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In this paper, we present a collective decision-making framework inspired by biological swarms
and capable of supporting the emergence of a consensus within a population of agents in the

absence of environment-mediated communication (stigmergy). Instead, amplification is the result

of the variation of a confidence index, stored in individual memory and providing each agent with
a statistical estimate of the current popularity of its preferred choice within the whole population.

We explore the fundamental properties of our framework using a combination of analytical and

numerical methods. We then use Monte Carlo simulation to investigate its applicability to host
selection in the presence of multiple alternatives, a problem found in application migration sce-

narios. The advantages of self-organisation and the use of statistically predictive methods in this

context are also discussed.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems—algorithms; design; experimentation

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Agent-based systems, collective decision-making

1. INTRODUCTION

Collective decision-making, or the process whereby a group of individuals reach
consensus about selecting a common course of action in the absence of any clear
leadership or hierarchical structure, has been extensively studied in social and bio-
logical sciences. Over the last two decades, the usefulness of such a mechanism in
technology has gradually become more evident, as complex systems of interacting
autonomous entities have become more widespread. An alternative to centralised
architecture, such systems tend to be more robust, more adaptive and more scalable,
mostly due to having lower maintenance and management requirements. These
properties make them a particularly attractive option for large-scale deployments
in dynamic environments, be it sensor networks, fleet of mobile robots or, more
pragmatically, distributed applications or services.

However, relying on distributed complex adaptive systems to perform a useful
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task in the absence of central control requires the assurance that their constituents
will be capable of operating harmoniously as a whole, i.e. that an efficient and
appropriate global response will emerge in response to a particular problem or
challenge (e.g. a specific configuration of the environment). Clearly, collective
decision-making is an example of such emergent, fully decentralised yet system-
wide phenomenon leading to coordinated action.

In one of its simplest forms, collective decision-making involves reaching agree-
ment on selecting one of many options exclusively through peer-to-peer interactions.
A concrete example of this can be found in the case of a population of autonomous
software agents needing to choose a common hosting site so as to reduce communi-
cation delays. Assuming a plurality of potential hosts, how can the vast majority
reach agreement as to which one to select and migrate to? More generally, what
locally executable algorithm can lead to a common decision in a wide variety of
circumstances? For instance, one variant of the problem might involve hosts of
identical average value, making all solutions equivalent and therefore precluding
the use of some quality-based reasoning. Another, somewhat opposite situation
would involve sites of variable quality and agents who only have a very partial view
of all available options: how can those who have successfully identified the best
host (possibly a minority) be made capable of steering the collective decision into
the right direction?

The primary objective of this paper is to make our new variant of a collective
decision-making framework available to the research community by providing a
clear and thorough description. Beyond that, we chose to focus on exposing the
complex dynamics of the algorithm and on leveraging the understanding of these
fundamental properties to inform the choice of an efficient design. We illustrate
this methodology by applying it to the case of identical options and showing that
the selection of suitable parameter values is critical to the success or failure of the
collective decision process. We also demonstrate that a principled study of dynam-
ical properties (e.g. stability analysis and systematic search for multistationarity)
is necessary but not sufficient to predict the outcome of the decision process in a
real-world application, due to the stochastic effects resulting from a discrete imple-
mentation.

The remainder of this paper is structured as follows: section 2 provides the
overview of the related work, in section 3, we describe our variant of the local
decision-making algorithm and translate it into a system of differential equations.
In section 4, we use this mathematical framework to analyse system properties
(influence of key parameter values) in a continuous approximation. In section 5,
we present the results of a simulated implementation and show the influence of
stochastic effects by comparing them with predictions from the continuous model.
In section 6, we demonstrate how our methodology can be used to select appropriate
parameter values when critical problem characteristics (e.g. number of available
choices) are known at design time. Finally, in section 7, we discuss the meaning of
our analytical and numerical results, as well as directions for future work.
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2. RELATED WORK

The phenomenon of collective decision-making has been studied in many social or
gregarious organisms such as ants [Beckers et al. 1990; Mallon et al. 2001], bees
[Seeley et al. 1991; 1999; 2003], cockroaches [Ame et al. 2006], spiders [Saffre et al.
2000], and mammals (e.g. wildebeest [Holdo et al. 2009; Gueron and Levin 1993]
and reindeer [Bergerud 2000]). The need for collective decision-making arises from
different triggers in different species, for example, foraging site selection [Seeley
et al. 1991; Beckers et al. 1990], nest site selection [Seeley and Morse 1978; 2004],
and migration [Dyer and T.D. 1994; Holdo et al. 2009]. To this diversity of objec-
tives or functions corresponds a variety of decision-making mechanisms [Conradt
and Roper 2005]. Some groups of animals rely on clear leadership [Couzin et al.
2005] while others exploit emergent properties within a community of ‘identical’
agents in the absence of hierarchy or centralization. Our focus has been on the
latter, i.e. on systems in which the decision emerges solely from socially equiva-
lent individuals interacting with each other and with their environment. Such a
behaviour has been observed, for instance, in nest selection by honey bee swarms
[Seeley and Visscher 2004; 2003]. After the swarm leaves its former hive, it clusters
on a tree branch until it eventually moves to a new home. Martin Lindauer [1951;
1953; 1955] was the first to discover that a collegial decision in favour of a particular
nest site emerged from scout bees performing waggle dances on the swarm surface.

The decision-making process of honey bees must have three main properties [See-
ley and Visscher 2004]: firstly, the decision must be accurate - a colony’s success
depends critically on it occupying a cavity that is sufficiently spacious; secondly, it
must achieve a speedy decision - additional time that a swarm spends exposed low-
ers its energy reserves and increases its chances to be destroyed by rain; thirdly, it
must achieve a unified decision - a split decision would lead to swarm fragmentation
which would be disastrous in most cases.

These properties of the natural collective decision-making process found in so-
cial insects make it a very attractive proposition to address a variety of problems
encountered in Information Technology (IT) such as, for instance, process migra-
tion in computational grids, resource allocation in server farms, and peer-to-peer
networks.

Other aspects of decentralized consensus-building have been investigated since
the 1980s, such as the necessary conditions for reaching agreement about distributed
information within a partly unreliable set of communicating agents [Pease et al.
1980; Fischer et al. 1985]. More recently and more closely related to the present
work, other authors have proposed various algorithms and protocols to optimally
map application or service components onto a population of potential hosts [Koshi
et al. 2009], including using ant algorithms [Musunoori and Horn 2007; Csorba et al.
2009]. However, these recent advances put more emphasis on performance, rela-
tive placement and substrate-based communication (stigmergy) than on reaching
consensus and comparing the intrinsic quality of prospective hosts.

Many researchers in computer science have addressed resource allocation [Ardagna
et al. 2007], load balancing [Montresor et al. 2002; Chow and Kwok 2002; Wolf and
Yu 2001], routing [Heusse et al. 1998], process migration [Gupta and Srimani 2003;
Fu and Xu 2005], sorting and clustering [Handl and Meyer 2002], and system man-
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agement [Messig and Goscinski 2007; Heimfarth and Janacik 2006; Shen et al. 2002]
problems using multi-agent systems and autonomous agents. They have shown that
the strength of these systems lies in their ability to adapt to a changing environment
and in their built-in fault tolerance [Heusse et al. 1998; Schaerf et al. 1995]. These
properties emerge from the fact that the success of the system does not depend on
the choices and/or actions of one individual (single point of failure) but on the many
local interactions between ‘identical’ agents which support the self-organization of
the group as a whole. There have been numerous studies of self-organisation in
both biological [Bonabeau et al. 1997; Sumpter and Pratt 2009; Ame et al. 2006;
Gueron and Levin 1993] and artificial systems [Saffre et al. 2009; Dorigo and Stuet-
zle 2004] which all come to the similar conclusion that group dynamics can provide
a very robust and efficient framework for resource allocation and selection processes
[Dorigo and Stuetzle 2004; Kennedy et al. 2001].

In this paper we propose a simple social insects-inspired agent-based framework
for collective decision-making which could be effectively applied to resource alloca-
tion, process and service migration, and similar problems. It is worth noting that
our method is closely related to that which was used by other authors to support
consensus building in collective robotics [Parker and Zhang 2009] or quorum sens-
ing (a somewhat different problem) in mobile ad-hoc networks [Peysakhov et al.
2006]. However, to the best of our knowledge, this is the first time that such a
‘stigmery-less’ technique is applied to host selection by a population of software
agents, a problem which, unlike the above examples, is not fundamentally defined
by spatial constraints but may involve measuring other evaluation criteria such as
site quality. This is why we explicitly included the corresponding parameters (η
and λ) and variable (Q) in the formal presentation of the model even though their
influence was not investigated in this paper. The exhaustive exploration of our
model’s properties is a substantial endeavor that will require considerable future
work by ourselves or by other authors.

3. SYSTEM MODEL FOR COLLECTIVE DECISION MAKING

In this section we describe our agent-based framework for collective decision-making.
As already mentioned in the related work section, we use the principles of collective
decision-making found in social insect colonies because they have desirable generic
properties for real world systems such as accuracy, speed and fault tolerance. Fur-
thermore, and critically for a fully decentralised multi-agent system, it is consen-
sual, i.e. the whole colony eventually chooses in favour of a single option, avoiding
dispersion. Biological examples demonstrate that this can be achieved using rel-
atively simple interaction mechanisms (e.g. variations of waggle dance behaviour
depending on quality of/confidence in the resource or stigmergetic modification of
the environment).

This section is structured as follows: the ’terms’ section provides the neces-
sary definitions to understand the terminology used in the framework; the ‘agent
behaviour’ section goes into the details of the rules governing the behaviour of in-
dividual agents; the ‘system description’ section presents the generic differential
equations framework that was used to model the collective decision process.
, Vol. V, No. N, Month 20YY.
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3.1 Terms

—Scout agent - an agent whose role is to explore the environment and promote the
choice of what it perceives as the best hosting site among its peers (recruitment).

—Environment - the network of hosting sites accessible to scout agents.
—Hosting site - a site capable of hosting software agents. Each hosting site has

specific characteristics that determine its quality.
—Site quality - a measure of a hosting site’s attraction for a scout agent (can

be agent-specific, for instance if functional requirements dictate that different
characteristics of the host are relevant to different agents).

—Confidence level - a measure of how confident a scout agent is that its preferred
hosting site should be selected by the colony.

—Exploration probability - probability that a scout agent chooses to make an ‘ex-
ploratory move’, as opposed to initiating an interaction with another scout agent.

—Non-linearity parameters - there are three non-linearity parameters used in equa-
tions describing agent behaviour (and in the corresponding local decision rules):
—η - affects the relative perceived quality of sites when a scout agent is comparing

one to the other (since the remainder of this paper deals exclusively with the
case in which all sites are of equal quality, this parameter is only included for
completeness and its value is irrelevant).

—λ - affects the relative perceived quality when two scout agents are comparing
their preferred sites (same comment as above).

—γ - affects the relative weight of the confidence level when two scout agents are
comparing their preferred sites.

3.2 Agent behaviour

The goal of the scout agents is to explore the environment, gathering information
about the quality of potential hosting sites, and to collectively select the best one
through a fully distributed interaction mechanism. In line with the parsimony of
the algorithm, the behavioural repertoire of scout agents is limited to performing
two actions:

—Explore the environment.
The agent chooses one hosting site from the environment at random, migrates
there, then evaluates its quality. If the target of this exploration move is its
current favourite, the scout simply updates its record to reflect the new per-
ceived quality. If the site is different, the scout will change its preferred site with
probability Px given by (1) where Qx is the quality of the hosting site currently
under evaluation, Qy is the quality of the scout agent’s preferred site and η is a
non-linearity parameter:

Px =
Qηx

Qηx +Qηy
(1)

—Compare preferred hosting sites with another scout agent.
Agent A with preferred hosting site x randomly contacts scout agent B with
favourite hosting site y. If agents have the same preference (x = y), they both
increment their confidence level. If agents have different preferred hosting sites
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(x 6= y) they will both choose in favour of site x with probability PA given by
(2) where Qx and Qy is the perceived quality of their respective favourite site
x and y, lA and lB are the confidence levels of scouts A and B, and λ, γ are
non-linearity parameters:

PA =
Qλxl

γ
A

Qλxl
γ
A +Qλy l

γ
B

(2)

Symmetrically, they will both choose in favour of site y with probability 1− PA.
The interaction concludes with the scout whose site has been selected incre-
menting its confidence level and the scout who has ’lost’ the contest resetting
its confidence level to the lowest possible value. In the current implementation,
this interaction can only take place between scouts who have both chosen not to
explore the environment on this time-step.

It may be worth emphasising at this stage that no global knowledge or centralised
infrastructure is required for this framework to operate. Indeed, it is not necessary
for a scout to have access to all potential hosting sites or to know the current address
of all other agents for the collective decision process to function. The exploration
of the environment could easily take the form of a random walk, thereby requiring
only the ability to access or query a small sub-set of all potential hosts at any given
time. As for information exchanges, although they would of course require a shared
communication medium, this does not imply that interacting scouts need to know
each other’s explicit address.

In practice, we envisage that both exploration and comparison could take form of
a query that is probabilistically propagated or answered every time that it reaches
another peer in a P2P framework (said peer being either a potential host or another
scout, respectively). The local bias introduced by such method could easily be
alleviated (if never completely eliminated) by making the probability of answering
low enough to ensure that the message would statistically propagate sufficiently
deep into the overlay. Although this would obviously create some communication
overhead, there is no reason to think that it would be any worse than in the case
of existing, working P2P applications. If anything, it would be made substantially
lower by the fact that the query could advantageously be propagated on a point-
to-point basis (each relay forwarding it to just one randomly selected neighbour)
instead of by flooding.

However, for the sake of clarity and to make the model analytically tractable,
such practical implementation considerations will be disregarded in the remainder
of this paper. In other words: we will make the simplifying assumption that every
site and every scout in the system is in principle equally likely to be selected as the
target of an exploration or comparison action.
The pseudocode for scouts’ behaviour is provided in Algorithm 1.
, Vol. V, No. N, Month 20YY.
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Algorithm 1 Scout behaviour
procedure Run

if scout is at the nest site then
random ← random number from (0,1)
if random ≤ Pexp then

move to random site
else

select another scout at random
if same site preferred then

increase confidence levels
else

compare notes using Equation 2
update favourite sites
update confidence levels

end if
end if

else
compare the site with the favourite using Equation 1
update favourite site
update confidence level

end if
Run()

end procedure

3.3 System description

The system can be described using a set of parameters and variables representing
an environment consisting of a number of hosting sites and a scout population
consisting of a number of scout agents.

3.3.1 Environment parameters

—k - number of hosting sites.
—{C1, C2, . . . , Ck} - set of characteristics of every hosting site in the environment.

3.3.2 Scout agent parameters

—n - the number of scout agents in the system (scout population).
—Pexp - exploration probability: the probability that an agent chooses to migrate to

and evaluate the quality of a randomly selected hosting site. The probability that
it will choose to compare preferred hosting sites with another scout is therefore
1− Pexp.

—l - the confidence level of the scout agent (l ∈ {1, 2, . . . , lmax}).
—lmax - the maximum possible value for the confidence level. After a scout’s

confidence level has reached lmax it can no longer be incremented.
—f(C) - the function used by scout agents to measure the quality Q of a hosting

site (Qx = f(Cx))

Having defined the parameters for the environment and scout agents, the system
state S can now be described by (3):

S = {x11, . . . , x1lmax
, . . . , xk1, . . . , xklmax

} (3)

Where xij is the number scout agents preferring hosting site i having confidence
level j and

∑
xij = n (i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , lmax}).
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Using equations (1) and (2) we can now construct the differential equation for every
xij (i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , lmax}). The differential equation for xij in its
general form is shown in (4):

dxij
dt

= − (Pxij→xij+1 +
k(z 6=i)∑
z

Pxij→xz1)xij

+ Pxij−1→xij
xij−1 (4)

+
k(z 6=i)∑
z

lmax∑
l

Pxzl→xij
xzl

—Pxij→xij+1 is the probability that a scout agent which is currently in favour of
site i and has a confidence level of j will increase its confidence level. As per (5)
a scout agent will increase its confidence level when:
—It is exploring a potential hosting site in the environment, but the outcome

of the evaluation conducted using (1) has led the agent to keep its currently
preferred site i as its favourite.

—It contacts (or is contacted by) another scout agent which also prefers hosting
site i.

—It contacts (or is contacted by) another scout agent in favour of a different
hosting site, but the resolution of the contest by (2) has led to site i being
chosen by both scouts (i.e. ‘win’).

Pxij→xij+1 =
Pexp
k

k(z 6=i)∑
z

Qηi
Qηi +Qηz

(5)

+
1− Pexp

n
(
lmax∑
l

xil +
k(z 6=i)∑
z

lmax∑
l

Qλi j
γ

Qλi j
γ +Qλz l

γ
xzl)

Please note that Pxij→xij+1 = 0 when j = lmax and Pxij−1→xij = 0 when j = 1.
—Pxij→xz1 is the probability that a scout agent will change its preferred hosting

site from i to z. As per (6) a scout will change its preferred site when:
—It is exploring potential hosting site z and, based on the outcome of the eval-

uation conducted using (1), it changes its preferred site from i to z.
—It contacts (or is contacted by) another scout agent in favour of hosting site z,

and the resolution of the contest by (2) has led to site z being chosen by both
scouts (i.e. ‘lose’).

Pxij→xz1 = Pexp
Qηz

Qηz +Qηi
+

1− Pexp
n

lmax∑
l

Qλz l
γ

Qλz l
γ +Qλi j

γ
xzl (6)

4. MODEL ANALYSIS

In this paper we focus on the role played by agent interactions in collective de-
cision making, i.e. on the mechanisms leading to the emergence of a ’majority
vote’ or consensus. In order to decouple these dynamics from the influence of ex-
ternal factors, we consider the special case in which all hosting sites are identical
(C1 = C2 = ... = Ck) and all scout agents share the same evaluation function,
, Vol. V, No. N, Month 20YY.
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leading to all perceived qualities of all hosting sites being equal throughout the
scout population (Q1 = Q2 = ... = Qk). It is important to emphasise that, even
though it can be regarded as unrealistic with respect to practical implementation,
the use of such a hypothetical scenario is critical to the in-depth understanding of
the fundamental properties of complex distributed systems. In turn, this under-
standing underpins our ability to make quantitative statistical predictions about
the collective behaviour of a population of agents individually governed by specific
local rules and parameter values. In doing so, it creates the right conditions for an
informed use of self-organising properties, which could otherwise be perceived as
too unreliable to support a real-world application. Furthermore, in this particular
case, not having an external bias guiding the decision process (such as one more
favourable hosting site) arguably makes for a tougher problem to solve collectively
and so for a better test of the framework’s capability.

4.1 Emergence of the decision

The simplest possible case involves choosing between two hosting sites of identical
quality (binary choice). Figure 1 shows the results of the simultaneous solution of
the system of differential equations presented in the ‘system description’ section,
using the Forward Euler Method (FEM). In this case, the maximum confidence level
lmax of the scout agents was set to 2, which can be interpreted as them having only
two possible states: ‘1=early adopter’ or ‘2=confirmed supporter’ of a particular
site. We then studied the effect of the γ parameter on the emergence of a decision,
for 3 different values of Pexp. In initial conditions, scout agents are distributed
evenly between the four possible states, i.e. two sites multiplied by two confidence
levels (x11 = x12 = x21 = x22). A small quantity ε representing noise is then added
to x11 and the system of equations is iterated using FEM until the system reaches
steady state, i.e. the invariant distribution had been found (∀xij : dxij

dt = 0).
In the absence of any difference in site quality, γ is the key parameter influencing

the outcome of scout interaction, as its value determines the advantage to the agent
with the highest confidence level, i.e. the only possible bias susceptible to facilitate
the emergence of a consensus. The results shown in figure 1 are therefore not
surprising as they confirm the intuitive conclusion that the higher the chances of
a ‘confirmed supporter’ winning over an ‘early adopter’, the clearer the decision
- the larger the fraction of scouts in favour of the winning site at steady state.
Similarly, one can easily understand why, as Pexp increases, it becomes harder for
a clear majority to emerge, simply because of the lower frequency of interaction
and higher ‘spontaneous’ dispersion resulting from random exploration. The key
finding here is clearly the quantitative study of the interplay between Pexp and
γ, showing which higher value of the latter is needed to compensate for a given
increase in the former in order to achieve a target majority, or indeed any decision
at all (bifurcation threshold).

4.2 Decision threshold

Figure 2 illustrates an effect complementary to that discussed in the previous sec-
tion, namely the presence of a finite basin of attraction around the homogeneous
distribution equilibrium for larger environments (k > 2) and for given values of pa-
rameters Pexp and γ. This effectively means that there are regions of the k/γ/Pexp
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Fig. 1. Invariant distribution of the scout population as a function of γ for three values of the

exploration probability Pexp.

parameter space where two stable solutions coexist, one centered on the homoge-
neous distribution (decision failed) and one on a distribution biased in favour of
a winning site (successful decision). Figure 2 indicates that the divider between
the two basins of attraction (unstable equilibrium), expressed in terms of the ra-
tio between the population in favour of one site and the average number of scouts
in favour of other sites, is a linear function of system size k, and that the slope
is inversely proportional to the value of γ. This result is important because it
demonstrates that, in a real (discrete) implementation involving a realistic number
of hosting sites (k � 2), a designer would need to ensure that there is an adequate
level of noise for this threshold to be statistically reachable, failing which the scouts
will be unable to reach consensus.
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Fig. 2. The minimal ratios between the scout population preferring the ’winning’ site at the

beginning with which the decision emerges (winning site stays the winner).

5. SIMULATED IMPLEMENTATION AND STOCHASTIC EFFECTS

In this section, we stop focusing on fundamental properties in terms of steady state
and direct our attention towards the dynamics of the decision-making process and
their influence on system history. This is clearly of paramount importance for any
real implementation as a set of parameter values which, e.g., lead to a clear and
accurate choice but only after a prohibitively long convergence time would likely be
unusable in practice. Figure 3 and 4 illustrate the decision-making dynamics within
a population of scouts faced with a choice between three hosting sites of identical
quality, for changing values of γ (recruitment non-linearity) and Pexp (exploration
probability) respectively. The diagrams show the frequency distribution of obser-
vations as a function of the fraction of the population on all three sites (one data
point per site). As expected, for low values of γ (fig. 3) and high values of Pexp (fig.
4), the single peak centred on 1/3 indicates that the scouts are evenly distributed
between all potential sites, i.e. failed to make a collective decision. Conversely,
at the opposite end of the range of tested parameter values, the clear U-shaped
distribution (i.e. two peaks, centered on Pexp/2 and 1-Pexp, in figure 3) indicates
a clear-cut decision, with the two losing sites being visited on average by half of
the residual explorers each (Pexp/2) and the winning host (one third of all data
points) rassembling the remaining fraction (1-Pexp). Compared to the information
contained in fig. 1, the results of this Monte Carlo simulation provide a better
insight into the ’shape’ of the transition. For instance, even though it is very sharp
for increasing values of γ (fig. 3), it appears slower for decreasing values of Pexp,
exhibiting a very gradual ‘flattening’ of the single peak before reaching the decision
threshold (fig. 4).

As for the evolution over time, results allow us to better understand the inter-
play between the parameter values affecting the decision functions themselves (in
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Fig. 3. Frequency distribution of observations as a function of the fraction of the population in

favour of any one of three sites, for increasing values of γ (k = 3, Pexp = 0.1, lmax = 2). See text
for details.

the case of sites of identical value, γ and Pexp) and other system characteristics,
such as scout population size n or number of sites k. For instance, figure 5 illus-
trates the effect of using fine (n = 1000) or coarse-grained (n = 100) discretisation
levels in a larger environment (k = 100). It clearly demonstrates that reducing
the number of scouts is an efficient way of speeding-up the decision process when
the identification and selection of a high quality site is not an issue (as in the
present scenario). However, it is obvious that a lower number of scouts increases
the noise level and impacts negatively on their collective sampling ability, poten-
tially introducing conflicting requirements that would need to be balanced in any
real deployment.

, Vol. V, No. N, Month 20YY.



Host Selection through Collective Decision · 13

Fig. 4. Frequency distribution of observations as a function of the fraction of the population in
favour of any one of three sites, for increasing values of Pexp (k = 3, γ = 2, lmax = 2). See text

for details.
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Fig. 5. Frequency distribution of observations as a function of the percentage of scouts in favour
of the winning site. Evolution over time for multiple values of γ and n (k = 100, Pexp = 0.1,

lmax = 2.0). Left column n = 100, right - n = 1000. First row γ = 1, second - γ = 3, third -
γ = 3.
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6. SYSTEM PROPERTIES AND PARAMETER VALUES

In this section we examine two fundamental performance measures that will de-
termine our framework’s ability to tackle real-world problems, namely convergence
speed and decision stability. In doing so, we also demonstrate how it is possible
to model and statistically predict system behaviour based on known characteristics
(in this case, population size), which would allow for efficient testing of multiple
candidate sets of parameter values prior to deployment.

Figure 6 shows that the probability not to have reached a decision is a decreasing
sigmoid function of time, the characteristics of which (‘half-life’ and slope) are
jointly determined by the population and environment sizes (n and k) and by the
value of the parameters affecting scout behaviour (γ, Pexp and lmax).
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Fig. 6. Decision speed (k = 100, n = 50, Pexp = 0.1, γ = 2.0, lmax = 2.0). See text for details.

Another key property is the stability of the decision, i.e. the typical duration of
the consensus which, in a finite population of scouts featuring stochastic behaviour,
will always eventually disappear as a result of random fluctuations. It is intuitively
obvious that decision will be faster if there are fewer scouts: for instance, in the
trivial case of a single agent, decision is instantaneous. However its choice will also
change almost instantly as the scout keeps exploring other hosting sites and the
decision cannot be stabilised by interaction with others (positive feedback). We
therefore sought to characterise the stability of the decision, i.e. the duration of
the time interval between the emergence of the first consensus and its replacement
by another one. Figure 7 shows the ‘survival curve’ of numerical experiments as a
function of time, the condition for termination being that the first collective ‘change
of mind’ has occurred. It clearly exhibits the signature of an exponential decay, i.e.
there is a typical ‘half-life’ but variability is very high.

Having identified a suitably simple set of variables to describe system behaviour,
namely the characteristic ‘half-life’ of a decision and ‘half-life’ and slope of the
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Fig. 7. Decision stability (k = 100, n = 50, Pexp = 0.1, γ = 2.0, lmax = 2.0). See text for details.

convergence period, we can use these to quantify the performance of the whole
framework as a function of some other parameters. For instance, figure 8 shows the
evolution of the two ‘half-life’ variables as a function of the population size n. This
particular result illustrates a very desirable property of our framework, namely that
the stability of the decision increases exponentially with the number of scouts, while
the convergence time only does so linearly. In other words: by increasing population
size, it is possible to promote a clear and long-lived consensus in exchange for a
comparatively small delay in the emergence of a decision.

7. DISCUSSION

In this paper, we have explored the potential of a novel algorithm for collective
decision-making. Our framework is able to support the emergence of a consensus
in favour of a randomly selected site in the absence of any quality bias. However,
the model also incorporates the means to take into account such a bias when present
and so we anticipate that the probability of a correct decision will be maximised
when alternative options of different values are available. Because host quality can
vary over time (for instance as a result of exogenous fluctuations in the availabil-
ity of resources such as memory, bandwidth etc.), taking this aspect into account
bears the possibility of studying the influence of environmental dynamics on the
decision process. At this stage, we can only speculate that it will depend essen-
tially on relative time-scales (the static environment used here can be regarded as
an approximation of the case in which consensus can be reached over a short period
compared to that which characterises fluctuations in host quality). These questions
will be the subject of future work.

Another promising area of research is to draw further inspiration from a variety of
biological models, especially with respect to the loss of consensus, i.e. the collective
change of mind whereby the colony ceases to favour one particular site and relocates
, Vol. V, No. N, Month 20YY.
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Fig. 8. Decision delay and consensus longevity as a function of scout population (k = 100,
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to a new one (what we refer to as a flip) or scatters in the environment (which cannot
happen in the current version of the algorithm but could present some advantages).
Also, insect societies offer interesting alternative behavioural models for scouts. For
instance, the positive feedback underpinning nest selection in Temnothorax seems
to be modulated by the frequency of encounters with nest-mates at the prospective
site [Pratt et al. 2005], which represents an intriguing (if not necessarily practical or
scalable in the presence of many such sites) alternative to its explicit identification.

One of the key differentiators of our framework is that, unlike other swarm-based
algorithms, it does not use stigmergetic communication, since no information is
deposited in the environment. Instead, we use internal memory in the form of a
confidence index to facilitate convergence towards a consensus. Although we do not
wish to imply in any way that this approach is intrinsically better than stigmergy,
we believe that it may offer certain advantages in some specific circumstances.
For instance, there could be security concerns in the case where software agents
involved in the collective decision do not have an established trust relationship
with the hosting infrastructure. Or there could be several colonies simultaneously
scouting the environment, in which case it may be desirable to avoid leaving behind
information that could be exploited by a competitor.

We have demonstrated that well-known analytical and numerical techniques can
be used to statistically predict the outcome of the collective decision process, i.e.
time to convergence, population distribution at steady state, longevity of a solution
etc. We argue that the ability to infer the likely behaviour of the system as a
whole from the value of the parameters governing that of its constituents is critical
to the usability of any multi-agent framework. Indeed, this makes it possible to
determine, at design time, which combination of such values will yield the best
results in any particular deployment scenario. Similarly, this predictability could
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allow the designer to rule out collective decision-making as a suitable mechanism if
the quality of the solution falls below the requirements of a particular use-case.

The unavoidable presence of noise, e.g. in the form of residual exploration after
a consensus has been reached, will always be regarded by some as a fundamental
flaw of self-organising systems when it comes to real-world applications. However, in
many cases, this problem can be alleviated by some ad-hoc techniques. For instance,
in a service migration scenario, the actual relocation of a software component to
a new host could be made to obey a secondary filtering mechanism designed to
prevent the premature implementation of what could be a short-lived consensus
among scouting agents. Note that some of the cited references [Parker and Zhang
2009; Peysakhov et al. 2006; Pratt et al. 2005] do address more specifically the
problem of the termination of a collective decision, which lies beyond the scope of
our paper.

More fundamentally, we believe that this zero-tolerance attitude will eventually
become obsolete as the advantages of self-organised design principles, in terms of
plasticity, simplicity, resilience and reduced management overhead, increasingly
outweigh the cost of partial randomness.
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