
Automated Game-Theoretic

Verification of Security Systems

Chunyan Mu ⋆

Department of Computer Science, Teesside University, UK
c.mu@tees.ac.uk

Abstract. Security-sensitive computerised communication systems are
of increasing importance, however checking that they function correctly
can be non-trivial. We propose automated verification techniques for the
formal analysis of quantitative properties of such systems. Since commu-
nication networks typically require the collaboration of their participants
to work effectively, we adopt a game-theoretic approach. Utility functions
for each player, such as the degree of security offered and the communi-
cation costs incurred, are formally specified using quantitative temporal
logics. Then, building upon probabilistic verification techniques for para-
metric Markov chains, we develop methods to identify Nash equilibria
representing stable strategies for the participants. We implement our
methods as an extension of the PRISM model checker, and illustrate
their applicability by studying anonymity-cost trade-offs in the Crowds
anonymity protocol.
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1 Introduction

Security properties have become essential requirements in today’s computerised
communication systems. Absolute guarantees on such properties are often im-
practical in real life, so we may instead tolerate a loss of anonymity or privacy
in a system with low probability. Furthermore, system designs often need to
trade off the degree of security offered against other practical concerns such as
response time or power consumption. So, effective methods for the analysis of
security also need to take quantitative aspects into account.

In this work, we present novel automatic verification techniques for the formal
modelling and analysis of security properties in communication networks. Since
such systems generally rely on the collaboration of their participants to work
effectively, we adopt a game-theoretic approach to verification. We propose a
new framework in which systems are modelled as n-player parametric Markov
chain games, where each decision-maker chooses the value of a parameter, which
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is used to define the transition probabilities of a Markov chain. These parameters
allow participants in the system to make strategic probabilistic decisions about
their behaviour, such as the probability which they will act in a co-operative
or unfriendly or malicious fashion during the execution of a security protocol.
Since we model system behaviour in a probabilistic fashion, we can also capture
a variety of other important stochastic aspects of a system, such as message loss,
failures, or other sources of randomisation.

We apply game-theoretic notions and methods to study the behaviour of
interacting decision-makers. We define utility functions for players capturing
their preferences regarding the different system outcomes, and then define the
expected value of these utility functions using our Markov chain models. In-
dividual players can decide how to behave in order to maximise their utility,
although their choices will typically influence the outcomes for other players
too. In order to investigate the effectiveness of a protocol (e.g., for anonymity)
that requires some cooperation between multiple individuals with conflicting ob-
jectives, we use the concept of Nash equilibria [14]. These represent the existence
of situations where no system player can benefit by changing their own strategy,
assuming that the other players keep their strategies unchanged.

We propose techniques to formally specify games and utility functions and
to automatically compute Nash equilibria for them. We build upon existing
techniques and tools for probabilistic model checking, which is a widely used
technique for modelling and automatically verifying quantitative properties of
systems with stochastic behaviour. In particular, we build upon parametric prob-
abilistic model checking methods [6], in which transition probabilities of models
can be given as functions over parameters, and an analysis of these models can
yield results expressed as symbolic functions over parameters. We use proba-
bilistic temporal logics as a means of specifying utility functions for individual
players and then use parametric model checking to determine functions repre-
senting the expected utility. We then generate and solve a set of polynomial
equations, the solutions to which yield Nash equilibria for the system.

We developed an implementation of this approach using the parametric
model checking functionality of the PRISM model checker [10] and solving
polynomial systems using the polyhedral homotopy continuation based PHC-
pack [21]. We describe how our approach can be used to model and analyse
properties of security-sensitive communicating networks. In particular, we illus-
trate this on the Crowds [16] anonymity protocol, considering the trade-offs be-
tween the degree of anonymity provided and the corresponding communication
cost.

Related work. Multiple efforts have been made to develop methods for game-
theoretic analysis of communicating networks for security concern. Yang et.
al [22] proposed a game theoretic framework to analyse users’ behaviours in
anonymity networks. Performance utilities were modelled as a combination of
weighted cost and anonymity utilities. Simulations were performed to show the
impact of users’ cooperation level and the weights of the anonymity and cost fac-
tors to the optimisation of their utilities. However, this work did not compute the
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Nash equilibria in an automatic way. In our work, we use exact solution methods,
rather than simulation, and focus on automated methods to find equilibria.

Venkitasubramaniam [20] investigated the problem of maximising security
properties from a game-theoretic perspective. The problem was formalised as
a two-player zero-sum game between the network designer and the adversary.
Given the adversary’s observation, the anonymity degree was measured using
conditional entropy of the routes. The adversary tried to choose a subset of
the nodes to monitor in order to minimise the anonymity of the routes, while
the designer aimed to maximise the anonymity. They did not deal with the
problem of computing equilibria of games with multiple players with regard to
performance analysis, however, which has been considered in our work.

Formal methods have played a significant important role in modelling and
analysing security protocols. They include two main categories: proof-based the-
orem proving and state-exploration based model checking. Specifically, we focus
on quantitative analysis of security properties. Mhamdi et. al [12] introduced
two measures of information leakage: the information leakage degree and the
conditional information leakage degree, to evaluate the anonymity and privacy
properties of protocols. A theorem prover was applied to conduct a probabilis-
tic and information-theoretic analysis for the evaluation of the anonymity and
privacy properties. However, they did not tackle the problem of how the users
should behave in order to optimise the security and performance properties from
a game-theoretic point of view.

On the other hand, Shmatikov [17,18] applied the PRISM model checker
to model and analyse the Crowds protocol for anonymity properties. By mod-
elling the system behaviour as a discrete-time Markov chain, and formalising
the anonymity properties in PCTL, the PRISM model checker was employed to
perform automated probabilistic analysis and verify anonymity properties quan-
titatively. However, they did not study the problem of strategy decision-making
or attempt a game-theoretic analysis of the system. Approaches of computing
a Nash equilibrium in Stochastic games have been studied in [3,19]. It was not
straightforward to adapt them in modelling and analysing security systems. Our
framework can be naturally applied in such systems to synthesize optimal deci-
sion strategies.

2 Preliminaries

2.1 Game theory

We first recall some required definitions from game theory [2,15], beginning with
the definitions of convexity and some related notions.

Definition 1 (Convex set). A set S of vectors over real numbers is convex if
(1− λ)x + λx′ ∈ S whenever x, x′ ∈ S, and λ ∈ [0, 1].

Definition 2 (Upper level set). Let f be a multivariate function defined on
a set S. For a ∈ R, the upper level set of f for a is Pa = {x ∈ S : f(x) ≥ a}.
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Definition 3 (Quasi-concave function). A multivariate function f defined
on a convex set S is quasi-concave if every upper level set of f is convex.

Definition 4 (Preference relation). A preference relation � over a set S is
a total, transitive and reflexive binary relation over S.

Definition 5 (Strategic game). A strategic game 〈N, (Ai), (�i)〉 consists of:
a finite set of players N ; for each player i ∈ N : a non-empty set of actions Ai

available to i, and a preference relation �i on A = ×j∈NAj of i. The game is
finite if the sets Ai of actions for player i are all finite.

A strategy for player i is a choice of an action ai ∈ Ai and a strategy profile
σ = (a1, . . . , an) ∈ A is a choice of actions for all players. We write σi for the
choice of player i in σ, σ−i for the choices of all players except i, and (σ−i, ai)
for the strategy profile that combines the choices from σ−i and some ai ∈ Ai.

Definition 6 (Nash equilibrium). A Nash equilibrium of a strategic game
〈N, (Ai), (�i)〉 is a strategy profile σ∗ ∈ A with the property that, for every
player i ∈ N and strategy ai ∈ Ai, we have (σ∗

−i, σ
∗
i ) �i (σ

∗
−i, ai).

Definition 7 (Best response function). For any σ−i, the best response func-
tion Bi(σ−i) is defined as the set of player i’s best actions given σ−i:

Bi(σ−i) = {ai ∈ Ai : ∀a
′
i ∈ Ai . (σ−i, ai) �i (σ−i, a

′
i)}.

Note that, in the above, players’ preferences with respect to strategies are de-
fined by a preference relation �i. In the remainder of the paper, for modelling
convenience and in order to allow players’ choices to be probabilistic, we will
instead use a utility function ui : A→ R for each player i, which it aims to max-
imise. The basic strategic game can then be rewritten as a tuple 〈N, (Ai), (ui)〉.

Proposition 1 ([15]). The strategic game 〈N, (Ai), (�i)〉 has a Nash equilib-
rium if, for all i ∈ N : (i) the set Ai of actions of player i is a non-empty compact
convex subset of Euclidian space; and (ii) the corresponding utility function ui
of the preference relation �i is continuous and quasi-concave on Ai.

In this paper, we model the communication systems in Markov chain games and
discuss the existence of Nash equilibria for this model. Proposition 1 presents
the requirements for the game to have a Nash equilibrium.

2.2 Parametric Markov chains

In this paper, we build on parametric model checking techniques for the model
of parametric Markov chains [6]. We briefly review some relevant background.

Definition 8 (Rational function). Let V = {x1, . . . , xn} be a finite set of
variables with domain R. A polynomial g over V is constructed via the following
grammar:

g ::= c | x | g + g | (g) · (g)



Automated Game-Theoretic Verification of Security Systems 5

where c ∈ R, x ∈ V , + and · are the standard addition and multiplication
respectively. A rational function f over V is a fraction of two polynomials g1
and g2 over V such as: f = g1

g2
where g2 is not reducible to 0.

Definition 9 (Evaluation). Let R[x1, . . . , xn] be the set of polynomials over
the set of variables V = {x1, . . . , xn}, let FV : R[x1, . . . , xn] → R denote the
set of rational functions, and dom(f) denote the domain of function f . An
evaluation V : X → R is a function for a subset X ⊆ V . For a rational
function f ∈ FV , f [X/V ] denotes the function obtained by substituting each
x ∈ (X ∩ dom(V)) with its evaluation V(x).

A parametric Markov chain is an extension of a discrete-time Markov chain,
using rational functions instead of real numbers to label transition probabilities.

Definition 10 (Parametric Markov chains). A parametric Markov chain is
a tuple M = (S, I,∆, V,AP, L), where S is a countable set of states, I : S → FV

is the initial distribution such that
∑

s∈S I(s) = 1, ∆ : S × S → FV is the
parametric transition probability matrix such that ∀s ∈ S.

∑

s′∈S ∆(s, s′) = 1,
V = {x1, . . . , xn} is a finite set of parameters with domain R, AP is a finite set
of atomic propositions, and L : S → 2AP is a labelling function mapping each
state to a set of atomic propositions taken from a set AP .

For an evaluation V and a parametric Markov chain M, an induced parametric
Markov chain MV is defined by substituting each variable in dom(V) with its
evaluation. By applying a total evaluation V with dom(V) = V , we obtain real
values for each probability instead of rational functions. Let ProbM ⊆ FV denote
the set of probabilities of M, such as

Prob
M := {I(s)|s ∈ S} ∪ {∆(s, s′)|s, s′ ∈ S},

and similarly Prob
M
V ⊆ FV/ dom(V) for an evaluation V . A total evaluation V of

M is called well-defined if:

– ∀f ∈ Prob
M
V : f [dom(V)/V ] ∈ [0, 1], which ensures every possible evaluation

is a probability;
– ∀f ∈ Prob

M
V : f 6= 0 ⇔ f [dom(V)/V ] 6= 0, which ensures every non-zero

rational function does not evaluate to 0.

A parametric Markov chain M can be viewed as a state transition system in
which transitions are associated with parametric probabilities indicating their
likelihood. We say there is a transition from state s ∈ S to s′ ∈ S iff∆V(s, s

′) > 0
for all well-defined evaluations V . A (finite or infinite) path describes one possible
execution of M, and is defined as a sequence of states ρ = s0, s1, . . . such that
∀i ≥ 0.∆(si, si+1) = f(X) > 0, where f(X) is a polynomial over X ⊆ V .

Let ΩM,s denote the set of paths of M starting from state s (we omit the
s when referring to all such paths). In order to reason about the behaviour
of M, it is required to formalise the probability of sets of paths taken. The
construction is based on calculating the probability of individual finite paths
induced by the parametric transition probability matrix ∆. The probability of
the path ρ = s0, . . . , sk is given by: Pr(ρ) ,

∏k−1
i=0 ∆(si, si+1), where ρ ∈ ΩM,s0 .
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2.3 Probabilistic temporal logics

For the purposes of probabilistic verification, properties to be checked against
a model are typically specified in probabilistic extensions of temporal logic. In
this paper we use the property specification language of the PRISM tool [9], the
basis for which is the logic PCTL [7], plus various notions of reward.

Definition 11 (PCTL with rewards). The syntax of PCTL with rewards is
given by the grammar:

φ ::= true | a | ¬φ | φ ∧ φ | P⊲⊳q[ψ] | R
r
⊲⊳x[Fφ]

ψ ::= Xφ | φ U≤k φ | φ U φ

where a ∈ AP , r is a reward structure, ⊲⊳∈ {<,≤, >,≥}, q ∈ R∩ [0, 1], x ∈ R≥0,
and k ∈ N.

For example, P≥0.5[Fφ] means the probability of eventually reaching states sat-
isfying φ is at least 0.5; R1

≤10[Fφ] means the expected cumulated reward (or
cost) of reward structure 1 until reaching states satisfying φ is at most 10. We
also often use notation such as P=?[·] and R

r
=?[·] to represent numerically-valued

probability or reward properties. We omit a full definition of the semantics of
PCTL with rewards. Further details can be found in [9].

3 Game-theoretic Verification with Parametric

Probabilistic Model Checking

We now present a framework for game-theoretic verification of quantitative prop-
erties, based on parametric model checking techniques for discrete-time Markov
chains. In this section, we introduce a model called parametric Markov chain
games (PMCGs), in which parameters represent (probabilistic) decisions taken
by players, and then we discuss the existence of Nash equilibria for this model.
Subsequently, we will show to automatically synthesise these Nash equilibria,
based on formal specifications of a system model and utility functions, and by
building upon existing parametric model checking techniques.

3.1 Parametric Markov chain games

We model systems as n-player games. We will assume a fixed set of players
N = {1, . . . , n}, each of which has m possible actions A = {a1, . . . , am} (i.e., all
players share the same action space A). Each aj ∈ A corresponds to a different
possible course of action which can typically be decided upon multiple times
during the execution of the system. We are generally interested in mixed strate-
gies which are defined as a probability distribution πi over A. Every time that
player i needs to decide which action from A to take, it will do so by selecting
action aj ∈ A with probability πi(aj).
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Given such strategies πi for each player i, the subsequent behaviour of the
system is necessarily probabilistic. Furthermore, we usually want to model other
stochastic aspects of the system, for example, message transmission failure. So,
we will assume that the behaviour of the system, under strategies πi, can be mod-
elled as a discrete-time Markov chain. In general, the transition probabilities of
this Markov chain will be defined as expressions in terms of the probabilities
πi(aj) for each player i selecting each action aj. This can be modelled as a para-
metric Markov chain whose parameters correspond to the probabilities πi(aj).
We refer to the resulting model as a parametric Markov chain game (PMCG),
which is formally defined as follows.

Definition 12 (Parametric Markov chain game). A parametric Markov
chain game (PMCG) is a tuple of the form:
G=((S, I,∆, V,AP, L), N,A, {Vi}i∈N , {ui}i∈N ), where:

– (S, I,∆, V,AP, L) is a parametric Markov chain, which we will denote MG;
– N is a finite set of players;
– A = {a1, . . . , am} is a finite set of m actions;
– (Vi) is a partition of the parameter set V of MG, assigning a subset Vi =

{xi,1, . . . , xi,m} ⊆ V to each player i ∈ N ;
– ui : ΩMG

→ R is a utility function for each player i.

A PMCG G incorporates a parametric Markov chainMG , whose parameter set V
is partitioned into subsets Vi = {xi,1, . . . , xi,m} for each player i. Each individual
parameter xi,j represents the probability with which player i will choose action
aj ∈ A. The PMCG also defines a utility function ui for each player i, represented
as a function from (infinite) paths in MG to a real value.

3.2 Mixed strategies and Nash equilibria for PMCGs

Given a PMCG G, the set of pure strategies for player i is the set of avail-
able actions A. A mixed strategy for player i, denoted by πi, is given as a
probability distribution over the set of pure strategies and written as a vector
πi = (πi,1, πi,2, . . . , πi,m) where πi,j denotes the probability of player i choosing
action aj. A (mixed) strategy profile π = (π1, . . . , πn) = (πi,1, πi,2, . . . , πn,m)
comprises a strategy for all players in the game.

The parametric Markov gameMG of G represents the behaviour of the system
under any possible strategy profile, with parameter xi,j representing the proba-
bility of player i choosing aj . Thus, for a fixed strategy profile π, the resulting
behaviour of the system is modelled by the induced Markov chain MG,V/π, in
which each vi,j is assigned value πi,j . This Markov chain gives us a probability
measure, denoted Prob

π
G over the set of all paths in ΩG through G.

Now, to reason about Nash equilibria of G, we first need to specify a prefer-
ence ordering over strategies. As discussed earlier, we do so implicitly by defining
a utility function ui whose expected value each player i aims to maximise. In
a PMCG, a utility function ui assigns a real value to each path through the
model. The expected value of ui under a mixed strategy profile π is then defined
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by the Markov chain induced from G by π. More precisely, the expected utility
for player i is E

π
G(ui), i.e., the expected value of function ui with respect to

the probability measure ProbπG over paths through G. Abusing notation, we will
often simply write ui(π) instead of Eπ

G(ui). This allows us to give the following
formal definition of a mixed strategy Nash equilibrium for a PMCG.

Definition 13 (Mixed strategy Nash equilibrium of G). Given a PMCG
G=(MG , N,A, (Vi), (ui)), a mixed strategy profile π for G is a Nash equilibrium
if, for any player i and any mixed strategy π′

i of player i, we have ui(π−i, πi) ≥
ui(π−i, π

′
i), where ui gives the expected utility for player i under a strategy profile,

as explained above.

Theorem 1. Let G=(MG , N,A, (Vi), (ui)) be a PMCG. If, for all i ∈ N , the
utility function ui is continuous and quasi-concave over the set of mixed strategies
for player i, then G has a mixed strategy Nash equilibrium.

Proof. Consider the set of mixed strategies for player i, which is a set of distri-
butions over the set A of m actions. This is a non-empty, convex and compact
subset of Rm. By Proposition 1, as long as each utility function ui (and thus the
preference relation �i) is continuous and quasi-concave over the set of mixed
strategies, then G satisfies all the requirements to have a Nash equilibrium. �

The following result gives an important property of mixed strategy Nash equi-
libria for PMCGs G when calculating such equilibria:

Lemma 1. Given a PMCG G=(MG , N,A, {Vi}i∈N , {ui}i∈N ), if ui is mono-
tonic on player i’s mixed strategies, then: an n-tuple of mixed strategies profile
π = (π1, . . . , πn) is a mixed strategy Nash equilibrium of G iff for every player
i ∈ N , every pure strategy in the support of π is a best response to π−i.

Proof. (“⇒”): Assume that there is an action a in the support of πi which is
not a best response to π−i. Then by the monotonicity of the utility function
ui, player i can increase his utility by switching probability from a to an action
that is a best response, so πi is not a best response to π−i, which leads to a
contradiction.

(“⇐”): Suppose that there is a mixed strategy π′
i that gives a higher expected

utility than πi does in response to π−i. Then at least one action in the support
of π′

i must give a higher utility than some action in the support of πi, so that
not all actions in the support of πi are best responses to π−i, which leads to a
contradiction. �

One can imagine that, if a mixed strategy πi is a best response, then each of
the pure strategies involved in the mix must itself be a best response. Hence, all
the pure strategies in the mix must yield the same expected utility. That is to
say, every choice in the support of any player’s equilibrium mixed strategy must
yield the same utility value: ui(π−i, a) = ui(π−i, a

′) for any two pure strategies
a, a′ ∈ A such that the probabilities of player i choosing pure strategies a and a′

are positive: πi,a > 0 and πi,a′ > 0. We will use this fact to find mixed strategy
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Nash equilibria of G=(MG , N,A, {Vi}i∈N , {ui}i∈N) since we can therefore write
the Nash equilibria conditions as follows:







ui(π−i, a) = ui(π−i, a
′) ∀a, a′ ∈ A, s.t. πi,a, πi,a′ > 0

∑m
j=1 πi,j = 1 ∀i

0 ≤ πi,j ≤ 1 ∀i, j.
(1)

By solving the equations above, we can find the equilibria.

4 Finding All Nash Equilibria

In this section we consider practical approaches to the synthesis of Nash equi-
libria for systems modelling using the parametric Markov chain game formalism
introduced above. First, we need a formal specification of both the model of the
system and the utility functions that are being used to define equilibria. Our
work builds upon functionality in the PRISM model checker [10] for modelling
and constructing parametric Markov chains, so systems are specified using the
PRISM modelling language and utility functions for the models specified using
PRISM’s temporal logic notation, summarised in Section 2.3.

Using PRISM, we apply probabilistic verification to a parametric Markov
chain, yielding rational functions that represent the expected values of utility
functions. These rational functions are over the variables xi,j corresponding to
the probabilities in the mixed strategies of each player. At this point we apply a
simple optimisation to reduce the number of variables required. Given that we
know xi,1 + · · · + xi,m = 1 for any i, one of the variables is redundant and we
can rewrite, for example, xi,m as 1− (xi,1 + · · ·+ xi,m−1).

Next, we check the monotonicity of each player’s utility function on the
variables for its own mixed strategy.

Finally, we construct and solve, from the computed utility functions, a set of
equalities in order to determine the set of Nash equilibria for the model. This is
done based on the Nash equilibria conditions identified previously in (1), and is
described in more detail below.

We assume the cases that each player’s utility function is monotonic (and
thus quasi-concave) for his own strategy from then on. The details of each step
are discussed in the following subsections.

4.1 Nash equilibria conditions as polynomial equations

Given a set of players’ utility properties from a PMCG, each of the form

ui(x1,1, . . . , x1,m, . . . , xi,1, . . . , xi,m, . . . xn,1, . . . , xn,m).

the Nash equilibria conditions can be used to construct a polynomial system of
equations. Since player i’s optimal choices of xi,j should equal the utility of the
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other players from playing pure strategies, by Lemma 1, we can build a set of
equations for each i:

ui(x1,1, . . . , xi−1,1, . . . , xi−1,m, 1, 0, . . . , 0, xi+1,1, . . . , xn,m)

= ui(x11, . . . , xi−1,1, . . . , xi−1,m, 0, 1, . . . , 0, xi+1,1, . . . , xn,m)

= . . . . . .

= ui(x11, . . . , xi−1,1, . . . , xi−1,m, 0, 0, . . . , 1, xi+1,1, . . . , xn,m).

In addition, for all i ∈ N , {xi,j |1 ≤ j ≤ m} is a distribution so: 0 ≤ xi,j ≤ 1 and
∑m

j=1 xi,j = 1. By solving the set of equations obtained above, we can find a
set of complex solutions to {xij |i = 1, . . . , n, j = 1, . . . ,m}, which, if they exist,
yield the Nash equilibria, as required.

Solving the above system is non-trivial since the problem is typically non-
linear. Herings and Peeters [8] show the feasibility of computing all Nash equi-
libria of general finite games in theory, and Datta provides an implementation
in [5]. Homotopy continuation methods have been proven to be a reliable and
powerful mathematical method to compute all isolated complex solutions [11,13]
of polynomial systems. The method includes a number of main steps: use the
algebraic structure to count the roots and to construct a start system, the root
count determines the number of solution paths to be traced; the target system
is embedded to solve in homotopy system, i.e., a family of systems connecting
the start and the target system; following the solution paths of the homotopy
system, the continuation methods are applied to extend the solutions of the start
system to the desired solutions of the target system.

There are a number of software packages devoted to solving polynomial sys-
tems by using homotopy continuation methods. In this paper, we exploit the
PHCpack [21] platform since it performs better than other software packages in
terms of computational stability and capacity [4].

We conclude the Nash equilibrium generation with a few final checks. First,
all of the mixing probabilities we have constructed must indeed be probabilities:
∀i ∈ N.

∑m
j=1 xi,j = 1. Second, if there are no probability solutions, we need

to check whether the player has a strictly profitable deviation. In the following
sections, we illustrate the process on some examples.

5 Game-theoretic Modelling of Security Systems

Now, we move on to describe how game-theoretic verification approach described
in the previous two sections can be applied specifically in the context of security-
sensitive communicating systems. In particular, we show to model such systems
as parametric Markov chain games (see Definition 12) equipped with appropriate
utility functions. In the next section, we will demonstrate the approach on a case
study: the Crowds anonymity protocol.

We consider computerised communication systems consisting of a set of play-
ers and a set of destinations. We focus on the core procedure of transmitting
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messages through the system. This typically involves randomisation, and po-
tentially other stochastic aspects such as message loss. Individual players may
make certain strategic decisions about how to participate in the system. These
are modelled as probabilistic actions, whose probabilities are parameters con-
trolled by the player in question. The adversary is the set of malicious players
who partially observe or participate in the transmission of messages and try to
learn the sensitive information stored in the system states.

Players’ utility functions are used to indicate preferences between strategies.
Using our PMCG model, utility functions are defined as real-valued functions
over paths, i.e., a mapping from each possible system execution to a real value.
Strategies are then compared based on the expected value of this function. In the
context of communication systems, we consider utility functions comprising two
parts: security measurement and cost measurement. It is reasonable to expect
that conflicts or trade-offs might exist between these two: for example, additional
relaying of messages might improve security but at additional cost.

Security measurement. In a communicating network, the adversaries act as a
player and make a series of partial observations over the communication network.
There is a set of execution paths, and some of them release information to the
adversaries. We say an execution path is bad to i if there is a transition from a
sensitive node controlled by i to a node controlled by a malicious player along the
path, which cause information leakage. In our quantitative setting, we consider
(the information of) player i to be secure if the probability of bad paths for i is
small enough. Specifically, letting ψ ⊆ ΩG denote the set of paths reaching the
destination, and ψ∗

i ⊆ ΩG denote the set of bad paths of the player i, we define
the measurement of security for mixed strategy π to be:

usi (π) = Prob
π(ψ \ ψ∗

i ) = Prob
π(ψ)− Prob

π(ψ∗
i ), (2)

where ψ and ψ∗ can be specified as PCTL formulas. Note that the bigger the
security metric the more secure the system is with regard to the security property
of interest.

Example 1. Consider players N = {0, 1, 2} and assume 0, 1 are honest players
and 2 is a malicious player. Consider a PMCG in which states si (i ∈ {0, 1, 2})
are controlled by player i (say i is sending or forwarding a message for instance),
sd denotes the message reaching its destination, and parameters xi represent
probabilities controllable by player i. Assume that player 0 starts a message at
s0 (sensitive), and any transitions from s0 to s2 will violate the security policy.
The bad paths ψ∗ contain all the paths including the transition from s0 to s2.
The probabilistic transition graph and security metric computation by (2) is
presented in Fig. 1.

Cost measurement. Markov chains with reward (or cost) structures allow
us to specify two distinct types of rewards: state rewards, which are assigned to
states by means of a function of the form S → R≥0, and transition rewards, which
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− x1

1
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0(π) = 1− (
1

2
− x1)

(

1 +
5

8
x1 + (

5

8
x1)

2 + . . .

)

=
4 + 3x1

8− 5x1

.

Fig. 1. Example: security measurement

are assigned to transitions by means of the function of the form S×S → R≥0. The
state reward is the reward acquired in each state per time-step, and transition
rewards are acquired each time a transition between states occurs. For the cost
measurement, we consider the “expected cost consumed until a message reaches
its destination”. Let ri = (ri,state, ri,action) be a reward structure for player
i, and φ represent a set of target states (e.g., where a message has reached
the destination). The required expected cost can be specified using the reward
operator from PRISM’s temporal logic (see Section 2.3): Rri

=?[Fφ].

Example 2. Consider again the example presented in Fig.1. Let r0,state(s0) = 0,
assume the cost of player 0 forwarding a message is 1. Letting uci,s represent
the expected cost for player i from state s, we can calculate the cost metric by
solving:







uc0,s2 = uc0,sd = 0
uc0,s0 = (1 + x1u

c
0,s1) + (12 − x1)u

c
0,s2 +

1
2u

c
0,sd

uc0,s1 = (0 + 5
8u

c
0,s0) + x2u

c
0,s2 + (38 − x2)u

c
0,sd

We have uc0,s0 = 8
8−5x1

, i.e., the parametric expected cost of player 0 is 8
8−5x1

.

Expected utilities. Note that the performance of the system is in direct pro-
portion to the security metric, and is in inverse proportion to the cost metric.
So we define the utility of player i as a ratio of the security metric function over
the cost metric function:

ui(π) =
usi (π) ∗ ws

uci,s0(π) ∗ wc
(3)

where ws denotes the weight of the security property, and wc denotes the weight
of the cost property.

Example 3. Let ws = 3, wc = 1, we calculate the expected utility of the previous

example as: u0(π) =
(4+3x1)/(8−5x1)∗3

24/(8−5x1)
= 3(4+3x1)

8 .

6 Experimental Results: the Crowds protocol

We have implemented our parametric model checking based approach to game-
theoretic verification as an extension of the PRISM model checker [1]. Our tool
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can find the mixed strategy Nash equilibria for the players in a game when each
player’s utility function is monotonic w.r.t. his own mixed strategy. Building on
the ideas set out in the previous section, we have used this approach to analyse
the anonymity and cost of the Crowds protocol [16].

Crowds is a protocol allowing users to forward messages anonymously. The
idea is that each user randomly chooses a user to forward a message rather than
send their message to the destination directly. A forwarding route is therefore
established within a collection of network members. In our game-theoretic model,
each honest forwarder makes a decision whether to be cooperative or to be selfish.
If he decides to be cooperative, then he flips a coin to decide to either send the
message to the destination directly (with probability 1 − PF), or relay it to
another crowd member randomly (with probability PF); otherwise he discards
the message directly. The malicious player behaves like a normal player but he
will send the message he received to the destination directly. A malicious user
can never be certain whether the observed user is the actual sender, or is simply
forwarding another user’s message.

Suppose in the protocol, there are two honest members (player-1, 2) and two
malicious members (player-3, 4). Assume that sending and relaying a message
costs cs1 = 1 and cr1 = 2 respectively for player-1, and cs2 = 2 and cr2 = 3 for
player-2. Without loss of generality, we choose different cost values for different
operations and players here for demonstration. Let xi denote the probability of
player i being cooperative, and 1 − xi the probability of being selfish. Fig. 3 in
Appendix B presents the transition graph of the model. We define the property
specification for initiator (honest) player k as:

(P=?[F destination ]− P=?[F (to=3 ∨ to=4) ∧ (from=k) ∧ (sender=k)]) ∗ ws

(Rk=?[F deadlock ]) ∗ wc
,

where k ∈ {1, 2} is an honest player, to ∈ {1, 2, 3, 4} is the player whom the
message is sent to, from ∈ {1, 2, 3, 4} is the player who is sending/forwarding
the message, P=?[F destination ] calculates the probability of the set of runs φ
reaching the destination; P=?[F (to = 3∨ to = 4) ∧ (from = k) ∧ (sender = k)]
calculates the probability of the set of runs φ∗ violating anonymity property,
i.e., sender k is sending or forwarding the message to a malicious player (3 or
4) directly; Rk=?[F deadlock ] calculates the accumulated costs uck reaching a
terminating state; and ws and wc denote the weights for anonymity and costs,
respectively. Assume ws = 3, wc = 1, let u1(x1, x2) and u2(x1, x2) denote the
polynomial utility functions generated for player-1 and player-2 respectively, we
get the parametric model checking results given as a set of polynomials as follows:

u1(x1, x2) =
15 ∗ x2 ∗ x1 − 36 ∗ x1 − 30 ∗ x2 − 144

6 ∗ x2 ∗ x1 − 28 ∗ x1 + 12 ∗ x2 − 120

u2(x1, x2) =
15 ∗ x2 ∗ x1 − 30 ∗ x1 − 36 ∗ x2 − 144

8 ∗ x2 ∗ x1 + 24 ∗ x1 − 36 ∗ x2 − 216

First let us check the monotonicity of u1(x1, x2) for player 1’s mixed strategy:

∂u1
∂x1

=
6(15x22 − 92x2 + 12)

(3x1x2 − 14x1 + 6x2 − 60)2
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Let ∂u1

∂x1

= 0, we have x2 = 2
15 , 6. Considering x2 ∈ [0, 1], we have: when 0 ≤ x2 ≤

2
15 , ∀x1.

∂u1

∂x1

≥ 0 i.e., u1 is nondecreasing with x1; similarly, when 2
15 ≤ x1 ≤ 1,

∀x1.
∂u1

∂x1

≤ 0 i.e., u1 is nonincreasing with x1. Therefore, for x1, x2 ∈ [0, 1], u1
is always monotonic w.r.t. player 1’s mixed strategy; similarly, u2 is monotonic
w.r.t. player 2’s mixed strategy.

To find the equilibria, we want to choose x1 (x2) so as to equalise the utility
of player-2 (player-1) receives from playing either pure strategies. We therefore
write the equations as: u1(0, x2) = u1(1, x2), u2(x1, 0) = u2(x1, 1), i.e.,

(−30 ∗ x2 − 144) ∗ (18 ∗ x2 − 148) = (−15 ∗ x2 − 180) ∗ (12 ∗ x2 − 120)

(−30 ∗ x1 − 144) ∗ (32 ∗ x1 − 252) = (−15 ∗ x1 − 180) ∗ (24 ∗ x1 − 216).

By solving the above equations, we get the Nash equilibria and the relevant
utility values: x1 = 0.72; x2 = 0.13; u1 = 1.25; u2 = 0.83.

In order to check the solutions obtained, let us look at the experiment results
of the utilities of layer i = 1, 2 with constant variables x1 = 0 : 1 and x2 = 0 : 1
produced by PRISM. Fig. 2 presents the utilities to player 1’s (cf. player 2’s) pure
strategies as functions of player 2’s (cf. player 1’s) mixed strategy. One can see

Fig. 2. Utilities to player 1’s (left) and 2’s (right) pure strategies as functions of player
2’s and 1’s mixed strategy

that the intersection of the two lines are mixed strategy equilibria: i.e., player-1
chooses x1 = 0.72, player-2 chooses x2 = 0.13, which also meets our equilibria
results produced by our PMCG analyser. In addition, if we set up the reward
structure symmetrically for player 1 and 2, say both transitions s1 and s2 cost
2, both transitions r1 and r2 cost 3, we obtain the symmetric Nash equilibria
for player 1 and 2: x1 = x2 = 0.72; u1 = u2 = 0.83. Table 1 lists a group
of experimental results produced by our PMCG analyser regarding to different
number of players, honest players, reward structures (in which csi and cri denote
the cost of player i for sending and relaying a message respectively) with the size
of the state space of the parametric Markov chain and the total computation
time spent to achieve the final equilibria results. This demonstrates our proposed
approach can be used to automatically find the mixed Nash equilibria for the
Crowds protocol with multiple players. The computation time increases with the
number of honest players, and the result of the Nash equilibria is mainly affected
by the specified reward structures.
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Table 1. Experimental results with size of state space and time cost

N Nh Reward structure
(cs1 , cr1 ; . . . ; csN

h
, crN

h
)

Size of PMC Total time (sec.) Nash equilibria
(x1, x2, . . . )

3 2 (1, 2; 2, 3) 19 1.18 (0.62, 0.46)

4 2 (1, 2; 2, 3) 23 1.181 (0.72, 0.13)

4 3 (1, 1; 1, 1; 1, 1) 48 1.857 (0.32, 0.32, 0.32)

5 2 (2, 3; 2, 3) 35 1.878 (0.29, 0.29)

5 3 (1, 0.8; 1, 0.8; 1, 0.9) 57 2.003 (0.038, 0.038, 0.407)

7 2 (1, 1.2; 1, 1.3) 35 1.131 (0.186, 0.608)

7 3 (1, 0.6; 1, 0.6; 1, 0.6) 75 1.964 (0.469, 0.469, 0.469)

7 4 (1, 0.5; 1, 0.5; 1, 0.5; 1, 0.5) 131 116.145 (0.15, 0.15, 0.15, 0.15)

We present more details of how the reward structures affect the Nash equi-
libria results in Table 2 in Appendix A. It can be seen that the players tend to
be more cooperative (larger equilibria) when the ratio of the cost of sending a
message si and relaying a message ri is bigger (see Table 2 (a)). In the cases
investigated, a range of such ratios results in mixed Nash equilibria, while the
ratios outside of that range lead to pure Nash equilibria. The strategy of each
player is also affected by other players’ reward structures (see Table 2 (b&c)).

7 Conclusions

We have presented a new automated game-theoretic approach for quantitative
verification of security properties of software systems. Security-sensitive com-
munication networks typically require the collaboration of their participants to
work effectively. We study the problem of how the participants should react re-
garding to collaborating strategies in order to improve the overall performance
with a balance between security and cost. We apply a game-theoretic approach
to capture such a balance represented as Nash equilibria. We propose methods
to automatically find the equilibria under which no participants can benefit by
changing their strategies.

To achieve our goal, we propose the model of parametric Markov chain games
and apply parametric model checking techniques to compute utility functions,
using models described in the PRISM modelling language and utilities specified
in probabilistic temporal logic. We generate and solve a polynomial equation
system, from which we identify the Nash equilibria. To illustrate the applicability
of our approach, we have implemented our approach as an extension to the tool
of PRISM model checker, and analysed the Crowds protocol, studying the trade-
offs between anonymity/cost.

Both theoretical and experimental evidence are presented for the utility of
the approach for quantitative security analysis. We believe this is a significant
contribution to automatically analysing security systems from a quantitative and
game-theoretic view. For future work, we plan to study the precise computational
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complexity issues of the presented approach, and adapt our method in wider
cases in addition to security systems.
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Appendix A: Sensitivity study of the reward structures

Table 2. Sensitivity study of the reward structures to Nash equilibria (N.E.s) & utilities
(N = 4, Nh = 3)

(a)

Reward structure(cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 0.2; 1.0, 0.2; 1.0, 0.2) (1.0, 1.0, 1.0) (6.06, 6.06, 6.06)

(1.0, 0.4; 1.0, 0.4; 1.0, 0.4) (1.0, 1.0, 1.0) (4.92, 4.92, 4.92)

(1.0, 0.6; 1.0, 0.6; 1.0, 0.6) (0.908, 0.908, 0.908) (3.93, 3.93, 3.93)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.8) (0.55, 0.55, 0.55) (2.753, 2.753, 2.753)

(1.0, 1; 1.0, 1; 1.0, 1.0) (0.32, 0.32, 0.32) (2.113, 2.113, 2.113)

(1.0, 1.2; 1.0, 1.2; 1.0, 1.2) (0.16, 0.16, 0.16) (1.713, 1.713, 1.713)

(1.0, 1.4; 1.0, 1.4; 1.0, 1.4) (0.048, 0.048, 0.048) (1.44, 1.44, 1.44)

(1.0, 1.6; 1.0, 1.6; 1.0, 1.6) (0.0, 0.0, 0.0) (1.304, 1.304, 1.304)

(1.0, 1.8; 1.0, 1.8; 1.0, 1.8) (0.0, 0.0, 0.0) (1.25, 1.25, 1.25)

(1.0, 2.0; 1.0, 2.0; 1.0, 2.0) (0.0, 0.0, 0.0) (1.2, 1.2, 1.2)

(b)

Reward structure(cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.5) (1.0, 1.0, 1.0) (3.58, 3.58, 4.5)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.6) (0.908, 0.908, 0.191) (2.78, 2.78, 3.93)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.7) (0.708, 0.708, 0.393) (2.76, 2.76, 3.24)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.8) (0.55, 0.55, 0.55) (2.75, 2.75, 2.75)

(1.0, 0.8; 1.0, 0.8; 1.0, 0.9) (0.42, 0.42, 0.68) (2.756, 2.756, 2.39)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.0) (0.321, 0.321, 0.779) (2.763, 2.763, 2.113)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.1) (0.235, 0.235, 0.864) (2.77, 2.77, 1.89)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.2) (0.16, 0.16, 0.94) (2.78, 2.78, 1.713)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.3) (0.1, 0.1, 0.9997) (2.79, 2.79, 1.56)

(1.0, 0.8; 1.0, 0.8; 1.0, 1.4) (1.0, 1.0, 1.0) (3.58, 3.58, 2.54)

(c)

Reward structure(cs1 , cr1 ; cs2 , cr2 ; cs3 , cr3) N.E. (x1, x2, x3) Utility (u1, u2, u3)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.5) (1.0, 1.0, 1.0) (3.15, 3.15, 4.5)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.6) (1.0, 1.0, 1.0) (3.15, 3.15, 4.14)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.7) (1.0, 1.0, 1.0) (3.15, 3.15, 3.84)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.8) (0.55, 0.55, 0.09) (2.12, 2.12, 2.75)

(1.0, 1.0; 1.0, 1.0; 1.0, 0.9) (0.42, 0.42, 0.22) (2.11, 2.11, 2.39)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.0) (0.32, 0.32, 0.32) (2.113, 2.113, 2.113)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.1) (0.235, 0.235, 0.407) (2.114, 2.114, 1.892)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.2) (0.16, 0.16, 0.48) (2.116, 2.116, 1.713)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.3) (0.1, 0.1, 0.54) (2.12, 2.12, 1.56)

(1.0, 1.0; 1.0, 1.0; 1.0, 1.4) (1.0, 1.0, 1.0) (2.123, 2.123, 1.44)
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Appendix B: The PRISM model of Crowds protocol

0 : (−1, 0, 0, 0)start

0 : (0, 1, 1, 1) 0 : (0, 2, 2, 2)
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Fig. 3. Model of Crowds with 2 honest players and 2 malicious player with PF = 0.5.
For i ∈ {1, 2, 3, 4}, transition label ri denotes relaying a message by player i; for
i ∈ {1, 2}, si denotes sending a message by (honest) player i, ci denotes the player
i decide to be cooperative, ni denotes the i choose to be selfish. Label init denotes
randomly pick up an honest player as a initiator to send out a message. State labelled as
i : (status, from, to, sender) implies state (status, from, to, sender) ∈ Si for player
i ∈ {0, 1, 2, 3, 4}, player i = 0 is used to model a coordinator, where the status =
0, 1, 2, 3, 4, 5 denotes that the sender is randomly picked up, the message is sent, the
player decides to be cooperative, the player decides to be selfish and the message is
discarded, and the message reaches the destination respectively.

1) Cost structures for honest players i = 1, 2: assigns a cost of 1 and 2 to all transitions
labelled with ‘s1’ and ‘r1’ to player 1 respectively; and assigns a cost of 2 and 3 to
all transitions labelled with ‘s2’ and ‘r2’ to player 2 respectively.

2) Property specification for honest players: the utility function of player i is defined
as the probability of good behaviours/costs. We say a run is good if it reaches the
destination without violating the anonymity properties.
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