobi. Both solvers support the specification of lower priority or soft objectives,
which makes it possible to have a consistent ordering for the players’ payoffs in
cases where multiple equilibria exist.

Efficiency and scalability. Table 1 presents experimental results for solving
a selection of NFGs randomly generated with GAMUT [29], using Gurobi for
SWCE and NE of two-player NFGs, Z3 for SFCE and both Ipopt and Z3 for
NFGs of more than two players, and running on a 2.10GHz Intel Xeon Gold with
32GB of JVM memory. For each instance, Table 1 lists the number of players,
actions for each player, joint actions and supports that need to be enumerated
when finding NE, as well as the time to find SWNEs, SWCEs and SFCEs (the
time for finding SFNEs of two-player games is the same as for SWNEs). As the
results demonstrate, due to a simpler problem being solved and the fact that we
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do not need to enumerate the solutions, computing CEs scales far better than
NEs as the number of players and actions increases. Finding NEs in games with
more than two players is particularly hard as the constraints are nonlinear. We
also see that SFCE computation is slower than SWCE, which is caused by the
additional variables and constraints required when finding SFCE and using Z3
rather than Gurobi for the solver.

3 Concurrent Stochastic Games

We now further develop our approach to support concurrent stochastic games
(CSGs) [36], in which players repeatedly make simultaneous action choices that
cause the game’s state to be updated probabilistically. We extend the previously
introduced definitions of optimal equilibria to such games, focusing on subgame-
perfect equilibria, which are equilibria in every state of a CSG. We then present
algorithms to reason about and synthesise such equilibria.

Definition 7 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, S̄, A,∆, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and S̄ ⊆ S is a set of initial states;
– A = (A1 ∪ {⊥})× · · ·×(An ∪ {⊥}) and Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪n
i=1Ai;

– ∆ : S → 2∪
n
i=1Ai is an action assignment function;

– δ : (S×A) → Dist(S) is a (partial) probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

For the remainder of this section we fix a CSG G as in Definition 7. The game
G starts in one of its initial states s̄ ∈ S̄ and, supposing G is in a state s, then
each player i of G chooses an action from the set that are available, defined
as Ai(s)

def
= ∆(s) ∩ Ai if ∆(s) ∩ Ai is non-empty and Ai(s)

def
= {⊥} otherwise.

Supposing each player chooses ai, then the game transitions to state s′ with
probability δ(s, (a1, . . . , an)). To enable quantitative analysis of G we augment it
with reward structures, which are tuples r=(rA, rS) of an action reward function
rA : S×A→ R and state reward function rS : S → R.

A path of G is a sequence π = s0
α0−→ s1

α1−→ · · · where sk ∈ S, αk =
(ak1 , . . . , a

k
n) ∈ A, aki ∈ Ai(sk) for i ∈ N and δ(sk, αk)(sk+1) > 0 for all k ⩾

0. We denote by FPathsG,s and IPathsG,s the sets of finite and infinite paths
starting in state s of G respectively and drop the subscript s when considering
all finite and infinite paths of G. As for NFGs, we can define strategies of G
that resolve the choices of the players. Here, a strategy for player i is a function
σi : FPathsG → Dist(Ai ∪ {⊥}) such that, if σi(π)(ai)>0, then ai ∈ Ai(last(π))
where last(π) is the final state of π. Furthermore, we can define strategy profiles,
correlated profiles and joint strategies analogously to Definitions 2 and 3.
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The utility of a player i of G is defined by a random variableXi : IPathsG → R
over infinite paths. For a profile4 σ and state s, using standard techniques [20],
we can construct a probability measure ProbσG,s over the paths with initial state s
corresponding to σ, denoted IPathsσG,s and the expected value Eσ

G,s(Xi) of player
i’s utility from s under σ. Given utilities X1, . . . , Xn for all the players of G, we
can then define NE and CE (see Definition 5) as well as the restricted classes of
SW and SF equilibria as for NFGs (see Definition 6). Following [24,21], we focus
on subgame-perfect equilibria [30], which are equilibria in every state of G.

Nonzero-sum properties. As in [24] (for two-player CSGs) and [21] (for n-
player CSGs) we can specify equilibria-based properties using temporal logic.
For simplicity, we restrict attention to nonzero-sum properties without nesting,
allowing for the specification of NE and CE against either SW or SF optimality.
Definition 8 (Nonzero-sum specifications). The syntax of nonzero-sum spec-
ifications θ for CSGs is given by the grammar:

ϕ := ⟨⟨C⟩⟩(⋆1, ⋆2)opt∼x(θ)

θ := P[ψ ]+· · ·+P[ψ ] | Rr[ ρ ]+· · ·+Rr[ ρ ]
ψ := X a | a U⩽k a | a U a

ρ := I=k | C⩽k | F a

where C = C1: · · · :Cm, C1, . . . , Cm are coalitions of players such that Ci∩Cj = ∅
for all 1 ⩽ i ̸= j ⩽ m and ∪m

i=1Ci = N , (⋆1, ⋆2) ∈ {ne,ce}×{sw, sf}, opt ∈
{min,max}, ∼∈ {<,⩽,⩾, >}, x ∈ Q, r is a reward structure, k ∈ N and a is
an atomic proposition.

The nonzero-sum formulae of Definition 8 extend the logic of in [24,21] in that
we can now specify the type of equilibria, NE or CE, and optimality criteria, SW
or SF. A probabilistic formula ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)max∼x(P[ψ1 ]+· · ·+P[ψm ]) is
true in a state if, when the players form the coalitions C1, . . . , Cm, there is a
subgame-perfect equilibrium of type ⋆1 meeting the optimality criterion ⋆2 for
which the sum of the values of the objectives P[ψ1 ], . . . , P[ψm ] for the coalitions
C1, . . . , Cm satisfies ∼x. The objective ψi of coalition Ci is either a next (X a),
bounded until (a1 U⩽k a2) or until (a1 U a2) formula, with the usual equivalences,
e.g., F a ≡ true U a.

For a reward formula ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)opt∼x(R
r1 [ ρ1 ]+· · ·+Rrm [ ρm ]) the

meaning is similar; however, here the objective of coalition Ci refers to a re-
ward formula ρi with respect to reward structure ri and this formula is either
a bounded instantaneous reward (I=k), bounded accumulated reward (C⩽k) or
reachability reward (F a).

For formulae of the form ⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)min∼x(θ), the dual notions of
cost equilibria are considered. We also allow numerical queries of the form
⟨⟨C1:· · ·:Cm⟩⟩(⋆1, ⋆2)opt=?(θ), which return the sum of the optimal subgame-
perfect equilibrium’s values.
4 We can also construct such a probability measure and expected value given a corre-

lated profile or joint strategy.
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Model checking nonzero-sum specifications. Similarly to [24,21], to allow
model checking of nonzero-sum properties we consider a restricted class of CSGs.
We make the following assumption, which can be checked using graph algorithms
with time complexity quadratic in the size of the state space [1].
Assumption 1. For each subformula P[ a1 U a2 ], a state labelled ¬a1 ∨ a2 is
reached with probability 1 from all states under all strategy profiles and correlated
profiles. For each subformula Rr[ F a ], a state labelled a is reached with probability
1 from all states under all strategy profiles and correlated profiles.
We now show how to compute the optimal values of a nonzero-sum formula
ϕ = ⟨⟨C1:· · · : Cm⟩⟩(⋆1, ⋆2)opt∼x(θ) when opt = max. The case when opt = min
can be computed by negating all utilities and maximising.

The model checking algorithm broadly follows those presented in [24,21], with
the differences described below. The problem is reduced to solving an m-player
coalition game GC where C = {C1, . . . , Cm} and the choices of each player i in GC

correspond to the choices of the players in coalition Ci in G. Formally, we have
the following definition in which, without loss of generality, we assume C is of
the form {{1, . . . , n1}, {n1+1, . . . n2}, . . . , {nm−1+1, . . . nm}} and let jC denote
player j’s position in its coalition.
Definition 9 (Coalition game). For CSG G = (N,S, S̄, A,∆, δ,AP ,L) and
partition C = {C1, . . . , Cm} of the players into m coalitions, we define the coali-
tion game GC = ({1, . . . ,m}, S, S̄, AC ,∆C , δC ,AP ,L) as an m-player CSG where:

– AC = (AC
1 ∪ {⊥})× · · ·×(AC

m ∪ {⊥});
– AC

i = (
∏

j∈Ci
(Aj ∪ {⊥}) \ {(⊥, . . . ,⊥)}

)
for all 1 ⩽ i ⩽ m;

– for any s ∈ S and 1 ⩽ i ⩽ m : aCi ∈ ∆C(s) if and only if either ∆(s)∩Aj = ∅
and aCi (jC) = ⊥ or aCi (jC) ∈ ∆(s) for all j ∈ Ci;

– for any s ∈ S and (aC1 , . . . , a
C
m) ∈ AC : δC(s, (aC1 , . . . , a

C
m)) = δ(s, (a1, . . . , an))

where for i ∈M and j ∈ Ci if aCi =⊥, then aj=⊥ and otherwise aj=aCi (jC).

If all the objectives in θ are finite-horizon, backward induction [35,27] can be ap-
plied to compute (precise) optimal equilibria values with respect to the criterion
⋆2 and equilibria type ⋆1. On the other hand, if all the objectives are infinite-
horizon, value iteration [9] can be used to approximate optimal equilibria values
and, when there is a combination of objectives, the game under study is modified
in a standard manner to make all objectives infinite-horizon.

Backward induction and value iteration over the CSG GC both work by iter-
atively computing new values for each state s of GC . The values for each state,
in each iteration, are found by computing optimal equilibria values of an NFG N
whose utility function is derived from the outgoing transition probabilities from
s in the CSG and the values computed for successor states of s in the previous
iteration. The difference here, with respect to [21], is that the NFGs are solved
for the additional equilibria and optimality conditions considered in this paper,
which we compute using the algorithms presented in Section 2.

Algorithm for probabilistic until. Because of space limitations, we only
present here the details of value iteration for (unbounded) probabilistic until, i.e.,
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for ϕ = ⟨⟨C1:· · · : Cm⟩⟩(⋆1, ⋆2)max∼x(θ) where θ = P[ a11 U a12 ]+ · · ·+P[ am1 U am2 ].
The complete model checking algorithm can be found in [23].

Following [21], we use VGC (s, ⋆1, ⋆2, θ, n) to denote the vector of computed
values, at iteration n, in state s of GC for optimality criterion ⋆2 (SW or SF),
equilibria type ⋆1 (NE or CE) and (until) objectives θ. We also use 1m and 0m

to denote a vector of size m whose entries all equal to 1 or 0, respectively. For
any set of states S′, atomic proposition a and state s we let ηS′(s) equal 1 if
s ∈ S′ and 0 otherwise, and ηa(s) equal 1 if a ∈ L(s) and 0 otherwise.

Each step of value iteration also keeps track of two sets D,E ⊆ M , where
M = {1, . . . ,m} are the players of GC . We use D for the subset of players that
have already reached their goal (by satisfying ai2) and E for the players who
can no longer can satisfy their goal (having reached a state that fails to satisfy
ai1). It can then be ensured that their payoffs no longer change and are set to 1
or 0, respectively. In these cases, we effectively consider a modified game where,
although the payoffs for these players are set, we still need to take their strategies
into account in order to guarantee an optimal equilibrium.

Optimal values for all states s in the CSG GC can be computed as the follow-
ing limit: VGC (s, ⋆1, ⋆2, θ) = limn→∞ VGC (s, ⋆1, ⋆2, θ, n), where VGC (s, ⋆1, ⋆2, θ, n) =
VGC (s, ⋆1, ⋆2,∅,∅, θ, n) and, for any D,E ⊆M such that D ∩ E = ∅:

VGC (s, ⋆1, ⋆2, D,E, θ, n) =


(ηD(1), . . . , ηD(m)) if D ∪ E =M
(ηa12(s), . . . , ηa

m
2
(s)) else if n = 0

VGC (s, ⋆1, ⋆2, D ∪D′, E, θ, n) else if D′ ̸= ∅
VGC (s, ⋆1, ⋆2, D,E ∪ E′, θ, n) else if E′ ̸= ∅

val(N, ⋆1, ⋆2) otherwise

where D′ = {l ∈ M\(D ∪ E) | al2 ∈ L(s)}, E′ = {l ∈ M\(D ∪ E) | al1 ̸∈
L(s) and s ∈ L(al2)} and val(N, ⋆1, ⋆2) equals optimal values of the NFG N =
(M,AC , u) with respect to the criterion ⋆2 and of equilibria type ⋆1 in which for
any 1⩽l⩽m and α ∈ AC :

ul(α) =


1 if l ∈ D
0 else if l ∈ E∑

s′∈S δ
C(s, α)(s′) · vs

′,l
n−1 otherwise

and (vs
′,1

n−1, v
s′,2
n−1, . . . , v

s′,m
n−1 ) = VGC (s′, ⋆1, ⋆2, D,E, θ, n−1) for all s′ ∈ S.

Since this paper considers equilibria for any number of coalitions (in par-
ticular, for more than two), the above follows the algorithm of [21] in the way
that it keeps track of the coalitions that have satisfied their objective (D) or can
no longer do so (E). By contrast the CSG algorithm of [24] was limited to two
coalitions, which enabled the exploitation of efficient MDP analysis techniques
for such coalitions. As explained in [21], in such a scenario we cannot reduce the
analysis from an n-coalition game to an (n− 1)-coalition game, as otherwise we
would give one of the remaining coalitions additional power (the action choices
of the coalition that has satisfied their objective or can no longer do so), which
would therefore give this coalition an advantage over the other coalitions.
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Strategy synthesis. As in [24,21] we can extend the model checking algorithm
to perform strategy synthesis, generating a witness (i.e., a profile or joint strat-
egy) representing the corresponding optimal equilibrium. This is achieved by
storing the profile or joint strategy for the NFG solved in each state. Both the
profiles and joint strategies require finite memory and are probabilistic. Memory
is required as choices change after a path formula becomes true or a target is
reached and to keep track of the step bound in finite-horizon properties. Ran-
domisation is required for both NE and CE of NFGs.

Correctness and complexity. The correctness of the algorithm follows directly
from [24,21], as changing the class of equilibria or optimality criterion does not
change the proof. The complexity of the algorithm is linear in the formula size
and value iteration requires finding optimal NE or CE for an NFG in each state
of the model. Computing NEs of an NFG with two (or more) players is PPAD-
complete [12,11], while finding optimal CEs of an NFG is in P [15].

4 Case Studies and Experimental Results

We have developed an implementation of our techniques for equilibria synthe-
sis on CSGs, described above, building on top of the PRISM-games [22] model
checker. Our implementation extends the tool’s existing support for construction
and analysis of CSGs, which is contained within its sparse matrix based “explicit”
engine written in Java. We have considered a range of CSG case studies (supple-
mentary material can be found at [40]). Below, we summarise the efficiency and
scalability of our approach, again running on a 2.10GHz Intel Xeon Gold with
32GB JVM memory, and then describe our findings on individual case studies.

Efficiency and scalability. Table 2 summarises the performance of our imple-
mentation on the case studies that we have considered. It shows the statistics for
each CSG, and the time taken to build it and perform equilibria synthesis, for
several different variants (NE vs. CE, SW vs. SF). Comparing the efficiency of
synthesising SWNE and SWCE, we see that the latter is typically much faster.
For two-player NE, the social fairness variant is no more expensive to compute as
we enumerate all NEs. For CE, which uses Z3 rather than Gurobi for finding SF,
we note that, although Z3 is able to find optimal equilibria, it is not primarily
developed as an optimisation suite, and therefore generally performs poorly in
comparison with Gurobi. The benefits of the social fair equilibria, in terms of
the values yielded for individual players, are discussed in the in-depth coverage
of the different case studies below.

Aloha. In this case study, introduced in [24], a number of users try to send
packets using the slotted Aloha protocol. We suppose that each user has one
packet to send and, in a time slot, if k users try and send their packet, then
the probability that each packet is successfully sent is q/k where q ∈ [0, 1]. If a
user fails to send a packet, then the number of slots it waits before resending
the packet is set according to Aloha’s exponential backoff scheme. The scheme
requires that each user maintains a backoff counter, which it increases each time
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Case study & property Players ⋆1,⋆2
Param. CSG statistics Constr. Verif.

[parameters] values States Trans. time(s) time (s)

Aloha
(⋆1,⋆2)min=?(R

time [ F si ])

[bmax , q]

2
ne,sw

4,0.8 2,778 6,285 0.1
2.2

ce,sw 2.1
ne,sf 2.1
ce,sf 23.3

3 ce,sw 4,0.8 107,799 355,734 3.0 80.1
ce,sf 114.6

4 ne,sw 2,0.8 68,689 161,904 1.9 1042.9
ce,sw 58.8

Aloha
(⋆1,⋆2)max=?(Pmax=?[ F si∧t⩽D ])

[bmax , q,D]

4 ne,sw 2,0.8,8 159,892 388,133 3.9 1027.5
ce,sw 224.5

5 ce,sw 2,0.8,8 1,797,742 5,236,655 54.5 4,936.8
ce,sf TO

Power control
(⋆1,⋆2)max=?(R

r [ F ei ])

[powmax , emax , qfail ]

2
ne,sw

8,40,0.2 32,812 260,924 1.2
564.5

ne,sf 566.3
ce,sw 177.9

3 ce,sw 5,15,0.2 42,156 740,758 3.5 147.0
ce,sf TO

Public good
(⋆1,⋆2)max=?(R

c [ I=rmax ])

[f, rmax ]

3 ne,sw 2.5,3 16,202 35,884 0.8 27.5
ce,sw 1.9

4 ne,sw 3,3 391,961 923,401 13.0 71.9
ce,sw 35.3

5 ce,sw 4,2 59,294 118,342 3.1 5.2

Investors
(⋆1,⋆2)max=?(R

prof [ F cini ])

[pbar ,months]

2 ce,sw 0.2,8 71,731 315,804 2.4 47.5
ce,sf 2,401.9

3 ce,sw 0.2,5 83,081 462,920 3.6 79.3
ce,sf 861.2

Table 2: Statistics for a set of CSG verification instances (timeout 2 hours).

there is a packet failure (up to bmax) and, if the counter equals k and a failure
occurs, randomly chooses the slots to wait from {0, 1, . . . , 2k−1}.

We suppose that the objective of each user is to minimise the expected
time to send their packet, which is represented by the nonzero-sum formula
⟨⟨usr1: · · · :usrm⟩⟩(⋆1, ⋆2)min=?(R

time [ F s1 ]+· · ·+Rtime [ F sm ]). Synthesising opti-
mal strategies for this specification, we find that the cases for SWNE and SWCE
coincide (although SWCE returns a joint strategy for the players, this joint strat-
egy can be separated to form a strategy profile). This profile requires one user
to try and send first, and then for the remaining users to take turns to try and
send afterwards. If a user fails to send, then they enter backoff and allow all
remaining users to try and send before trying to send again. There is no gain to
a user in trying to send at the same time as another, as this will increase the
probability of a sending failure, and therefore the user having to spend time in
backoff before getting to try again. For SFNE, which has only been implemented
for the two-player case, the two users follow identical strategies, which involve
randomly deciding whether to wait or transmit, unless they are the only user
that has not transmitted, and then they always try to send when not in backoff.
In the case of SFCE, users can employ a shared probabilistic signal to coordinate
which user sends next. Initially, this is a uniform choice over the users, but as
time progresses the signal favours the users with lower backoff counters as these
users have had fewer opportunities to send their packet previously.

In Figure 2 we have plotted the optimal values for the players, where SWi

correspond to the optimal values (expected times to send their packets) for player
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Fig. 2: Aloha: ⟨⟨usr1: · · · :usrm⟩⟩(⋆1, ⋆2)min=?(R
time [ F s1 ]+· · ·+Rtime [ F sm ])

i for both SWNE and SWCE for the cases of two, three and four users. We see
that the optimal values for the different users under SFNE and SFCE coincide,
while under SWNE and SWCE they are different for each user (with the user
sending first having the lowest and the user sending last the highest). Comparing
the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, while for SFNE there
is a greater difference as the players cannot coordinate, and hence try and send
at the same time.

Power control. This case study is based on a model of power control in cel-
lular networks from [7]. In the network there are a number of users that each
have a mobile phone. The phones emit signals that the users can strengthen by
increasing the phone’s power level up to a bound (powmax). A stronger signal
can improve transmission quality, but uses more energy and lowers the qual-
ity of the transmissions of other phones due to interference. We use the ex-
tended model from [22], which adds a probability of failure (qfail) when a power
level is increased and assumes each phone has a limited battery capacity (emax).
There is a reward structure associated with each phone representing transmis-
sion quality, which is dependent on both the phone’s power level and the power
levels of other phones due to interference. We consider the nonzero-sum prop-
erty ⟨⟨p1:· · ·:pm⟩⟩(⋆1, ⋆2)max=?(R

r1 [ F e1 ]+· · ·+Rrm [ F em ]), where each user tries
to maximise their expected reward before their phone’s battery is depleted.

In Figure 3 we have presented the expected rewards of the players under
the synthesised SWCE and SFCE joint strategies. When performing strategy
synthesis, in the case of two users the SWNE and SWCE yield the same profile
in which, when the users’ batteries are almost depleted, one user tries to increase
their phone’s power level and, if successful, in the next step, the second user then
tries to increase their phone’s power level. Since the first user’s phone battery
is depleted when the second tries to increase, this increase does not cause any
interference. On the other hand, if the first user fails to increase their power
level, then both users increase their battery levels. For the SFCE, the users
can coordinate and flip a coin as to which user goes first: as demonstrated by
Figure 3 this yields equal rewards for the users, unlike the SWCE. In the case of
three users, the SWNE and SWCE differ (we were only able to synthesise SWNE
for powmax = 2 as for larger values the computation had not completed within
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the timeout), again users take turns to try and increase their phone’s power
level. However, here if the users are unsuccessful the SWCE can coordinate as to
which user goes next trying to increase their phone’s battery level. Through this
coordination, the users’ rewards can be increased as the battery level of at most
one phone increases at a time, which limits interference. On the other hand, for
the SWNE users must decide independently whether to increase their phone’s
battery level and they each randomly decide whether to do so or not.

Public good. We next consider a variant of a public good game [19], based
on the one presented in [22] for the two-player case. In this game a number
of players each receive an initial amount of capital (einit) and, in each of rmax

months, can invest none, half or all of their current capital. The total invested
by the players in a month is multiplied by a factor f and distributed equally
among the players before the start of the next month. The aim of the play-
ers is to maximise their expected capital which is represented by the formula:
⟨⟨p1: · · · :pm⟩⟩(⋆1, ⋆2)max=?(R

c1 [ I=rmax ]+· · ·+Rcm [ I=rmax ]).
Figure 4 plots, for the three-player model, both the expected capital of indi-

vidual players and the total expected capital after three months for the SWNE,
SWCE and SFNE as the parameter f varies. As the results demonstrate the play-
ers benefit, both as individuals and as a population, by coordinating through a
correlated strategy. In addition, under the SFCE, all players receive the same
expected capital with only a small decrease in the sum from that of the SWCE.

Investors. The final case study concerns a concurrent multi-player version of
futures market investor model of [26], in which a number of investors (the players)
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interact with a probabilistic stock market. In successive months, the investors
choose whether to invest, wait or cash in their shares, while at the same time the
market decides with probability pbar to bar each investor, with the restriction
that an investor cannot be barred two months in a row or in the first month,
and then the values of shares and cap on values are updated probabilistically.

We consider both two- and three-player models, where each investor tries to
maximise its individual profit represented by the following nonzero-sum prop-
erty: ⟨⟨inv1:· · ·:invm⟩⟩(⋆1, ⋆2)max=?(R

pf 1 [ F cin1 ]+· · ·+Rpf m [ F cinm ]). In Figure 5
we have plotted the different optimal values for NE and CE of the two-player
game and the different optimal values for CE of the three-player game (the
computation of NE values timed out for the three player case). As the results
demonstrate, again we see that the coordination that CEs offer can improve the
returns of the players and that, although considering social fairness does decrease
the returns of some players, this is limited, particularly for CEs.

5 Conclusions

We have presented novel techniques for game-theoretic verification of proba-
bilistic multi-agent systems, focusing on correlated equilibria and a notion of
social fairness. We began with the simpler case of normal form games and then
extended this to concurrent stochastic games, and used temporal logic to for-
mally specify equilibria. We proposed algorithms for equilibrium synthesis, im-
plemented them and illustrated their benefits, in terms of efficiency and fairness,
on case studies from a range of application domains.

Future work includes exploring the use of further game-theoretic topics within
this area, such as techniques for mechanism design or other concepts such as
Stackelberg equilibria. We plan to implement SFCE computation in Gurobi using
the big-M method [16] to encode implications and techniques from [37] to encode
conjunctions, which should yield a significant speed-up in their computation.
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