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Abstract. Continuous Time Markov Chains (CTMCs) are widely used
as the underlying stochastic process in performance and dependability
analysis. Model checking of CTMCs against Continuous Stochastic Logic
(CSL) has been investigated previously by a number of authors [2,4,13].
CSL contains a time-bounded until operator that allows one to express
properties such as “the probability of 3 servers becoming faulty within
7.01 seconds is at most 0.1”. In this paper we extend CSL with a random
time-bounded until operator, where the time bound is given by a random
variable instead of a fixed real-valued time (or interval). With the help
of such an operator we can state that the probability of reaching a set
of goal states within some generally distributed delay while passing only
through states that satisfy a certain property is at most (at least) some
probability threshold. In addition, certain transient properties of systems
which contain general distributions can be expressed with the extended
logic. We extend the efficient model checking of CTMCs against the logic
CSL developed in [13] to cater for the new operator. Our method involves
precomputing a family of coefficients for a range of random variables
which includes Pareto, uniform and gamma distributions, but otherwise
carries the same computational cost as that for ordinary time-bounded
until in [13]. We implement the algorithms in Matlab and evaluate them
by means of a queueing system example.

1 Introduction

Continuous time Markov chains (CTMCs) are widely used as the underlying
stochastic process in performance and dependability analysis. CTMCs are char-
acterised by allowing only exponential distributions – the time that the system
remains in a state is governed by a (negative) exponential distribution. The re-
striction to exponential distributions yields efficient analysis techniques for both
transient and steady-state probabilities, and hence also for calculating standard
performance measures such as throughput, mean waiting time and average cost.
Recently extensions of temporal logic have been proposed which can express such
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properties. The temporal logic CSL (Continuous Stochastic Logic) introduced
by Aziz et al. [1,2] and since extended by Baier et al. [4] is based on the tem-
poral logics CTL [5] and PCTL [11] and provides a powerful means to specify
both path-based and traditional state-based performance measures on CTMCs
in a concise, flexible and unambiguous way. CSL contains a time-bounded un-
til operator that allows one to express properties such as “the probability of 3
servers becoming faulty within 7.01 seconds is at most 0.1” (more generally, one
can additionally require that the executions step through states that satisfy a
given property). Model checking of CTMCs against CSL has been improved in
[3,13] through the use of uniformisation [10,12] and transient analysis, and the
usefulness of this approach demonstrated by a number of case studies.

However, in practice it is often the case that exponential distributions are not
an adequate modelling tool for capturing the behaviour of stochastic systems.
Examples of such situations include modelling file transfer over the Internet,
timeouts in communication protocols and the residence time in a wireless cell.
For these cases the modelling framework must be capable of handling general
distributions, such as Pareto, Erlang, gamma or phase-type. An unfortunate
consequence of including general distributions within the modelling framework,
as has been demonstrated recently, for example in [8] and [15], is a consider-
able increase in the complexity of performance analysis, or if using phase-type
distributions a substantial increase in the size of the state space.

In this paper we make an alternative proposal, namely, to remain in the
CTMC framework and instead extend the logic CSL with a variant of the time-
bounded until operator which allows random (generally distributed) time bound,
by replacing the constant time bound with a random variable. With the new op-
erator one can specify properties such as the probability of reaching a set of
goal states of a CTMC within some generally distributed delay while passing
only through states that satisfy a certain property is at most (at least) some
probability value. Although general distributions are not added explicitly to the
model, using the random time-bounded until operator enables one to establish
specific transient properties of systems which include generally distributed de-
lays. As an example application consider a queue where the customers arrive
with some generally distributed delay, then by letting the random time bound
have the same distribution we can express (and verify) properties such as: “if
the queue if full then, with probability at least p, when the next customer arrives
there will be at most k customers in the queue”.

The semantics of the new random time-bounded until operator involves a
Riemann-Stieltjes integral, and so one would expect that the resulting complex-
ity of its model checking is prohibitive. The central observation of this paper
is that this integral reduces to an infinite summation involving mixed Poisson
probabilities (equivalent to the α-factors of [8]). This result is similar to the
case of the ordinary time-bounded until, except for an additional vector of co-
efficients that can be precomputed beforehand. Thanks to this observation we
can propose an efficient model checking algorithm for the new operator, which is
derived from that of [13] and which does not carry an increase in computational



cost except the precomputation of coefficients. This somewhat surprising result
yields a powerful and fast method for analysing certain properties of stochastic
systems with generally distributed delays. Moreover, for a large class of gen-
eral distributions which includes Pareto, gamma and Erlang that have been
observed in stochastic systems, we also provide methods for pre-computing the
mixed Poisson probabilities.

Finally, we model a queueing system and describe, with the help of a Matlab
implementation of the algorithms, the experimental results obtained when ver-
ifying the system against random time-bounded until formulae. We are able to
demonstrate the inaccuracy of using exponential distributions where the actual
arrivals warrant the use of heavy-tailed or other general distributions.

Outline of paper: We begin by recalling the definition of CTMCs and the
logic CSL. Next we introduce the new random time-bounded until operator, give
its semantics and a model checking algorithm based on [13] which uses a family
of coefficients. In the remainder of the paper we calculate the coefficients for a
number of well-known distributions and describe the experimental results.

2 Continuous Time Markov Chains and the logic CSL

In this section we briefly recall the basic concepts of CTMCs and the logic CSL,
concentrating on the time bounded until operator. Let AP be a finite set of
atomic propositions.

Definition 1. A (labelled) CTMC C is a tuple (S,R, L) where S is a finite set
of states, R : S × S → R≥0 is the rate matrix and L : S → 2AP is a labelling
function which assigns to each state s ∈ S the set L(s) of atomic propositions
that are valid in s.

For any state s ∈ S, the probability of leaving state s within t time units is
given by 1−e−E(s)·t where E(s) =

∑
s′∈S R(s, s′). If R(s, s′) > 0 for more than

one s′ ∈ S, then there is a race between the transitions leaving s, where the
probability of moving to s′ in a single step equals the probability that the delay
corresponding to moving from s to s′ “finishes before” the delays of any other
transition leaving s. Note that, as in [3,4], we do allow self-loops.

A path through a CTMC is an alternating sequence σ = s0 t0 s1 t1 s2 . . . such
that R(si, si+1) > 0 and ti ∈ R>0 for all i ≥ 0. The time stamps ti denote the
amount of time spent in state si. Let PathC(s) denote the set of paths of C which
start in state s (i.e. s0 = s); σ@t denote the state of σ occupied at time t, i.e.
σ@t = σ[i] where i is the largest index such that

∑i−1
j=0 tj ≤ t; and Prs denote

the unique probability measure on sets of paths that start in s [4].
We now recall the logic CSL first introduced in [1,2] and extended in [4].

Definition 2 (Syntax of CSL). The syntax of CSL is defined as follows:

Φ ::= true
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S./p(Φ)
∣∣∣ P./p(Φ U≤t Φ)

where a ∈ AP, p ∈ [0, 1], t ∈ R>0 and ./∈ {≤,≥}.



The semantics of CSL for can be found in [4]. Here we concentrate on the time
bounded until operator defined by:

s |= P./p(Φ U≤t Ψ) ⇔ ProbC(s, Φ U≤t Ψ) ./ p

where ProbC(s, Φ U≤t Ψ) is given by:

ProbC(s, Φ U≤t Ψ) def= Prs{σ ∈ PathC(s) | σ |= Φ U≤t Ψ}

and Φ U≤t Ψ asserts that Ψ will be satisfied at some time instant in the interval
[0, t] and that at all preceding time instants Φ holds:

σ |= Φ U≤t Ψ ⇔ ∃x ≤ t. (σ@x |= Ψ ∧ ∀y < x. σ@y |= Φ) .

In the remainder of this section we describe the model checking algorithm for
time bounded until formulae originally presented in [13], based on a reduction to
transient analysis and model checking PCTL. Further details on model checking
the other CSL operators are available in, for example, [4,3,13]. To begin with we
define uniformisation, a transformation of a CTMC into a DTMC (discrete-time
Markov chain).

Definition 3. For CTMC C = (S,R, L) the uniformised DTMC is given by
unif (C) = (S,Punif(C), L) where P = I + Q/q for q ≥ max{E(s) | s ∈ S} and
Q = R− diag(E).

Using this transformation, in [13, Proposition 2] it is shown that for any t ∈ R:

ProbC(s, Φ U≤t Ψ) =
∞∑

k=0

γ(k, q·t)·Probunif(C)(s, Φ U≤k Ψ) (1)

where γ(k, q·t) is the kth Poisson probability with parameter q·t, i.e. γ(k, q·t) =
e−q·t·(q·t)k/k!, and Probunif(C)(s, Φ U≤k Ψ) is the probability that, in the DTMC
unif (C), from s a state satisfying Ψ is reached within k (discrete) steps while
passing through only states that satisfy Φ.

Applying the model checking algorithm for PCTL presented in [11], calcu-
lating Probunif(C)(s, Φ U≤k Ψ) for all s ∈ S reduces to computing the vector of
probabilities (Punif(C)[¬Φ∨Ψ ])k·ιΨ , where for any s, s′ ∈ S:

Punif(C)[¬Φ∨Ψ ](s, s′) def=


1 if s |= ¬Φ ∨ Ψ and s = s′

0 if s |= ¬Φ ∨ Ψ and s 6= s′

Punif(C)(s, s′) otherwise

and ιΨ characterises Sat(Ψ), i.e. ιΨ (s) = 1 if s |= Ψ , and 0 otherwise. It then
follows that calculating Prob(s, Φ U≤t Ψ) for all states amounts to computing
the following vector of probabilities:

Prob(Φ U≤t Ψ) =
∞∑

k=0

γ(k, q·t)·(Punif(C)[¬Φ∨Ψ ])k·ιΨ .

Note that, as iterative squaring is not attractive for stochastic matrices due
to fill-in [20], the matrix product is typically computed in an iterative fashion:
Punif(C)[¬Φ∨Ψ ]·(· · · (Punif(C)[¬Φ∨Ψ ]·ιΨ )).



3 Random time-bounded until formulae

In this section we extend the logic CSL to include random time-bounded until
formulae and consider model checking algorithms for such formulae. Let T denote
a nonnegative random variable. We let FT denote the (cumulative) distribution
function of T (i.e. FT (t) = P[T ≤ t]), and assume that the support of T is
contained in the interval [LT , RT ], where LT may either be zero or positive and
RT may either be finite or infinite. Note that, in particular, we have FT (t) is
zero for t < LT and one for t ≥ FT .

We now extend CSL by allowing formulae of the form P./p(Φ U≤T Ψ) where
T is a nonnegative random variable1. The formula asserts that, with probability
./ p, by the random time T a state satisfying Ψ will be reached such that all
preceding states satisfy Φ. Formally, the semantics is given by:

s |= P./p(Φ U≤T Ψ) ⇔ ProbC(s, Φ U≤T Ψ) ./ p

where ProbC(s, Φ U≤T Ψ) is defined as a Riemann-Stieltjes integral involving
(deterministic) time-bounded until probabilities:

ProbC(s, Φ U≤T Ψ) def=
∫ RT

LT

ProbC(s, Φ U≤t Ψ) dFT (t) .

We now give our main observation concerning model checking random time-
bounded until formulae, which allows us to replace the Riemann-Stieltjes integral
with summation, at the cost of pre-computing coefficients.

Proposition 1. For any s ∈ S:

ProbC(s, Φ U≤T Ψ) =
∞∑

k=0

αT (k, q)·Probunif(C)(s, Φ U≤k Ψ)

where αT (k, q) =
∫ RT

LT
γ(k, q·t) dFT (t).

Proof. By definition we have:

ProbC(s, Φ U≤T Ψ) =
∫ RT

LT

ProbC(s, Φ U≤t Ψ) dFT (t)

=
∫ RT

LT

( ∞∑
k=0

γ(k, q·t)·Probunif(C)(s, Φ U≤k Ψ)

)
dFT (t) by (1)

=
∞∑

k=0

(∫ RT

LT

γ(k, q·t) dFT (t)

)
·Probunif(C)(s, Φ U≤k Ψ) rearranging

=
∞∑

k=0

αT (k, q)·Probunif(C)(s, Φ U≤k Ψ) by definition

as required. ut
1 One condition we impose on the random variables is that they are independent of

the CTMC under study.



It then follows from the algorithm of [13] for calculating Prob(s, Φ U≤t Ψ) out-
lined in Section 2 that calculating Prob(s, Φ U≤T Ψ) for all states of the CTMC
reduces to computing the following vector of probabilities:

Prob(Φ U≤T Ψ) =
∞∑

k=0

αT (k, q)·(P unif(C)[¬Φ∨Ψ ])k·ιΨ . (2)

The coefficients αT (k, q) take values on the interval [0, 1] since they are proba-
bilities. Namely, αT (k, q) = P(Nq(T ) = k) where Nq is a Poisson process with
rate q, independent of T . Moreover,

∞∑
k=0

αT (k, q) =
∞∑

k=0

P (Nq(T ) = k) = 1 .

Following Grandell [9], we call the coefficients {αT (k, q)}k∈N mixed Poisson prob-
abilities; αT (k, q) is the k-th probability of a Poisson process with rate q at
random time T . Note that the mixed Poisson probabilities are equivalent to
the α-factors introduced in [8] which are used in the calculation of steady-state
probabilities for non-Markovian stochastic Petri nets.

Figure 1 presents the pseudo-code for a generic algorithm for computing
ProbC(s, ΦU≤T Ψ) with an error of at most ε. Note that the DTMC unif (C)[¬Φ∨
Ψ ] may reach steady state before R(ε) and, in this case, the summation can be
truncated at this earlier point [17]. In the next section we will consider methods
for calculating these coefficients and the bound R(ε).

input : αT (0, q), . . . , αT (R(ε), q) such that
∑∞

k=R(ε)+1 αT (k, q) < ε

P := Punif(C)[¬Φ∨Ψ ]

b := ιΨ

sol := 0
for k = 0 to R(ε)

sol := sol + αT (k, q)·b
b := P·b

endfor

// Prob(Φ U≤T Ψ) = sol

Fig. 1. Generic algorithm for computing Prob(Φ U≤T Ψ)

4 Computation of the mixed Poisson probabilities

Under complete generality the computation of mixed Poisson probabilities relies
on the evaluation of the integrals:

αT (k, q) =
∫ RT

LT

γ(k, q·t) dFT (t) for k ∈ N.



Next we will develop algorithms to compute the mixed Poisson probabilities
αT (k, q) for the case where the distribution of the random time T has a finite
discrete, uniform, gamma or Pareto distribution, or is a finite mixture of dis-
tributions of these types. These algorithms can then be integrated with that
presented in Figure 1 to compute Prob(Φ U≤T Ψ) when the distribution of T
belongs to this class of distributions.

We start by showing how the mixed Poisson probabilities for a finite mixture
can be computed in terms of the mixed Poisson probabilities of the random times
involved in the mixture.

4.1 Finite mixture of random times

Suppose that T is a mixture of n random variables, T1, T2, . . . , Tn with weights
a1, a2, . . . , an (ai > 0 for 1 ≤ i ≤ n and

∑n
i=1 ai = 1). In this case, the distribu-

tion function of T is given by:

FT (t) =
n∑

i=1

ai·FTi
(t) for t ∈ R ,

and hence the mixed Poisson probabilities are given by

αT (k, q) =
n∑

i=1

ai·
∫ ∞

0

γ(k, q·t) dFTi
(t) =

n∑
i=1

ai·αTi
(k, q) . (3)

Therefore, the mixed Poisson probabilities for a mixture are a linear combina-
tion of the mixed Poisson probabilities of the random variables involved in the
mixture, and the coefficients of the linear combination are the weights of the
associated random times.

For a given precision ε, the following algorithm may be used to compute the
coefficients αT (j, q), j = 0, 1, . . . , R(ε), such that

∑∞
j=R(ε)+1 αT (j, q) < ε.

sum := 0
k := −1
while sum ≤ 1− ε do

k := k + 1
c[k] := 0
for i = 1 to n do

c[k] := c[k] + ai·αTi(k, q)
endfor

sum := sum + c[k]
endwhile

Output : R(ε) = k and αT (j, q) = c[j], j = 0, 1, . . . , k



4.2 Random times with finite discrete distribution

Suppose that T is a (finite) discrete random variable taking nonnegative values
t1, t2, . . . , tn with probabilities p1, p2, . . . , pn, then its distribution function is
given by:

FT (t) =
∑

{pi | 1 ≤ i ≤ n ∧ ti ≤ t} for t ∈ R .

Hence, in this case the mixed Poisson probabilities are given by

αT (k, q) =
∫ ∞

0

γ(k, q·t) dFT (t) =
n∑

i=1

pi·γ(k, q·ti) for k = 0, 1, 2, . . . (4)

Therefore, if T is a discrete random variable, the amount of time needed to
compute a mixed Poisson probability is of the same order as the time needed to
compute a single Poisson probability.

If T is almost surely constant and equal to t, P(T = t) = 1, then we have

αT (k, q) =
∫ ∞

0

γ(k, qu) dFT (u) = γ(k, q·t) for k = 0, 1, 2, . . .

Thus, we obtain the Poisson probabilities for fixed time t. Notice also that (4) is
a consequence of the previous equation and (3), as a discrete random variable is
also a mixture of almost surely constant random variables (the values that these
random variables assume with probability one are the values to which the given
discrete random variable assigns positive probabilities).

Now to compute the mixed Poisson probabilities for discrete distributions we
may use the algorithm presented in Section 4.1 by replacing αTi

(k, q) and ai by
γ(k, q.ti) and pi respectively. Note that the Fox-Glynn algorithm [7] can be used
to avoid overflow when computing the Poisson probabilities γ(k, q·ti) for large
values of q·ti.

4.3 Random times with gamma distribution

Suppose that T has a gamma distribution with (positive) parameters r and λ,
T ∼ Gamma(r, λ), then T has probability density function:

fT (t) =
λ·(λ·t)r−1·e−λ·t

Γ (r)
for t > 0

where Γ is the gamma function, that is, for any r > 0:

Γ (r) =
∫ ∞

0

e−t·tr−1 dt .



Using the fact that Γ (j + 1) = j! for all j ∈ N we have:

αT (k, q) =
∫ ∞

0

e−q·t (q·t)k

Γ (k + 1)
·λ·(λ·t)

r−1·e−λ·t

Γ (r)
dt

=
λr·qk

Γ (k + 1)·Γ (r)

∫ ∞

0

e−(q+λ)·t·t(k+r)−1 dt rearranging

=
λr·qk

Γ (k + 1)·Γ (r)

∫ ∞

0

e−u·u(k+r)−1·(q + λ)−(k+r) du setting u =
t

q + λ

=
1

Γ (k + 1)·Γ (r)

(
q

λ + q

)k (
λ

λ + q

)r ∫ ∞

0

e−u·u(k+r)−1 du rearranging

=
Γ (r + k)

Γ (k + 1)·Γ (r)

(
q

λ + q

)k (
λ

λ + q

)r

by definition of Γ

= pNegBin(r, λ
λ+q )(k)

where pNegBin(r,λ/(λ+q))(k) is the k-th probability of the negative binomial dis-
tribution with parameters r and λ/(λ+q). Thus, if T has a gamma distribution,
the mixed Poisson probabilities are negative binomial probabilities. Therefore,
the coefficients αT (k, q) may be computed recursively by the following scheme,
for k ∈ N:

αT (0, q) =
(

λ

λ + q

)r

and αT (k + 1, q) =
(

k + r

k + 1

)
·
(

q

λ + q

)
· αT (k, q) .

Note that this recursion is an instance of the Panjer recursion [18]. Furthermore,
for sufficiently large k, the coefficients αT (k, q) exhibit an exponential decay
towards zero. For a given precision ε, the following algorithm may be used to
compute the coefficients αT (k, q) recursively.

// Compute αT (j, q) for j = 0, 1, . . . , R(ε) if T ∼ Gamma(r, λ)
k := 0

c[k] :=
(

λ
λ+q

)r

sum := c[k]
while sum ≤ 1− ε do

k := k + 1
c[k] := k+r−1

k
· q
λ+q

·c[k − 1]

sum := sum + c[k]
endwhile

Output : R(ε) := k and αT (j, q) := c[j], j = 0, 1, . . . , k

4.4 Random times with Erlang or exponential distribution

In computer network systems the most used particular case of the gamma dis-
tribution is the Erlang distribution, which corresponds to the case where the



parameter r is integer. In that case it is common to call r the number of phases
of the Erlang distribution and λ the rate. The popular and intensively used ex-
ponential distribution with rate λ corresponds to the particular case of r = 1.
We also note that the Erlang(r, λ) is distributed as the sum of r independent
exponential random variables with rate λ, so that these exponential random
variables may be seen as the r phases of the Erlang distribution.

Although the Erlang and exponential distributions are special cases of the
gamma family of distributions, they deserve special treatment due to their im-
portance for applications. Moreover, these distributions lead to a clearer inter-
pretation of the results obtained for the mixed Poisson probabilities. In fact
these results, which we will comment on briefly, are very well known results in
probability and statistics that appear recurrently in applications.

If T has an exponential distribution with rate λ, the mixed Poisson probabil-
ities are geometric probabilities with parameter (success probability) λ/(λ + q):

αT (k, q) =
(

q

λ + q

)k

·
(

λ

λ + q

)
for k = 0, 1, 2, . . .

The success probability represents the probability that the random time T is
smaller than the first arrival epoch in the uniformising Poisson process with rate
q. Due to the memoryless property of the exponential, the number of arrivals
in the uniformising Poisson process with rate q that occur before time T corre-
sponds to the number of trials observed before the occurrence of the first success
and has a geometric distribution with parameter λ/(λ + q).

Note that
∑∞

k=R+1 αT (k, q) = (q/(λ + q))k+1 for all R ∈ N, and hence as a
consequence for all ε ∈ (0, 1):

∞∑
k=R+1

αT (k, q) ≤ ε if and only if R ≥
⌈

ln(ε)
ln(q/(λ + q))

⌉
− 1 .

That is, to achieve precision ε in the computation of (2) we need to evaluate
order ln(ε) mixed Poisson probabilities.

If T has Erlang distribution with parameters r and λ, then the coefficients
αT (k, q) are the probabilities associated to a negative binomial random variable
with parameters r and λ/(λ + q), and hence for k ∈ N:

αT (k, q) =
(

r + k − 1
k

)
·
(

q

λ + q

)k

·
(

λ

λ + q

)r

.

This is a natural result as the sum of r independent random variables with geo-
metric distribution with parameter λ/(λ+q) has a negative binomial distribution
with parameters r and λ/(λ + q), which may be interpreted as the number of
trials that are observed before the observation of the r-th success. If, again, a
success is seen as an arrival in a Poisson process with rate λ and a failure as an
arrival in the independent uniformising Poisson process with rate q, the value of
the negative binomial random variable corresponds to the number of arrivals in
the uniformising Poisson process with rate q that occur prior to the r-th arrival
in the Poisson process with rate λ.



4.5 Random times with uniform distribution

If T has uniform distribution on [LT , RT ], then the coefficients αT (k, q) are given
by

αT (k, q) =
∫ RT

LT

1
RT − LT

·e−q·t (q·t)k

k!
dt for k = 0, 1, . . .

It follows that αT (0, q) = e−q·Lt−e−q·Rt

q·(RT−LT ) and for k = 0, 1, 2, . . .

αT (k + 1, q) = αT (k, q) +
1

q·(RT − LT )
·
[
e−q·Lt

(q·LT )k+1

(k + 1)!
− e−q·Rt

(q·RT )k+1

(k + 1)!

]
which provides a recursive scheme of computing the coefficients αT (k, q). More-
over, using induction, we conclude that for k = 0, 1, 2, . . . :

αT (k, q) =
1

q·(Rt − LT )
·

 k∑
j=0

e−q·Lt · (q·LT )j

j!
−

k∑
j=0

e−q·Rt · (q·RT )j

j!


=

1
q·(Rt − LT )

·

 k∑
j=0

γ(k, q·LT )−
k∑

j=0

γ(j, q·RT )


=

1
q·(RT − LT )

·
[
FPoisson(q·LT )(k)− FPoisson(q·RT )(k)

]
where FPoisson(λ)(·) is the distribution function of a Poisson random variable
with parameter λ. Note that if, in particular, LT = 0, then

αT (k, q) =
1− FPoisson(q·RT )(k)

q·RT
=

e−q·Rt

q·Rt
·

∞∑
j=k+1

(q·RT )j

j!
.

For a given precision ε, the following algorithm may be used to compute the
coefficients αT (k, q) recursively.

// Compute αT (j, q) for j = 0, 1, . . . , R(ε) if T ∼ Uniform([LT , RT ])
k := 0

d := e−q·LT

q·(RT−LT )

e := e−q·RT

q·(RT−LT )

c[k] := d− e
sum := c[k]
while sum ≤ 1− ε do

k := k + 1

d := d· q·LT
k

e := e· q·RT
k

c[k] := c[k − 1] + d− e
sum := sum + c[k]

endwhile

Output : R(ε) := k and αT (j, q) := c[j], j = 0, 1, . . . , k



4.6 Random times with Pareto distribution

The Pareto distribution has recently gained high importance in telecommunica-
tions as it has been shown, e.g., that it fits the distribution of times in-between
the start of Internet sessions [16] and the size of files available in the Web [6].
Suppose that T has a Pareto distribution with (positive) parameters κ and β,
T ∼ Pareto(κ, β); i.e., T has probability density function:

fT (t) =
{

0 if x ≤ κ
β·κβ

tβ+1 if x > κ .

This is a heavy-tailed distribution that has infinite variance for β ≤ 2 and infinite
expected value for β ≤ 1. The mixed Poisson probabilities in this case are:

αT (k, q) =
∫ ∞

κ

e−q·t· (q·t)
k

k!
·β·κ

β

tβ+1
dt

=
β·κβ ·qβ+1

k!
·
∫ ∞

κ

e−q·t·(q·t)k−β−1 dt rearranging

=
β·κβ ·qβ

k!
·
∫ ∞

qκ

e−y·yk−β−1 dy letting y = q·t

= β·(qκ)β ·Γ (k − β, qκ)
k!

for k = 0, 1, 2, . . . , where Γ (·, ·) is the incomplete gamma function. Now, for any
x > 0 integrating by parts we have

Γ (a + 1, x) =
∫ ∞

x

e−y·ya dy = e−x·xa + a·Γ (a, x) (5)

and, as a consequence for a 6= 0:

Γ (a, x) =
1
a

[
Γ (a + 1, x)− e−x·xa

]
. (6)

Applying these results we get that the following upward and backward recursions
for αT (k, q), for k = 0, 1, 2, . . . :

αT (k + 1, q) = β·(qκ)β ·Γ (k + 1− β, qκ)
(k + 1)!

= β·(qκ)β ·
[
k − β

k + 1
·Γ (k − β, qκ)

k!
+ e−qκ· (qκ)k−β

(k + 1)!

]
by (5)

=
1

k + 1
·
[
(k − β)·αT (k, q) + β·e−qκ· (qκ)k

k!

]
rearranging.

Similarly, using (6) for any k 6= β:

αT (k, q) =
1

k − β
·
[
(k + 1)·αT (k + 1, q)− β·e−qκ· (qκ)k

k!

]
.



For a given precision ε, the following algorithm may be used to compute the
coefficients αT (k, q) recursively resorting to a single evaluation of the incomplete
gamma function.

// Compute αT (j, q) for j = 0, 1, . . . , R(ε) if T ∼ Pareto(κ, β)
kaux := dβe
c[kaux] := β·(qκ)β ·Γ (kaux−β,qκ)

kaux!

daux := β·e−qκ· (qκ)kaux

kaux!

sum := c[kaux]
// Backward loop
k := kaux

d := daux

while k > 0 do

k := k − 1
d := d· k+1

qκ

c[k] := [(k + 1)·c[k + 1]− d]/(k − β)
sum := sum + c[k]

endwhile

// Forward loop
k := kaux

d := daux

while sum ≤ 1− ε do

k := k + 1
c[k] := [(k − 1− β)·c[k − 1] + d]/k
d := d· qκ

k

sum := sum + c[k]
endwhile

Output : R(ε) := k and αT (j, q) := c[j], j = 0, 1, . . . , k

This algorithm is stable for any values of the parameters, including the sit-
uations where the variance, and even the expected value, is infinite. The com-
puting time increases linearly with the number of mixed Poisson probabilities
computed which, for a given precision, grows considerably as the shape parame-
ter β decreases. As reported in [8], R(ε) exhibits a fast increase when ε decreases,
contrarily to the other distributions considered. Moreover, for a given precision
ε, R(ε) takes values several orders of magnitude larger than for non heavy-tailed
distributions.

5 Example

We consider the GI/M/a/a + c queueing system. In this system the arrival
process is a renewal process with a fixed (but otherwise general) inter-arrival
time distribution, the service times are exponential (with rate λ), there are a
identical servers, and there are c positions for waiting. We can model-check
transient properties of this queueing system involving the time at which a new
customer arrives by:
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Fig. 2. Change in R(ε) as the accuracy ε changes

– constructing a model of the queueing system in which transitions correspond-
ing to new arrivals are removed;

– verifying this restricted model against formulae which use the inter-arrival
time distribution as their random time-bound.

Note that, in this restricted model, all transitions have an exponential delay,
that is, it is a CTMC, and since the service time distribution is independent of
the arrival time distribution, the inter-arrival time distribution is independent
of this model.

Formally, the CTMC is given by C = (S,R, L) with S = {s0, s1, . . . , sa+c}
where sk denotes the state in which there are k customers in the queue, and the
rate matrix is given by:

R(si, sj) =

 a·λ if a ≤ i ≤ a + c and j = i− 1
i·λ if 0 ≤ i < a and j = i− 1
0 otherwise

where λ is the rate of service of each server. Now, if T represents the inter-
arrival time distribution, then the satisfaction of P./p(Φ U≤T Ψ) in C corresponds
to the following property holding in the GI/M/a/a + c queueing system: with
probability ./ p, when the next arrival occurs, a state satisfying Ψ will be reached
such that all preceding states satisfy Φ.

We fix a = 10 and c = 5 and calculate, for each state s of the CTMC C,
the value of ProbC(s, true U≤T Ψ) where Ψ is true in the states in which there
are at most k(= 3) customers in the queue (including those being served). In
other words, we calculate for each state of the GI/M/a/a + c queueing system
the probability of there being at most k customers in the queue when the next
arrival occurs. We consider five different distributions for T : deterministic (which
represents the standard time-bounded until formula), exponential, Erlang (with
10 phases), uniform and Pareto.

The results were obtained with a prototype implementation in Matlab with
an accuracy ε = 10−8. We note that the mixed Poisson probabilities for the
Pareto distribution were slow to converge; however, in this case, we use the fact
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Fig. 3. Value of ProbC(s, true U≤T Ψ) when the queue is full

that we can stop iterating when the DTMC unif (C)[¬Φ ∨ Ψ ] reaches steady
state. To illustrate this point, in Figure 2 we have plotted the values of R(ε) for
different values of ε. Note that we have used a logarithmic scale on the y-axis to
allow the results for the Pareto to be plotted in the same graph as the remaining
distributions. The graph on the left corresponds to the case when T has an
expected value of 1, while the one on the right to the case when the expected
value of T is 10.

As can be seen from Figure 2, the case of the Pareto distribution quickly
becomes unmanageable as we increase the accuracy. This result follows from
the fact that the Pareto distribution is heavy tailed. In fact, the differences in
the values of R(ε) for the different distributions correspond to the difference in
their “tails”: the heavier the tail the larger the value of R(ε). For example, the
deterministic distribution is zero for all values greater than the expected value,
whereas the uniform distribution is zero for any value greater than two times
the expected value, and the exponential distribution has a heavier tail than an
Erlang (with more than one phase). T

In Figure 3 we plot the value of ProbC(s, true U≤T Ψ) when s is the state in
which the queue is full. The left graph corresponds to the case when we vary the
service rate and fix the expected value of T at 1, while in the graph on the right
the service rate is fixed at 1 and we vary the expected value of T . Similarly, in
Figure 4 we plot the values of ProbC(s, true U≤T Ψ) when s is the state in which
there are k + 1 customers in the queue.

The graphs in Figure 3 and Figure 4 demonstrate the expected result: as
either the expected time of T increases (the expected time between consecutive
arrivals increases) or the rate of service increases (the expected duration of a
service decreases) the probability of there being at most k customers in the
queue at time T increases. Furthermore, the probability is much lower for the
state where the queue is full (Figure 3) than for the state where there are only
k + 1 customers in the queue (Figure 4). This follows from the fact that, from
the state in which the queue is full, to reach a Ψ state s + c− k customers need
to be served, as opposed to only 1 customer from the state where there are k +1
customers in the queue.
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Fig. 4. Value of ProbC(s, true U≤T Ψ) when there are k + 1 customer in the
queue

The first point to notice about the results is that approximating general
distributions with exponential distributions leads to inaccurate results. For ex-
ample, compare the results when T is exponential (customers arrive with an
exponential distribution) to when T has a Pareto distribution (customers arrive
with a Pareto distribution). It is also apparent that the computed probabilities
are much smaller for the Pareto distribution than for the remaining distribu-
tions, whose survival functions exhibit exponential decay to zero. This holds
because, although the Pareto distribution is heavy-tailed, it assumes very small
values with much higher probability than the other distributions. Significant dif-
ferences may also arise for light-tailed distributions such as the exponential and
Erlang distributions, as illustrated in Figure 3. Finally, note the close similar-
ity between the cases when T has a deterministic and Erlang distribution; this
is also to be expected as the Erlang distribution is often used as a continuous
approximation of a (discrete) deterministic distribution.

6 Conclusions

This paper presents an extension of CSL with until formulae where the time
bound is given as a general nonnegative random variable. This extension allows
one, in certain cases, to calculate transient measures of systems which include
general distributions. We demonstrate that model checking for such formulae
can be efficiently carried out by first precomputing a vector of mixed Poisson
probabilities and then using a straightforward adaptation of the algorithm for
ordinary time-bounded until.

Currently, we have only considered a prototype implementation of these al-
gorithms in Matlab. In future we plan to implement these algorithms in the
probabilistic symbolic model checker PRISM [14,19] in order to tackle the veri-
fication of more complex models.

Additionally, we would like to work on generalising this approach to other
important families of distributions; apply analytic methods to finding upper



bounds for R(ε); consider random expected time; and extend our approach to
express random time intervals rather than simply the time bound T .
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