PRISM: A Tool for Automatic Verification of
Probabilistic Systems*

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom
{ug60axh,mzk,gxn,dxp}@cs.bham.ac.uk

Abstract. Probabilistic model checking is an automatic formal verifi-
cation technique for analysing quantitative properties of systems which
exhibit stochastic behaviour. PRISM is a probabilistic model checking
tool which has already been successfully deployed in a wide range of
application domains, from real-time communication protocols to biolog-
ical signalling pathways. The tool has recently undergone a significant
amount of development. Major additions include facilities to manually
explore models, Monte-Carlo discrete-event simulation techniques for ap-
proximate model analysis (including support for distributed simulation)
and the ability to compute cost- and reward-based measures, e.g. “the ex-
pected energy consumption of the system before the first failure occurs”.
This paper presents an overview of all the main features of PRISM. More
information can be found on the website: www.cs.bham.ac.uk/~dxp/prism.

1 Overview

Probabilistic model checking is an automatic formal verification technique for the
analysis of systems which exhibit stochastic behaviour. Examples of such systems
include well-known communication protocols such as FireWire and Bluetooth,
which employ randomisation, and a wide range of computer and communica-
tion systems, unpredictable characteristics of which, such as message delays or
times to failure, are best represented in a probabilistic fashion. Like traditional
model checking, this technique involves constructing, from a description in some
high-level formalism, a finite-state model of a real-life system, but additionally
including information about the likelihood and timing of transitions between
states occurring. From this model, a wide range of quantitative measures of the
original system can be automatically computed.

PRISM is a probabilistic model checking tool which has already been used to
apply these techniques to a large and diverse set of case studies. In the following
sections we describe the types of probabilistic model supported by PRISM and
the properties of these models which can be analysed. We then give an overview
of the main features of the tool. Finally, we summarise the case studies to which
the tool has already been applied and the various resources which are available.

* Supported in part by EPSRC grants GR/S11107 and GR/S46727 and Microsoft
Research Cambridge contract MRL 2005-44.

2 PRISM model specification

PRISM has direct support for three types of probabilistic models: discrete-time
Markov chains (DTMCs), Markov decision processes (MDPs) and continuous-
time Markov chains (CTMCs). In DTMCs, time is modelled as discrete time-
steps and the probabilities of transitions occurring are also discrete. They are
suitable for analysing systems with simple probabilistic behaviour and no con-
currency e.g. synchronous randomised distributed algorithms. MDPs extend
DTMCs by permitting a combination of nondeterminism and probability, mak-
ing them well suited to modelling multiple probabilistic processes executing in
parallel or to cases where some parameters of the system or the behaviour of
the environment in which it is operating are unknown. CTMCs do not support
nondeterminism but model time in a continuous fashion, through the use of
the negative exponential distributions, allowing accurate representation of the
timing characteristics of e.g. component failures and job arrivals.

PRISM now also allows models to be augmented with costs and rewards, real
values assigned to states and transitions of the model. This permits reasoning
about a much wider range of quantitative measures of a system, e.g. “completion
time”, “energy consumption” or “number of messages lost”.

Models are specified using the PRISM modelling language, a simple, state-
based language based on the Reactive Modules formalism. Systems are described
as the parallel composition of a set of modules. Each module’s state is given
by a set of finite-ranging variables and its behaviour by a set of probabilistic
guarded commands. The language also supports global variables, synchronisation
and various process algebraic operations. See the PRISM documentation and
example repository at [1] for more information.

3 PRISM property specification

The specification language for properties of the probabilistic models to be anal-
ysed in PRISM is based on temporal logic, in particular PCTL and CSL, proba-
bilistic extensions of the logic CTL. The principal operators are P, S and R which
refer, respectively, to the probability of an event occurring, the long-run prob-
ability of some condition being satisfied and the expected value of the model’s
costs or rewards. For precise details of the specification language, see the PRISM
documentation [1]. For the theoretical background and further references, see [2].
For illustrative purposes, a selection of example properties is shown below:

— P> 0.9 [!repair U < 200 done | - “with probability 0.9 or more, the process
will successfully complete within 200 hours and without requiring repairs”

— P=?[F < T error {init}{max} | - “what is the worst-case probability, over
all possible initial configurations, that an error has occurred by time 77
— S =7 [num_sensors > min_sensors | - “what is the long-run probability

that an acceptable number of sensors are operational?”
— R<3[C<T]- “he expected number of messages lost during the first T
minutes of execution of the communication protocol is less than 3”

— R =? [F shutdown {error_detected }{max}] - “from all situations where an
error has been detected, what is the worst-case expected power consumption
before the system shuts itself down?”

Note that is possible to either determine whether a probability or expected quan-
tity satisfies a given bound or obtain the actual value. In the latter case, it is often
beneficial to compute a range of values in order to identify trends or anomalies.
The ability to examine worst-case (or best-case) scenarios, as illustrated in the
examples above, is also very powerful.

4 The PRISM tool

The core functionality of PRISM, namely constructing a probabilistic model, and
then evaluating the result of one or more corresponding properties, is available
from either a command-line or a graphical user interface. The latter includes
editors for the PRISM modelling and property specification languages. It also
facilitates generation of series of quantitative results and plotting of graphs to
visualise them. A recent addition is the ability to view specific traces of model
execution for the purposes of debugging or sanity checks. These are generated
either by manual exploration or automatically in probabilistic fashion. Figure 1
shows screenshots of some of this functionality in operation.

8
B8 h
o

568
Hi
Hi

60 B
2dand

J

Fig. 1. Screenshots of PRISM running. Left: graphical visualisation of quantitative
model checking results. Right: manual exploration of model traces

PRISM incorporates a range of model analysis techniques. These include qualita-
tive methods, such as graph-based algorithms for reachability, and quantitative
methods for numerical computation of probabilities and expected cost or reward
values. For the latter, multiple implementations are provided. In particular, this
includes state-of-the-art symbolic approaches which use data structures based
on binary decision diagrams (BDDs) to exploit model structure and regularity.

The most recent addition is support for approximate numerical computation
using Monte-Carlo methods and discrete event simulation. PRISM can gener-
ate multiple executions through a model based on a faithful simulation of its

probabilistic and timing characteristics. These samples are then used to com-
pute approximate quantitative results. Since this approach avoids the (costly)
construction of the full probabilistic model, working instead with the PRISM
language description, it is potentially applicable to much larger models than the
alternative numerical solution approach. Furthermore, samples can be generated
independently, so it is possible to distribute the simulation process over multiple
computers. The PRISM user interface includes a tool to manage this process.

Connections to other tools and formalisms

To allow connections with external tools, PRISM allows the export of a model’s
transition matrix and state space in a variety of formats: either plain text or tai-
lored for specific tools, including Matlab, ETMCC and MRMC. Models specified
in alternative formalisms can also be imported via translation. PRISM already
has native support for a subset of the stochastic process algebra PEPA and oth-
ers are underway. It is now also possible to import the transition matrix and
state space of a model directly in a simple textual format.

Examples and case studies

PRISM has been successfully applied to a large number of case studies from a
wide array of application areas, on several occasions resulting in the identification
of interesting or anomalous behaviour. The website [1] provides details of over
thirty case studies, developed both by members of the PRISM team and external
research groups, including links to the corresponding publications and source
code. Examples include analysis of the performance, reliability or correctness of:

— real-time communication protocols, including IEEE 1394 FireWire, Blue-
tooth, Zeroconf, IEEE 802.3 CSMA/CD and IEEE 802.11 wireless LANS;

— probabilistic security protocols for anonymity (Crowds protocol, synchronous
batching), contract signing, fair exchange and non-repudiation;

— randomised distributed algorithms for leader election, consensus, Byzantine
agreement, self-stabilisation and mutual exclusion;

— dynamic power management and voltage scaling schemes;

— biological signalling pathways.

Tool availability and resources

PRISM is a free and open source tool, distributed under the GNU General Public
License (GPL), and now supports most major operating systems: Linux, Solaris,
Windows and Mac OS X. Ports have also been developed for 64-bit architectures.
The PRISM website [1] contains a wealth of further information and resources,
including related publications, the tool source code and binaries, user manual
and a large repository of illustrative example models.

References

[1] PRISM web site. www.cs.bham.ac.uk/ dxp/prism.
[2] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van
Breugel (eds.), volume 23 of CRM Monograph Series. AMS, 2004.

