
A Wavefront Parallelisation of CTMC Solution using MTBDDs

Yi Zhang, David Parker, Marta Kwiatkowska
University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Email: {yxz, dxp, mzk}@cs.bham.ac.uk
Fax: +44 121 414 4281

Abstract

In this paper, we present a parallel implementation for
the steady-state analysis of continuous-time Markov chains
(CTMCs). This analysis is performed via solution of a lin-
ear equation system, which is carried out using the Gauss-
Seidel iterative method. We apply wavefront techniques,
which are used to create an efficient parallel execution
schedule based on dependencies between subtasks. Our im-
plementation uses symbolic data structures – multi-terminal
binary decision diagrams (MTBDDs) – which provide a
compact representation for large, structured CTMCs. MTB-
DDs prove to be very well suited to this application; firstly,
by providing a significant reduction in inter-processor com-
munication; and secondly, by allowing easy access to task
dependency information. We demonstrate the effectiveness
of our technique by presenting experimental results from a
cluster of 32 nodes which exhibit speedups of between 9.7
and 16.5, comparable with existing parallelisations of sim-
ilar CTMC analysis techniques. Thanks to the low space
complexity and good convergence rate of the Gauss-Seidel
method, our implementation represents an excellent candi-
date for parallel steady-state solution of CTMCs.

1 Introduction

Continuous-time Markov chains (CTMCs) are a commonly
used model in the field of performance and dependability
analysis of computer and communication systems. A va-
riety of useful performance measures of a CTMC model
can be derived from its steady-state probability distribution.
This distribution can be obtained from the solution of a lin-
ear equation system, whose size is proportional to that of
the model. Since CTMCs are in practice extremely large,
developing efficient implementations of this solution pro-
cess is an important direction of research. In this paper, we
combine two approaches in this area. Firstly, we work with
symbolictechniques, using data structures based on multi-
terminal binary decision diagrams (MTBDDs) to provide a

compact representation of CTMCs by exploiting high-level
structure and regularity. Secondly, we develop aparallel
implementation, where storage costs and computation time
can be distributed between a number of processors.

We use the Gauss-Seidel iterative solution method to
compute steady-state probabilities. In comparison to alter-
native iterative methods, this is an attractive option both in
terms of solution time (i.e. speed of convergence) and mem-
ory consumption (storage of solution vectors). The Gauss-
Seidel method is inherently sequential, making its paralleli-
sation non-trivial. Fortunately, when matrices are sparse,
as is usually the case for CTMCs, it is possible to extract
parallelism from the pattern of non-empty blocks in the ma-
trices. To achieve this, we usewavefronttechniques, which
schedule computation based on the dependencies between
large numbers of small tasks.

In this paper, we illustrate that MTBDDs are in fact well
suited to this approach. Firstly, they facilitate extraction of
the dependency information required for the parallel im-
plementation. Secondly, due to their compact nature, we
are able to store the entire matrix on each parallel node,
eradicating the usual need to exchange blocks of the ma-
trix during solution and hence considerably reducing costly
communication between nodes. We present experimental
results on a set of benchmark models which demonstrate
both an increase in the size of models for which solution is
tractable, and, for 32 parallel nodes, speedups of between
9.7 and16.5.

The remainder of this paper is structured as follows. Sec-
tion 2 covers relevant background material: steady-state so-
lution of CTMCs, symbolic methods, and wavefront tech-
niques. In Section 3, we describe our parallelised symbolic
implementation of CTMC solution. In Sections 4 and 5,
respectively, we present experiment results to illustrate the
efficiency of our approach and then compare it to related
work. Section 6 concludes the paper.

2 Background

2.1 Numerical solution of CTMCs

A continuous-time Markov chain(CTMC) comprises a set
of statesS, representing all the possible configurations of
the system being modelled, and a generator matrixQ. Each
non-diagonal matrix elementQij defines a rate for the pair
of statesi, j ∈ S. Each diagonal elementQii is defined as
−

∑
j 6=i Qij . This information gives both the likelihood of

moving from each state to each other state, and the amount
of time spent in each state. From statei, the probability
that a transition to statej will occur isQij/|Qii|. The time
spent in statei before this transition occurs is modelled as
a negative exponential distribution: the probability of exit
occurring by timet is 1− eQiit.

Thesteady-state probability distributionof a CTMC is a
vectorπ, each elementπi of which gives the probability of
being in statei in the long run. For a large class of CTMCs,
π can be obtained by solving the linear equation system
πQ = 0 with the additional constraint that

∑
i πi = 1.

We consider the more general problem of solving the lin-
ear equation systemAx = b, whereA is ann × n matrix
andb is vector of lengthn. When the matrixA is large
and sparse, as is typically the case in a CTMC setting, it is
preferable to solve the linear equation system using iterative
numerical solution methods, which repeatedly compute an
approximation to the solution vectorx, terminating when
some agreed convergence criterion has been met.

Two common options are the Jacobi and Gauss-Seidel
methods. Of these, the latter is preferable since it has lower
memory requirements (only one copy of the solution vector
x must be stored; two are needed for Jacobi) and it gener-
ally converges faster. Faster still are Krylov methods such
as Conjugate Gradient Squared (see e.g. [20]). These, how-
ever, usually require storage of additional vectors, which
becomes infeasible for large systems. In this paper, we fo-
cus on Gauss-Seidel. The algorithm in Figure 1 shows the
numerical computation performed for a single iteration of
this method.

1. for (0 ≤ i < n)
2. xi := (bi −

∑
0≤j<n,j 6=i

Aij · xj)/Aii

Figure 1. A simple algorithm to perform an
iteration of Gauss-Seidel.

Notice how, in theith step of the algorithm, theith el-
ement ofx is updated using the current (i.e. most up-to-
date) values for other elements of the vector. This is the
reason why only one vector need be stored and also why
it exhibits faster convergence than, say, the Jacobi method.

It also means, though, that the algorithm is inherently se-
quential, since, in stepi, it uses results from the previous
i−1 steps of the same Gauss-Seidel iteration. This can be
relaxed slightly by using a block-based formulation of the
algorithm (see e.g. [16]) as follows.

We assume that the matrixA is divided intoN × N
blocks, the(p, q)th block of which is denotedA(pq), and
that vectors are partitioned into subvectors of matching
sizes. Thepth block of a vectorx is denotedx(p). The
(i, j)th element of submatrixA(pq) and theith element of
subvectorx(p) are writtenA(pq)ij andx(p)i, respectively.
The size of matrix blockA(pq) is np × nq and hence the
size ofx(p) is np.

Using this notation, a block-based version of an iteration
of Gauss-Seidel is shown in Figure 2. Thepth step of the
outer loop computes new values for elements of the block
x(p) of the solution vector. This is achieved using an ad-
ditional small vectorv of sizemax0≤p<N{np}. The most
important aspect of the algorithm is that it accesses the ma-
trix one block at a time, rather than a single element at a
time. We also emphasise here that this is simply a reformu-
lation of the standard Gauss-Seidel algorithm, rather than a
variant such as block Gauss-Seidel (see e.g. [20]).

1. for (0 ≤ p < N)
2. v := b(p)

3. for each blockA(pq) with q 6= p
4. v := v −A(pq)x(q)

5. for (0 ≤ i < np, i 6= j)
6. x(p)i := (vi −

∑
0≤j<np

A(pp)ij · x(p)j)/A(pp)ii

Figure 2. A block-based formulation of the al-
gorithm for an iteration of Gauss-Seidel.

2.2 Symbolic techniques for CTMC solution

In practice, CTMCs are often extremely large. Fortunately,
though, they are also often constructed from descriptions
in high-level modelling formalisms and are thus inherently
structured.Symbolictechniques for the construction, rep-
resentation and analysis of CTMCs are those which exploit
this regularity to produce a very compact storage mecha-
nism, typically using data structures based on binary deci-
sion diagrams (BDDs). Symbolic approaches also exhibit
other advantages, such as fast model construction and com-
putation of reachable states. A range of data structures for
CTMC representation have been developed in this area, in-
cluding multi-terminal BDDs (MTBDDs) [7, 1], matrix dia-
grams [4] and Kronecker representations [19]. In this paper
we use MTBDDs.

2

An MTBDD is a reduced directed acyclic graph which
represents a function mapping vectors of Boolean values to
real numbers. By encoding the row and column indices of
a real-valued matrix into Boolean variables, we can repre-
sent the matrix as an MTBDD. As well as often providing
a very compact representation of large, regular matrices, an
MTBDD has the additional advantage that, being an inher-
ently recursive data structure, it provides a convenient block
decomposition of the matrix into submatrices.

Figure 3 illustrates this idea. It shows the structure of
an example MTBDD (for clarity, low-level details are omit-
ted) which represents some matrixA. Each node of the
MTBDD represents a particular submatrix ofA and the two
downward outgoing edges of that node represent a division
of its submatrix into two further submatrices. For example,
the topmost (root) node of the data structure represents the
whole matrixA. Descending one level, the two child nodes
of the root node represent the top and bottom halves,A0

andA1, of A, as illustrated in the figure. Descending one
level further to the nodes on the third level of the MTBDD
dividesA0 andA1 into left and right portions, represent-
ing a division of the whole matrixA into quadrants. Notice
that in this example the bottom right quadrant ofA is empty
and hence the second outgoing edge of the node represent-
ing A1 is omitted.

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

00 01 10

0 1

A

A A

A A A

0

1

A

A

A

00 01

10

A A

A

Figure 3. MTBDD representing a matrix A and
its decomposition into submatrices

In [16, 18], it is shown how the MTBDD-based storage
of transition matrices can be optimised by adding an explicit
representation (using sparse matrix data structures) of both
the high-level block structure of the matrix and the matrix
blocks themselves. This improves access speed, yet main-
tains sufficiently compact storage.

More importantly, since it provides fast access to each

row of matrix blocks and to each row of matrix entries
within these blocks (which ordinary MTBDDs do not pro-
vide), it is well suited to the numerical solution of CTMCs
using the block-based Gauss-Seidel method described in the
previous section. The two main limiting factors which re-
main in this implementation are, firstly, the storage of solu-
tion vectors (proportional to the size of the CTMC matrix)
and, secondly, the time for executing each iteration (propor-
tional to the number of entries in the CTMC matrix). In this
paper, we address both of these issues by distributing the
problem over multiple parallel processors.

2.3 Wavefront techniques

Wavefronttechniques are an approach to parallel program-
ming that involve the division of a computation into many
small tasks and the formation of anexecution schedulefor
these tasks. This schedule is based on the notion of wave-
fronts of parallel execution. Each wavefront comprises a
set of tasks which arealgorithmically independentof each
other, meaning that the correctness of the overall computa-
tion is not affected by the order in which they are performed
and that they can hence be carried out in parallel. The com-
putation order of tasks in different wavefronts, on the other
hand, can affect the correctness of the overall process. The
execution schedule is generated in such a way that the cor-
rectness is guaranteed. Wavefront techniques have been ap-
plied to a range of different problems, including iterative
solvers (M/ILU preconditioning) [11] and particle physics
simulations [13].

3 A wavefront parallelisation of Gauss-Seidel

In this section, we describe an algorithm for implementing
the Gauss-Seidel method using wavefront techniques. In
particular, we apply this approach to the block-based for-
mulation of Gauss-Seidel, which means that it is suitable for
implementation using symbolic techniques based on MTB-
DDs.

3.1 Extracting dependency information

Recall the block-based formulation for an iteration of the
Gauss-Seidel method given in Figure 2. The algorithm is
split into N steps, each calculating a different block of the
solution vectorx. Our approach will be to distribute these
steps over a number of parallel processors. Within a sin-
gle iteration, the computation of thepth blockx(p) depends
on the values of entries in other blocks of the vectorx. In
fact, it depends on all blocksx(q) for which A(pq) is non-
empty. Fortunately, the matrices which arise in the solu-
tion of CTMCs are typically very sparse, so there are many
empty blocks inA.

3

We formalise this dependency information as follows.
We will call the computation of each vector blockx(p) a
task, denotedtp. The set of all such tasks for an iteration
of Gauss-Seidel, is denotedT , i.e. T = {tp : 0 ≤ p <
N}. The set of tasks upon which tasktp is dependent is
Dp = {tq ∈ T : q 6= p andA(pq) is non-empty}. We can
then construct acomputation dependency graph, a directed
graphG = (T,E) whose vertices are the tasks inT and
whose edgesE ⊆ T × T represent dependencies between
tasks, i.e.(tp, tq) ∈ E if and only if tq ∈ Dp. As an exam-
ple, Figure 4 shows the block structure of an example matrix
A (N = 12) and its corresponding dependency graph.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 4. Block structure of an example matrix
and its dependency graph

MTBDDs, which we use to store matrices, are a re-
cursive, tree-like data structure. Extracting the nodes at
a given level of this tree provides a fast and convenient
representation of the block structure of a matrix (see e.g.
[16, 18]). This means that the dependency information
described above can be generated quickly and easily by
traversing just the top layers of the MTBDD. This is illus-
trated by our example of Section 2.2 (see Figure 3), in which
exploring the top three levels of the data structure reveals a
decomposition of the corresponding matrix into quadrants.

By varying the number of levels of the MTBDD which are
explored, it is easy to increase or decrease the granularity of
the obtained block structure.

3.2 Constructing a wavefront execution schedule

A complication of parallelising the Gauss-Seidel method is
that, when computing vector blockx(p), we must use up-
to-date values (i.e. computed in the current iteration) for
blocksx(q) with q < p and values from the previous iter-
ation for those withq > p. It is this inherently sequential
nature of Gauss-Seidel which makes its parallelisation non-
trivial.

The block-based Gauss-Seidel algorithm computes each
vector blockx(p) in the orderp = 0, . . . , N−1. In fact, we
can safely perform a reordering of this sequence, and hence
compute the blocks in an entirely different order. Effec-
tively this is just a permutation of the ordering of elements
in the matrixA and vectorsx andb in the original linear
equation systemAx = b, which has no effect on its solu-
tion. We can exploit this fact and select an ordering which
better suits our parallel implementation.

We begin by assigning a colourc(tp) to each tasktp ∈ T
in such a way thatc(tp) 6= c(tq) whentq ∈ Dp. This pro-
cess is equivalent to establishing a colouring for the depen-
dency graphG. An example colouring for the matrix and
dependency graph of Figure 4 is shown in Figure 5. We use
C to denote the total number of colours used. The smaller
the value ofC, the greater the degree of parallelism that we
will be able to obtain.

The problem of finding a minimum colouring for a graph
is known to be NP-hard. For our purposes though (as our
experimental results will later show), the following simple
heuristic approach suffices. We iterate through the graph
vertices in order,t0 to tN−1, assigning to each one a colour
which has not yet been assigned to any of its neighbours
(i.e. any vertex which has an edge either to or from it).

0Color I 1 3 5

9

11

Color II 2 6 7

Color III 4

8

10

Color IV

Figure 5. An example colouring for the matrix
and dependency graph of Figure 4

4

Next, we order theC colours used in the colouring
scheme according to the number of tasks to which each has
been assigned, i.e. the colour with the largest number of
tasks is indexed1, and the colour with the smallest num-
ber is indexedC. In our parallel implementation of Gauss-
Seidel, the order in which tasks are performed (i.e. the or-
der in which vector blocks are computed) will be according
to the ordering of their associated colours: we begin with
those of colour1 and proceed through to those of colourC.
Hence the ordering on colours determines the permutation
of the Gauss-Seidel ordering referred to above. Note that
the ordering of tasks labelled with the same colour can be
arbitrary since, by the definition of the colouring scheme,
their executions are independent of each other. The fact that
we place colours with more tasks earlier in the ordering is
motivated by the fact that it is desirable to eliminate depen-
dencies as early as possible.

Lastly, based on the colouring information obtained in
the previous step and the number of processors available
for parallel execution, we generate a wavefront execution
schedule which can exploit parallelism in the implemen-
tation of Gauss-Seidel. We assume that there areP pro-
cessors available,proc1, . . . , procP . A wavefront execu-
tion schedule is an assignment of each computation task in
T = {t0, . . . , tN−1} to one of theP processors.

Figure 6 shows the algorithm that we use to generate
such a schedule. By the definition of the Gauss-Seidel algo-
rithm, within a single iteration, the computation of blocks of
colourcol will depend on the computation results of blocks
of colour1, . . . , col−1 from the same iteration. Tasks of the
same colour, however, can be performed in parallel. To gen-
erate the wavefront execution schedule, we iterate through
the set of tasks, ordered according to their colouring and as-
sign them to processors in a cyclic fashion. This is done by
the main loop in lines 4–14 of Figure 6:col is the colour
of tasks currently being assigned,proc is the current pro-
cessor,Tqueue is the set of tasks ready to be allocated to a
processor, andTremaining is the set of tasks still to be allo-
cated. The setTqueue is in fact a FIFO queue, i.e. the order
in which we have inserted tasks into the queue is preserved.

When the Gauss-Seidel algorithm is executed, tasks of
colourcol+1 can actually be performed as soon as all tasks
of colour1, . . . , col on which they depend have been com-
pleted. Hence, in our schedule generation algorithm, we
use this information to decide the order in which tasks of
the same colour are allocated a place in the schedule. More
specifically, while the algorithm is assigning tasks of colour
col to processors, tasks of colourcol + 1 are appended to
the queueTqueue as soon as all jobs of colourcol on which
they depend have been scheduled (and hence removed from
Tqueue). This step is performed at lines 9–12 of Figure 6.
Note that no tasks ofcol + 1 are added to the queueTqueue

until all tasks of colourcol have either been assigned to a

1. col := 1, proc := 1
2. Tqueue := {tp ∈ T | c(tp) = 1} // task queue (FIFO)
3. Tremaining := T \ Tqueue // remaining tasks
4. do
5. remove a tasktp from Tqueue

6. assigntp to processorproc
7. choose next processor:proc := (proc modP) + 1
8. if (col < C)
9. Tcol+1 := {tp ∈ Tremaining | c(tp) = col + 1}
10. Tnext := {tp ∈ Tcol+1 | ∀tq ∈ Tqueue tq 6∈ Dp}
11. Tqueue := Tqueue ∪ Tnext

12. Tremaining := Tremaining \ Tnext

13. col := min{c(tp) | tp ∈ Tqueue}
14. until(Tqueue = ∅)

Figure 6. Algorithm to generate a wavefront
execution schedule.

processor or are already inTqueue . Hence, the overall order
in which tasks are allocated to processors, with respect to
colour, is preserved.

Later in the paper, in Section 3.4, we will discuss how
this algorithm can be improved further to optimise load bal-
ancing between processors.

3.3 Parallelisation

In this section, we describe a parallelisation of the Gauss-
Seidel method, based on the wavefront execution schedule
described in the previous section. The first step is for one
of the processors to generate this schedule and distribute it
to all other processors. Subsequently, each processorproci,
wherei = 1, . . . , P , has been assigned a set of tasksTi.
In each iteration of Gauss-Seidel, processorproci will be
responsible for the computation and storage of every vector
block x(p) for which tp ∈ Ti. The algorithm executed by
processori on iterationk of Gauss-Seidel is illustrated by
the pseudo-code in Figure 7.

Each processor works through theC colours in order,
processing each tasktp of that colour which has been as-
signed to it. For each tasktp, it computes the vector block
x(p). The computations required for Gauss-Seidel (see Fig-
ure 2) correspond to lines 3, 9, 11, 14 and 15 of Figure 7.
These computations require access to vector blocksx(q) for
which tq ∈ Dp. In many cases, the values for these blocks
must be obtained from other processors. To achieve this,
remote requests are sent in lines 5–8 and then responses
are received in line 10. In fact, the order in which blocks
are used (in the for loop at line 9) is not important so, for
efficiency, blocks can be used in the order in which they
become available. Conversely, remote requests from other
processors must also be responded to. This is done at each

5

1. for (1 ≤ col ≤ C)
2. for eachtp ∈ Ti with c(tp) = col
3. v := b(p)

4. for eachtq ∈ Dp with tq /∈ Ti

5. if (c(tq) > col)
6. send remote request for values ofx(q) at iterationk−1
7. else
8. send remote request for values ofx(q) at iterationk
9. for eachtq ∈ Dp

10. if (tq /∈ Ti) wait for requested values ofx(q)

11. v := v −A(pq)x(q)

12. respond to any remote requests
13. ensure all remote requests forx(p) at iterationk−1 responded to
14. for(0 ≤ i < np, i 6= j)
15. x(p)i := (vi −

∑
0≤j<np

A(pp)ij · x(p)j)/A(pp)ii

16. respond to any remote requests

Figure 7. Algorithm for processor proci on iteration k of Gauss-Seidel.

convenient point in the algorithm (lines 12 and 16).
In order to ensure that our parallel algorithm of Fig-

ure 7 represents a true implementation of the Gauss-Seidel
method, we require that the correct values of each vector
block x(q) are used in line 11. The ordering for Gauss-
Seidel is determined by the colouring scheme. Hence, in
the case wherec(tq) < c(tp), the values should be from
the previous, i.e.(k−1)th, iteration, and in the case where
c(tq) > c(tp) the values should be from the current, i.e.kth,
iteration. The requests sent in lines 5–8 and the wait com-
mand in line 10 ensure that this is satisfied. In line 13, the
processor verifies that all remote requests for values (from
the previous iteration) of its current block have already been
received and responded to. Only then does it proceed and
update the block to its new values. This ensures that the val-
ues are not overwritten before they are needed elsewhere.
This verification process is possible because each processor
has access to both the block structure of the matrixA (in
fact the whole matrix) and to the overall execution sched-
ule.

We have already described, in Section 3.1, how the
MTBDD-based data structure that we use to store the matrix
A facilitates extraction of the dependency information used
to construct the colouring scheme. The second advantage of
using MTBDDs for the parallel implementation now also
becomes clear. Note that all nodes will require access to
multiple blocks ofA. With a conventional, explicit storage
scheme, these blocks would usually need to be communi-
cated to the processors as required. With our approach, the
matrix representation is typically compact enough that the
whole matrix can be stored locally on each processor and
its blocks can be quickly and conveniently accessed with-
out any communication overhead. It should be noted that
this approach is equally applicable to alternative symbolic

matrix storage schemes, such as Kronecker representations.

3.4 Implementation optimisations

Our parallelisation of Gauss-Seidel is targeted at PC clus-
ters connected through Ethernet or Myrinet [3]. In our algo-
rithm, communication between processors is implemented
using MPI (Message Passing Interface) [17] and, in partic-
ular, the MPICH [9] implementation. We have employed
several optimisation techniques in this respect: computa-
tion and communication interleaving, load-balancing and
remote block caching.

The parallel Gauss-Seidel method requires a substan-
tial amount of communication between processors: blocks
of the solution vector must be passed between processors
many times during each iteration. As the size of CTMC be-
ing solved increases, so does the amount of communication
required. The impact of this overhead on the performance of
the algorithm can be lessened considerably by interleaving
operations for the communication and computation of vec-
tor blocks. For example, in lines 10–12 of Figure 7, compu-
tation using a particular vector blockx(q) can be performed
concurrently with the sending and receiving of blocks other
than x(q). To implement this idea, we use non-blocking
MPI functions (MPI Iprobe, MPI Isend andMPI Irecv)
for inter-processor communication.

Another important factor for the performance of paral-
lel programming is load balancing, which aims to distribute
computation evenly between processors and minimise com-
munication load between them. In our approach, each node
is allocated a set of vector blocks. It is then responsible
for both the computation of these blocks and the sending of
computation results to other nodes which need them. We
gave an algorithm to perform this allocation in Figure 6, in

6

Table 1. Model parameters and statistics.

Model States Transitions Blocks Size (MB)
(N) MTBDD Sparse

FMS (K=11) 54,682,992 518,030,370 1,365 297 6,137
FMS (K=12) 111,414,940 1,078,917,632 1,820 558 12,772
FMS (K=13) 216,427,680 2,136,215,172 2,380 1,005 25,273

Kanban (K=7) 41,644,800 450,455,040 120 18 5,314
Kanban (K=8) 133,865,325 1,507,898,700 165 43 17,767
Kanban (K=9) 384,392,800 4,474,555,800 220 95 52,674
Kanban (K=10) 1,005,927,208 12,032,229,352 286 195 141,535
Polling (K=20) 31,457,280 340,787,200 308 65 4,020
Polling (K=21) 66,060,288 748,683,264 324 141 8,820
Polling (K=22) 138,412,032 1,637,875,712 340 307 19,272

which tasks (i.e. blocks) are removed from a waiting list and
assigned to processors in a round-robin fashion. We have
improved this algorithm as follows. Each processor is as-
sociated with two cost values, one for computation and one
for communication. Whenever a block is assigned to a pro-
cessor, the computation cost of that processor is increased.
The communication cost for both this processor and all oth-
ers which need the block are also increased. When a pro-
cessor is allocated a task (line 6 of Figure 6), preference is
given to those with the smallest communication cost and,
in the case of a tie, to those with the smallest computation
cost. More sophisticated load balancing methods can also
be incorporated into the allocation algorithm but we do not
consider these here.

Even with the above optimisation techniques in place,
the parallel Gauss-Seidel method is still communication in-
tensive in some instances. To further reduce communica-
tion between processors, we apply caching techniques to the
sending and receiving of blocks between processors. Since
each processor is typically responsible for more than one
block, the computation of these blocks may require remote
retrieval of the same block more than once. Hence, each
processor counts the number of times it will use each block
and, where possible, caches them until they are no longer re-
quired. The experimental results presented in the next part
of the paper make use of all three optimisation techniques
described here.

4 Experimental results

In this section, we present experimental results for our
wavefront parallelisation of Gauss-Seidel, which has been
implemented as part of the PRISM model checking tool
[15]. We used three benchmark CTMC models: a flexible
manufacturing system (FMS) [6], a Kanban manufacturing
system [5] and a cyclic server polling system [10]. For each,

we generated CTMCs of several sizes by varying a parame-
ter (K) of the model (seewww.cs.bham.ac.uk/˜dxp/prism for
more information). We computed the steady-state proba-
bility distribution, terminating Gauss-Seidel when the max-
imum relative difference between solution vector values
reached10−6, i.e. when:

max
0≤i<n

(
|xi − x̃i|
|xi|

)
< 10−6

wherex andx̃ denote the solution vector from the current
and previous iteration, respectively.

Table 1 shows statistics for each CTMC: the size (both
the number of states and the number of transitions) and the
number of blocks we partition the solution vector into (i.e.
N). For the latter, we select a partition which minimises
storage requirements (see [16]). Table 1 also includes the
amount of memory required to store the matrix representing
each CTMC, using both our MTBDD-based data structure
and using a standard sparse matrix storage scheme. Notice
that the MTBDD representation is: (a) much smaller – in
the worst case (FMS,K=11), still a factor of 20 smaller;
and (b) always less than 1 GB – compact enough to fit into
memory on our setup.

Our experiments were performed on a Myrinet-
connected PC cluster with 50 nodes, each equipped with
dual 3 GHz Intel P4 Xeon processors and 2 GB of RAM.
In fact, we had exclusive access to just 32 of the nodes and
used only one processor on each.

Table 2 shows the total execution time (seconds) for ex-
periments on various numbers of nodes. Experiments which
could not be completed due to excessive memory require-
ments are marked “O/M”.

Our first observation is that, for three examples (FMS
K=13, KanbanK=9, 10), our parallel implementation al-
lowed analysis of CTMCs which was intractable in the se-
rial case (i.e. 1 node). Solution for these two examples was

7

Table 2. Total solution time (seconds) for the wavefront parallel Gauss-Seidel method.

Num. FMS Kanban Polling
nodes K=11 K=12 K=13 K=7 K=8 K=9 K=10 K=20 K=21 K=22

1 15,990 35,637 O/M 4,683 19,417 O/M O/M 8,764 14,195 45,485
2 10,349 22,986 O/M 3,351 16,419 O/M O/M 6,451 10,834 37,713
4 6,548 15,264 O/M 1,925 8,099 34,755 O/M 4,906 6,301 21,553
8 3,991 9,212 O/M 1,106 4,474 16,271 O/M 2,123 3,463 11,287
12 3,218 7,148 O/M 806 3,314 11,452 45,206 1,488 2,433 8,338
16 2,446 5,642 12,544 611 2,555 9,522 29,674 1,153 1,807 5,929
24 1,860 4,419 9,657 503 1,915 6,741 20,560 769 1,335 4,546
28 1,623 4,038 8,173 450 1,679 5,753 18,599 736 1,203 3,491
32 1,504 3,689 7,693 351 1,526 5,134 15,750 650 858 3,086

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

Number of processors

S
pe

ed
up

FMS 11
FMS 12

(a) FMS

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Number of processors

S
pe

ed
up

Kanban 7
Kanban 8

(b) Kanban

0 5 10 15 20 25 30 35
0

5

10

15

20

Number of processors
S

pe
ed

up

Polling 20
Polling 21
Polling 22

(c) Polling

Figure 8. Speedup of the wavefront parallel Gauss-Seidel method

not possible for less than 16, 4 and 12 nodes, respectively.
Note that the FMS model, although smaller in terms of the
number of states, requires more memory for matrix storage,
and thus more parallel nodes to solve (the fewer the number
of nodes, the higher the amount of RAM required for vector
block storage on each node).

Secondly, we see that the parallelised versions have suc-
cessfully produced a significant reduction in total run-time.
For the cases where we were able to execute the sequen-
tial version, the speedup when using all 32 nodes ranges
between9.7 and16.5. In Figure 8, we plot the speedup ob-
tained in these cases for each number of parallel nodes. For
the models where sequential results are not available, we
can still judge the performance of the parallel implemen-
tation by examining relative speedup. For all three FMS
models, the relative speedup between16 and32 processors
is quite consistent, ranging between1.53 and1.63. Simi-
larly, for the Kanban models, the relative speedup between
12 and32 ranges between2.17 and2.87. We can hence
expect the absolute speedup (i.e. between1 node and32
nodes) to be comparable for the larger models.

We conclude our analysis by discussing the convergence
of our Gauss-Seidel algorithm. As discussed in Section 3.2,
the allocation of vector blocks between parallel processors
effectively corresponds to a permutation of the matrixA
of the linear equation system being solved. This means
that the convergence of Gauss-Seidel may vary between ex-
periments for the same system but on different number of
nodes. Table 3 shows the number of iterations required for
convergence on different numbers of parallel nodes for one
CTMC from each case study. Only a small variation in con-
vergence is observed. Similar results were obtained on the
other CTMCs used in this paper. Overall, the maximum
variation in convergence observed for the case studies used
here was 7.4%.

5 Related work

Since the sequential nature of the Gauss-Seidel method
makes its parallelisation difficult, the parallel implementa-
tions which have been developed are usually application-
specific. Examples include solution of partial differential

8

Table 3. Number of iterations for the wave-
front parallel Gauss-Seidel method.

Num. FMS Kanban Polling
nodes K=11 K=7 K=20

1 1481 763 1869
2 1481 763 1871
4 1480 760 1876
8 1490 765 1884
12 1501 759 1890
16 1511 759 1866
24 1511 762 1804
28 1509 759 1920
32 1501 757 1970

equations [8] and of equation systems from electrical power
systems applications [14]. In the latter case, matrices are
permuted into a block-diagonal-bordered form and a graph
multi-colouring scheme is used to identify available paral-
lelism. This approach is not applicable in our setting since
matrix permutation for MTBDDs is expensive. They used
a multi-colouring scheme with which each block may have
several colours and achieved relative speedups of between
8 to 12 for 32 processors.

Progress has also been made in the parallelisation of iter-
ative steady-state solution of CTMCs [2, 12]. In these cases,
though, solution is not performed using the Gauss-Seidel
method, but the Jacobi and Conjugate Gradient Squared
(CGS) methods. These alternatives have the advantage that
they are less sequential in nature and hence more amenable
to parallelisation, but as observed in Section 2.1, have their
own disadvantages: Jacobi is slower to converge and re-
quires two solution vectors; CGS is generally faster to con-
verge but uses at least six vectors. In [2], the authors work
on a cluster of PCs, like in this paper. On 26 nodes, they
achieve speedups of 8 and 18 for Jacobi and CGS, respec-
tively. In the latter case, however, some of the speedup
can be attributed to the additional time required for the se-
rial version to save intermediate vectors to disk. In [12],
which uses disk-based techniques, the best speedup is6.5
on 16 processors for the CGS method. Our own earlier
work in [16] also parallelises iterative steady-state solution
of CTMCs but is developed for a different parallel architec-
ture: multiple processors on the one computer, communi-
cating via shared memory.

6 Conclusion

In this paper, we have presented a technique for the par-
allelisation of steady-state solution of CTMCs using the
Gauss-Seidel iterative method, aimed at clusters of PCs

with Ethernet or Myrinet connections. We use symbolic,
MTBDD-based data structures for matrix storage and wave-
front techniques to devise an efficient execution schedule.
We have demonstrated how the symbolic approach is partic-
ularly well suited to our parallel algorithm, firstly because
it facilitates extraction of information about dependencies
between tasks to be executed in parallel, and secondly be-
cause its compactness allows the matrix to be stored on all
nodes, dramatically reducing the amount of communication
required. Our experimental results illustrate that our imple-
mentation is efficient, exhibiting a speedup of between9.7
and16.5 on 32 processors. This, combined with the advan-
tages of the Gauss-Seidel algorithm, mean that our algo-
rithm represents an excellent candidate for the steady-state
solution of large CTMCs.

In the future, we would like to improve this work in a
number of ways. Firstly, we plan to test the performance of
our Gauss-Seidel algorithm on different types of analysis,
including reachability-based properties for both CTMCs
and DTMCs. Subsequently, we would like to consider al-
ternative iterative solution techniques not based on Gauss-
Seidel, such as transient analysis of CTMCs and, more gen-
erally, model checking of the logic CSL on CTMCs and of
the logic PCTL on DTMCs or MDPs. We would also like
to optimise our implementation by improving the degree of
parallelism on a single parallel node, e.g. by exploiting the
fact that dual processors are available.

Acknowledgements

The work in this paper was supported in part by EPSRC
grants GR/S11107 and GR/S27252. The authors would also
like to thanks the anonymous referees for their helpful com-
ments.

References

[1] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications.Formal Methods in System Design,
10(2/3):171–206, 1997.

[2] A. Bell and B. Haverkort. Serial and parallel out-of-core so-
lution of linear systems arising from generalised stochastic
Petri nets. InProc. High-Performance Computing Sympo-
sium (HPC), ASTC’01, pages 242–247. Society for Com-
puter Simulation, 2001.

[3] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A gigabit-per-second local
area network.IEEE Micro, 15(1):29–36, 1995.

[4] G. Ciardo and A. Miner. A data structure for the efficient
Kronecker solution of GSPNs. In P. Buchholz and M. Silva,
editors,Proc. 8th International Workshop on Petri Nets and
Performance Models (PNPM’99), pages 22–31. IEEE Com-
puter Society Press, 1999.

9

[5] G. Ciardo and M. Tilgner. On the use of Kronecker operators
for the solution of generalized stocastic Petri nets. ICASE
Report 96-35, Institute for Computer Applications in Sci-
ence and Engineering, 1996.

[6] G. Ciardo and K. Trivedi. A decomposition approach for
stochastic reward net models.Performance Evaluation,
18(1):37–59, 1993.

[7] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and
X. Zhao. Multi-terminal binary decision diagrams: An effi-
cient data structure for matrix representation.Formal Meth-
ods in System Design, 10((2/3):149–169, 1997.

[8] G. Golub, J. Ortega, and G. Golub.Scientific Computing:
An Introduction With Parallel Computing. Academic Press,
1993.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard.Parallel Computing, 22(6):789–
828, Sept. 1996.

[10] O. Ibe and K. Trivedi. Stochastic Petri net models of polling
systems. IEEE Journal on Selected Areas in Communica-
tions, 8(9):1649–1657, 1990.

[11] W. Joubert, T. Oppe, R. Janardhan, and W. Dearholt. Fully
parallel global M/ILU preconditioning for 3-D structured
problems. Report LA-UR-98-2259, Los Alamos National
Laboratory, May 1998.

[12] W. Knottenbelt and P. Harrison. Distributed disk-
based solution techniques for large Markov models. In
B. Plateau, W. Stewart, and M. Silva, editors,Proc. 3rd
International Workshop on Numerical Solution of Markov
Chains (NSMC’99), pages 58–75. Prensas Universitarias de
Zaragoza, 1999.

[13] K. Koch, R. Baker, and R. Alcouffe. Solution of the first-
order form of threedimensional discrete ordinates equations
on a massively parallel machine.Transactions of the Amer-
ican Nuclear Society, 65(198), 1992.

[14] D. Koester, S. Ranka, and G. Fox. A parallel Gauss-Seidel
algorithm for sparse power system matrices. InProceedings
of Supercomputing’94, pages 184–193, 1994.

[15] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A tool for probabilistic model checking. InProc. 1st Inter-
national Conference on Quantitative Evaluation of Systems
(QEST’04), pages 322–323. IEEE Computer Society Press,
2004.

[16] M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood.
Dual-processor parallelisation of symbolic probabilistic
model checking. In D. DeGroot and P. Harrison, editors,
Proc. 12th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS’04), pages 123–130. IEEE Computer So-
ciety Press, 2004.

[17] MPI Forum. MPI: A message-passing interface standard.
The International Journal of Supercomputer Applications
and High Performance Computing, 8(3/4):159–416, 1994.

[18] D. Parker.Implementation of Symbolic Model Checking for
Probabilistic Systems. PhD thesis, University of Birming-
ham, 2002.

[19] B. Plateau. On the stochastic structure of parallelism and
synchronisation models for distributed algorithms. InProc.
1985 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, volume 13(2) ofPerfor-
mance Evaluation Review, pages 147–153, 1985.

[20] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton, 1994.

10

