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Abstract. Molecular programming is an emerging field concerned with
building synthetic biomolecular computing devices at the nanoscale, for
example from DNA or RNA molecules. Many promising applications
have been proposed, ranging from diagnostic biosensors and nanorobots
to synthetic biology, but prohibitive complexity and imprecision of ex-
perimental observations makes reliability of molecular programs difficult
to achieve. This paper advocates the development of design automation
methodologies for molecular programming, highlighting the role of quan-
titative verification in this context. We focus on DNA ‘walker’ circuits, in
which molecules can be programmed to traverse tracks placed on a DNA
origami tile, taking appropriate decisions at junctions and reporting the
outcome when reaching the end of the track. The behaviour of molecular
walkers is inherently probabilistic and thus probabilistic model check-
ing methods are needed for their analysis. We demonstrate how DNA
walkers can be modelled using stochastic Petri nets, and apply statisti-
cal model checking using the tool Cosmos to analyse the reliability and
performance characteristics of the designs. The results are compared and
contrasted with those obtained for the PRISM model checker. The paper
ends by summarising future research challenges in the field.

1 Introduction

Molecular programming is an emerging field concerned with building synthetic
biomolecular computing devices at the nanoscale, for example from DNA or
RNA molecules. Several nanotechnologies have been developed, of which DNA
strand displacement (DSD) [56,55] is particularly popular, since it uses only DNA
molecules, is enzyme-free, and easy to synthesize chemically. DSD has ben used
to implement logic circuits [44,41], diagnostic biosensors [29] and controllers pro-
grammed in DNA [11]. Further, DNA self-assembly technologies such as origami
folding [43] have enabled novel designs, including DNA walker systems that can
traverse tracks ‘printed’ on origami tiles and deliver cargo [54,51].

Molecular computing devices built from DNA are autonomous – they can
interact with the biochemical environment, process information, make decisions
and act on them – and programmable, that is, they can be systematically config-
ured to perform specific computational or mechanical tasks. The computational



power of such systems has been shown to be equivalent to Turing computabil-
ity [45]. The future potential of these developments is tremendous, particularly
for smart therapeutics, point-of-care diagnostics and synthetic biology. For ex-
ample, biosensing involves a decision process that aims to detect various input
biomarkers in an environment, such as strands of messenger RNA within a cell,
and take action based on the detected input.

Since such systems can perform information processing within living cells,
their use is envisaged in healthcare applications, where safety is paramount.
As argued in [32], this paper advocates the development of design automa-
tion methodologies for molecular programming. There are similarities to existing
work in design automation for silicon circuits and hardware verification, but we
must consider inherent stochasticity of the underlying molecular interactions, the
need to state requirements in quantitative form, and the importance to consider
control of molecular systems. Therefore, probabilistic modelling and automated,
quantitative verification and synthesis techniques are needed [31,33,34].

In this paper, we focus on DNA walker circuits introduced in [8,50,51]. The
behaviour of molecular walkers is inherently probabilistic and we have stud-
ied their performance and reliability in [15,14,16]. In [38], we have developed
techniques to automatically synthesise rates so that a given quantitative re-
quirement is guaranteed to be satisfied. The models of DNA walkers were devel-
oped in PRISM’s modelling language, a notation based on reactive modules [34].
DNA walkers, however, perform spatially localised computation by following
programmable tracks. Therefore, graphical notations such as Petri nets are par-
ticularly well suited to their modelling and analysis. We demonstrate how DNA
walker circuits can be modelled using stochastic Petri nets, matching the lay-
out of the original circuit designs, and analyse the reliability and performance
characteristics of the designs. In view of state-space explosion observed in the
original study [15,16], we focus on evaluating the potential of statistical model
checking using the tool Cosmos. We develop a family of models, some designed
by biochemist and some artificial schemes aimed to exhibit design challenges,
and a range of quantitative requirements. The results are compared and con-
trasted with those obtained for the PRISM model checker using state-of-the-art
numerical techniques (uniformisation and fast adaptive uniformisation [14,21])
and PRISM’s statistical model checking implementation known as approximate
model checking [34]. We conclude that statistical model checking significantly
benefits from parallelisation and enables efficient analysis of much larger models
at no great loss of accuracy compared to numerical methods. The paper ends by
summarising future research challenges in the field.

2 Background on Molecular Walkers

DNA computing has so far mainly focused on designing logic circuits that per-
form computation in vitro, by transforming DNA strands using strand displace-
ment systems as e.g. demonstrated experimentally in [44,41]. However, this ap-
proach has limitations, in that the strands are cascaded through a series of logic
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gates in solution, which may lead to unintended interference [36] and conse-
quently incorrect outcomes. An alternative approach is to design localised com-
putation by ‘printing’ circuits on origami tiles as proposed in [41,9]. In this paper
we focus on DNA walker systems [8,50,51], and particularly the programmable
walkers of [48].

A DNA walker system consists of a track of strands, called anchorages, that
are tethered to a DNA origami tile and traversed by a walker strand [48]. Origami
tiles [43] are long circular single-stranded DNA scaffolds that can be folded into
the tile shape with complementary short DNA strands that hybridize with the
scaffold. The tracks can fork at junctions, and the walkers can be programmed
to take a left or the right branch by selectively unblocking the anchorages that
the walker can follow. Fig. 1 shows an example of a double-junction circuit that
we will study later, where the two directions at the first junction are respectively
labelled X and ¬X.

The stepping process is shown in Fig. 2. The walker, which carries a quencher
(Q), is initially bound (hybridized) to the initial anchorage. The target anchor-
ages at the end of the tracks have fluorophores (F) attached to them. After some
initial preparation, the walker is able to autonomously step from one anchorage
to another, eventually reaching the target anchorages and quenching the fluo-
rophores. The programming of the tracks is achieved as follows. Initially, the
anchorages are hybridized to the tile, and are either unblocked, meaning that the
walker can bind to them, or blocking, that is, initially bound to a blocking strand
that will prevent the walker from binding to them. Sections of the track can be
reprogrammed by selectively unblocking them through the addition of strands
that are complementary to the blocking strand; see Fig. 2 (Pane 2), where ¬X
is unblocked but X remains blocked.

After the walker is placed at the initial anchorage, a nicking enzyme is added
to the solution. It binds to the walker-anchorage complex, melting the top of
the anchorage away, which frees the top of the walker. This enables the walker
strand to bind to the next anchorage through a displacement reaction (Panes 3
and 4 of Fig. 2). The process repeats, and the walker thus continues along the
unblocked section of the track, through junctions, towards the final anchorage,
where it reports the outcome by quenching the fluorophore.

Formally, the system can be viewed as a planar graph, composed from undi-
rected tracks (consecutive anchorages) and gates (track junction points) that
connect at most three tracks. [48] experimentally demonstrated that a walker
can be directed to any leaf in a complete two-level binary tree by selectively
unblocking the anchorages. In [16,15], we have studied the expressive power of
DNA walker circuits implemented by this technology and showed that the cir-
cuits can compute any Boolean function through reduction to 3-CNF. Compared
to DNA strand displacement systems in solution, an advantage of this technol-
ogy is its spatial locality, but we have found that the undirected nature of the
tracks imposes limitations on the use of parallelism. Other walker technologies
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Fig. 1. A double-junction DNA walker circuit ([16]).

Fig. 2. The stepping action of the walker ([16])

that work with directed tracks have been demonstrated, so this limitation does
not apply to all walker systems.

Computing Boolean functions using nanotechnologies such as the DNA walker
systems has application in biosensing, for example to detect the presence of cer-
tain molecules. However, experiments have shown that the computation is quite
unreliable, in the sense that walkers may release from a track, jump over two
anchorages, or a blockade can fail to block an anchorage, delaying or divert-
ing the walker to a different anchorage, thus returning wrong result. To study
the reliability and performance of such systems, in [16,15] we also developed a
stochastic model of DNA walker systems based on [8,48,50]. Note that, since
we are considering localised computation, standard mass action kinetics which
applies to well-mixed solution cannot be used, and we instead derive a model
from experimental observations.

The model can be configured to a specific circuit layout, where we can vary
the topology of the circuit, the number of anchorages in each section, and their
physical spacing. We also model the different modes of anchorages, such as
blocked, unblocked, empty or bound to the walker. The stepping process of Fig. 2
has been abstracted into a single walker step transition, taking the walker from
one anchorage to the next. The rate of the stepping transition is dependent on
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the distance between anchorages, and was derived using rate constants estimated
in [50]. Maximum interaction distance was observed to be dM = 24 nm. Taking
into account the average distance between anchorages in the experiment of 6.2
nm, we have defined the walker stepping rate k to be a function of the distance
da and the base rate ks given by:

k =


ks = 0.009s−1 when d ≤ 1.5da

ks/50 when 1.5da < d ≤ 2.5da

ks/100 when 2.5da < d ≤ dM
0 otherwise

(1)

This determines a sphere of reach of up to dM around the walker-anchorage
complex, within which the walker may step onto an uncut anchorage. We note
that this abstraction of the stepping rate makes certain simplifying assumptions,
such as we do not consider walker moving between intact anchorages or stepping
backwards; these aspects have been experimentally observed and the model can
be refined further in future.

One aspect that we do consider, however, and which also has been observed
experimentally, is the failure of the blocking mechanism. We can allow the an-
chorages to spontaneously unblock and assume that the unblocking is uniform.
If this happens, the walker may step onto such an unblocked anchorage and fol-
low an incorrect track. The failure rate of 30% was estimated based on [48]. We
have not modelled the failure of other mechanisms, such as missing anchorages
or the failure of the reporting mechanisms, but these could again be added to
the model.

In [16,15], we have constructed a family of models for a variety of circuits,
fitting the rates from the single-junction circuit experiments [48], and then eval-
uating the quality of the model on the double-junction circuits. We found good
alignment of model predictions with the experimental data, in particular also
observing the effect of leakage transitions, that is, when the walker unintention-
ally transfers to the neighbouring track because of its proximity. In addition, we
have considered a range of circuit designs and analysed their performance and
reliability using the probabilistic model checker PRISM [34].

3 Stochastic Models and Analysis Techniques

As discussed in the previous section, stochasticity is an important aspect that
we need to consider when designing molecular circuits, particularly localised
computation such as DNA walkers placed on origami tiles. In this section we in-
troduce the background notation and briefly overview existing stochastic models
and analysis methods applicable to molecular systems.

3.1 Continuous-time Markov Chains (CTMC)

The evolution of molecular systems is naturally modelled as a stochastic pro-
cess tracking the probability of molecular populations over time. This process,
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under the assumption of constant volume and temperature, is a (homogeneous)
continuous-time Markov chain (CTMC).

Formally, a CTMC C is a tuple (S, s0,R), where S is a set of states, s0 ∈ [0, 1]S

is the initial distribution over states, and R is the rate transition matrix with
∀s, s′ ∈ S, R(s, s′) ≥ 0, R(s, s) = 0.

Each CTMC can be unfolded into execution paths from the start state as
follows. The residence time in state s is exponentially distributed with exit rate
λs =

∑
s′∈S R(s, s′). Once the residence time expires, the probability to move

to state s′ from s is R(s,s′)
λs

. We refer to the discrete-time Markov chain encoding
the discrete transition probabilities for each state as the embedded DTMC.

Alternatively, for a CTMC the probability over time (transient probability
distribution) is given by the Chemical Master Equation (CME) [23] d

dtπt = πt ·Q,
where Q is the infinitesimal generator matrix, defined as Q(s, s′) = R(s, s′) if
s 6= s′, and 1−

∑
s′′ 6=s R(s, s′′) otherwise, and π0 = s0.

A CTMC can be extended with a reward structure (ρ, ι), where ρ and ι are
respectively a vector and matrix of non-negative reals. ρ(s) is a state reward,
and defines the rate at which the reward is acquired when C remains in state
s for t time units. The function ι(s, s′), s, s′ ∈ S, defines the transition reward
acquired each time the transition (s, s′) occurs.

All Markov processes with countable state spaces and continuous distribu-
tions of time may be described as CTMCs, since the exponential distribution
is the only continuous distribution with the Markov property. We usually work
with finite state CTMCs, though some of the analysis techniques generalise to
countable CTMCs.

In the context of verification CTMCs are enriched with atomic propositions
that label states. Formally, a labelled CTMC is a tuple (AP,L, S, s0,R) such
that (S, s0,R) is a CTMC, AP is a set of atomic propositions and L : S → 2AP

is a labelling function that assigns atomic propositions to the states. When
considering molecular systems, the set of atomic propositions usually includes
inequalities over the number of each molecule type, for example, “there are at
least 5 molecules x” (written x ≥ 5).

3.2 Quantitative Verification for CTMCs

To specify quantitative properties of CTMCs, a number of formalisms can be
used. These are divided into two families, linear time and branching time. Linear
time formalisms specify accepting paths, and contain a single outer probabilistic
operator. They include:

– temporal logics LTL (linear-time temporal logic) [40] and BLTL (bounded
linear-time temporal logic) [28];

– deterministic timed automata specifications [19,6], where timed paths are
accepted only if they are in the language of the automaton;

– deterministic linear hybrid automata specifications [5], an extension of timed
automata with clocks evolving at different speed;
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– temporal logic MTL (metric temporal logic) [10]which is an extension of
BLTL with real-time constraints on the until operator.

Branching-time formalisms, on the other hand, contain nested probabilistic op-
erators, and include:

– temporal logics PCTL [24] and PCTL* (probabilistic computation tree logic) [1],
based on CTL/CTL* with the probabilistic operator added (for untimed
properties);

– temporal logic CSL (continuous stochastic logic) [2], an extension of PCTL
where temporal operators are equipped with real-time constraints and with
an additional operator to specify steady state distribution.

These formalism can be extends with rewards. In this paper we will work with
linear-time properties that we introduce using random variables. The key prop-
erties of interest are P=?[Xφ], the probability of the path formula φ being sat-
isfied from a given state over time (Xφ is a random variable defined over paths
from s equal to 1 if the path satisfies φ and 0 otherwise); and E=?[X(ρ,ι)], the
expected cumulative reward in a given state over time (X(ρ,ι) is a random vari-
able defined over paths annotated with rewards (ρ, ι) that computes the total
reward cumulated up to t). Path formulas φ include the temporal operators
‘until’ and ‘future’, both unbounded and time-bounded variants; for example,
(x ≥ 1)U(x = 0) denotes a path along which molecules x eventually degrade,
and F≤100(x ≥ 1) ∧ (y = 0) a path which reaches a state where there is at least
one x molecule and no y molecules within 100 time units.

A number of techniques are available to analyse CTMCs. Since precise solu-
tion of the CME is in general intractable, the prevailing method is stochastic
simulation, e.g. using the Gillespie algorithm [23], which generates forward tra-
jectories from the initial state or distribution. Quantitative verification aims to
compute the probability or expectations of certain events specified using the
above temporal logic or automata formalisms. For CSL formulas, the computa-
tion of probability over time reduces to transient analysis on a modified model.
Given an automaton representation of the property (which can be derived from
LTL formulas or provided directly, e.g. as a timed automaton), it is necessary
first to build the product of the automaton and the model, and then compute
transient probability distributions on the product. Quantitative verification of
expected reward properties is similar.

Transient analysis usually proceeds through numerical methods or simulation-
based analysis known as statistical model checking, which we describe next.

3.3 Numerical Verification Methods for CTMCs

Numerical methods require that the state space and rate matrix of the CTMC
be constructed. Typically, the numerical computation of transient distribution
proceeds through discretisation of the CTMC, resulting in approximate proba-
bility values. These methods are more efficient on branching-time formalisms,
in particular for CSL, where they take advantage of the strict alternation of
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probabilistic and temporal operators. On linear-time properties one first has to
build an automaton from the specification, and then build the product of the
automaton and the CTMC, which increases the state space. Two methods have
been developed for transient analysis, uniformisation and its variant fast adap-
tive uniformisation that neglects states with insignificant probability mass, thus
improving performance of the computation.

Uniformisation Uniformisation (see e.g. [35] translates the problem of com-
puting transient distribution of a CTMC to the computation of transient distribu-
tion of its discretisation, called the uniformised DTMC, and can be summarised
as follows.

– For any CTMCs where there exists a bound on the maximal exit rate, the
uniformised DTMC can be computed over the same state space, where each
step in the DTMC corresponds to one exponentially distributed delay in the
CTMC with rate equal to the maximal exit rate.

– Transient probability of the CTMC at time t can be computed as an infi-
nite summation of i jumps in the uniformised DTMC weighted by Poisson
probabilities.

– The Poisson weights of the infinite summation are derived using the Fox &
Glynn algorithm [22], which also determines the upper bound on the number
of summation terms needed to meet a given error bound.

Uniformisation involves operations on the stochastic matrix of the uniformised
DTMC, and thus can suffer from state-space explosion.

Fast adaptive uniformisation (FAU) Fast adaptive uniformisation (FAU) [18,39]
can reduce the size of the explored state space by neglecting states with insignif-
icant probability mass. It is an approximate method for computing the transient
distribution of a CTMC and can be summarised as follows:

– Transient probability distributions are computed forward from the initial
state in the embedded DTMC. States with low probability of occurrence
(below a threshold δ) are discarded. Therefore, FAU only explores a subset
of the state space.

– The maximal exit rate of the CTMC is approximated and computed on the
fly on the set of states that have not been discarded. The upper bound on
the infinite summation is also computed on the fly.

The FAU method can greatly improve the time and memory consumption
of the transient probability computation when the state space is large and exit
rates of states span several orders of magnitude. It has also been extended to
the computation of rewards [14].

Numerical model checking for CTMCs against CSL probability and reward
formulas has been implemented in PRISM [34] using uniformisation (symbolic,
hybrid, sparse and explicit engine) and FAU (explicit engine).
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3.4 Statistical Model Checking

Instead of constructing the rate matrix of the CTMC, an alternative when deal-
ing with large state spaces is to use statistical methods. The statistical model
checking approach relies on Monte Carlo simulation algorithm to estimate the
probability of interest. These methods are better suited to linear-time properties
due to the difficulty of dealing with nested probabilistic operators. In [53] an al-
gorithm for nested probabilistic operators is provided, but the simulation time
greatly increases with the depth of the nesting. More precisely, statistical meth-
ods are applied as follows: for a path formula φ, a Bernoulli random variable X
is defined which takes 1 as value on a path that satisfies φ and 0 otherwise. The
probability estimate is thus obtained as the ratio of the number of paths satisfy-
ing φ to the total number of paths, where the Monte Carlo algorithm simulates
a large number, say N , of paths. The random variable Z is defined as the mean
of N independent copies of X:

Z =
1

N

N∑
i=1

Xi

An advantage of statistical model checking is that it can be parallelised very
easily: it suffices to run several simulators of the system on different processors
and take the mean result of paths from all simulators. Particular attention needs
to be paid to the random number generator to ensure that all generated paths
are independent, but otherwise the overhead of parallelisation is low. Statistical
model checking can be naturally extended to computing expected rewards, that
is, the expected value of a random variable whose values depend on rewards
cumulated over simulated paths.

Confidence intervals When one computes a probability estimate for some
random variable X, and the exact value cannot be computed, it is important to
know how far this estimate is from the actual value. Statistical methods cannot
guarantee that the numerical value we obtain is at a given distance to the actual
value. This is because using a fixed number of samples the simulation may avoid
certain parts of the system with non-zero probability, thus biasing the estimation.
Nevertheless, probabilistic guarantees on the obtained result can be given in the
form of confidence interval, namely, confidence in the fact that the actual value
is close enough to the realisation, defined as follows.

Let (Xi)
N
1 be independent random variables following a common distribution

including a parameter θ. Let 0 < γ < 1 be a confidence level. Then a confidence
interval for θ with level at least γ is given by two random variables l(X1, . . . , XN )
and u(X1, . . . , XN ) such that for all θ:

P [l(X1, . . . , XN ) ≤ θ ≤ u(X1, . . . , XN )] ≥ γ

Classical statistical inequality can be used to derive confidence intervals from
a set of realisations of a random variable. As a general rule, these inequalities
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link together the confidence level, the number of samples and the width of the
confidence interval, such that the user specifies two of them and the third is
derived from the inequality.

The simplest approach is Gaussian analysis, which uses central limit theorem
to approximate the distribution of the mean value of the observations of the ran-
dom variable. When a random variable follows normal distribution, confidence
interval can be computed using Gaussian error function.

A variant of this approach is to approximate the distribution of the random
variable to a normal distribution and use the cumulative distribution function
of the student-t distribution to compute confidence intervals. This confidence
interval is more conservative than the one of the normal distribution when the
number of samples is small, but as the number of samples increases they converge
to each other.

When more conservative results are required and bounds on the value taken
by the random variable are known, then Chernoff-Hoeffding inequality can be
used to produce confidence intervals.

Sequential estimation Using additional hypotheses, the required number of
samples can be computed on the fly; the simulation is then stopped as soon as the
number of samples is sufficient. These methods are called sequential estimation.

Given a confidence level and a confidence interval width, the Chow and Rob-
bin algorithm [12] requires the same hypothesis as Gaussian analysis and that
the width of the confidence interval tends to zero. The algorithm provides the
optimal stopping rules for the simulation and returns a confidence interval with
expected width and variance.

When one is not interested in the actual expected value of a random vari-
able but rather in deciding whether this value is above or below a threshold,
then hypothesis testing can be used. Given a confidence level, a threshold and
an open interval around this threshold called indifference region, the Sequential
Probability Ratio Test (SPRT) [46,53] returns whether the value is above or be-
low the threshold. If the true expected value is in the indifference region the test
result has no probabilistic guarantee. Otherwise, the test result is correct with
a probability equal to the confidence level. Two different confidence levels may
be used for values above and below the threshold to make the test asymmetric
(type I and type II errors).

Rare events One of the main limitations of statistical model checking is the
rare event problem. When the probability that we want to compute is very
small (usually smaller than 10−6, statistical model checking becomes inefficient.
Recently, several methods have addressed this limitation using importance sam-
pling [26,7,42] or splitting [27], summarised below.

– Importance sampling relies on biasing the model such that the satisfaction
of the formula is no longer a rare event. During simulation an the overall
bias is estimated to produce an accurate estimation of the rare event. The
difficulty lies in the choice of bias.
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– Splitting relies on defining a sequence of successive embeddedings of subsets
of the state space. The smallest subset only contains states satisfying the
property of interest, while the largest contains all states. During simulation,
each time a path reaches the next subset it is split into several copies. The
probability that one path reaches the smaller subset is higher than the initial
probability. Appropriately choosing the subsets is crucial to obtain precise
results.

Statistical model checking for CTMCs has been implemented in a number of
tools, to mention PRISM and Cosmos. In particular, PRISM [34] implements
the confidence interval and SPRT methods for time-bounded CSL properties
(also known as approximate probabilistic model checking), whereas Cosmos [3,4]
provides a range of statistical model checking methods, including importance
sampling, for a more expressive specification language.

3.5 Stochastic Petri Nets

CTMC models of molecular systems are complex, and high-level modelling lan-
guages facilitate their construction. Such languages include stochastic extensions
of process algebras (cf PEPA [13]), reactive modules (cf PRISM [34]) or Petri
nets (cf Cosmos [3,4]). We focus here on stochastic Petri nets (SPNs), a graph
of places connected by transitions, where the time for a transition to fire is dis-
tributed according to exponential distributions. SPNs are naturally interpreted
as CTMCs whose state space is the set of reachable marking. They have been
widely studied, for example in [17].

Formally, an SPN is a tuple N = (P, T,W−,W+,m0, Λ), where P is a finite
set of places, T is a finite set of transitions, W− : P ×T → N is the pre incidence
matrix, W+ : P × T → N is the post incidence matrix, m0 ∈ NP is the initial
marking, and Λ : NP × T → R is the rate function which associates a rate to
each marking and transition.

SPNs can be endowed with CTMC semantics, which forN = (P, T,W−,W+,m0, Λ)
is given as the CTMC C = (S, s0,R) defined by:

– S = Reach(N ,m0), the set of reachable markings
– s0(m0) = 1, ∀s ∈ S\{m0}, s0(s) = 0
– R(m,m′) =

∑
t∈T, s.t. m

t−→m′
Λ(m, t).

A common extension of SPNs are generalized stochastic Petri nets (GSPN),
which additionally use immediate transitions with Dirac distributions. Weights
are added to resolve concurrent firing of immediate transitions. As immediate
transitions are memoryless, the semantics of a GSPN is still Markovian as long
as there is no cycle of immediate transitions [20]. Such cycles can be detected
by an analysis of the structure of the net. Adding such immediate transitions is
convenient for modelling stochastic systems and may reduce the size of the set
of reachable markings [30].

GSPNs are supported by a number of tools, including Cosmos and Mar-
cie [25].
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4 Modelling DNA Walkers

In [16,15], DNA walkers were modelled in the native language of PRISM, which
represents each walker circuit as a synchronised parallel composition of reactive
modules, each specified using guarded commands whose updates are annotated
with rates. Since DNA walker circuits are planar, GSPNs are well suited to their
modelling, with the layout of the GSPN closely corresponding to the layout of
the original circuit: the state of each anchorage is modelled using an indepen-
dent place, while the steps of the walker are modelled with transitions that are
exponentially distributed.

The blocking mechanism used to steer the movement of the walker may fail
with some probability; this failure occurs before the walker is released and thus
before any walker movement. In PRISM, this is modelled with transitions with
very high rates (a billion times larger than walker movement rates), which makes
the computation intractable when uniformisation is used. In GSPN this blocking
mechanism is modelled using instantaneous transitions.

More precisely, each DNA walker circuit comprises several tracks (sequences
of anchorages) and transitions correspond to walker taking a step from one an-
chorage to another nearby. The states of each anchorage are modelled as follows:

– Each anchorage is modelled with a single place, to preserve the layout of the
original circuit placement. The relative placement of each place corresponds
to that of the corresponding anchorage on the origami.

– Intact anchorages are modelled with places containing one token.

– Anchorages where the top has melted away are modelled by empty places.

– The anchorage to which the walker is attached is modelled by a place with
two tokens.

– Blocked anchorages are modelled like anchorages where the top has melted
away, with empty places.

Fig. 3 illustrates a transition encoding a displacement reaction between two an-
chorages a and b. Place a encodes the anchorage to which to walker is currently
bound. Place b encodes an intact, unblocked anchorage. The transition consumes
two tokens in the place corresponding to a and one token in the place correspond-
ing to b, and produces two tokens in the place corresponding to b. Indeed, after
the transition is fired the place corresponding to a is left empty, which models
the anchorage where the top has melted away.

The walker may move between two anchorages that are sufficiently close.
Each such movement is modelled with independent transitions. The rate of each
transition depends on the distance between the two anchorages as specified on
page 5.

Blocked anchorages do not initially contain tokens. In order to model the
possibility of failure of the blocking mechanism, a place with initially one token
and two immediate concurrent transitions are added to each blocked anchorage.

12



2
2

1

ba

Fig. 3. Transition modelling movement of the walker from anchorage a to anchorage
b.

a
f1− f

Fig. 4. Two transition model of the failure of the blocking mechanism of anchorage a

Fig. 4 illustrates this. With failure probability f = 0.3, a token is added to the
place for anchorage a. In this case the anchorage is no longer blocked.

Our modelling approach ensures modularity of the design and that the layout
of the Petri net closely resembles that of the original walker system. Different
circuits can be composed together easily by merging together initial and final
anchorages and by adding transitions between places encoding nearby transi-
tions. Additional behaviours of the circuit, such as a missing anchorage, may be
added easily by adding or removing tokens. An alternative modelling approach
would have been to use colour to model the position of the walker, similarly to
works in [37], but this would not preserve the layout of the original walker.

The walker models that we study are complex and have large number of
transitions, but can nevertheless be viewed on screen and zoomed in. As an
example, Fig. 5 shows one of the smallest models. In the following, for the sake
of clarity we will hide most of the transitions when displaying a Petri net.

The state space of the walker systems increases exponentially with the num-
ber of anchorages. Table 1 shows the number of places and transitions, together
with the size of the state space for models of DNA walkers that we studied. For
the larger models it was not possible to build the state space due to memory
limits.

The size of the state space makes the analysis of these models difficult. Qual-
itative analysis is still possible using symbolic representation of the state space
for the smaller examples. For quantitative analysis, numerical computation of
transient probability via uniformisation requires the storage of a vector of prob-
abilities (one floating point number per state). Currently, the maximal amount
of memory in a computer is in the order of 100 GByte using single precision,
namely, at most 100 · 1024 · 1024 · 1024/4 ≈ 27 · 109 states. This neglects the
amount of memory required to store the transition matrix, let alone the time to
compute with such a large vector. Unfortunately, the state space of some of the
models of DNA walkers that we consider exceeds this limit. This problem can
be partially alleviated using FAU. However, when the state space is too large to
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Fig. 5. A single junction circuit. The walker is initially in the upper anchorage. The
anchorage on the left of the junction is blocked. Gray-scale used for the transitions
indicate the tree possible rates (ks, ks/50, ks/100). Black transitions correspond to
immediate transitions.

be constructed the only viable alternative is to use statistical model checking for
the analysis.

5 Experiments and Results

In this paper, we model a variety of DNA walker circuits using stochastic Petri
nets and analyse their reliability and performance. We focus on the application
of statistical model checking, which we compare to numerical solution methods
implemented in PRISM. We first briefly describe the tools used, followed by an
overview of the results and analysis of the advantages of each method and the
corresponding trade offs that can serve as guidelines when selecting software
tools for quantitative modelling and verification of similar systems.

5.1 Tools

We use three modelling and analysis tools to perform computational experi-
ments, namely Marcie [25], PRISM [34] and Cosmos [3,4]. We also use Graphviz
for the visualisation of Petri nets.
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Model Places Transitions States Model Places Transitions States
control 8 34 172 ringLL 27 260 27,950,678
controlMissing1 7 22 50 ringRL 27 260 27,950,678
controlMissing2 6 13 13 ringLR 27 260 28,209,796
controlMissing7 7 27 82 ringRR 27 260 28,209,796
track12Block1 13 82 3,795 ringLLLarge 33 312 1,885,372,776
track12Block2 14 84 5,459 ringRLLarge 33 312 1,885,372,776
track12BlockBoth 14 84 5,248 ringLRLarge 33 312 1,860,879,029
track28LL 34 250 432,884,827 ringRRLarge 33 312 1,860,879,029
track28LR 34 250 435,340,831 redundantChoiceL 43 490 -
track28RL 34 250 435,340,831 redundantChoiceR 43 490 -
track28RR 34 250 432,884,827

Table 1. Size of the state space of DNA walker models studied

Marcie supports qualitative and quantitative analysis of generalised stochas-
tic Petri nets. The tool has been developed for the study of chemical reaction
networks and thus facilitates the modelling of such systems. It employs Inter-
val Decision Diagrams (IDD) to symbolically represent the state space of the
Petri net. The implementation of IDD is mostly parallel, taking advantage of
multicore architectures. The tool has recently been extended with a simulation
engine for model checking of PLTL (propositional linear-time temporal logic)
formulas. Marcie can deal with unbounded until properties as long as the user
guarantees termination. We use Marcie to compute the size of the state space in
our experiments.

PRISM is a probabilistic model checker that supports a variety of probabilis-
tic models and probabilistic temporal logics, including CTMCs and temporal
logic CSL. A CTMC model is provided in the PRISM modelling language as a
synchronised parallel composition of reactive modules, but model imports, e.g.
via SBML, are also supported. Verification of CSL properties can proceed via
numerical methods (uniformisation or fast adaptive uniformisation) or statistical
model checking (confidence interval and SPRT), known as approximate proba-
bilistic model checking. We use PRISM to perform quantitative verification using
numerical methods and approximate model checking.

Cosmos is a statistical model checker for generalised stochastic Petri nets with
general distributions. It takes Hybrid Automata Stochastic Logic (HASL), based
on linear hybrid automata, as a specification language. Efficient simulation is
obtained using code generation that generates lightweight optimised C++ code.
The generated code implements a simulator for the product of the model with
the automaton underlying the specification. We use Cosmos for the evaluation
of the models using statistical model checking.

5.2 The Setting

We perform experiments with Cosmos and PRISM on several circuit designs
that have either been experimentally studied by biochemists or present design
challenges. To ensure that the model given to each tool encodes the same system,
the following workflow is used:
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1. Each circuit defines a set of anchorages; for each anchorage, the position is
specified as well as whether it is an initial or final anchorage. Additionally,
the correct final anchorage is specified.

2. From this description of the circuit a GSPN is built.
3. The GSPN is exported in the GrML (Graph Markup Language) file format

for Cosmos; the ANDL (Abstract Net Description Language) for Marcie;
and the DOT language for Graphviz and the PRISM language. All these
exports are simple except for PRISM, for which the GSPN is transformed
into a single module, where each place is transformed into one variable and
each transition into one guarded command. The property that the GSPN is
2-safe is used to bound variables.

4. From the GSPN and the initial description of the circuit, properties are
provided as logical formulas for PRISM and as automata for Cosmos.

On each model we define atomic propositions of the form Ax = y, with Ax
indicating an anchorage name, x either a place name or a PRISM variable, and
y an integer. Labels and reward structures on states are also added to express
certain properties, as described below.

For each model we perform the following initial analysis. The first four for-
mulas are simple bounded reachability properties that can be expressed in many
logics, for example BLTL or CSL with rewards. For the two remaining ones, we
give the specification. We compute after 200 min the following properties:

1. The probability of reaching a deadlock state, where we assume an atomic
proposition deadlock labelling deadlock states:

Deadlock := P=? F≤12000 deadlock

2. The probability of reaching a final anchorage, define using a state label
(final):

Finish := P=? F≤12000 final

3. The average time spent in an anchorage that was supposed to be blocked
but the failure mechanism failed; this is defined using reward structure block
that increases linearly with the time spent in a blocked anchorage:

Blockade := R{block}=? C
<=12000

4. The expected number of steps of the walker, defined using reward structure
steps that is increased by one for each firing of a transition:

Steps := R{steps}=? C<=12000

5. The reliability of the walker computation, written as an algebraic expression
over (quantitative) CSL or BLTL formulas:

Reliability :=
P=? F≤12000 finalCorrect

P=? F≤12000 final
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6. The probability that a path reaches the correct final anchorage while visiting
a blocked anchorage, defined in BLTL using state label blockAnchorage:

uB := P=? ((F≤12000 blockAnchorage) ∧ (F≤12000 finalCorrect))

The first five properties were already studied in [15] for some of the models.
The tool Cosmos takes deterministic Linear Hybrid Automata (LHA) as a

specification formalism. Compared to timed automata, in LHA clocks are re-
placed by piecewise linear variables. Cosmos implements the synchronisation of
a GSPN with an LHA. The main features of a property automaton are illus-
trated in Fig. 6. The locations of the automaton are labelled with invariants,
which are atomic propositions of the GSPN. Locations are labelled with the rate
of each variable; for clarity only rates different from 0 are labelled in the figure
except for variable t, whose rate is always equal to 1. Accepting locations of the
automaton are labelled with a name (in Fig. 6 names are sl,fc,fnc). The tran-
sitions of the automaton are of two types: synchronized transitions are labelled
with a set of GSPN transition names, or the symbol A for any transition, and
are synchronised with the firing of the GSPN transition. They can be labelled
with a time guard; autonomous transitions, indicated with symbol #, are not
synchronised and occur as soon as the time guard is satisfied. More detail on the
synchronisation of GSPN and LHA can be found in [3].

In addition to the property automata, Cosmos relies on several HASL ex-
pressions that specify which value to estimate from the automaton. For our
properties the expressions are as follows:

– The probability of reaching a deadlock state is expressed as follows:

P=? dl

and is interpreted as the probability for an accepting trajectory of the GSPN
to end in location dl;

– The probability of reaching a final anchorage is expressed as follows:

P=? fc ∨ fnc

– The average time spent in an anchorage that was supposed to be blocked,
but the failure mechanism failed, is expressed as follows:

E=? bt

and is interpreted as the average value of variable bt in accepting states;
– The reliability property is expressed as:

P=? fc

P=? fc ∨ fnc

– The probability that a path reaches the correct final anchorage while visiting
a blocked anchorage is defined as:

P=? (ub = 1) ∧ fc

P=? fc
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The sixth property is expressed with a slightly more involved automaton, which is
not reported here for reasons of space. In this automaton a variable s is added to
count the number of steps of the walker; it is increased by 1 on each synchronised
transition except the one that loops over the initial state. The HASL expression
is E=? s. More details and formal specification of HASL expressions can be found
in [3].

t := 0
bt := 0
ub := 0

A, t > 0

A

A, t = 0
A A,ub:=1

A

A

A

A

A

#,t=12000

#,t=12000

A

A

>
¬block
∧¬finish

finish∧
¬finishCorrect

block ∧ ¬finish
ḃt = 1

finishCorrect

>deadlock

dl

fc

fnc

Fig. 6. LHA for the first four of the properties. This LHA contains two variables: t is
a clock which is never reset, and bt is a piecewise linear variable with respect to time
whose derivative is equal to 0 everywhere except in states where block holds. Symbol
A indicates that the automaton reads any action of the model.

In the remainder of this section we describe the models and report on the re-
sults of verifying the above properties using statistical model checking methods.
In Section 6 we compare and contrast the outcomes produced by the different
tools and methods on each model, as well as the time and memory requirements.

5.3 Control Model

We begin by analysing the experimental designs of DNA walker models intro-
duced in [52,47], which were modelled and analysed in [15,16]. These circuits
comprise several anchorages in a straight line, where some anchorages have been
removed. Fig. 7 depicts the control model where, for clarity, the transitions of
the Petri net have been omitted except for the self-loops on final anchorages.
The positioning of places corresponding to each anchorage is consistent with the
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positioning of the anchorage on the circuit layout. The initial position of the
walker is in the upper left corner and is encoded with two tokens. The final po-
sition is in the lower right corner. There are three variants of this model. In the
first, the anchorage 4 is omitted. In the second, anchorages 4 and 5 are omitted.
In the third anchorage, 7 is omitted.

control controlMissing1 controlMissing2 controlMissing7
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Fig. 7. Simplified Petri nets of control models.

The results for this control model are reported in Table 2. We compute the
average number of steps (Steps), the probability of deadlock (Deadlock) and the
probability to reach the final anchorage in 200 minutes (Finish).

Model Steps Deadlock Finish

control 6.8756 0.0033 0.9618
controlMissing1 5.5141 0.0002 0.8528
controlMissing2 3.8529 0.0194 0.5909
controlMissing7 5.1453 0.0305 0.1755

Table 2. Experimental results for the control model

We observe that the number of steps is directly proportional to the number
of anchorages, and the probability to reach the final anchorage within the time
bound greatly decreases when an anchorage is missing. From these two obser-
vations, we can deduce that the predominant path in these models is the one
that successively visits each anchorage, which is consistent with wetlab experi-
ments [47] (Fig. 2).
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5.4 Single Junction Circuit

The second set of models is a single junction circuit based on the experimental
setup described in [49]. Blocked anchorages are used to steer the walker in a
specific direction. Fig. 8 shows three model variants. In the first, one anchorage is
blocked. The second model employs two blocked anchorages on the same branch,
while the third blocks both branches.

For each branch, in the initial state all the anchorages are blocked. Unblock-
ing DNA strands are added, which will selectively unblock anchorages on the
designated branch.
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Fig. 8. Position and initial state of anchorage for the single junction circuit

Table 3 presents the results of our analysis for single junction models. We
observe that the probability of deadlock (Deadlock) is very small, and with high
probability the walker reaches a final anchorage within the time bound (Finish).

We observe that the model with two blockades is more reliable than that
with only one: 0.84 instead of 0.77. In [16] (Fig. 11), an extensive study of the
impact of blockade length on the reliability is presented.

For the third model, one of the final anchorages is chosen arbitrarily as the
correct one.

Model uB Blockade Steps Deadlock Finish Reliability

track12Block1 0.1796 46.8615 7.0494 0.0009 0.9715 0.7746
track12Block2 0.2083 315.508 6.9504 0.0016 0.9592 0.8452
track12BlockBoth 0.4794 104.292 6.551 0.0007 0.9227 0.4999

Table 3. Experimental results for the single junction circuit

These results are consistent with those experimentally observed. In [49] (Fig. 2),
for a single blockade the dependability of 0.76 is reported and for a double block-
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ade the dependability of 0.87 is reported. When the two branches are blocked,
no bias is observed between the two branches.

5.5 Two-Level Junction Circuit

These models are an extension of the junction circuit with two levels, which were
also studied in the wetlab in [49] (Fig. 3).
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Fig. 9. Position and initial state of anchorage for the two level junction circuit

Table 4 shows numerical results. We observe that the reliability varies for
the four different configurations. We note that that final anchorages reached
on the outside of the model show greater reliability: 0.766 versus 0.7326. The
other properties also show that the circuit with final anchorages on the inside
are more likely to deadlock, that the walker performs more steps, spends more
time in blocked anchorages, and that the probability for the walker to bind to
a blocked anchorage before reaching the final location is higher. As expected by
the symmetry, the two circuits with final anchorages on the outside (respectively
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Model uB Blockade Steps Deadlock Finish Reliability

track28LL 0.3707 711.003 11.7339 0.0121 0.8959 0.7658
track28LR 0.3809 740.849 11.7688 0.0183 0.8847 0.7326
track28RL 0.3806 741.85 11.7684 0.0182 0.8853 0.7326
track28RR 0.3701 708.867 11.7363 0.012 0.8964 0.766

Table 4. Experimental results for the two-level binary tree

on the inside) have very similar results and the difference can be explained by the
statistical error due to simulation. Fig. 10 shows the evolution of the probability
of the presence of the walker on each final anchorage. This can be explained by
the proximity of the two innermost tracks, which allows the walker to jump from
one track to the other.

The plot of Fig. 10 corresponds to the wetlab experiments of [49] (Fig. 3)
with similar qualitative results; the numerical value differs probably due to a
different setting. The results in Fig. 10 have been computed statistically using
Cosmos with 200, 000 simulations. The width of confidence intervals around each
point of each graph is bounded by 0.006.

Even if this model can be built by composing three single junction circuits,
the overall reliability cannot be computed as a composition of the reliability
of the single junction, which will be equal for the four configurations. Thus,
quantitative analysis of walker circuit cannot be performed at the level of each
individual gate but has to be done at the global level.

5.6 Improving Reliability

In [16], the reliability of junction circuits is improved by increasing the length
of blockades. We propose a different design based on a two-level junction with
redundant choice and time constraints.

Results in Table 5 demonstrate that the reliability after 200 minutes does not
increase compared to the single junction circuit, and in fact is even worse than
the single junction circuit with two blockades. However, since paths which end
in the incorrect final anchorage had to follow a longer path, in a short amount of
time the reliability is much higher. In Figure 12 we plot the probability to reach
each final anchorage over time T , as well as the reliability. At time T = 1200s the
reliability reaches 0.935, at the cost of fewer paths reaching the final anchorage.
This demonstrates that timing constraints can play an important role in DNA
computation designs, and can be used to produce small circuits with comparable
reliability compared to those obtained by increasing blockade length.
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Fig. 10. Evolution over time of the probability of the presence of the walker on each
final anchorage (Track28)

Model uB Blockade Steps Deadlock Finish Reliability

redundantChoice10 0.7296 1869.53 17.0304 0.2178 0.5554 0.7219
redundantChoice01 0.7298 1871.98 17.0307 0.2171 0.5559 0.7215

Table 5. Experimental results for the two-level choice

5.7 Exclusive Disjunction

This model implements the exclusive disjunction logical function (XOR) as a
two-level junction circuit, where final anchoraged have been merged together
forming a ring with the initial state in the middle (see Fig. 13). It illustrates
the limits of increasing the length of tracks to improve the reliability. Fig. 13
shows two designs of the XOR function with different track length. The reliability
does not always increase, as reported in table 6. First, note that the design is not
symmetrical for the small ring, which explains the different results. The reliability
increases (from 0.666 to 0.672) in two cases (LR) and (RR), but decreases (from
0.698 to 0.674) for (LL) and (RL). This model as been studied in [15] (Fig. 6)
with various track lengths; for conciseness we report here only two different
designs.
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Fig. 11. Position and initial state of anchorage

6 Comparison of Model Checkers

In this section we compare the performance in time and memory of tools Cosmos
and PRISM. All experiments have been conducted on a computer with “Core
i7-2600” CPU with 4 cores and 8GB of RAM. The maximal execution time for
each experiment is set to 20 hours.

When using PRISM we apply three different methods:

– PRISM Num: Numerical model checking using PRISM’s hybrid engine, uni-
formisation and the default numerical solver for linear equation systems (Ja-
cobi) with threshold ε = 10−6.

– PRISM FAU: Numerical model checking using fast adaptive uniformisation
(explicit engine) with δ = 10−10 and ε = 10−8.

– PRISM Sim: Simulation-based approximate model checking that involves
simulating 2, 000, 000 paths with confidence level of 0.99.

For Cosmos we also use 2, 000, 000 paths and 0.99 confidence level. This value
allows us to obtain tight confidence intervals for the results we are interested in.
Cosmos simulation times are reported with 1 thread (Cosmos 1T) and 8 threads
(Cosmos 8T)1 to show how statistical methods benefit from parallelisation.

1 Experiments are performed on a machine with 4 cores and 2 threads per core. Ex-
perimentally, using 8 threads for the simulation is faster by around 30% than using
4 of them, whereas the speed up between 1 and 4 threads is around 370%.
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Fig. 12. Probability density function of the time required by the correct and incorrect
path to reach final anchorages (redundantChoice).

Model uB Blockade Steps Finish Reliability

ringLL 0.4509 607.693 7.8712 0.9273 0.6981
ringRL 0.4511 606.561 7.8714 0.9269 0.6975
ringLR 0.4527 664.121 7.651 0.8982 0.6661
ringRR 0.453 664.188 7.6565 0.8978 0.6665

ringLLLarge 0.429 584.601 9.7267 0.8622 0.6737
ringRLLarge 0.4291 585.6 9.7287 0.8624 0.6745
ringLRLarge 0.428 581.341 9.7391 0.865 0.6719
ringRRLarge 0.4283 579.661 9.7379 0.8651 0.6717

Table 6. Experimental results for the XOR models

Table 7 reports time and memory2 requirement of the different methods.
Memory is omitted for statistical methods, as it is negligible compared to nu-
merical methods since there is no need to construct the matrix. All times are
reported in seconds.

We observe that uniformisation takes a very long time except for the smallest
model. This is due to a large summation bound computed by the Fox & Glynn
algorithm. This is due to the following two factors:

– the time bound of properties (12000 time units) is very large;
– the PRISM language does not support instantaneous transitions, and thus

instantaneous transitions are encoded using stochastic transitions with a
large rate (1000000).

2 The memory consumption for PRISM with the FAU method is measured with the
Unix ’time’ utility, which includes a large constant overhead due to the Java vir-
tual machine GC. By comparison, the uniformisation method precisely reports the
memory consumption.
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Fig. 13. Position and initial state of anchorage for XOR for a small and large design.

The FAU method, on the other hand, is the fastest on small models. Com-
pared to standard uniformisation, which uses a very large time horizon in the
uniformised DTMC, FAU performs a small number of iterations. This is due to
the algorithm neglecting states that did not fire transitions that encode the fail-
ure of blockade after some time. As these states have transitions with large rates,
neglecting them allows FAU to use smaller uniformisation constants, resulting
in fewer iterations.

For the two-level junction circuits the statistical methods are faster, while
uniformisation fails due to excessive time or memory requirements. Comparing
the two statistical model checking tools, Cosmos achieved better runtimes. The
parallel version of Cosmos, in particular, shows that statistical methods can
take advantage of parallel architecture. The difference of runtime between the
two statistical tools can be explained by two main factors.

– For small models, Cosmos is twice as fast as PRISM, which can be explained
by the programming language of each tool. PRISM’s simulator is written in
Java, while that of Cosmos consists of C++ code generated from the model
and compiled into a native executable. The choice of the language can be
explained by the history of the two tools. PRISM was designed to perform
numerical model checking, whereas Cosmos was designed from the start as
a statistical model checker.

– Cosmos exploits the structure of Petri nets to generate code, which results in
fast simulation performance. In Petri nets, all the possible events of a system
are the firings of the transitions. In the PRISM language, events are firings
of guarded transitions with possible synchronisations between component.

To avoid checking whether each event is enabled, Cosmos analyses the Petri
net structure to compute how transitions affect each other. This is used to
produce a simulator that checks only a subset of the transitions after each
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Cosmos 8T Cosmos 1T Prism Sim Prism Num Prism FAU
Time Time Time Time Memory(KB) Time Memory(MB)

control 2.4 11.1 29.4 0.04 40.2 1 127.18
controlMissing1 1.5 6.8 18.9 0.01 7.8 0.9 98.82
controlMissing2 0.8 3.6 11.2 0 7.3 0.09 81.58
controlMissing7 1.9 8.6 22.6 0.02 26 0.92 113.76

track12Block1 4.7 22.4 68 >20H 388.3 3.95 245.11
track12Block2 4.7 22.2 76.4 - 530.8 4.84 296.03
track12BlockBoth 4.4 20.8 71.9 - 509.4 4.76 279.55

track28LL 10.6 51.5 395.5 >8GB 879.35 1,042.62
track28LR 11.1 53.3 393.8 - 927.59 1,061.37
track28RL 11.2 54.4 382 - 929.39 1,076.57
track28RR 10.6 52.2 393.3 - 870.48 1,047.32

ringLL 10.9 53.7 360 >20H 700MB 748.83 1,139.35
ringRL 11.1 55 339.1 - 700MB 755.69 1,131.96
ringLR 11 54.9 348.3 - 700MB 754.01 1,164.21
ringRR 10.9 53.4 346.3 - 700MB 757.72 1,154.43
ringLLLarge 12.7 62.7 423.7 >8GB 1,864.83 2,206.84
ringRLLarge 12.9 63.7 471.7 - 1,802.69 2,201.96
ringLRLarge 13 64.1 442 - 1,994.9 2,206.27
ringRRLarge 12.7 62.2 555.2 - 2,056.98 2,211.3

redundantChoice10 27.1 131.8 1,258.2 >8GB >8GB
redundantChoice01 26.6 128.9 1,239.8 - -

Table 7. Time and memory measurements for statistical and numerical methods.

firing of transitions and explains the difference of runtime of about a tenth
on the larger models.

The analysis of the dependencies between transitions is easier to perform
on Petri nets, as they can be expressed as graph properties. There is no
theoretical limitation to adapt the same ideas in the PRISM simulator by
building a dependency graph between commands, based on the content of
their guard and updates.

Table 8 present comparison of the quality of results for statistical model
checking and FAU. Two properties are used for the comparison: the expected
number of steps before reaching a final anchorage (Steps) and the probability to
reach the correct final anchorage (FinishCorrect). As numerical methods are not
available due to time or memory constraints, only the statistical model checking
methods can be compared with each other.

The results obtained by Cosmos and the approximate model checking proce-
dure of PRISM are indistinguishable. Thanks to the large number of paths, the
confidence intervals of the two tools converge to a very similar value.

For each property, we report the expected value for each method, as well as
a measure of the error. For the statistical methods the error is measured with
the width of the absolute confidence interval, which is reported. For the FAU
method, the total probability lost is reported.

The two error bounds are of rather different nature, and thus only their
order of magnitude can be compared. There are three distinct behaviours in the
results:
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Steps Finish Correct
Statistical FAU Statistical FAU

Model Value Width Value Lost P Value Width Value Lost P

control 6.876 1.62E-3 6.876 1.94E-7 0.962 6.98E-4 0.9618 1.88E-7
controlMissing1 5.514 3.53E-3 5.514 3.17E-8 0.853 1.29E-3 0.8528 3.17E-8
controlMissing2 3.853 5.20E-3 3.855 1.79E-8 0.591 1.79E-3 0.5918 1.79E-8
controlMissing7 5.145 1.56E-3 5.145 3.18E-8 0.175 1.39E-3 0.1751 2.58E-8

track12Block1 7.049 3.39E-3 7.049 2.19E-5 0.753 1.57E-3 0.7526 1.55E-5
track12Block2 6.95 2.97E-3 6.95 1.96E-5 0.811 1.43E-3 0.811 1.80E-5
track12BlockBoth 6.551 3.67E-3 6.552 2.17E-5 0.461 1.82E-3 0.4613 1.54E-5

track28LL 11.734 5.00E-3 11.707 9.49E-3 0.686 1.69E-3 0.6843 9.42E-3
track28LR 11.769 5.20E-3 11.74 1.00E-2 0.648 1.74E-3 0.6465 9.96E-3
track28RL 11.768 5.20E-3 11.74 1.00E-2 0.649 1.74E-3 0.6465 9.96E-3
track28RR 11.736 5.00E-3 11.707 9.49E-3 0.687 1.69E-3 0.6843 9.42E-3

ringLL 7.871 9.94E-3 7.869 9.40E-3 0.647 1.74E-3 0.643 7.87E-4
ringRL 7.871 9.94E-3 7.869 9.40E-3 0.647 1.74E-3 0.643 7.87E-4
ringLR 7.651 1.06E-2 7.65 1.08E-2 0.598 1.78E-3 0.5948 8.80E-4
ringRR 7.656 1.06E-2 7.65 1.08E-2 0.598 1.78E-3 0.5948 8.80E-4
ringLLLarge 9.727 1.40E-2 9.708 3.10E-2 0.581 1.80E-3 0.5725 4.81E-3
ringRLLarge 9.729 1.40E-2 9.708 3.10E-2 0.582 1.80E-3 0.5725 4.81E-3
ringLRLarge 9.739 1.40E-2 9.723 3.16E-2 0.581 1.80E-3 0.5716 4.89E-3
ringRRLarge 9.738 1.40E-2 9.723 3.16E-2 0.581 1.80E-3 0.5716 4.89E-3

redundantChoiceL 17.03 1.30E-2 15.709 0.205 0.401 1.79E-3 0.3374 0.205
redundantChoiceR 17.031 1.30E-2 15.709 0.205 0.401 1.79E-3 0.3374 0.205

Table 8. Comparison of the quality of result return by statistical and numerical meth-
ods.

– For the control and the single junction models, the FAU method is more
precise by two orders of magnitude. The returned values for this model are
almost indistinguishable, and the result returned by FAU is inside the con-
fidence interval of the statistical methods.

– For the two-level junction models and exclusive disjunction, confidence in-
terval width and lost probability have the same order of magnitude. Most of
the time the value computed with FAU is smaller than the left bound of the
confidence interval.

– For the remaining models, statistical methods are more precise, with sig-
nificantly smaller confidence intervals width than probability lost, 0.0018
against 0.2. The value computed by FAU is significantly smaller than the
left bound of the confidence interval, which is due to FAU neglecting small
probability values during the computation.

7 Conclusion

We have analysed a range of DNA walker circuits against quantitative properties
using the Cosmos tool, and established its usefulness as part of design automation
technologies for molecular programming. Petri net models closely reflect the
spatial designs of walker systems devised by experimentalists. The efficiency and
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accuracy of the analysis, as well its alignment with experimental observations,
has been demonstrated, improving over the numerical techniques implemented
in PRISM for very large models.

However, there are significant challenges ahead for this field. These include
programming languages and abstractions tailored to molecular programming
and nanorobotics, which need to account for not just molecular kinetics, but
also thermodynamics of molecular systems; scalability of the verification, for ex-
ample via modular designs and compositional analysis; and synthesis techniques,
including controller synthesis and circuit synthesis from quantitative specifica-
tions. Finally, integration of the verification and synthesis tools with molecular
programming toolkits such as CADNANO is desirable.
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