
Game-based Abstraction for Markov Decision Processes

Marta Kwiatkowska Gethin Norman David Parker
School of Computer Science, University of Birmingham

Birmingham, B15 2TT, UK
{mzk,gxn,dxp}@cs.bham.ac.uk

Abstract

In this paper we present a novel abstraction technique for
Markov decision processes (MDPs), which are widely used
for modelling systems that exhibit both probabilistic and
nondeterministic behaviour. In the field of model checking,
abstraction has proved an extremely successful tool to com-
bat the state-space explosion problem. In the probabilis-
tic setting, however, little practical progress has been made
in this area. We propose an abstraction method for MDPs
based on stochastic two-player games. The key idea behind
this approach is to maintain a separation between nonde-
terminism present in the original MDP and nondetermin-
ism introduced through abstraction, each type being repre-
sented by a different player in the game. Crucially, this al-
lows us to obtain distinct lower and upper bounds for both
the best and worst-case performance (minimum or maxi-
mum probabilities) of the MDP. We have implemented our
techniques and illustrate their practical utility by applying
them to a quantitative analysis of the Zeroconf dynamic net-
work configuration protocol.

1. Introduction

Markov decision processes (MDPs) are a natural and widely
used model for systems which exhibit bothnondetermin-
ism, due for example to concurrency, andprobability, rep-
resenting for example randomisation or unpredictability.
Automatic verification of MDPs using probabilistic model
checking has proved successful for analysing real-life sys-
tems from a wide range of application domains includ-
ing communication protocols, security protocols, and ran-
domised distributed algorithms. Despite improvements in
implementations and tool support in this area, thestate-
space explosionproblem remains a major hurdle for the
practical application of these methods.

In this paper, we considerabstractiontechniques, which
have been established as one of the most effective ways
of reducing the state-space explosion problem for non-

probabilistic model checking (see e.g. [7]). The basic idea
of such methods is to construct an abstract model, typically
much smaller than the original (concrete) model, in which
details not relevant to a particular property of interest have
been removed. Such an abstraction is said to beconserva-
tive if satisfaction of a property in the abstract model im-
plies that the property is also satisfied in the concrete model.
For properties not satisfied in the abstract model, this is not
the case, but information obtained during the verification
process, such as a counterexample, maybe be used to re-
fine the abstraction [6].

In the probabilistic setting, it is typically necessary to
considerquantitativeproperties, in which case the actual
probability of some behaviour being observed must be de-
termined, e.g. “the probability of reaching an error state
within T time units”. Therefore in this setting a different
notion of property preservation is required. A suitable alter-
native, for example, would be the case where quantitative
results computed from the abstraction constitute conserva-
tive bounds on the actual values for the concrete model.

In fact, due to the presence of nondeterminism in an
MDP there is not necessarily a single value correspond-
ing to a given quantitative measure. Instead,best-caseand
worst-casescenarios must be considered. More specifically,
model checking of MDPs typically reduces to computa-
tion of probabilistic reachabilityandexpected reachability
properties, namely the minimum or maximum probability
of reaching a set of states, and the minimum or maximum
expected reward cumulated in doing so.

When constructing an abstraction of an MDP, the result-
ing model will invariably exhibit a greater degree of nonde-
terminism since we are introducing additional uncertainty
with regards to the precise behaviour of the system. The key
idea in our abstraction approach is to maintain a distinction
between the nondeterminism from the original MDP and the
nondeterminism introduced during the abstraction process.
To achieve this, we model abstractions as simple stochas-
tic two-player games [8], where the two players correspond
to the two different forms of nondeterminism. We can then
analyse these models using techniques developed for such

games [9, 14, 4].
Our analysis of these abstract models results in a sepa-

rate lower and an upper bound for both the minimum and
maximum probabilities (or expected reward) of reaching a
set of states. This approach is particularly appealing since
it also provides a quantitative measure of the utility of the
abstraction. If the difference between the lower and upper
bounds is too great, the abstraction can be refined and the
process repeated. By comparison, if no discrimination be-
tween the two forms of nondeterminism is made, a single
lower and upper bound would be obtained. In the (com-
mon) situation where the minimum and maximum probabil-
ities (or expected rewards) are notably different, it is diffi-
cult to interpret the usefulness of the abstraction. Consider,
for example, the extreme case where the two-player game
approach reveals that the minimum probability of reaching
some set of states is in the interval[0, ε1] and the maximum
probability is in the interval[1−ε2, 1]. In this case, a sin-
gle pair of bounds could at best establish that both the mini-
mum and maximum probability lie within the interval[0, 1],
effectively yielding no information.

Related Work.Below, we summarise work on abstraction
methods for quantitative analysis of Markov decision pro-
cesses and Markov chains. General issues relating to ab-
straction in the field of probabilistic model checking are dis-
cussed in [20, 28]. Progress has been made in the area of
qualitative probabilistic verification, see for example [33],
and games have also been applied in the field of non-
probabilistic model checking, for example [32]. Another ap-
proach to improving the efficiency of model checking for
large Markov decision processes is through the use of par-
tial order techniques [3, 11].

D’Argenio et al. [10] introduce an approach for verifying
quantitative reachability properties of MDPs based on prob-
abilistic simulation [30]. Properties are analysed on abstrac-
tions obtained through successive refinements, starting from
an initial coarse partition derived from the property under
study. This approach only produces a lower bound for the
minimum reachability probability and an upper bound for
the maximum reachability probability and hence appears
more suited to analysing Markov chains (models with dis-
crete probabilities and no nondeterminism) since the mini-
mum and maximum probabilities coincide in this case.

Huth [21] considers an abstraction approach for infi-
nite state Markov chains where the abstract models (finite
state approximations) contain probabilistic transitions la-
belled with intervals, rather than exact values. Conserva-
tive model checking of such models is achieved through
a three-valued semantics of probabilistic computation tree
logic (PCTL) [17]. Huth also proves the ‘optimality’ of the
abstraction technique: for any finite set of until-free formu-
lae, there always exists an abstraction in which satisfaction
of each formula agrees with the concrete model. Fecher et

al. [16] also consider an abstraction technique for Markov
chains where probabilistic transitions are labelled with in-
tervals and the logic PCTL has a three-valued interpreta-
tion. It is shown that model checking in this setting has the
same complexity as that for standard Markov chains against
PCTL. An alternative approach using Markov chains with
intervals of probabilities can be found in [31].

In [15] a method for approximating continuous state (and
hence infinite state) Markov processes by a family of finite
state Markov chains is presented. It is shown that, for sim-
ple quantitative modal logic, if the continuous Markov pro-
cess satisfies a formula, then one of the approximations also
satisfies the formula. Monniaux [27] also considers infinite
state systems, demonstrating that the framework of abstract
interpretation can be applied to Markov decision processes
with infinite state spaces.

Finally, McIver and Morgan have developed a frame-
work for the refinement and abstraction of probabilistic pro-
grams using expectation transformers [26]. The proof tech-
niques developed in this work have been implemented in the
HOL theorem-proving environment [19].

Outline of the Paper.In the next section we present back-
ground material required for the remainder of the paper. In
particular, we summarise results relating to Markov deci-
sion processes and to simple stochastic two player games. In
Section 3 we describe our abstraction technique and show
the correctness of the approach, then in Section 4 we il-
lustrate its applicability through a case study concerning
the Zeroconf dynamic network configuration protocol. Sec-
tion 5 concludes the paper.

2. Background

Let R≥0 denote the set of non-negative reals. For a finite set
Q, we denote byDist(Q) the set ofdiscrete probability dis-
tributions over Q, i.e. the set of functionsµ : Q → [0, 1]
such that

∑
q∈Q µ(q) = 1.

2.1. Markov Decision Processes

Markov decision processes (MDPs) are a natural represen-
tation for the modelling and analysis of systems with both
probabilistic and nondeterministic behaviour.

Definition 1 A Markov decision processis a tupleM =
(S, sinit ,Steps, rew), whereS is a set of states,sinit ∈ S
is the initial state,Steps : S → 2Dist(S) is the probabil-
ity transition function andrew : S ×Dist(S) → R≥0 is the
reward function.

A probabilistic transitions
µ−→ s′ is made from a states

by first nondeterministically selecting a distributionµ ∈
Steps(s) and then making a probabilistic choice of target
states′ according to the distributionµ. The reward function

associates the non-negative real-valuerew(s, µ) with per-
forming the transitionµ from the states.

A path of an MDP represents a particular resolution of
both nondeterminismand probability. Formally, a path of
an MDP is a non-empty finite or infinite sequence of prob-
abilistic transitions:

π = s0
µ0−→ s1

µ1−→ s2
µ2−→ . . .

such thatµi(si+1)>0 for all i. We denote byπ(i) the
(i+1)th state ofπ, last(π) the last state ofπ if π is finite and
step(π, i) the distribution associated with the(i+1)-th tran-
sition (that is,step(π, i) = µi). For any infinite pathπ and
set of statesF , the total reward accumulated until a state in
F is reached alongπ, denotedr(F, π), equals:∑min{j |π(j)∈F}

i=1 rew(π(i−1), step(π, i−1))

if there existsj ∈ N such thatπ(j) ∈ F , and equals∞ oth-
erwise. For simplicity, we have defined the reward of a path
which does not reachF to be∞, even though the total re-
ward of the path may not be infinite. Essentially, this means
that the expected reward of reachingF from s is finite if
and only if a state inF is reached froms with probabil-
ity 1.

In contrast to a path, anadversary (sometimes also
known as ascheduleror policy) represents a particular res-
olution of nondeterminismonly. More precisely, an adver-
sary is a function mapping every finite pathπ ofM to a dis-
tribution µ ∈ Steps(last(π)). For any states ∈ S and ad-
versaryA, let PathA

fin(s) andPathA(s) denote the sets of
finite and infinite paths starting ins that correspond toA.
Furthermore, letAdv denote the set of all adversaries.

Definition 2 An adversaryA is calledsimple(or memory-
less) if for any finite pathsπ and π′ for which last(π) =
last(π′) we haveA(π) = A(π′).

The behaviour under a given adversaryA is purely prob-
abilistic and we can define a probability measureProbA

s

over the set of pathsPathA(s) [22]. Below, we introduce
two quantitative measures for MDPs which together form
the basis for probabilistic model checking of MDPs [12, 1].

Probabilistic Reachability The first measure isproba-
bilistic reachability, namely the minimum and maximum
probability of reaching, from some states, a setF ⊆ S
of target states. For a given adversaryA, the probability of
reachingF from s is given by:

pA
s (F) def= ProbA

s {π ∈ PathA(s) | ∃i ∈ N . π(i) ∈ F} .

Definition 3 For an MDPM = (S, sinit ,Steps, rew), the
minimum and maximum reachability probabilitiesof reach-
ing the set of target statesF ⊆ S from a states ∈ S are

defined as follows:

pmin
s (F) = inf

A∈Adv
pA

s (F) andpmax
s (F) = sup

A∈Adv
pA

s (F) .

Expected Reachability The second measure we consider
is expected reachability, which refers to the expected re-
ward accumulated, starting in states, before reaching a set
F ⊆ S of target states. For an adversaryA ∈ Adv , let
eA
s (F) denote the usual expectation of the functionr(F, ·):

eA
s (F) def=

∫
π∈PathA(s)

r(F, π) dProbA
s

Definition 4 For an MDPM = (S, sinit ,Steps, rew), the
minimum and maximum expected rewardsof reaching a set
of target statesF ⊆ S from the states ∈ S are defined as
follows:

emin
s (F) = inf

A∈Adv
eA
s (F) andemax

s (F) = sup
A∈Adv

eA
s (F) .

Computing values for expected reachability (and proba-
bility) reduces to thestochastic shortest path problemfor
Markov decision processes; see for example [2, 13]. A key
result in this respect is that optimality with respect to prob-
abilistic and expected reachability can always be achieved
with simple adversaries (see Definition 2). A consequence
of this is that these quantities can be computed through an
iterative processes known asvalue iteration, the basis of
which is given in the lemma below.

Lemma 5 Consider an MDPM = (S, sinit ,Steps, rew)
and set of target statesF . Let F0 be the set of states from
whichF cannot be reached. The following sequence of vec-
tors converges to the minimum probability of reaching the
target setF . Let (pn)n∈N be the sequence of vectors over
S such that for any states ∈ S, if s ∈ F or s ∈ F0 then
pn(s) = 1 andpn(s) = 0 respectively for alln ∈ N, and
otherwisep0(s) = 0 and for anyn ∈ N:

pn+1(s) = min
µ∈steps(s)

∑
s′∈S

µ(s′) · pn(s′)

The maximum probability and the minimum or maximum
expected reward of reaching the target setF can be defined
in a similar fashion [2, 13].

2.2. Simple Stochastic Games

In this section we review simple stochastic games [8], which
are turn-based games involving two players and chance.

Definition 6 A turn-based stochastic gameis a tupleG =
((V,E), vinit , (V1, V2, V©), δ, rew) where:

• (V,E) is a finite directed graph;

• vinit ∈ V is the initial vertex;

• (V1, V2, V©) is a partition ofV ;

• δ : V© → Dist(V) is the probabilistic transition func-
tion;

• rew : E → R≥0 is the reward function over edges.

Vertices inV1, V2 andV© are called ‘player 1’, ‘player 2’
and ‘probabilistic’ vertices, respectively.

The game operates as follows. Initially, a token is placed on
the starting vertexvinit . At each step of the game, the token
moves from its current vertexv to a neighbouring vertexv′

in the game graph. The choice ofv′ depends on the type of
the vertexv. If v ∈ V1 then player 1 choosesv′, if v ∈ V2

then player 2 makes the choice, and ifv ∈ V© thenv′ is
selected randomly according to the distributionδ(v).

A Markov decision process can be thought of as a turn-
based stochastic game in which there are no player 2 ver-
tices and where there is a strict alternation between player 1
and probabilistic vertices.

A play in the gameG is a sequenceω = 〈v0v1v2 . . . 〉
such that(vi, vi+1) ∈ E for all i ∈ N. We denote byω(i)
theith vertex in the play and bylast(ω) the last vertex ofω
if ω is finite. For any infinite playω and set of verticesF ,
the total reward accumulated until a vertex inF is reached,
denotedr(F, ω), equals:∑min{j |ω(j)∈F}

i=1 rew(ω(i−1), ω(i))

if there existsj ∈ N such thatω(j) ∈ F , and equals∞ oth-
erwise.

A strategy for player 1 is a functionσ1 : V ∗V1 →
Dist(V) such that for anyω ∈ V ∗V1 and v ∈ V , if
σ1(ω)(v)>0, then(last(ω), v) ∈ E. Strategies for player
2, denoted byσ2, are defined analogously. For a fixed
pair of strategiesσ1, σ2 we denote byPlayσ1,σ2

fin (v) and
Playσ1,σ2(v) the set of finite and infinite plays starting in
vertexv that correspond to these strategies. For a fixed strat-
egy pair, the behaviour of the game is completely random
and, for any vertexv, we can construct a probability mea-
sureProbσ1,σ2

v over the set of infinite playsPlayσ1,σ2(v).
This construction proceeds similarly to MDPs [22].

Reachability Objectives A reachability objectiveis a set
of verticesF which a player attempts to reach. For fixed
strategiesσ1 andσ2 and vertexv ∈ V we define both the
probability and expected reward corresponding to the reach-
ability objectiveF as:

pσ1,σ2
v (F) def= Probσ1,σ2

v {ω | ∃i ∈ N ∧ ω(i) ∈ F}

eσ1,σ2
v (F) def=

∫
ω∈Playσ1,σ2 (v)

r(F, ω) dProbσ1,σ2
v .

The optimal probabilities of the game for player 1 and
player 2, with respect to the reachability objectiveF , are
defined as follows:

supσ1
infσ2 pσ1,σ2

v (F) and supσ2
infσ1 pσ1,σ2

v (F)

and the optimal expected rewards are:

supσ1
infσ2 eσ1,σ2

v (F) and supσ2
infσ1 eσ1,σ2

v (F) .

A player 1 strategyσ1 is optimal from vertexv with respect
to the probability of the objective if:

inf
σ2

pσ1,σ2
v (F) = supσ1

infσ2 pσ1,σ2
v (F) .

The optimal strategies for player 2 and for expected rewards
can be defined analogously.

We now summarise results from [4, 8, 9].

Definition 7 A strategyσi is pure if it does not use ran-
domisation, that is, for any finite playω such thatlast(ω) ∈
Vi, there existsv′ ∈ V such thatσi(ω)(v′) = 1. A strat-
egyσi is memorylessif its choice depends only on the cur-
rent vertex, that is,σi(ω) = σi(ω′) for any finite playsω
andω′ such thatlast(ω) = last(ω′).

Proposition 8 Let G be any simple stochastic game and
F a set of target vertices. The family of pure memoryless
strategies suffices for optimality with respect to reachabil-
ity objectives.

Lemma 9 Consider a turn based stochastic gameG =
((V,E), vinit , (V1, V2, V©), δ, rew) and set of target ver-
ticesF . Let F0 be the set of vertices from whichF cannot
be reached. The following sequence of vectors converges
to the vector of optimal probabilities for player 1 with re-
spect to the reachability objectiveF . Let(pn)n∈N be the se-
quence of vectors overV such that for any vertexv ∈ V , if
v ∈ F or v ∈ F0 thenpn(v) = 1 andpn(v) = 0 respec-
tively for all n ∈ N, and otherwisep0(v) = 0 and for any
n ∈ N:

• pi+1(v) = max(v,v′)∈E pi(v′) if v ∈ V1;

• pi+1(v) = min(v,v′)∈E pi(v′) if v ∈ V2;

• pi+1(v) =
∑

v′∈V δ(v)(v′) · pi(v′) if v ∈ V©.

Lemma 9 forms the basis of an iterative method to com-
pute the vector of optimal values for a game. Note that al-
though this concerns only the optimal probability for player
1, similar results hold for player 2 and for expected rewards.
Observe the similarity between this and the value iteration
method for MDP solution described in Section 2.1.

3. Abstraction for MDPs

We now present our notion of abstraction for MDPs. As de-
scribed in Section 1, the abstract version of a concrete MDP
takes the form of a two-player stochastic game where the
choices made by one player (player 2) correspond to the
nondeterminism in the original MDP and the choices made
by the other (player 1) correspond to the nondeterminism
introduced by the abstraction process. The abstract MDP is

defined by a partitionPS = {S1, S2, . . . , Sn} of the state
spaceS, which we assume to be provided by the user. In
practice, this might for example be derived, as in predicate
abstraction, via the definition of a set of predicates on the
variables of the concrete state space. In this paper, we do
not consider the issue of finding an appropriate partition.

In the following, for any distributionµ over S, we de-
note byµ the probability distribution overPS lifted from µ,
i.e.µ(Si) =

∑
s∈Si

µ(s) for all Si ∈ PS .

Definition 10 Given an MDPM = (S, sinit ,Steps, rew)
and a partition of the state spacePS we define the corre-
spondingabstract MDPas the turn-based stochastic game

GM,PS
= ((V,E), vinit , (V1, V2, V©), δ, rew)

in which:

• V1 = PS ;

• V2 ⊆ 2Dist(Ps) wherev ∈ V2 if and only if there exists
s ∈ S such thatv = {µ |µ ∈ Steps(s)};

• V© = {µ |µ ∈ Steps(s) for somes ∈ S};
• vinit = Si wheresinit ∈ Si;

• (v, v′) ∈ E if and only if one of the following condi-
tions holds:

– v ∈ V1, v′ ∈ V2 andv′ = {µ |µ ∈ Steps(s)} for
somes ∈ v;

– v ∈ V2, v′ ∈ V© andv′ ∈ v;

– v ∈ V©, v′ ∈ V1 andv(v′)>0;

• δ : V© → Dist(V) is the identity function;

• rew(v, v′) equals rew(s, µ) if (v, v′) ∈ V2 × V©
and there existss ∈ S and µ ∈ Steps(s) such that
v = {µ |µ ∈ Steps(s)} andv′ = µ, and equals0 oth-
erwise.

Note that for the reward functionrew to be well defined
we require that for anys, s′ ∈ S, if {µ |µ ∈ Steps(s)} =
{µ |µ ∈ Steps(s′)}, thenrew(s, µ) = rew(s′, µ′) for all
µ, µ′ ∈ Dist(S) such thatµ = µ′. We can consider this re-
striction as saying that the abstraction can only be applied
if the reward functionrew is compatible with the state par-
tition PS .

Example 11 We illustrate the abstraction process on a sim-
ple example, shown in Figure 1(a), where the state parti-
tion of the MDP is indicated by the different shadings of the
states. The abstract MDP is given in Figure 1(b): the large,
shaded shapes are player 1 vertices (V1), player 2 vertices
(V2) are denoted by small black circles, and probabilistic
vertices (V©) by small white circles.

Intuitively, the roles of the vertices and players in the ab-
stract MDP can be understood as follows. AV1 vertex cor-
responds to an ‘abstract’ state: an element of the partition of

0.5

0.5

0.1

0.8

0.5

0.7
0.3

0.5

0.1

(a) Original MDP

1

0.1

0.1

0.8

1

0.7

0.3

(b) Abstraction (simple game)

Figure 1: Abstraction of a simple MDP

the states from the original MDP. Player 1 chooses a ‘con-
crete’ state from this set and then player 2 chooses a prob-
ability distribution from those available in the ‘concrete’
state (which is now a distribution over ‘abstract’ states
rather than ‘concrete’ states).

This description, and Example 11 (see Figure 1), per-
haps give the impression that the abstraction does not re-
duce the size of the model. In fact this is generally not the
case. Firstly, note that vertices inV2 are actually sets of
probability distributions, not ‘concrete’ states. Hence, all
states with the same outgoing distributions are collapsed
onto one. In fact there is a greater reduction since it is those
states with the same outgoing distributions defined over the
abstract states that are collapsed. Furthermore, in practice
there is no need to store the entire vertex setV of the ab-
stract MDP. Since we have a strict alternation betweenV1,
V2 andV© vertices, we need only store the vertices inV1,
the outgoing transitions comprising each probability dis-
tribution from V1, and how these transitions are grouped
(into elements ofV2 and into individual probability distri-
butions). Later, in Section 4 we will show how, on a com-
plex case study, the abstraction process brings a significant
reduction in model size.

3.1. Analysis of the Abstract MDP

We now describe how, from the abstract MDPGM,PS
for an

MDPM and state partitionPS , we derive lower and upper
bounds for probabilistic reachability and expected reacha-
bility properties, namely bounds for the valuespmin

s (F),
pmax

s (F), emin
s (F) and emax

s (F) for a set of target states
F ⊆ S. We assume, without loss of generality, that the set
F is an element ofPS . We assume also that the state parti-
tion preserves the value of the reward function ofM as de-
scribed in Section 3.

Theorem 12 LetM = (S, sinit ,Steps, rew) be an MDP
andPS = {S1, . . . , Sn} a partition of the state spaceS. For
a set of target statesF ∈ PS , consider the simple stochastic

gameGM,PS
= ((V,E), vinit , (V1, V2, V©), δ, rew) con-

structed according to Definition 10. Then, for any state
s ∈ S:

inf
σ1,σ2

pσ1,σ2
v (F) ≤ pmin

s (F) ≤ sup
σ1

inf
σ2

pσ1,σ2
v (F)

sup
σ2

inf
σ1

pσ1,σ2
v (F) ≤ pmax

s (F) ≤ sup
σ1,σ2

pσ1,σ2
v (F)

and

inf
σ1,σ2

eσ1,σ2
v (F) ≤ emin

s (F) ≤ sup
σ1

inf
σ2

eσ1,σ2
v (F)

sup
σ2

inf
σ1

eσ1,σ2
v (F) ≤ emax

s (F) ≤ sup
σ1,σ2

eσ1,σ2
v (F)

wherev is the unique vertex ofV1 such thats ∈ v.

Proof Outline. The proof relies on Proposition 8 and con-
structing, for any adversaryA of the MDP and states,
strategiesσ1 andσ2 for player 1 and player 2, respectively,
such thatpσ1,σ2

v (F) = pA
s (F) andeσ1,σ2

v (F) = eA
s (F). The

full proof can be found in [24]. ut

We can iteratively compute values for the bounds in the
above theorem that correspond to the optimal values for ei-
ther player 1 or player 2 (see Lemma 9). The remaining
bounds, although not usually considered in the context of
two player games (because the two players cooperate) can
be computed by considering the game as an MDP and ap-
plying conventional value iteration (see Lemma 5).

Example 13 Let us return to the previous example (see Ex-
ample 11 and Figure 1). Suppose that we are interested
in the probability in the original MDP of, starting from
the leftmost state, reaching the darkly shaded states on
the right hand side. The minimum and maximum reacha-
bility probabilities can be computed as 15/19 (0.789473)
and 18/19 (0.947368) respectively. From the abstraction
shown in Figure 1(b) and the results of Theorem 12, we
can establish that the minimum and maximum probabili-
ties lie within the intervals[7/10, 8/9] ([0.7, 0.888889]) and
[8/9, 1] ([0.888889, 1]) respectively.

On the other hand, if the abstract model had instead been
constructed as an MDP, i.e. with no discrimination between
the two forms of nondeterminism, we would only have been
able to determine that the minimum and maximum reacha-
bility probabilities both lay in the interval[0.7, 1].

4. Case Study

We now demonstrate the applicability of our approach to
a case study: the Zeroconf protocol [5] for dynamic self-
configuration of local IP addresses within a local network.
Zeroconf provides a distributed, ‘plug and play’ approach
to IP address configuration, managed by the individual de-
vices of the network.

The protocol functions as follows. A new device, orhost,
wishing to join such a network randomly selects an IP ad-
dress from a set of 65,024 addresses allocated for this pur-
pose. It then broadcasts several messages, calledprobes, to
the other hosts in the network in an attempt to determine
if this address is already in use. The probes operate as re-
quests to use the address and contain the IP address selected
by the host. Hosts in the network already operating with
IP addresses different to that chosen by the new host ig-
nore these probes. If, however, a host receives a probe con-
taining the IP address that it is currently using, it responds
with an ARP packet, asserting its claim to the address. If
the new host receives a reply (an ARP packet) to a probe
it has sent, then it reconfigures (randomly selects an IP ad-
dress and starts sending probes with this new address). If
after sending four such probes no reply is received within a
certain time bound, the host begins to use the address.

The Zeroconf protocol specifies precisely the timing of
the various messages, for example, that the four probes are
to be sent at two second intervals. Clearly, though, the pre-
cise latency of these messages over the network is unknown.
Furthermore, it assumed that there is a certain probability
that messages can be lost during transmission. Hence, it is
possible that the new device will end up using an IP ad-
dress that is already in use.

4.1. The Model

We use a slightly simplified version of the model of Zero-
conf from [25]. We model the situation where a new device
joins a network ofN existing hosts, in which there are a to-
tal of M IP addresses available. We assume that the com-
munication medium between the new host and each exist-
ing host in the network is such that messages arrive in the
order in which they are sent. We suppose that there are a va-
riety of message propagation delays between the new host
and the existing hosts (for example the propagation delay
for one host is between 0.1 and 0.2 seconds while for an-
other it is between 0.6 and 0.9) and that message loss prob-
abilities are proportional to these delays. For the full model,
see [24].

The concrete (full) model contains2N+1 components:
the new host andN pairs of channels for the two-way com-
munication between the new host and each of the configured
hosts. Since the other hosts do nothing except ignore or re-
ply to messages, they are not modelled explicitly. The state
of the new host comprises its program counter, the IP ad-
dress it has currently selected, a count of how many probes
it has sent and a clock to measure time between probes.
The state of each of the2N channels comprises its status
(whether it is empty, has a message to send or is sending a
message), the IP address (if any) which is currently being

N M=32 M=64 abstraction

4 26,121 (50,624) 50,377 (98,080) 737 (1,594)
5 58,497 (139,104) 113,217 (270,272) 785 (1,678)
6 145,801 (432,944) 282,185 (839,824) 833 (1,762)
7 220,513 (614,976) 426,529 (1,189,792) 857 (1,806)
8 432,185 (1,254,480) 838,905 (2,439,600) 881 (1,850)

Table 1: Model statistics: states (transitions)

transmitted and a clock measuring the time elapsed since
the message was sent.

The partition of the state space of the concrete model,
which defines the abstract model, is in this case given by a
mapping to a reduced set of variables. For the new host, we
replace the IP addresses (range1, . . . ,M) with two values 1
and 2 (in both models the value 0 is also used to indicate that
the host currently has no IP address selected), where 1 rep-
resents the set of fresh IP addresses and 2 denotes those al-
ready in use (the IP addresses of the other hosts).

For the channels, we partition the local states according
to which of the following condition is satisfied:

• no messages are being sent;

• a broadcast initiated by the new host is in progress,x
time units have elapsed since the broadcast began,n
messages have still not arrived and the type of IP ad-
dress in the message,ip, is 1 or 2 (a fresh IP address
or an IP address of one of the configured hosts);

• a configured host is sending an ARP packet to the new
host,x time units have elapsed, and the type of the IP
address in the packet isip (as in the previous case).

We implemented a prototype Java implementation of the
MDP abstraction process described in Section 3 and then
applied it to a range of concrete models of the Zeroconf
protocol constructed with PRISM [18, 29]. The sizes of the
resulting models (number of states and transitions) can be
seen in Table 1 (recall thatN denotes the number of hosts
with configured IP address andM denotes the number of
available IP addresses). As the results demonstrate, the ab-
straction provides a very significant reduction in model size,
both in terms of states and transitions.

Observe also that the size of the abstract model increases
linearly, rather than exponentially, inN and is independent
of M . This fact can be understood from the description of
the abstraction process above: in the abstract model we only
keep track of the number of configured hosts that have yet to
receive a broadcast from the abstract host and store only 2
“abstract” IP addresses (representing the set of fresh IP ad-
dresses and the set of addresses already in use).

We note that the current limitation in the size of models
we have considered (values ofM andN) is due to fact that
we have chosen to present results for both the concrete and

M N lower bound actual value upper bound

4 0.99993760 0.99997866 0.99999984
5 0.99991920 0.99997575 0.99999976

32 6 0.99989917 0.99997248 0.99999971
7 0.99987739 0.99997097 0.99999967
8 0.99985420 0.99996896 0.99999949
4 0.99997099 0.99999023 0.99999993
5 0.99996310 0.99998894 0.99999991

64 6 0.99995489 0.99998776 0.99999990
7 0.99994652 0.99998751 0.99999987
8 0.99993776 0.99998722 0.99999984

Table 2: Minimum probability that the new host eventually
succeeds in selecting a fresh IP address

abstract models. However, as Table 1 indicates, in the case
of the abstract model it will be possible to verify the models
generated for much larger values of bothM andN .

4.2. Experimental Results

To validate the abstracted model we studied three properties
of the Zeroconf model:

• the probability that the new host eventually succeeds
in configuring an IP address not already in use;

• the probability that the new host succeeds in configur-
ing an IP address not already in use within a fixed time
bound;

• the expected time for the new host to complete the pro-
tocol (start using an IP address).

For each, we consider the best- and worst-case (i.e. min-
imum or maximum values). To allow for the computation
of the expected time properties we have defined the reward
function of the concrete model such that the reward of tran-
sitions corresponding to letting time pass equals the time
that elapses when this transition is performed and all other
transitions have reward 0.

We apply model checking both to the concrete models
(to establish the exact minimum and maximum values) and
to the abstract models (to compute lower and upper bounds
on these values). The former is done in conventional man-
ner with PRISM; the latter is done with our prototype im-
plementation of the algorithm described in Section 3.

Table 2 shows the minimum probability of eventually se-
lecting an unused IP address (the maximum probability is
the same in this case). Figure 2 and Figure 3 presents results
concerning the minimum and maximum probability that the
new host succeeds in configuring an IP address not already
in use within a fixed time boundT . We have used the same
vertical scale in Figure 2 and Figure 3 in order to allow a
comparison of the results obtained for the different values

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

ba
bi

lit
y

no
t c

on
fig

ur
ed

 b
y

tim
e

T

upper bound
actual value
lower bound

(a)N=8 andM=32

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

ba
bi

lit
y

no
t c

on
fig

ur
ed

 b
y

tim
e

T

upper bound
actual value
lower bound

(b) N=8 andM=64

Figure 2: Minimum probability that the new host configures successfully by timeT

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

ba
bi

lit
y

no
t c

on
fig

ur
ed

 b
y

tim
e

T

upper bound
actual value
lower bound

(a)N=8 andM=32

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

ba
bi

lit
y

no
t c

on
fig

ur
ed

 b
y

tim
e

T

upper bound
actual value
lower bound

(b) N=8 andM=64

Figure 3: Maximum probability that the new host configures successfully by timeT

of M andN and when considering either minimum or max-
imum probabilities. Finally, in Table 3 we give results ob-
tained for the minimum and maximum expected time for a
host to complete the protocol (start using an IP address).

For all of the values ofM and N considered we see
that there is relatively little difference between the mini-
mum and maximum cases. In fact, the minimum and max-
imum probability that the new host eventually successfully
selects a fresh IP address actually coincide. These proba-
bilities are the same because the only nondeterminism in
the original system relates to the timing characteristics of
the protocol. For the remaining properties, the similarity be-
tween the minimum and maximum cases (as shown in Fig-
ures 2 and 3 and Table 3) is due to the fact that there is ac-
tually only a small probability of a situation arising where

the new host picks an IP address that is in use by one of the
other hosts, and hence that the remaining hosts have any ef-
fect on the behaviour of the configuring host. Another inter-
esting characteristics of the graphs in Figures 2 and 3 is that
the plots are not smooth. This is a consequence of the dis-
crete nature of the protocol: the new host waits for 2 sec-
onds between sending probes and sends 4 probes before it
starts using an IP address.

As stated previously, an advantage of our approach is the
ability to quantify the utility of the abstraction, based on the
difference between the lower and upper bounds obtained. In
the case of the plots in Figure 2 and Figure 3, for a particular
time boundT this difference is indicated by the vertical dis-
tance between the curves for the lower and upper bounds at
the pointT on the horizontal axis. Examining these differ-

M N minimum expected time maximum expected time
lower bound actual value upper boundlower bound actual value upper bound

4 8.108767 8.157220 8.219029 8.123052 8.246489 8.304700
5 8.140993 8.203499 8.283920 8.159511 8.318295 8.394968

32 6 8.175700 8.253337 8.353800 8.198776 8.395620 8.492185
7 8.213181 8.293923 8.429265 8.241181 8.457891 8.597169
8 8.253788 8.337890 8.511020 8.287120 8.525360 8.710893
4 8.050758 8.073371 8.102218 8.057425 8.115030 8.142199
5 8.064523 8.093128 8.129936 8.072997 8.145661 8.180759

64 6 8.078762 8.113567 8.158610 8.089107 8.177352 8.220647
7 8.093501 8.128917 8.188289 8.105781 8.200838 8.261937
8 8.108767 8.144815 8.219029 8.123052 8.225162 8.304701

Table 3: Minimum and maximum expected time for completion of the protocol

ences between bounds for the results presented in this sec-
tion, it can be seen that our abstraction approach results in
tight approximations for the performance characteristics of
the protocol while at the same time producing a significant
reduction in the state space.

Comparing the results for the different values ofN and
M , we find that for all three properties of the model that
we have considered, the differences in bounds obtained be-
come smaller with either an increase inM or a decrease
in N . This is due to the fact that either incrementingM or
decrementingN increases the probability of the new host
choosing a fresh IP address, and therefore reduces the prob-
ability of the remaining hosts influencing its behaviour.

5. Conclusions

We have presented a novel approach for applying abstrac-
tion to the probabilistic verification of Markov decision pro-
cesses. Our technique is based on the translation of an MDP
into a (usually significantly smaller) stochastic two-player
game in which one player corresponds to nondeterministic
choices from the MDP and the other corresponds to the non-
determinism introduced through abstraction. Using existing
results and algorithms from the stochastic games literature,
we are able to compute both lower and upper bounds on
the minimum and maximum probability or expected reward
of reaching a set of states. This provides valuable quantita-
tive results with respect to both the behaviour of the original
MDP and the utility of the abstraction applied. Our proto-
type implementation has allowed us to demonstrate the po-
tential of this approach on a complex case study.

We hope to extend this work in a number of directions.
Firstly, we are aiming to adapt the abstraction process so
that it can be applied at the level of the modelling formalism
used (in this case the PRISM language). This would allow
us to bypass the construction of the full MDP which could
otherwise be a problem when considering very large mod-
els. In addition, performing the abstraction at the language

level introduces the possibility of applying our technique
to infinite state MDPs. We anticipate that, due to the simi-
larity of the numerical methods (Lemma 5 and Lemma 9),
the symbolic methods developed in PRISM [23] can be ex-
tended to solving simple stochastic games constructed in the
abstraction process. We also intend to look at ways of auto-
matically or semi-automatically generating partitions based
on the predicates appearing in both the specification of the
model and those appearing in the properties of interest.

Acknowledgements

The authors are supported in part by EPSRC grants
GR/S11107 and GR/S46727 and Microsoft Research Cam-
bridge contract MRL 2005-44.

References

[1] C. Baier and M. Kwiatkowska. Model checking for a proba-
bilistic branching time logic with fairness.Distributed Com-
puting, 11(3):125–155, 1998.

[2] D. Bertsekas and J. Tsitsiklis. An analysis of stochastic
shortest path problems.Mathematics of Operations Re-
search, 16(3):580–595, 1991.

[3] C.Baier, M. Grosser, and F. Ciesinski. Partial order reduction
for probabilistic systems. InProc. QEST’04, pages 230–239.
IEEE Computer Society Press, 2004.

[4] K. Chatterjee, L. de Alfaro, and T. Henzinger. Trading mem-
ory for randomness. InProc. QEST’04, pages 206–217.
IEEE Computer Society Press, 2004.

[5] S. Cheshire, B. Adoba, and E. Guttman. Dynamic configura-
tion of IPv4 link-local addresses (draft August 2002). Zero-
conf Working Group of the Internet Engineering Task Force
(www.zeroconf.org).

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In A. Emer-
son and A. Sistla, editors,Proc. CAV’00, volume 1855 of
LNCS, pages 154–169. Springer, 2000.

[7] E. Clarke, O. Grumberg, and D. Peled.Model Checking. The
MIT Press, 1999.

[8] A. Condon. The complexity of stochastic games.Informa-
tion and Computation, 96(2):203–224, 1992.

[9] A. Condon. On algorithms for simple stochastic games.Ad-
vances in computational complexity theory, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
13:51–73, 1993.

[10] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reach-
ability analysis of probabilistic systems by successive re-
finements. In L. de Alfaro and S. Gilmore, editors,Proc.
PAPM/PROBMIV’01, volume 2165 ofLNCS, pages 39–56.
Springer, 2001.

[11] P. D’Argenio and P. Niebert. Partial order reduction on con-
current probabilistic programs. InProc. QEST’04, pages
240–249. IEEE Computer Society Press, 2004.

[12] L. de Alfaro. Formal Verification of Probabilistic Systems.
PhD thesis, Stanford University, 1997.

[13] L. de Alfaro. Computing minimum and maximum reachabil-
ity times in probabilistic systems. In J. Baeten and S. Mauw,
editors,Proc. CONCUR’99, volume 1664 ofLNCS, pages
66–81. Springer, 1999.

[14] L. de Alfaro, T. Henzinger, and O. Kupferman. Concur-
rent reachability games. InProc. FOCS’98, pages 564–575.
IEEE Computer Society Press, 1998.

[15] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden.
Approximating labelled Markov processes.Information and
Computation, 184(1):160–200, 2003.

[16] H. Fecher, M. Leucker, and V. Wolf. Don’t know in proba-
bilistic systems. In A. Valmari, editor,Proc. SPIN’06, vol-
ume 3925 ofLNCS, pages 71–88. Springer, 2006.

[17] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability.Formal Aspects of Computing, 6(5):512–535,
1994.

[18] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In H. Hermanns and J. Palsberg, editors,Proc.
TACAS’06, volume 3920 ofLNCS, pages 441–444. Springer,
2006.

[19] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded
commands mechanized in HOL.Theoretical Computer Sci-
ence, 346(1):96–112, 2005.

[20] H. Huth. An abstraction framework for mixed non-
deterministic and probabilistic systems. In C. Baier,
B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, ed-
itors, Validation of Stochastic Systems: A Guide to Current
Research, volume 2925 ofLNCS, pages 419–444. Springer,
2004.

[21] M. Huth. On finite-state approximants for probabilistic
computation tree logic. Theoretical Computer Science,
346(1):113–134, 2005.

[22] J. Kemeny, J. Snell, and A. Knapp.Denumerable Markov
Chains. D. Van Nostrand Company, 1966.

[23] M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
tic symbolic model checking with PRISM: A hybrid ap-
proach. International Journal on Software Tools for Tech-
nology Transfer, 6(2):128–142, 2004.

[24] M. Kwiatkowska, G. Norman, and D. Parker. Game-based
abstraction for Markov decision processes. Technical Re-
port CSR-06-05, School of Computer Science, University of
Birmingham, 2006.

[25] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston.
Performance analysis of probabilistic timed automata us-
ing digital clocks. In K. Larsen and P. Niebert, editors,
Proc. FORMATS’03, volume 2791 ofLNCS, pages 105–120.
Springer, 2003.

[26] A. McIver and C. Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Monographs in Computer
Science. Springer, 2004.

[27] D. Monniaux. Abstract interpretation of programs as Markov
decision processes.Science of Computer Programming,
58(1–2):179 – 205, 2005.

[28] G. Norman. Analyzing randomized distributed algorithms.
In C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and
M. Siegle, editors,Validation of Stochastic Systems: A Guide
to Current Research, volume 2925 ofLNCS, pages 384–418.
Springer, 2004.

[29] PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.
[30] R. Segala.Modelling and Verification of Randomized Dis-

tributed Real Time Systems. PhD thesis, Massachusetts In-
stitute of Technology, 1995.

[31] K. Sen, M. Viswanathan, and G. Agha. Model-checking
Markov chains in the presence of uncertainties. In H. Her-
manns and J. Palsberg, editors,Proc. TACAS’06, volume
3920 ofLNCS, pages 394–410. Springer, 2006.

[32] S. Shoham and O. Grumberg. A game-based framework for
CTL counter-examples and 3-valued abstraction-refinement.
In W. Hunt and F. Somenzi, editors,Proc. CAV’03, volume
2725 ofLNCS, pages 275–287. Springer, 2003.

[33] L. Zuck, A. Pnueli, and Y. Kesten. Automatic verification
of probabilistic free choice. In A. Cortesi, editor,Proc. VM-
CAI’02, volume 2294 ofLNCS, pages 208–224. Springer,
2002.

	Introduction
	Background
	Markov Decision Processes
	Simple Stochastic Games

	Abstraction for MDPs
	Analysis of the Abstract MDP

	Case Study
	The Model
	Experimental Results

	Conclusions

