Symbolic Magnifying Lens Abstraction in Markov Decision Processes

Pritam Roy\(^1\) David Parker\(^2\) Gethin Norman\(^2\) Luca de Alfaro\(^1\)

Computer Engineering Dept, UC Santa Cruz, Santa Cruz, CA, USA \(^1\)
Oxford University Computing Laboratory, Oxford, UK \(^2\)

Abstract

In this paper, we combine abstraction-refinement and symbolic techniques to fight the state-space explosion problem when model checking Markov Decision Processes (MDPs). The abstract-refinement technique, called magnifying-lens abstraction (MLA), partitions the state-space into regions and computes upper and lower bounds for reachability and safety properties on the regions, rather than the states. To compute such bounds, MLA iterates over the regions, analysing the concrete states of each region in turn - as if one was sliding a magnifying lens across the system to view the states. The algorithm adaptively refines the regions, using smaller regions where more detail is required, until the difference between the bounds is below a specified accuracy. The symbolic technique is based on Multi-Terminal Binary Decision Diagrams (MTBDDs) which have been used extensively to provide compact encodings of probabilistic models. We introduce a symbolic version of the MLA algorithm, called symbolic MLA, which combines the power of both practical techniques when verifying MDPs. An implementation of symbolic MLA in the probabilistic model checker PRISM and experimental results to illustrate the advantages of our approach are presented.

1 Introduction

Markov decision processes (MDPs) provide a model for systems with both probabilistic and nondeterministic behavior, and are widely used in probabilistic verification, planning, inventory optimal control, and performance analysis [13, 3, 26, 8, 25]. At every state of an MDP, one or more actions are available; each action is associated with a probability distribution over the successor states. We focus on safety and reachability properties of MDPs. A safety property specifies that the MDP’s behavior should not leave a safe subset of states; a reachability property specifies that the behavior should reach a set of target states. A controller can choose the actions available at each state so as to maximize, or minimize, the probability of satisfying reachability and safety properties. MDPs that model realistic systems tend to have very large state spaces, and therefore the main challenge in analysing such MDPs consists in devising algorithms that work efficiently on large state spaces.

In the non-probabilistic setting, abstraction techniques have been successful in coping with large state-spaces: by ignoring details not relevant to the property under study, abstraction makes it possible to answer questions about a system through the analysis of a smaller, more concise abstract model. This has spurred research into the use of abstraction techniques for probabilistic systems [7, 17, 22, 19]. The majority of these techniques follow a full abstraction approach: an abstract model is constructed and, during its analysis, all details about the concrete system are forgotten.

In [11], de Alfaro and Roy proposed an alternative approach, called magnifying-lens abstraction (MLA) [11]. This is based on partitioning the state space of an MDP into regions and then analysing (“magnifying”) the states of each region separately. The lower and upper bounds for the magnified region are updated by computing the minimum and maximum values over the states of the region. Figuratively, MLA slides a magnifying lens across the abstraction, enabling the algorithm to see the concrete states of one region at a time when updating the region values.

Regions are refined adaptively until the difference between the lower and upper bounds for all regions is within some specified accuracy. In this way, the abstraction is refined in an adaptive fashion: smaller regions are used when finer detail is required, guaranteeing the convergence of the bounds, and larger regions are used elsewhere, saving space. When splitting regions, MLA takes care to re-use information gained in the analysis of the coarser abstraction in the evaluation of the finer one. In its ability to provide both upper and lower bounds for the quantities of interest, MLA is similar to [19].

Although experimental results have demonstrated that using MLA leads to space savings, the explicit representation of the probabilistic transition system employed in [11]
placed a limit on the size of MDPs that could be analysed. A successful approach to overcome the limitations of explicit representations has been to employ symbolic data structures. In particular, BDDs (binary decision diagrams) [4] and MTBDDs (multi-terminal binary decision diagrams) [6, 1] have been shown to enable the compact representation and analysis of very large MDPs [9, 23, 15].

In this work we combine MLA with symbolic representations to improve scalability. More precisely, we adapt the MLA algorithm of [11] to the symbolic domain, yielding an approach that we call Symbolic Magnifying-Lens Abstraction (SMLA). We show that the “magnified” computation performed on the regions, and the “sliding” of the magnification from one region to the next, can be performed symbolically in a natural and efficient fashion. We have implemented SMLA in the probabilistic model checking tool PRISM [16, 24] and, through a number of case studies, demonstrate that SMLA leads to useful space savings.

MLA, and its symbolic variant SMLA, differ from other approaches to MDP abstraction [19] in that they can be profitably applied to systems where there are many states with similar value, but not necessarily similar transition structure. For instance, consider a system with an integer state variable \(x \), with range \([0, \ldots, N]\), and assume that from every state where \(x \) has value \(n < N \), there are transitions to states where \(x \) has values \(n - 1, n, \) and \(n + 1 \). Classical abstraction schemes associate with each region (set of states) a single abstract state, whose transition relation over-approximates all the transition relations of the concrete states it represents. In such a transition-based abstraction, it is not useful to group the concrete values \([0, \ldots, N]\) for \(x \) into regions consisting of intervals \(I_1, \ldots, I_k \). In fact, since the states at the endpoints of each interval can leave the interval, but the states in the interior cannot, the abstract transition relation associated with each interval would have to be a gross over-approximation of the concrete transition relations, leading to considerable loss of precision.

In MLA and SMLA, as long as the value of the property of interest is similar in states in the same interval, abstraction is possible and useful. Indeed, experimentally we noticed that SMLA performs well in many problems with integer-valued state variables, where the properties vary gradually with the value of the state variables. Problems in planning, inventory control, and similar often belong to this category. On the other hand, when it is possible to use symmetry or structural knowledge of an example, and aggregate states of similar transition relation, approaches such as [7, 19, 20] yield superior results.

The outline of the paper is the following: Section 2 presents background material, including Markov decision processes (MDPs), the Magnifying-Lens Abstraction (MLA) algorithm and symbolic (MTBDD) representations. In Section 3, we describe the symbolic version of MLA and, in Section 4, present and discuss experimental results for its implementation on a range of MDP case studies. Section 5 concludes the paper.

2 Background

For a countable set \(S \), a probability distribution on \(S \) is a function \(p : S \rightarrow [0, 1] \) such that \(\sum_{s \in S} p(s) = 1 \); we denote the set of probability distributions on \(S \) by \(D(S) \). A valuation over a set \(S \) is a function \(v : S \rightarrow \mathbb{R} \) associating a real number \(v(s) \) with every \(s \in S \). For \(x \in \mathbb{R} \), we denote by \(v \), the valuation with constant value \(x \); for \(T \subseteq S \), we indicate by \([T] \) the valuation having value 1 in \(T \) and 0 elsewhere. For two valuations \(v, u \) on \(S \), we define \(|v - u| := \sup_{s \in S} |v(s) - u(s)| \).

A partition of a set \(S \) is a set \(R \subseteq 2^S \), such that \(\bigcup \{s \in R \} = S \) and \(r \cap r' = \emptyset \) for all \(r \neq r' \in R \). For \(s \in S \) and a partition \(R \) of \(S \), we denote by \([s]_R \) the element \(r \in R \) with \(s \in r \). We say that a partition \(R \) is finer than a partition \(R' \) if for any \(r \in R \) there exists \(r' \in R' \) such that \(r \subseteq r' \).

2.1 Markov Decision Processes (MDPs)

Definition 1 A Markov decision process (MDP) \(M = \langle S, s_{init}, A, \Gamma, p \rangle \) consists of the following components:

- a finite state space \(S \);
- an initial state \(s_{init} \in S \);
- a finite set \(A \) of actions (moves);
- a move assignment \(\Gamma : S \rightarrow 2^A \setminus \emptyset \);
- A probabilistic transition function \(p : S \times A \rightarrow D(S) \).

At every state \(s \in S \), the controller can choose an action \(a \in \Gamma(s) \); the MDP then proceeds to a successor state \(t \in S \) with probability \(p(s, a, t) \). A path of the MDP \(M \) is an infinite sequence \(\pi = s_0, s_1, s_2, \ldots \) of states of \(S \); we denote by \(S^\omega \) the set of all paths, and we denote by \(s_k \) the \(k \)-th state of the path \(\pi \).

We model the choice of actions, i.e. the role of the controller, through strategies [these are also variously called schedulers [26] or policies [13]]. A strategy is a mapping \(\pi : S^+ \rightarrow D(A) \) from finite paths to distributions over actions. Given a past history \(\sigma s \in S^+ \) for the MDP, the strategy \(\pi \) chooses the action \(a \in \Gamma(s) \) with probability \(\pi(\sigma s)(a) \). Since, by definition, any action \(b \in A \setminus \Gamma(s) \) is not enabled in \(s \), for any strategy \(\pi \) we require \(\pi(\sigma s)(b) = 0 \) for all \(b \in A \setminus \Gamma(s) \). Under the operation of strategy \(\pi \), we can define a probability measure \(\text{Pr}_s^\pi \) over the set of infinite paths starting from state \(s \) in the standard way [18]. We denote by \(\Pi \) the set of all strategies.

We consider safety and reachability goals. Given a subset \(T \subseteq S \) of states, the reachability goal \(\diamond T = \{ \pi \in S^\omega \ | \ \exists k, s_k \in T \} \) consists of the paths that reach \(T \), and
Algorithm 1 ValIter($T, f, g, \varepsilon_{\text{float}}$) Value iteration

1. $v := [T]$
2. repeat
3. $\hat{v} := v$
4. for all $s \in S$ do

 \[v(s) := f[T](s), \quad g \left(\sum_{s' \in S} p(s,a,s') \cdot \hat{v}(s') \mid a \in \Gamma(s) \right) \]
5. until $||v - \hat{v}|| \leq \varepsilon_{\text{float}}$
6. return v

the safety goal $\Box T = \{ s \in S^\omega \mid \forall k, \bar{s}_k \in T \}$ consists of the paths that remain in T. More precisely, we consider computing, for all $s \in S$, the probabilities:

\[V_{\max}^{\top}(s) = \max_{\pi \in \Pi} \Pr_s^T(\top) \]
\[V_{\max}^{\top}(s) = \max_{\pi \in \Pi} \Pr_s^T(\top) \]
\[V_{\min}^{\top}(s) = \min_{\pi \in \Pi} \Pr_s^T(\top) \]
\[V_{\min}^{\top}(s) = \min_{\pi \in \Pi} \Pr_s^T(\top) \]

that is, over all strategies, the maximum and minimum probabilities of satisfying safety and reachability goals. The fact that we can consider maximum and minimum as opposed to supremum and infimum is a consequence of the existence of optimal strategies [13].

Such reachability and safety probabilities can be computed via the classical value-iteration scheme [13, 3, 10]. The algorithm, given in Algorithm 1, is parameterized by two operators $f, g \in \{\max, \min\}$. The operator f specifies how to merge the valuation of the current state with the expected next-state valuation; $f = \max$ is used for reachability goals, and $f = \min$ for safety ones. The operator g specifies whether to select the action that maximizes, or minimizes, the expected next-state valuation; $g = \max$ is used for computing maximal probabilities, and $g = \min$ for minimal probabilities. Table 1 summarizes the effect of different parameter combinations. The algorithm is also parameterized by $\varepsilon_{\text{float}} > 0$: this is the absolute error threshold below which we consider value iteration to have converged. Some value iteration algorithms use relative error bounds to check convergence.

In the remainder of the paper, unless explicitly noted, we present algorithms and definitions for a fixed MDP $M = (S, s_{\text{init}}, A, \Gamma, p)$ and set of states T.

2.2 Magnifying-Lens Abstraction (MLA)

Magnifying-lens abstractions (MLA) [11] is a technique for the analysis of reachability and safety properties of MDPs. MLA can cluster states based on value only, disregarding differences in their transition relation. This feature can lead to compact abstractions for systems where full abstraction provides no benefit. In our experience, MLA is particularly well-suited to problems where there is a notion of locality in the state space, so that it makes sense to cluster states based on variable values — even though their transition relations may not be similar. Many inventory, planning and control problems are of this type.

Let v^* be the valuation over S that is to be computed: v^* is one of $V_{\max}^{\top}, V_{\min}^{\top}, V_{\max}^{\top}, V_{\min}^{\top}$. Given a desired accuracy $\varepsilon_{\text{abs}} > 0$, MLA computes upper and lower bounds for v^*, spaced less than ε_{abs} apart. MLA starts from an initial partition (set of regions) R of S. The initial partition R is obtained either from the user or from the property. MLA computes the lower and upper bounds as valuations u^- and u^+ over R. The partition is refined, until the difference between u^- and u^+, for all regions, is below a specified threshold. To compute u^- and u^+, MLA iteratively considers each region $r \in R$ in turn, and performs a magnified iteration: it improves the bounds $u^-(r)$ and $u^+(r)$ by performing value iteration on the concrete states in r.

The MLA algorithm is shown in Algorithm 2. The algorithm has parameters T, f, g, which have the same meaning as ValIter in Algorithm 1. The algorithm also has parameters $\varepsilon_{\text{float}} > 0$ and $\varepsilon_{\text{abs}} > 0$. Parameter ε_{abs} indicates the maximum difference between the lower and upper bounds returned by MLA. Parameter $\varepsilon_{\text{float}}$, as in ValIter, specifies the degree of precision to which the local, magnified value iteration should converge. MLA should be called with ε_{abs} greater than $\varepsilon_{\text{float}}$ by at least one order of magnitude: otherwise, errors in the magnified iteration can cause errors in the estimation of the bounds. Statement 2 initializes the valuations u^- and u^+ according to the property to be computed: reachability properties are computed as least fixpoints, while safety properties are computed as greatest fixpoints [10]. A region r_2 is called successor to a region r_1 if at least one concrete state in r_1 has non-zero probability to reach concrete state(s) in r_2. A useful time optimization, not shown in Algorithm 2, consists in executing the loop at lines 6–9 only for regions r where at least one of the successor regions has changed value by more than $\varepsilon_{\text{float}}$.

Table 1. Parameters of ValIter($T, f, g, \varepsilon_{\text{float}}$) used to compute reachability and safety properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>f</th>
<th>g</th>
<th>Converges</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{\max}^{\top}</td>
<td>max</td>
<td>min</td>
<td>from above</td>
</tr>
<tr>
<td>V_{\min}^{\top}</td>
<td>min</td>
<td>min</td>
<td>from above</td>
</tr>
<tr>
<td>V_{\max}^{\top}</td>
<td>max</td>
<td>max</td>
<td>from below</td>
</tr>
<tr>
<td>V_{\min}^{\top}</td>
<td>max</td>
<td>min</td>
<td>from below</td>
</tr>
</tbody>
</table>

Magnified iteration. The algorithm performing the magnified iteration is given in Algorithm 3. This is very similar...
provide the upper and upper bounds. However, in practice, the lower and upper bounds would be computed consistently and upper bounds only within a constraint $\theta<0$.

We have the following consistency results:

\[
\mathcal{W}(\mathcal{L}) = \mathcal{W}((n+1)_n) \quad \text{where}
\]
\[
g(\mathcal{W}[s])_n (s)_{\delta,\gamma} \hat{=} g(s)_n \quad : \quad S \ni a
\]
\[
\mathcal{W}[s]_n \ni \mathcal{W}(s)_n \ni \mathcal{W}(s)_n : \quad H \ni a
\]

The following theorem identifies the simplest region $\mathcal{W}(\mathcal{L})$ by condition $\mathcal{W}(\mathcal{L})$.

\[
\mathcal{W}(\mathcal{L}) = \mathcal{W}(\mathcal{L})_n \ni \mathcal{W}(\mathcal{L})_n \ni \mathcal{W}(\mathcal{L})_n : \quad H \ni a
\]

For the case of the following theorem, the condition \mathcal{L} is not satisfied. This result is obtained by the following theorem for a region \mathcal{L}.

\[
\mathcal{L} = \mathcal{L}_n \ni \mathcal{L}_n \ni \mathcal{L}_n : \quad H \ni a
\]

Defining the following theorem, the condition \mathcal{L} is not satisfied. This result is obtained by the following theorem for a region \mathcal{L}.

\[
\mathcal{L} = \mathcal{L}_n \ni \mathcal{L}_n \ni \mathcal{L}_n : \quad H \ni a
\]
value iteration is preferred over linear programming, due to its simplicity and greater efficiency, and the concerns about δ are solved - in practice, albeit not in theory - by choosing a sufficiently small ϵ_{float}.

2.3 Symbolic model checking of MDPs

Due to the sizes of the MDPs that typically arise in probabilistic verification case studies, considerable effort has been invested into building efficient model checking implementations. In particular, symbolic techniques, which use extensions of Binary Decision Diagrams (BDDs), have proved successful in this area. In this paper we focus on the use of Multi-Terminal Binary Decision Diagrams (MTBDDs). This data structure lies at the heart of the probabilistic model checker PRISM and has been used to model check quantitative properties of probabilistic models with as many as 10^{10} states (see for example [21, 14]). In this section, we give a brief overview of these techniques. For more detailed coverage of the MTBDD-based implementation of MDP model checking in PRISM, see [23].

MTBDDs. Multi-terminal BDDs (MTBDDs) are rooted, directed acyclic graphs associated with a set of ordered, Boolean variables $x_1 < \ldots < x_n$. An MTBDD M represents a function $f_M(x_1, \ldots, x_n) : \mathbb{B}^n \rightarrow \mathbb{R}$ over these variables. The graph contains two types of nodes: non-terminal and terminal. A non-terminal node m is labeled by a variable $\text{var}(m) \in \{x_1, \ldots, x_n\}$ and has two children, $\text{then}(m)$ and $\text{else}(m)$. A terminal node m is labeled by a real number $\text{val}(m)$. The Boolean variable ordering $<$ is imposed onto the graph by requiring that a child m' of a non-terminal node m is either terminal or non-terminal and satisfies $\text{var}(m) < \text{var}(m')$. The value of $f_M(x_1, \ldots, x_n)$, the function which the MTBDD represents, is determined by traversing M from the root node, and at each subsequent node m taking the edge to $\text{then}(m)$ or $\text{else}(m)$ if $\text{var}(m)$ is 1 or 0 respectively. A BDD is simply an MTBDD with the restriction that labels on terminal nodes can only be $0/1$.

Representation of MDPs using MTBDDs. MTBDDs have been used, from their inception [1, 6], to encode real-valued vectors and matrices. An MTBDD v over variables (x_1, \ldots, x_n) represents a function $f_v : \mathbb{B}^n \rightarrow \mathbb{R}$. A real vector v of length 2^n is simply a mapping from $\{1, \ldots, 2^n\}$ to the reals \mathbb{R}. Using the standard binary encoding of integers, the variables $[x_1, \ldots, x_n]$ can represent $[1, \ldots, 2^n]$. Hence, an MTBDD v can represent the vector v.

In a similar way, we can consider a square matrix M of size 2^n by 2^n to be a mapping from $\{1, \ldots, 2^n\} \times \{1, \ldots, 2^n\}$ to \mathbb{R}. This can be represented by an MTBDD over $2n$ variables, n for rows (current-state variables) and n for columns (next-state variables). According to the commonly-used heuristic for minimizing MTBDD size, the variables for rows and columns are ordered alternately.

MTBDDs can thus easily represent the probabilistic transition matrix of a Markov chain. Furthermore, with a simple extension of this scheme, the probabilistic transition function $p : S \times A \rightarrow D(S)$ of an MDP can also be represented. Since the set of actions A is finite, we can view p as a function $S \times A \times S \rightarrow [0, 1]$. For an MDP with 2^n states, and letting $k = \text{ceil}(\log_2 |A|)$, the probabilistic transition function p is equivalently seen as a function from $\{1, \ldots, 2^n\} \times \{1, \ldots, 2^k\} \times \{1, \ldots, 2^n\}$ to \mathbb{R}, which can easily be represented by an MTBDD over $2n + k$ variables.

MTBDDs are efficient because they are stored in reduced form, with duplicate nodes merged and redundant ones removed. Their size (number of nodes) is heavily dependent on the ordering of their Boolean variables. Although the problem of deriving the optimal ordering for a given MTBDD is an NP-hard problem, by using heuristics [15, 23], probabilistic models with a degree of regularity can be represented extremely compactly by MTBDDs.

Model checking of MDPs using MTBDDs. Once a model’s MTBDD representation has been constructed, it can be analyzed, for example using value iteration to compute minimum and maximum reachability and safety probabilities. This comprises two stages. First, a graph-based analysis is performed to find the states for which the corresponding probability is 0 or 1 [9]. This can be implemented using standard BDD techniques for calculating fixpoints. Secondly, numerical computation is applied to compute probabilities for the remaining states. For this, standard iterative methods such as value iteration, can be implemented using standard MTBDD operations, including for example algorithms from [1, 6] for matrix-vector multiplication.

3 Symbolic MLA

In this section, we present a symbolic implementation of the MLA algorithm using MTBDDs. Before doing so, we highlight some important aspects of the implementation.

We first note that a potential obstacle in the use of MLA is that, although substantial savings in terms of storage for solution vectors can be made, there is still a need to store the probabilistic transition function of the MDP in full. A symbolic approach alleviates this problem: it is often the case that a very compact MTBDD representation of the probabilistic transition function of the MDP can be constructed. Secondly, it is also common that qualitative probabilistic verification (i.e. checking for which states of the MDP the probabilities for a reachability/safety property are exactly 0 or 1) can be applied to much larger models than can be analyzed quantitatively. This is because qualitative properties
can be model checked using only graph-based algorithms that operate on the underlying transition relation, allowing an efficient implementation with BDDs. This means that a symbolic version of MLA can also benefit from this: qualitative verification is applied to the full MDP before applying the MLA algorithm (this process is often referred to as pre-computation). Numerical computation need then only be done for states with a probability that is neither 0 or 1. Furthermore, states with probability 0 or 1 can be removed from the MDP completely, reducing computation significantly and decreasing round-off errors.

Finally, we observe that symbolic techniques are very well-suited to MLA, in terms of the representation of solution vectors. Recall that, because of the way that MLA operates, it requires separate storage of the numerical solution vector for the current region being magnified (by algorithm MI see Section 2.2) and the lower/upper bounds for each region. Furthermore when the value for a state not in the current magnified region is required, the region contains that state must be determined before the relevant value can be looked up. Because of the way that MTBDDs exploit regularity, representing real-valued vectors with many similar values is often very efficient. This allows us to store the solution vector for all states of the MDP concurrently, avoiding potentially expensive partition look-ups. Since MLA considers each region sequentially, the solution vector will contain fewer distinct values than would be required for standard value iteration. Thus, we expect a symbolic implementation of MLA to be less memory-intensive than a symbolic version of value iteration.

3.1 Symbolic Magnifying-Lens Abstraction (SMLA)

The symbolic version of MLA is shown in Algorithm 4. As for standard MLA (Algorithm 2), the symbolic version is parameterized by operators \(f, g \in \{\max, \min\} \) (used to select maximum/minimum reachable/safety properties) and convergence thresholds \(\varepsilon_{\text{float}} \) and \(\varepsilon_{\text{abs}} \). The other parameter is a BDD \(T \) representing the set of target states (\(T \) in Algorithm 2). We also assume a BDD reach representing the set of reachable states of the MDP and an MTBDD trans representing its probabilistic transition function. In the latter, the MTBDD variables representing the rows (source states), columns (target states) and nondeterminism (actions) are denoted \(\text{vars}, \text{cvars} \) and \(\text{ndvars} \), respectively.

The first part of Algorithm 4 (lines 1-5) shows the use of BDD-based pre-computation steps [9, 23] in order to obtain the BDDs \(\text{yes} \) and \(\text{no} \), representing the sets of states for which the probability is exactly 1 or 0, respectively. If this covers all states of the MDP, no further work is required. Otherwise, rows corresponding to states in \(\text{yes} \) or \(\text{no} \) are removed from the probabilistic transition function trans (line 5).

Here (and elsewhere in the algorithms) we use a simple infix notation to denote the application of binary operators (such as \(\lor \) or \(\times \)) to BDDs or MTBDDs. This is done using the standard APPLY operator [4].

The remainder of Algorithm 4 comprises the symbolic version of MLA. We start with an initial partition \(R \), returned by the CreateInitialPartition() routine (see Section 3.3 for details). The partition is implemented as a list of BDDs, each one representing a region in \(R \). The main part of Algorithm 4 corresponds quite closely to the original MLA algorithm (Algorithm 2). Initialization of solution vectors (lines 8 and 9) is easily achieved using the MTBDD operation \(\text{const}(k) \) which returns the trivial MTBDD representing the real value \(k \). Similarly, checking for convergence of the main loop can be done with the operation \(\text{maxdiff}(u_1, u_2) \) which computes the maximum point-wise difference between MTBDDs \(u_1 \) and \(u_2 \).

The MTBDDs representing the lower (\(u^- \)) and upper (\(u^+ \)) bounds for each region are computed by the SMI function, described below. After a global iteration terminates, the algorithm calls the Split(…) method to refine the regions for which the difference between the lower and upper bounds (\(u^- \) and \(u^+ \)) is greater than \(\varepsilon_{\text{abs}} \). After each refinement, the algorithm copies \(u^- \) values to \(u^+ \) for the reachability objectives and \(u^+ \) values to \(u^- \) for safety objectives.

Algorithm 4 SMLA(\(T, f, g, \varepsilon_{\text{float}}, \varepsilon_{\text{abs}} \)) Symbolic Magnifying-Lens Abstraction

1. if \(g = \max \)
2. then \(\text{no} := \text{Prob}0A(T) \); \(\text{yes} := \text{Prob}1E(T) \)
3. else \(\text{no} := \text{Prob}0E(T) \); \(\text{yes} := \text{Prob}1A(T) \)
4. if \(\text{no} \lor \text{yes} = \text{reach} \) then \(\text{return yes} \)
5. \(\text{trans}' := \text{trans} \land \neg(\text{no} \lor \text{yes}) \)
6. \(R := \text{CreateInitialPartition()} \)
7. if \(f = \max \)
8. then \(u^- := u^+ := \text{Const}(0) \)
9. else \(u^- := u^+ := \text{Const}(1) \)
10. loop
11. repeat
12. \(\hat{u}^+ := u^+; \hat{u}^- := u^- \)
13. for each \(r \in R \) do
14. \(\hat{u}^+ := \text{SmI}(r, R, \text{trans}', \text{yes}, \hat{u}^+, \text{max}, f, g, \varepsilon_{\text{float}}) \)
15. \(\hat{u}^- := \text{SmI}(r, R, \text{trans}', \text{yes}, \hat{u}^-, \text{min}, f, g, \varepsilon_{\text{float}}) \)
16. end for
17. until \(\text{maxdiff}(\hat{u}^+, \hat{u}^-) \leq \varepsilon_{\text{float}} \) & \(\text{maxdiff}(u^-, u^+) \leq \varepsilon_{\text{float}} \)
18. if \(\text{maxdiff}(u^+, u^-) \geq \varepsilon_{\text{abs}} \)
19. then \(R, u^-, u^+ := \text{Split}(\hat{R}, \hat{u}^-, \hat{u}^+, \varepsilon_{\text{abs}}) \)
20. else return \((u^- + u^+)/2 \)
21. end if
22. if \(f = \max \) then \(u^+ := u^- \) else \(u^- := u^+ \)
23. end loop
3.2 Symbolic Magnified Iteration (SMI)

Algorithm 5 SMI(r, R, trans', T, u, h, f, g, ε\text{float}) Symbolic Magnified Iteration

1. \(v := u\)
2. \(\text{trans}' := \text{trans}' \times r\)
3. \(\text{done} := \text{false}\)
4. \(\text{while} (\text{done} != \text{true}) \text{ do}\)
5. \(\text{tmp} := \text{PERMUTE}(v, rvars, cvars)\)
6. \(\text{tmp} := \text{MVMULT}(\text{trans}', \text{tmp})\)
7. \(\text{tmp} := \text{REPLACE}(g, \text{tmp}, n\text{dvars})\)
8. \(\text{tmp} := \text{APPLY}(f, \text{tmp}, T)\)
9. \(v' := \text{ITE}(r, \text{tmp}, u)\)
10. \(\text{if} \ \text{MAXDIFF}(v', v) < \varepsilon\text{float} \text{ then done} := \text{true}\)
11. \(v := v'\)
12. \text{end while}\)
13. \(\text{if} (h = \text{max})\)
14. \(\text{then} \ \text{val} := \text{FINDMAX}((\text{ITE}(r, v, \text{CONST}(0))))\)
15. \(\text{else} \ \text{val} := \text{FINDMIN}((\text{ITE}(r, v, \text{CONST}(1))))\)
16. \(\text{return} \ \text{ITE}(r, \text{CONST}((\text{val}), u))\)

The core part of the MTBDD-based implementation of MLA is called Symbolic Magnified Iteration (SMI) and is shown in Algorithm 5. It performs a symbolic value iteration algorithm inside the region represented by BDD \(r\) from the current partition \(R\). The algorithm is also passed the MTBDD \(\text{trans}'\) representing the (filtered) probabilistic transition function of the MDP, the BDD \(T\) representing the set of target states, and the MTBDD \(u\), which stores the (upper or lower) bound for every state's corresponding region. The other parameters \(h, f, g\) and \(\varepsilon\text{float}\), are as for the nonsymbolic version in Algorithm 3.

The algorithm initializes the solution vector \(v\) with the vector \(u\) (line 1) and then the MTBDD \(\text{trans}'\) is filtered further to include only transitions for the current region (line 2). The loop (lines 3-12) updates the solution vector \(v\) until the results of two successive iterations differ less than \(\varepsilon\text{float}\). The first two lines of the loop perform a matrix-vector multiplication of the transition probability matrix of the MDP with (a permuted copy of) the solution vector \(v\). This corresponds to the summations in line 6a of Algorithm 3. In line 7, the operator \(g \in \{\text{max}, \text{min}\}\) is applied over the nondeterministic variables \(n\text{dvars}\) of the resulting MTBDD (the first part of line 6a from Algorithm 3). In line 8, the operator \(f\) is applied point-wise with the BDD \(T\) representing the target states (line 6b of Algorithm 3). Finally, the new solution vector \(v'\) is computed by setting values for all states not in the current region \(r\) to their values in \(u\), using the MTBDD operation \(\text{ITE}((\text{If-Then-Else}))\).

Once the while loop terminates, the algorithm computes the maximum (if \(h=\text{max}\)) or minimum (if \(h=\text{min}\)) value \(\text{val}\) of the region by using \(\text{FINDMAX}\) (or \(\text{FINDMIN}\)). Finally, the algorithm returns a solution vector with value \(\text{val}\) for the current region and the old solution value from \(u\) for all other regions.

3.3 The Splitting Order

The creation of the initial partition and the way in which it is subsequently split are governed by two user parameters: \(\text{strat}\) and \(\text{level}\). Splitting operations are based on a priority order \(X_{\text{ord}} = \langle x_1, x_2, \ldots, x_n\rangle\) of the MTBDD variables representing the state space of the MDP. In the adaptive refinement scheme of MLA, each call to the routine Split subdivides a region into two using the next MTBDD variable from the order \(X_{\text{ord}}\) (we call this the splitting index). Since the MLA algorithm does not refine regions with \(u^+(r) - \text{val}(r) \leq \varepsilon_{\text{abs}}\), after a refinement, different regions may have different splitting indices.

The order \(X_{\text{ord}}\) is determined by the choice of a splitting strategy \(\text{strat}\) : either “consecutive” or “interleaved”. In the default MTBDD variable ordering (for an MDP derived from a PRISM model), MTBDD variables are grouped according to the (model-level) variable to which they correspond and ordered consecutively. For \(\text{strat}=\text{consecutive}\), we take \(X_{\text{ord}}\) to be this default ordering. For \(\text{strat}=\text{interleaved}\), on the other hand, the MTBDD variables corresponding to different (model-level) variables are interleaved.

The initial creation of a partition (by routine CreateInitialPartition) is determined by \(X_{\text{ord}} = \langle x_1, x_2, \ldots, x_n\rangle\) and the parameter \(\text{level}\). Each region in the initial partition is created by splitting on MTBDD variables \(x_1, x_2, \ldots, x_{\text{level}}\) (i.e., the splitting index for each region is \(\text{level}\)).

4 The Case Studies and Results

We have implemented the symbolic MLA algorithm within the probabilistic model checker PRISM and, in this section, present results for the following MDP case studies.

Inventory Problem. We have modeled an inventory as an MDP. The variable “stock” denotes the current number of items in the inventory and “init” denotes the initial item count. The variable “time” keeps track of time elapsing. At each time step, the demand of the item is \(1\) with a probability \(p\) and \(0\) with \(1-p\). The probability \(p\) is a function of current number of items present in the inventory. The manager of the inventory visits the inventory every 7 time units and he has two actions to choose from: either place an order or do not place one. The property we are checking is the “minimum probability that the stock reach its minimum amount within MAXTIME time units”. In PCTL, the reachability property can be expressed as \(P_{\text{min}}=\varepsilon [\phi (\text{stock}=1 \land \text{time}<\text{MAXTIME})]\).
Robot in a Minefield. We consider the problem of navigating an $n \times n$ minefield. The minefield contains m mines, each with coordinates (x_i, y_i), for $1 \leq i \leq m$, where $1 \leq x_i < n$, $1 \leq y_i < n$. We consider the problem of computing the maximal probability with which a robot can reach the target corner (n, n), from all $n \times n$ states. At interior states of the field, the robot can choose among four actions: Up, Down, Left, Right; at the border of the field, actions that lead outside of the field are missing. From a state $s = (x, y) \in \{1, \ldots, n\}^2$ with coordinates (x, y), each action causes the robot to move to square (x', y') with probability $q(x', y')$, and to “blow up” (move to an additional sink state) with probability $1 - q(x', y')$. For action Right, we have $x' = x + 1$, $y' = y$; similarly for the other actions. The probability $q(x', y')$ depends on the proximity to mines, and is given by

$$q(x', y') = \prod_{i=1}^{m} \exp(-0.7 \cdot ((x' - x_i)^2 + (y' - y_i)^2)).$$

Optimal Stopping Game: Secretary Selection. We have modeled one application of the optimal stopping game. One boss starts interviewing c candidates for the post of secretary. After each interview, he can either select the candidate or continue the process with the remaining candidates. If the boss does not select the candidate, then the candidate is eliminated from the selection process. The variable “time” is used to keep track of the time that has elapsed. The boss can compare whether the current candidate is the best so far or if a better candidate was interviewed previously. If the current candidate is the best among all candidates seen, then the variable “best” is assigned to 1. The boss does not know the (merit) order of the candidates; hence we model assignment of the variable with a probabilistic update. The probability that the current one is the best among c candidates is set equal to 1/c. If the boss selects a candidate, then the variable “stop” is assigned to 1. The property we are checking is the “maximum probability that the interviewer has selected a non-best candidate before the timeout”. In PCTL, the reachability property can be expressed as $P_{\text{max=?}}[\Diamond (\text{stop=1} \land \text{best=0} \land \text{time<MAXTIME})].$

Hotel Booking Problem. We have modeled an instance of the overbooking problem for a hotel during a multiple-day conference. The conference-chairperson books b rooms for the registered participants in a hotel with r rooms. The variable “days” keeps track of days that have elapsed since the start of the conference. The participants can appear at any day during the conference but some of the booked rooms remain vacant during the conference season due to “no-show” of the participants. The hotel manager takes this factor into account and overbooks the hotel during the peak seasons. When he books a hotel room and the conference participant does not appear, the manager suffers a loss. Similarly he will be in trouble whenever he allows a non-conference visitor without keeping a room booked and the conference guest appears, requiring him to find an alternative room for the guest at higher cost. The arrival of the

<table>
<thead>
<tr>
<th>Example</th>
<th>Parameters</th>
<th>States</th>
<th>Transitions</th>
<th>PRISM</th>
<th>MLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>stock=512, MAXTIME=512</td>
<td>26,870</td>
<td>34,568</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>stock=1024, MAXTIME=1.024</td>
<td>106,734</td>
<td>135,308</td>
<td>54</td>
<td>26,005</td>
<td>61</td>
</tr>
<tr>
<td>stock=2048, MAXTIME=2.048</td>
<td>425,438</td>
<td>535,508</td>
<td>233</td>
<td>50,563</td>
<td>270</td>
</tr>
<tr>
<td>stock=4096, MAXTIME=4.096</td>
<td>1,698,750</td>
<td>2,130,788</td>
<td>896</td>
<td>99,084</td>
<td>1,056</td>
</tr>
<tr>
<td>stock=5120, MAXTIME=5.120</td>
<td>2,653,358</td>
<td>3,325,868</td>
<td>1,243</td>
<td>120,220</td>
<td>1,424</td>
</tr>
<tr>
<td>stock=10240, MAXTIME=10.240</td>
<td>10,605,918</td>
<td>13,275,680</td>
<td>7,118</td>
<td>240,639</td>
<td>7,551</td>
</tr>
<tr>
<td>Minefield</td>
<td>n=256, m=100</td>
<td>65,537</td>
<td>279,944</td>
<td>75</td>
<td>56,971</td>
</tr>
<tr>
<td>stock=512, m=200</td>
<td>262,145</td>
<td>1,128,522</td>
<td>627</td>
<td>91,285</td>
<td>1,493</td>
</tr>
<tr>
<td>stock=1024, m=300</td>
<td>1,048,577</td>
<td>4,316,719</td>
<td>3,625</td>
<td>126,603</td>
<td>5,463</td>
</tr>
<tr>
<td>Hotel Booking</td>
<td>c=127 bk=63 MAXTIME=15</td>
<td>131,072</td>
<td>645,168</td>
<td>4</td>
<td>30,580</td>
</tr>
<tr>
<td>Booking</td>
<td>c=255 bk=127 MAXTIME=31</td>
<td>1,048,576</td>
<td>5,202,016</td>
<td>44</td>
<td>118,080</td>
</tr>
<tr>
<td></td>
<td>c=511 bk=255 MAXTIME=31</td>
<td>4,194,304</td>
<td>20,889,696</td>
<td>2,072</td>
<td>373,536</td>
</tr>
<tr>
<td>Secretary</td>
<td>c=100 MAXTIME=100</td>
<td>30,697</td>
<td>61,388</td>
<td>2</td>
<td>14,577</td>
</tr>
<tr>
<td>stock=512, MAXTIME=200</td>
<td>90,496</td>
<td>180,587</td>
<td>3</td>
<td>17,146</td>
<td>11</td>
</tr>
<tr>
<td>stock=200 MAXTIME=200</td>
<td>121,397</td>
<td>242,788</td>
<td>10</td>
<td>32,728</td>
<td>27</td>
</tr>
<tr>
<td>stock=400 MAXTIME=400</td>
<td>451,896</td>
<td>903,387</td>
<td>24</td>
<td>55,430</td>
<td>62</td>
</tr>
<tr>
<td>stock=500 MAXTIME=1000</td>
<td>2,252,496</td>
<td>4,502,987</td>
<td>88</td>
<td>105,971</td>
<td>199</td>
</tr>
<tr>
<td>stock=1000 MAXTIME=2000</td>
<td>9,004,996</td>
<td>18,005,987</td>
<td>392</td>
<td>232,946</td>
<td>802</td>
</tr>
<tr>
<td>Zeroconf</td>
<td>N=4, M=32, K=4</td>
<td>26,121</td>
<td>50,624</td>
<td>88</td>
<td>126,731</td>
</tr>
<tr>
<td>stock=512, M=32, K=4</td>
<td>552,097</td>
<td>1,728,272</td>
<td>1,307</td>
<td>722,224</td>
<td>650</td>
</tr>
<tr>
<td>stock=8, M=128, K=4</td>
<td>2,092,512</td>
<td>6,552,368</td>
<td>3,221</td>
<td>857,577</td>
<td>2,593</td>
</tr>
</tbody>
</table>

Figure 1. Experimental results: Symbolic MLA, compared to PRISM.
participants is probabilistic. The property we are checking will be the “maximum probability that a conference guest arrives within the duration of the conference and does not get a room”. In PCTL, the reachability property can be expressed as $P_{\text{max}=0}[\Diamond (v=0 \land b>0 \land \text{days}<MAXTIME)]$.

Zeroconf Protocol. The Zeroconf protocol [5] is used for the dynamic self-configuration of a host joining a network; it has been used as a testbed for the abstraction method considered in [19]. We consider a network with N existing hosts, and M total IP addresses; protocol messages have a certain probability of being lost during transmission. The variable K denotes the maximum number of probes can be sent by the next host. We consider the problem of determining the maximal probability of a host eventually acquiring an IP address.

Results. Our experiments were run on an Intel 2.16 GHz machine with 2GB RAM. We used $\varepsilon_{\text{float}}=0.01$, $\varepsilon_{\text{abs}}=0.1$ for both PRISM and MLA and, unless otherwise stated (see next section), an initial splitting index (level) of $\lfloor k/2 \rfloor$, where k is the number of MTBDD variables representing the MDP’s state space. For the splitting strategy (strat), we used “consecutive” for all model, except the minefield.

Figure 1 summarizes the results for all case studies. The first two columns show the name and parameters of the MDP model. The third and fourth columns give the number of states and transitions for each model. The remaining columns show the performance of analysing the MDPs, using both PRISM and symbolic MLA. In both cases, we give the total time required (which includes model building and model checking) and the peak MTBDD node count (which includes the partial transition relation and the solution vectors). For MLA, we also show the final number of generated regions. We used the MTBDD engine of PRISM, since (a) it is generally the best performing engine for MDPs; and (b) it is the only one that can scale to the size of models we are aiming towards. More detailed experimental data is available from: www.soe.ucsc.edu/~pritam/gest08.html.

Discussion. The “Nodes” columns of Figure 1 demonstrate the efficiency of the symbolic implementation of MLA: the memory requirements are significantly lower than the equivalent statistics for PRISM’s MTBDD engine. As discussed earlier in Section 3, this is due to the fact that MLA analyzes each region in isolation, resulting in a smaller number of distinct values in the solution vectors. For the Zeroconf example, this phenomenon actually results in MLA also outperforming PRISM in terms of solution time.

It is also clear, from the sizes of the MDPs in the table, that the symbolic version of MLA is able to handle MDPs considerably larger than were previously feasible for the existing explicit implementation of [11]. Thanks to this, another positive conclusion which we can draw from the results is that MLA generates relatively small numbers of regions for the analysis of even large MDPs.

Finally, we also experimented with different parameter values for the splitting strategy (strat) and initial splitting index (level). Figure 2 shows results for the secretary selection case study ($c=300$ and $MAXTIME=400$). For smaller values of the initial splitting index, there are less regions initially but these regions are relatively large, resulting in higher memory consumption. Increasing the splitting index produces smaller regions, which take less space and time to analyse, however more global iterations are required, resulting in longer total solution times. Hence, in our results (Figure 1), we opted for a trade-off by using a splitting index close to $k/2$, where k is the number of MTBDD variables representing the state space.

For the results in Figure 2 (and for most of our case studies), the “consecutive” strategy performs better than the “interleaved” strategy, both in terms of memory usage, time and number of regions. For the minefield problem, however, the reverse is true. This is due to the “grid-like” nature of the model and the fact that the state-space is described by a pair of co-ordinates, x and y. It is more effective to refine the state space into square regions of the grid.

<table>
<thead>
<tr>
<th>strat</th>
<th>level</th>
<th>Nodes</th>
<th>Time (in s)</th>
<th>Regions</th>
<th>strat</th>
<th>level</th>
<th>Nodes</th>
<th>Time (in s)</th>
<th>Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>consecutive</td>
<td>1</td>
<td>60,563</td>
<td>50</td>
<td>191</td>
<td>interleaved</td>
<td>1</td>
<td>60,563</td>
<td>254</td>
<td>942</td>
</tr>
<tr>
<td>consecutive</td>
<td>4</td>
<td>19,732</td>
<td>57</td>
<td>191</td>
<td>interleaved</td>
<td>4</td>
<td>40,599</td>
<td>255</td>
<td>942</td>
</tr>
<tr>
<td>consecutive</td>
<td>7</td>
<td>12,129</td>
<td>60</td>
<td>214</td>
<td>interleaved</td>
<td>7</td>
<td>18,054</td>
<td>258</td>
<td>946</td>
</tr>
<tr>
<td>consecutive</td>
<td>11</td>
<td>11,491</td>
<td>95</td>
<td>752</td>
<td>interleaved</td>
<td>11</td>
<td>10,060</td>
<td>307</td>
<td>1057</td>
</tr>
<tr>
<td>consecutive</td>
<td>15</td>
<td>13,194</td>
<td>191</td>
<td>3043</td>
<td>interleaved</td>
<td>15</td>
<td>11,632</td>
<td>441</td>
<td>2705</td>
</tr>
</tbody>
</table>

Figure 2. Effect of splitting strategy and initial splitting index (Secretary: $c=300$, MAXTIME=400)
significant gains in memory usage over standard (symbolic) implementations of MDP verification, as provided by PRISM. Furthermore, in some cases this also produce better performance in terms of time. Our results also show that symbolic MLA can be applied to much larger MDPs than its explicit counterpart.

In the future, we plan to make a comparison of our approach with other MDP abstraction techniques, including the game-based approach of [19]. We also plan to investigate the integration of more advanced symbolic representations of state space partitions, such as [12].

Acknowledgment

Parker and Norman are supported in part by EPSRC grants GR/S11107 and GR/S46727.

References