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Abstract compact representation of CTMCs by exploiting high-level
structure and regularity. Secondly, we developaaallel
In this paper, we present a parallel implementation for implementation, where storage costs and computation time
the steady-state analysis of continuous-time Markov chainscan be distributed between a nhumber of processors.
(CTMCs). This analysis is performed via solution of a lin-
ear equation system, which is carried out using the Gauss-

o . : We use the Gauss-Seidel iterative solution method to
Seidel iterative method. We apply wavefront techniques, - .

. e - “~’compute steady-state probabilities. In comparison to alter-
which are used to create an efficient parallel execution

schedule based on dependencies between subtasks. Our i pative |terat|v§ me_:thod_s, this is an attractive option both in
erms of solution time (i.e. speed of convergence) and mem-

plementation uses symbolic data structures — multi-terminal . :
binary decision diagrams (MTBDDs) — which provide a ory consumption (storage of solution vectors). The Gauss-
Seidel method is inherently sequential, making its paralleli-

compact representation for large, structured CTMCs. MTB- . L .
: : o sation non-trivial. Fortunately, when matrices are sparse,
DDs prove to be very well suited to this application; firstly, . L X
. o S as is usually the case for CTMCs, it is possible to extract
by providing a significant reduction in inter-processor com- . .
kparallehsm from the pattern of non-empty blocks in the ma-

munication; and secondly, by allowing easy access to task; . . ; . )
. : : trices. To achieve this, we usevefronttechniques, which
dependency information. We demonstrate the effectiveness

: . . Schedule computation based on the dependencies between

of our technique by presenting experimental results from a

cluster of 32 nodes which exhibit speedups of between sﬁarge numbers of small tasks.

and 16.5, comparable with existing parallelisations of sim-

ilar CTMC analysis techniques. Thanks to the low space In this paper, we illustrate that MTBDDs are in fact well

complexity and good convergence rate of the Gauss-Seidetuited to this approach. Firstly, they facilitate extraction of

method, our implementation represents an excellent candi-the dependency information required for the parallel im-

date for parallel steady-state solution of CTMCs. plementation. Secondly, due to their compact nature, we
are able to store the entire matrix on each parallel node,
eradicating the usual need to exchange blocks of the ma-

1 Introduction trix during solution and hence considerably reducing costly
communication between nodes. We present experimental

Continuous-time Markov chains (CTMCs) are a commonly results on a set Qf benchmark models which demoqstrgte
both an increase in the size of models for which solution is

used 'T‘Ode' in the field of performa}ncg and dependability tractable, and, for 32 parallel nodes, speedups of between
analysis of computer and communication systems. A Va g oo d16.5

riety of useful performance measures of a CTMC model

can be derived from its steady-state probability distribution.

This distribution can be obtained from the solution of a lin- The remainder of this paper is structured as follows. Sec-
ear equation system, whose size is proportional to that oftion 2 covers relevant background material: steady-state so-
the model. Since CTMCs are in practice extremely large, lution of CTMCs, symbolic methods, and wavefront tech-
developing efficient implementations of this solution pro- niques. In Section 3, we describe our parallelised symbolic
cess is an important direction of research. In this paper, weimplementation of CTMC solution. In Sections 4 and 5,
combine two approaches in this area. Firstly, we work with respectively, we present experiment results to illustrate the
symbolictechniques, using data structures based on multi-efficiency of our approach and then compare it to related
terminal binary decision diagrams (MTBDDSs) to provide a work. Section 6 concludes the paper.



2 Background It also means, though, that the algorithm is inherently se-
guential, since, in stef it uses results from the previous

2.1 Numerical solution of CTMCs 1—1 steps of the same Gauss-Seidel iteration. This can be
relaxed slightly by using a block-based formulation of the

A continuous-time Markov chaifCTMC) comprises a set  algorithm (see e.g. [16]) as follows.

of statesS, representing all the possible configurations of ~ We assume that the matriX is divided intoN x N

the system being modelled, and a generator m&}ri¥ach blocks, the(p, ¢)th block of which is denoted\ (,;), and

non-diagonal matrix eleme;; defines a rate for the pair that vectors are partitioned into subvectors of matching

of states/, j € S. Each diagonal eleme®;; is defined as  sizes. Thepth block of a vectorx is denotedx(,). The

— > ;i Qij. This information gives both the likelihood of (¢, j)th element of submatrid ;) and theith element of

moving from each state to each other state, and the amounsubvectorx,,) are writtenA ,,,);; andx,);, respectively.

of time spent in each state. From statehe probability The size of matrix blockA ;) is n, x n, and hence the

that a transition to statgwill occur is Q;;/|Qi;|. The time  size ofx(,,) isn,,.

spent in staté before this transition occurs is modelled as  Using this notation, a block-based version of an iteration

a negative exponential distribution: the probability of exit of Gauss-Seidel is shown in Figure 2. Thit step of the

occurring by timef is 1 — eQiit, outer loop computes new values for elements of the block

Thesteady-state probability distributionf a CTMC is a x(p) Of the solution vector. This is achieved using an ad-
vector, each element; of which gives the probability of  ditional small vectow of sizemaxo<,<n{n,}. The most
being in state in the long run. For a large class of CTMCs, important aspect of the algorithm is that it accesses the ma-
7 can be obtained by solving the linear equation systemtrix one block at a time, rather than a single element at a
7Q = 0 with the additional constraint that, 7; = 1. time. We also emphasise here that this is simply a reformu-

We consider the more general problem of solving the lin- lation of the standard Gauss-Seidel algorithm, rather than a
ear equation systetAx = b, whereA is ann x n matrix variant such as block Gauss-Seidel (see e.g. [20]).
andb is vector of lengthn. When the matrixA is large
and sparse, as is typically the case in a CTMC setting, it is
preferable to solve the linear equation system using iterative
numerical solution methods, which repeatedly compute an
approximation to the solution vectar, terminating when
some agreed convergence criterion has been met.

Two common options are the Jacobi and Gauss-Seidel
methods. Of these, the latter is preferable since it has lower
memory requirements (only one copy of the solution vector
x must be stored; two are needed for Jacobi) and it gener- Figure 2. A block-based formulation of the al-
ally converges faster. Faster still are Krylov methods such  gorithm for an iteration of Gauss-Seidel.
as Conjugate Gradient Squared (see e.g. [20]). These, how
ever, usually require storage of additional vectors, which
becomes infeasible for large systems. In this paper, we fo-

cus on Gauss-Seidel. The algorithm in Figure 1 shows the2 2 Symbolic techniques for CTMC solution
numerical computation performed for a single iteration of

.for(0<p < N)
v = by,
for each blockA (,,,y with ¢ # p
V=V = ApgX(g)
for (0 <i < np,i # j)
X(pyi = (Vi — Zo§j<np App)ij  X(p)3) [ Appyii

o0k wNE

this method. In practice, CTMCs are often extremely large. Fortunately,
1. for (0 < i < n) Fhoqgh, they are al§o often qonstructed from dgscriptions

2. xii= (b= Yo s AiX5) /A in high-level modeI_Img formallsms and are thus mherently

- structured. Symbolictechniques for the construction, rep-
resentation and analysis of CTMCs are those which exploit
Figure 1. A simple algorithm to perform an this regularity to produce a very compact storage mecha-
iteration of Gauss-Seidel. nism, typically using data structures based on binary deci-

sion diagrams (BDDs). Symbolic approaches also exhibit
other advantages, such as fast model construction and com
Notice how, in theith step of the algorithm, théh el- putation of reachable states. A range of data structures for
ement ofx is updated using the current (i.e. most up-to- CTMC representation have been developed in this area, in-
date) values for other elements of the vector. This is the cluding multi-terminal BDDs (MTBDDs) [7, 1], matrix dia-
reason why only one vector need be stored and also whygrams [4] and Kronecker representations [19]. In this paper
it exhibits faster convergence than, say, the Jacobi methodwe use MTBDDs.



An MTBDD is a reduced directed acyclic graph which row of matrix blocks and to each row of matrix entries
represents a function mapping vectors of Boolean values towithin these blocks (which ordinary MTBDDs do not pro-
real numbers. By encoding the row and column indices of vide), it is well suited to the numerical solution of CTMCs
a real-valued matrix into Boolean variables, we can repre- using the block-based Gauss-Seidel method described in the
sent the matrix as an MTBDD. As well as often providing previous section. The two main limiting factors which re-

a very compact representation of large, regular matrices, armain in this implementation are, firstly, the storage of solu-
MTBDD has the additional advantage that, being an inher- tion vectors (proportional to the size of the CTMC matrix)
ently recursive data structure, it provides a convenient blockand, secondly, the time for executing each iteration (propor-
decomposition of the matrix into submatrices. tional to the number of entries in the CTMC matrix). In this

Figure 3 illustrates this idea. It shows the structure of paper, we address both of these issues by distributing the
an example MTBDD (for clarity, low-level details are omit- problem over multiple parallel processors.
ted) which represents some matx Each node of the
MTBDD represents a particular submatrixafand thetwo 2.3 Wavefront techniques
downward outgoing edges of that node represent a division
of its submatrix into two further submatrices. For example, Wavefronttechniques are an approach to parallel program-
the topmost (root) node of the data structure represents thening that involve the division of a computation into many
whole matrixA.. Descending one level, the two child nodes small tasks and the formation of axecution schedul®r
of the root node represent the top and bottom halves,  these tasks. This schedule is based on the notion of wave-
andA ., of A, as illustrated in the figure. Descending one fronts of parallel execution. Each wavefront comprises a
level further to the nodes on the third level of the MTBDD  set of tasks which aralgorithmically independenf each
divides Ay and A, into left and right portions, represent- other, meaning that the correctness of the overall computa-
ing a division of the whole matrid into quadrants. Notice  tion is not affected by the order in which they are performed
that in this example the bottom right quadran®ofs empty  and that they can hence be carried out in parallel. The com-
and hence the second outgoing edge of the node represenputation order of tasks in different wavefronts, on the other
ing A, is omitted. hand, can affect the correctness of the overall process. The
execution schedule is generated in such a way that the cor-
rectness is guaranteed. Wavefront techniques have been ap-
plied to a range of different problems, including iterative
A solvers (M/ILU preconditioning) [11] and particle physics
simulations [13].

A, 3 Awavefront parallelisation of Gauss-Seidel
In this section, we describe an algorithm for implementing
the Gauss-Seidel method using wavefront techniques. In
Ao | A particular, we apply this approach to the block-based for-
'''''' ‘ mulation of Gauss-Seidel, which means that it is suitable for
An implementation using symbolic techniques based on MTB-
DDs.

3.1 Extracting dependency information

Figure 3. MTBDD representing a matrix A and Recall the block-based formulation for an iteration of the
its decomposition into submatrices Gauss-Seidel method given in Figure 2. The algorithm is
split into NV steps, each calculating a different block of the
solution vectorx. Our approach will be to distribute these
In [16, 18], it is shown how the MTBDD-based storage steps over a number of parallel processors. Within a sin-
of transition matrices can be optimised by adding an explicit gle iteration, the computation of thh blockx,,) depends
representation (using sparse matrix data structures) of botlon the values of entries in other blocks of the vectorin
the high-level block structure of the matrix and the matrix fact, it depends on all blocks ) for which A, is non-
blocks themselves. This improves access speed, yet mainempty. Fortunately, the matrices which arise in the solu-
tains sufficiently compact storage. tion of CTMCs are typically very sparse, so there are many
More importantly, since it provides fast access to each empty blocks inA.



We formalise this dependency information as follows.
We will call the computation of each vector blosk,,) a
task denoted,. The set of all such tasks for an iteration
of Gauss-Seidel, is denotéd i.e. T = {t, : 0 < p <
N}. The set of tasks upon which task is dependent is
D, = {t, € T : ¢ # pandA,, is non-empty. We can
then construct aomputation dependency grapndirected
graphG = (T, E) whose vertices are the tasks7hand
whose edge®& C T x T represent dependencies between
tasks, i.e(t,,t,) € Eifand only ift, € D,. As an exam-
ple, Figure 4 shows the block structure of an example matrix
A (N = 12) and its corresponding dependency graph.
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Figure 4. Block structure of an example matrix
and its dependency graph

MTBDDs, which we use to store matrices, are a re-

cursive, tree-like data structure. Extracting the nodes at

a given level of this tree provides a fast and convenient

representation of the block structure of a matrix (see e.g.

[16, 18]). This means that the dependency information

By varying the number of levels of the MTBDD which are
explored, itis easy to increase or decrease the granularity of
the obtained block structure.

3.2 Constructing a wavefront execution schedule

A complication of parallelising the Gauss-Seidel method is
that, when computing vector block,), we must use up-
to-date values (i.e. computed in the current iteration) for
blocksx,) with ¢ < p and values from the previous iter-
ation for those with; > p. It is this inherently sequential
nature of Gauss-Seidel which makes its parallelisation non-
trivial.

The block-based Gauss-Seidel algorithm computes each
vector blockx, in the orderp = 0, ..., N —1. In fact, we
can safely perform a reordering of this sequence, and hence
compute the blocks in an entirely different order. Effec-
tively this is just a permutation of the ordering of elements
in the matrix A and vectorsx andb in the original linear
equation systemAx = b, which has no effect on its solu-
tion. We can exploit this fact and select an ordering which
better suits our parallel implementation.

We begin by assigning a colodft, ) to each task, € T
in such a way that(t,) # c(t,) whent, € D,. This pro-
cess is equivalent to establishing a colouring for the depen-
dency graphG. An example colouring for the matrix and
dependency graph of Figure 4 is shown in Figure 5. We use
C to denote the total number of colours used. The smaller
the value ofC, the greater the degree of parallelism that we
will be able to obtain.

The problem of finding a minimum colouring for a graph
is known to be NP-hard. For our purposes though (as our
experimental results will later show), the following simple
heuristic approach suffices. We iterate through the graph
vertices in ordert, to ¢ 5_1, assigning to each one a colour
which has not yet been assigned to any of its neighbours
(i.e. any vertex which has an edge either to or from it).

Color IIT

|

Color IV

described above can be generated quickly and easily by

traversing just the top layers of the MTBDD. This is illus-
trated by our example of Section 2.2 (see Figure 3), in which

exploring the top three levels of the data structure reveals a

decomposition of the corresponding matrix into quadrants.

Figure 5. An example colouring for the matrix
and dependency graph of Figure 4



Next, we order theC' colours used in the colouring
scheme according to the number of tasks to which each has
been assigned, i.e. the colour with the largest number of
tasks is indexed, and the colour with the smallest num-
ber is indexed”. In our parallel implementation of Gauss-
Seidel, the order in which tasks are performed (i.e. the or-
der in which vector blocks are computed) will be according )

. . . } oo if (col < C)
to the ordering of their associated colours: we begin with o _
Tcol+1 -— {tp S Tr'ema,in’ing | C(tp) = col + 1}
those of colourl and proceed through to those of cola@ur ,_
. . . 10 Tnezt — {tp € Tcol+l ‘ th S Tqueue tq € Dp}
Hence the ordering on colours determines the permutation | 11 Tyuene = Tyuene U Teat
of the Gauss-Seidel ordering referred to above. Note that | 12, Tremaining = Tremaining \ Teat
the ordering of tasks labelled with the same colour can be | 13, col := min{c(tp) | tp € Tyueue }
arbitrary since, by the definition of the colouring scheme, 14, until(Tyueue = 0)
their executions are independent of each other. The fact that
we place colours with more tasks earlier in the ordering is
motivated by the fact that it is desirable to eliminate depen-  Figure 6. Algorithm to generate a wavefront
dencies as early as possible. execution schedule.

Lastly, based on the colouring information obtained in
the previous step and the number of processors available
for parallel execution, we generate a wavefront execution processor or are already ... Hence, the overall order
schedule which can exploit parallelism in the implemen- in which tasks are allocated to processors, with respect to

ol :== 1,proc:=1
quewe = {tp € T'| c(tp) = 1} Il task queue (FIFO)
remaining *= 1 \ Tqueue /I rEMaining tasks
o
remove a task, from Tqueue
assigrt,, to processoproc
choose next processgn:oc := (proc mod P) + 1

Q

~

!

Qo

CENDUTAWNE

tation of Gauss-Seidel. We assume that therefangro- colour, is preserved.

cessors availableprocy, . .., procp. A wavefront execu- Later in the paper, in Section 3.4, we will discuss how
tion schedule is an assignment of each computation task inthis algorithm can be improved further to optimise load bal-
T = {ty,...,tn—1} to one of theP processors. ancing between processors.

Figure 6 shows the algorithm that we use to generate
such a schedule. By the definition of the Gauss-Seidel algo-3.3 Parallelisation
rithm, within a single iteration, the computation of blocks of
colourcol will depend on the computation results of blocks |n this section, we describe a parallelisation of the Gauss-
of colourl, ..., col—1 from the same iteration. Tasks of the Seidel method, based on the wavefront execution schedule
same colour, however, can be performed in parallel. To gen-gescribed in the previous section. The first step is for one
erate the wavefront execution schedule, we iterate throughof the processors to generate this schedule and distribute it
the set of tasks, ordered according to their colouring and as+o all other processors. Subsequently, each processor,
sign them to processors in a cyclic fashion. This is done by wherei = 1,..., P, has been assigned a set of tagks
the main loop in lines 4-14 of Figure Gol is the colour  |n each iteration of Gauss-Seidel, procesgarc; will be
of tasks currently being assigneghoc is the current pro-  responsible for the computation and storage of every vector
CessorTyucue 1S the set of tasks ready to be allocated to a plock x,,, for whicht, € T;. The algorithm executed by

processor, an’emaining 1S the set of tasks still to be allo-  processor on iterationk of Gauss-Seidel is illustrated by
cated. The Séf’queue is in fact a FIFO qgueue, i.e. the order the pseudo_code in Figure 7.

in which we have inserted tasks into the qgueue is preserved. Each processor works through the colours in Order'

When the Gauss-Seidel algorithm is executed, tasks ofprocessing each tagk of that colour which has been as-
colourcol + 1 can actually be performed as soon as all tasks signed to it. For each task, it computes the vector block
of colour1, ..., col on which they depend have been com- x(,). The computations required for Gauss-Seidel (see Fig-
pleted. Hence, in our schedule generation algorithm, weure 2) correspond to lines 3, 9, 11, 14 and 15 of Figure 7.
use this information to decide the order in which tasks of These computations require access to vector blegksfor
the same colour are allocated a place in the schedule. Moravhicht, € D,. In many cases, the values for these blocks
specifically, while the algorithm is assigning tasks of colour must be obtained from other processors. To achieve this,
col to processors, tasks of colows! + 1 are appended to  remote requests are sent in lines 5-8 and then responses
the queud’y,... as soon as all jobs of colouv! on which are received in line 10. In fact, the order in which blocks
they depend have been scheduled (and hence removed frorare used (in the for loop at line 9) is not important so, for
Tyueue). This step is performed at lines 9-12 of Figure 6. efficiency, blocks can be used in the order in which they
Note that no tasks afol 4 1 are added to the quelg,cy. become available. Conversely, remote requests from other
until all tasks of colourcol have either been assigned to a processors must also be responded to. This is done at each



1. for(1 < col < C)

2. foreach, € T; with c(¢,) = col

3. V= b(p)

4, for eacht, € D, with ¢, ¢ T;

5 if (c(tq) > col)

6 send remote request for values«qf, at iterationk —1
7

8

else

. send remote request for valuesxgf, at iterationk
9. for eacht, € D,
10. if (t, ¢ T:) wait for requested values &f ;)
11. Vi=V = ApgX()
12. respond to any remote requests
13. ensure all remote requests fqr, at iterationk — 1 responded to
14, for(0 < i < myp,i#j)
15. X(p)i = (Vi — Zo§j<np A ppyij  X(p)7) [ Appyii
16. respond to any remote requests

Figure 7. Algorithm for processor  proc; on iteration & of Gauss-Seidel.

convenient point in the algorithm (lines 12 and 16). matrix storage schemes, such as Kronecker representations.
In order to ensure that our parallel algorithm of Fig-

ure 7 represents a true implementation of the Gauss-SeideB.4 Implementation optimisations

method, we require that the correct values of each vector

block x(,) are used in line 11. The ordering for Gauss- Our parallelisation of Gauss-Seidel is targeted at PC clus-

Seidel is determined by the colouring scheme. Hence, inters connected through Ethernet or Myrinet [3]. In our algo-

the case where(t,) < c(t,), the values should be from rithm, communication between processors is implemented

the previous, i.e(k — 1)th, iteration, and in the case where using MPI (Message Passing Interface) [17] and, in partic-

c(tq) > c(tp) the values should be from the current, k#h, ular, the MPICH [9] implementation. We have employed

iteration. The requests sent in lines 5-8 and the wait com-several optimisation techniques in this respect: computa-

mand in line 10 ensure that this is satisfied. In line 13, the tion and communication interleaving, load-balancing and

processor verifies that all remote requests for values (fromremote block caching.

the previous iteration) of its current block have already been  The parallel Gauss-Seidel method requires a substan-

received and responded to. Only then does it proceed andial amount of communication between processors: blocks

update the block to its new values. This ensures that the val-of the solution vector must be passed between processors

ues are not overwritten before they are needed elsewheremany times during each iteration. As the size of CTMC be-

This verification process is possible because each processang solved increases, so does the amount of communication

has access to both the block structure of the marigin required. The impact of this overhead on the performance of
fact the whole matrix) and to the overall execution sched- the algorithm can be lessened considerably by interleaving
ule. operations for the communication and computation of vec-

We have already described, in Section 3.1, how the tor blocks. For example, in lines 10-12 of Figure 7, compu-
MTBDD-based data structure that we use to store the matrixtation using a particular vector blosk,, can be performed
A facilitates extraction of the dependency information used concurrently with the sending and receiving of blocks other
to construct the colouring scheme. The second advantage ofhan x(,). To implement this idea, we use non-blocking
using MTBDDs for the parallel implementation now also MPI functions (M PI _Iprobe, MPI _Isend and MPI _Irecv)
becomes clear. Note that all nodes will require access tofor inter-processor communication.
multiple blocks ofA. With a conventional, explicit storage Another important factor for the performance of paral-
scheme, these blocks would usually need to be communi-lel programming is load balancing, which aims to distribute
cated to the processors as required. With our approach, theomputation evenly between processors and minimise com-
matrix representation is typically compact enough that the munication load between them. In our approach, each node
whole matrix can be stored locally on each processor andis allocated a set of vector blocks. It is then responsible
its blocks can be quickly and conveniently accessed with- for both the computation of these blocks and the sending of
out any communication overhead. It should be noted thatcomputation results to other nodes which need them. We
this approach is equally applicable to alternative symbolic gave an algorithm to perform this allocation in Figure 6, in



Table 1. Model parameters and statistics.

Model States Transitions | Blocks Size (MB)

(V) MTBDD | Sparse

FMS (K=11) 54,682,992 518,030,370, 1,365 297 6,137
FMS (K=12) 111,414,940 1,078,917,632 1,820 558 | 12,772
FMS (K=13) 216,427,680 2,136,215,172 2,380 1,005| 25,273
Kanban {=7) 41,644,800 450,455,040 120 18 5,314
Kanban =8) 133,865,325 1,507,898,700 165 43 | 17,767
Kanban =9) 384,392,800, 4,474,555,800 220 95| 52,674
Kanban ¢{=10) | 1,005,927,208 12,032,229,352 286 195 | 141,535
Polling (K=20) 31,457,280 340,787,200 308 65 4,020
Polling (K=21) 66,060,288 748,683,264 324 141 8,820
Polling (K=22) 138,412,032 1,637,875,712 340 307 | 19,272

which tasks (i.e. blocks) are removed from a waiting list and we generated CTMCs of several sizes by varying a parame-
assigned to processors in a round-robin fashion. We haveter (K) of the model (se@ww.cs.bham.ac.uk/ dxp/prism for
improved this algorithm as follows. Each processor is as- more information). We computed the steady-state proba-
sociated with two cost values, one for computation and onebility distribution, terminating Gauss-Seidel when the max-
for communication. Whenever a block is assigned to a pro-imum relative difference between solution vector values
cessor, the computation cost of that processor is increasedieached 079, i.e. when:

The communication cost for both this processor and all oth-
ers which need the block are also increased. When a pro-
cessor is allocated a task (line 6 of Figure 6), preference is

given to those with the smallest communication cost and, h dx d h luti ¢ h
in the case of a tie, to those with the smallest computation V67X andx denote the solution vector from the current
and previous iteration, respectively.

cost. More sophisticated load balancing methods can also
P 9 Table 1 shows statistics for each CTMC: the size (both

be incorporated into the allocation algorithm but we do not "
consider these here the number of states and the number of transitions) and the
Even with the ab.ove optimisation techniques in place number of blocks we partition the solution vector into (i.e.
" N). For the latter, we select a partition which minimises

the parallel Gauss-Seidel method is still communication in- . .
tensive in some instances. To further reduce communica-3{0'age requirements (see [16]). Table 1 also includes the

; ; : t of memory required to store the matrix representing
tion between processors, we apply caching techniques to th&moun X

sending and receiving of blocks between processors. Sinceeagh C_TMC’ ;angjg %Oth our MTI?I_DD-tbased dart]a struclflurt_e
each processor is typically responsible for more than oneNd USINg a standard sparse matrix storage scheme. Notice

block, the computation of these blocks may require remotethat the MTBDD representation is: (a) much smaller —in

retrieval of the same block more than once. Hence, eachthe worst case (FMS=11), still a factor of 20 smaller,

processor counts the number of times it will use each block and (b) always less than 1 GB — compact enough to fit into

and, where possible, caches them until they are no longer reMmemory on our setup. )
Our experiments were performed on a Myrinet-

quired. The experimental results presented in the next part q | th g h inned with
of the paper make use of all three optimisation techniquesconneCte PC cluster with 50 nodes, each equipped wit
described here. dual 3 GHz Intel P4 Xeon processors and 2 GB of RAM.

In fact, we had exclusive access to just 32 of the nodes and
used only one processor on each.

Table 2 shows the total execution time (seconds) for ex-
periments on various numbers of nodes. Experiments which
In this section, we present experimental results for our could not be completed due to excessive memory require-
wavefront parallelisation of Gauss-Seidel, which has beenments are marked “O/M”".
implemented as part of the PRISM model checking tool  Our first observation is that, for three examples (FMS
[15]. We used three benchmark CTMC models: a flexible K=13, KanbankK=9, 10), our parallel implementation al-
manufacturing system (FMS) [6], a Kanban manufacturing lowed analysis of CTMCs which was intractable in the se-
system [5] and a cyclic server polling system [10]. For each, rial case (i.e. 1 node). Solution for these two examples was

4 Experimental results



Table 2. Total solution time (seconds) for the wavefront parallel Gauss-Seidel method.

Num. FMS Kanban Polling

nodes| K=11 | K=12 | K=13 || K=7 | K=8 | K=9 | K=10 || K=20 | K=21 | K=22
1 15,990| 35,637 O/M || 4,683| 19,417 O/M | O/M || 8,764 | 14,195| 45,485
2 10,349| 22,986 O/M | 3,351| 16,419 O/M | O/M || 6,451| 10,834 37,713
4 6,548 | 15,264| O/M || 1,925| 8,099 | 34,755 O/M || 4,906| 6,301 | 21,553
8 3,991 | 9,212 | O/M | 1,106| 4,474 | 16,271 O/M || 2,123| 3,463 | 11,287
12 || 3,218 | 7,148 | O/M 806 | 3,314 | 11,452| 45,206| 1,488| 2,433 | 8,338
16 || 2,446 | 5,642 |12,544| 611 | 2,555| 9,522 | 29,674 1,153| 1,807 | 5,929
24 | 1,860 | 4,419 | 9,657 || 503 | 1,915 | 6,741 |20,560|| 769 | 1,335| 4,546
28 1,623 | 4,038 | 8,173 || 450 | 1,679 | 5,753 18,599 736 | 1,203 | 3,491
32 1,504 | 3,689 | 7,693 | 351 | 1,526 | 5,134 | 15,750 650 | 858 | 3,086
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Figure 8. Speedup of the wavefront parallel Gauss-Seidel method

not possible for less than 16, 4 and 12 nodes, respectively. We conclude our analysis by discussing the convergence
Note that the FMS model, although smaller in terms of the of our Gauss-Seidel algorithm. As discussed in Section 3.2,
number of states, requires more memory for matrix storage,the allocation of vector blocks between parallel processors
and thus more parallel nodes to solve (the fewer the numbereffectively corresponds to a permutation of the matix
of nodes, the higher the amount of RAM required for vector of the linear equation system being solved. This means
block storage on each node). that the convergence of Gauss-Seidel may vary between ex-
periments for the same system but on different number of
Secondly, we see that the parallelised versions have sucnodes. Table 3 shows the number of iterations required for
cessfully produced a significant reduction in total run-time. convergence on different numbers of parallel nodes for one
For the cases where we were able to execute the sequenreTMC from each case study. Only a small variation in con-
tial version, the speedup when using all 32 nodes rangesyergence is observed. Similar results were obtained on the
betweerp.7 and16.5. In Figure 8, we plot the speedup ob- other CTMCs used in this paper. Overall, the maximum

tained in these cases for each number of parallel nodes. Fovariation in convergence observed for the case studies used
the models where sequential results are not available, wenere was 7.4%.

can still judge the performance of the parallel implemen-

tation by examining relative speedup. For all three FMS

models, the relative speedup betwdérand32 processors 5 Related work

is quite consistent, ranging betwe#i3 and1.63. Simi-

larly, for the Kanban models, the relative speedup betweenSince the sequential nature of the Gauss-Seidel method
12 and 32 ranges betweef.17 and2.87. We can hence  makes its parallelisation difficult, the parallel implementa-
expect the absolute speedup (i.e. betwéerode and32 tions which have been developed are usually application-
nodes) to be comparable for the larger models. specific. Examples include solution of partial differential



with Ethernet or Myrinet connections. We use symbolic,
Table 3. Number of iterations for the wave- MTBDD-based data structures for matrix storage and wave-
front parallel Gauss-Seidel method. front techniques to devise an efficient execution schedule.
. We have demonstrated how the symbolic approach is partic-
rl:l(;Jorlgé ;'\:Alsl K;Tj” Ij?i';og glarly yvell suited tq our pgrallel al_gorithm, firstly becau;e
1 1481 =63 1869 it facilitates extraction of mformatlon about dependencies
5 1481 763 1871 betwegn tasks to be executed in parallgl, and secondly be-
4 1480 760 1876 cause its compactness aII_ows the matrix to be store_d on all
nodes, dramatically reducing the amount of communication
8 1490 765 1884 required. Our experimental results illustrate that our imple-
ié 1221 ;gg 1222 mentation is efficient, exhibiting a spegdup of between
24 1511 762 1804 and16.5 on 32 processors. This, gomblned with the advan-
28 1509 759 1920 tgges of the Gauss-Seidel algorlthm, mean that our algo-
32 1501 757 1970 nthm_ represents an excellent candidate for the steady-state
solution of large CTMCs.

In the future, we would like to improve this work in a
number of ways. Firstly, we plan to test the performance of
equations [8] and of equation systems from electrical power our Gauss-Seidel algorithm on different types of analysis,
systems applications [14]. In the latter case, matrices areincluding reachability-based properties for both CTMCs
permuted into a block-diagonal-bordered form and a graphand DTMCs. Subsequently, we would like to consider al-
multi-colouring scheme is used to identify available paral- ternative iterative solution techniques not based on Gauss-
lelism. This approach is not applicable in our setting since Seidel, such as transient analysis of CTMCs and, more gen-
matrix permutation for MTBDDs is expensive. They used erally, model checking of the logic CSL on CTMCs and of
a multi-colouring scheme with which each block may have the logic PCTL on DTMCs or MDPs. We would also like
several colours and achieved relative speedups of betweeft? optimise our implementation by improving the degree of
8 to 12 for 32 processors. parallelism on a single parallel node, e.g. by exploiting the

Progress has also been made in the parallelisation of iterfact that dual processors are available.
ative steady-state solution of CTMCs [2, 12]. In these cases,
though, solution is not performed using the Gauss-Seidel Acknowledgements
method, but the Jacobi and Conjugate Gradient Squared

(CGS) methods. These alternatives have the advantage thag,o \vork in this paper was supported in part by EPSRC

they are less sequential in nature and hence more amenat_)l&ants GR/S11107 and GR/S27252. The authors would also

to parallelisation, but as observed in Section 2.1, have theirj; o 15 thanks the anonymous referees for their helpful com-
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