
Synthesis for PCTL in

Parametric Markov Decision Processes

Ernst Moritz Hahn1, Tingting Han2, and Lijun Zhang3

1 Saarland University, Saarbrücken, Germany
2 Oxford University Computing Laboratory, United Kingdom

3 DTU Informatics, Technical University of Denmark, Denmark

Abstract. In parametric Markov Decision Processes (PMDPs), transi-
tion probabilities are not fixed, but are given as functions over a set of
parameters. A PMDP denotes a family of concrete MDPs. This paper
studies the synthesis problem for PCTL in PMDPs: Given a specification
Φ in PCTL, we synthesise the parameter valuations under which Φ is true.
First, we divide the possible parameter space into hyper-rectangles. We
use existing decision procedures to check whether Φ holds on each of the
Markov processes represented by the hyper-rectangle. As it is normally
impossible to cover the whole parameter space by hyper-rectangles, we
allow a limited area to remain undecided. We also consider an extension
of PCTL with reachability rewards. To demonstrate the applicability of
the approach, we apply our technique on a case study, using a preliminary
implementation.

1 Introduction

Markov processes [6, 26] have been applied successfully to reason about quanti-
tative properties in networked, distributed, and recently biological systems. This
paper considers parametric Markov processes [24], in which transition probabili-
ties are not fixed, but depend on a set of parameters. As an example, consider a
communication network with a lossy channel, where whenever a package is sent,
it is received with probability x but lost with probability 1− x. In this context,
we are interested in, for instance, determining the parametric reachability prob-
ability with respect to a given set of states. This probability is a function in x.
By inserting an appropriate value for x in the function, we will obtain a concrete
model without parameters. The synthesis problem asks, for example, what are
the possible parameter valuations such that the reachability probability is below
the a priori specified threshold.

Daws has devised a language-theoretic approach to solve the reachability
problem in parametric Markov chains [11]. In this approach, the transition prob-
abilities are considered as letters of an alphabet. Thus, the model is viewed as
a finite automaton. Based on the state elimination approach [21], the regular
expression describing the language of such an automaton is computed. In a post-
processing step, this regular expression is transformed into a rational function
over the parameters of the model. In previous works [17], we have improved this

method by intertwining the state elimination and the computation of the ratio-
nal function. Briefly, in a state elimination step, we label the edges directly with
the appropriate rational function representing the flow of probabilities. Once all
states—except the initial one and the goal states—have been eliminated, we can
obtain the probabilities directly from the remaining edges. This improved algo-
rithm is implemented in our tool Param [16]. The tool also supports bounded
reachability, relying on matrix-vector multiplication with rational function en-
tries, and reachability rewards [7,13]. For the latter, we extended the model with
parametric rewards assigned to both states and transitions, and considered the
expected accumulated reward until a given set of states is reached.

In this paper, we extend our approach to solve the PCTL synthesis prob-
lem for parametric Markov decision processes (PMDPs). PCTL (Probabilistic
CTL) [6, 19] is a probabilistic extension of the logic CTL for reasoning about
properties over Markov models. In this paper, we extend the PCTL formulae
with the reachability reward properties [20, 23] and can express properties like:

“The probability is larger than 0.99, that in the next step we move to a
state where the accumulated reward until we are able to reach a state in
which the property ’a’ holds is less than 5.”

as P>0.99(X R<5(♦a)) in PCTL. We are interested in synthesising the concrete
models fulfilling a given specification. Markov decision processes contain both
probabilistic choices and nondeterministic choices. The notion of schedulers is
used to resolve nondeterminism, leading to a parametric Markov chain. Previ-
ously [17], we considered a method for PMDPs by encoding nondeterminism in
additional parameters. This method turned out to be limited by the number of
nondeterministic choices, and can not be extended to treat nested properties.
To handle the PCTL synthesis problem on PMDPs, we propose to divide the
parameter valuations into regions, which are hyper-rectangles in the dimension
of the number of variables. A region represents a family of concrete models. We
aim at computing regions that subsume models with the same truth value of the
specification. In general, it is not possible to cover the whole space completely.
Thus, we stop as soon as the size of regions is below a pre-specified threshold,
where it is unknown whether the specification is satisfied or not. To be on the
safe side, the unknown regions are usually assumed not to fulfil the specification.
To decide properties of a region of parameter valuations, we can use an approx-
imate but fast method [18] which might derive false positive or false negative
results. It can thus be used to get a quick overview for which areas the formula
may hold, but should not be used if this information is critical. We can also use
slower decision procedures with correctness guarantees [14, 25, 27].

In Fig. 1, we give an example for illustration. Zeroconf [9] is a protocol allow-
ing the dynamic configuration of a network. When a new host enters a network,
it randomly chooses an ID and asks the existing members of the network whether
the ID is already in use. The request is conducted maximally n times, to minimise
the probability of not getting an answer in an unreliable network even though the
ID is used. If the host does not get an answer within n tries, it assumes the ID to

p

q

0 0.6

0

Fig. 1. Dividing the parameter space
into regions in the Zeroconf example.

be unused. Here, we assume n = 10.
The parameter p denotes the probability
that the host gets no answer in case of
a collision, and q denotes the probability
that a chosen ID is already in use. We
ask whether the expected number of re-
quests till the protocol terminates (with
an either unique or duplicate ID) is be-
low 11. In PCTL (with reward exten-
sions), this property can be expressed as
R<11(♦IDConfirmed). In Fig. 1, regions
for which this holds (resp. does not hold)
are given as white (resp. black) boxes,
while the gray boxes are unknown regions.
As we can see, an increase of p or q leads
to an increase of the expected number of trials.

To the best of our knowledge, parameter synthesis for PCTL properties in
PMDPs has not been handled before. The most closely related work is due
to Fribourg and André [15]: For a given PMDP and an instantiation of the
parameters, they compute a scheduler for this instantiation which is optimal for
a certain (non-nested) property. Afterwards, they compute the set of parameter
evaluations for which the scheduler is still optimal. Compared to their work, we
can deal with nested formulae and do not have a fixed scheduler a priori, but
use different optimising schedulers for different regions if necessary.

Organisation of the paper. In Section 2 we give some preliminaries and define
the parametric models and the variant of PCTL used in this paper. Then, in
Section 3, we describe our parameter synthesis algorithm. We provide experi-
mental results in Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the definitions of non-parametric Markov mod-
els and the logic PCTL. Afterwards, we introduce our parametric extensions and
hyper-rectangles needed later for the synthesis problem.

2.1 Non-parametric Models

Definition 1. A Markov chain (MC) is a tuple D = (S, s0,P, L) where S is a
finite set of states, s0 is the initial state, P : S×S → [0, 1] denotes the probability
matrix, where for all s ∈ S we require that

∑

s′∈S P(s, s′) = 1. Finally, L : S →
2AP is a state labelling, mapping states to a subset of a given set of atomic
propositions AP.

Markov chains are the most basic model class. Next, we consider Markov
decision processes which extend MCs by nondeterministic decisions.

Definition 2. A Markov decision process (MDP) is defined as a tuple M =
(S, s0,Act ,P, L) where S, s0 and L are as for MCs, and Act is a finite set of
actions. The transition probability matrix P is a function P : S×Act×S → [0, 1].
For all states s ∈ S and actions α ∈ Act, we require that

∑

s′∈S P(s, α, s′) ∈
{0, 1}. We also require that for each s ∈ S there is at least one α ∈ Act with
∑

s′∈S P(s, α, s′) = 1.

With Act(s) = {α |
∑

s′∈S P(s, α, s′) = 1} we specify the set of enabled
actions of a state. The nondeterministic choices are resolved by the notion of
schedulers. A simple scheduler is a function δ : S → Act assigning one enabled
action to each state. A counting scheduler is a function δ : S × [1, n] → Act , for
some n ∈ N. Notice that for each i ∈ {1, . . . , n} we have that δ(·, i) is a simple
scheduler. For our purposes, simple and counting schedulers suffice. A simple
scheduler induces an MC from an MDP as follows.

Definition 3. Given an MDP M = (S, s0,Act ,P, V) and a simple scheduler
δ, the MC induced by δ is defined as Mδ := (S, s0,P

δ, V) where the transition
matrix Pδ : S × S → [0, 1] is defined by Pδ(s, s′) := P(s, δ(s), s′).

For MDPs with exactly one enabled action for each state, there is a one-to-one
correspondence to MCs, so we can consider MCs as a special case of MDPs.

When model checking PCTL formulae, we will have to consider modified
versions of our models, in which certain states are made absorbing.

Definition 4. Let sink : S → {false, true} be a function mapping states to
boolean values. For the transition matrix P of an MDP, we define a transition
matrix P[sink] where states s with sink(s) = true are made absorbing by setting

P[sink](s, α, s′) :=

P(s, α, s′) if sink(s) = false ,
1 if sink(s) = true ∧ s = s′,

0 else.

By skipping the action α above we get the definition for MCs.

We now extend our models by rewards, which can be interpreted as either
costs or bonuses, depending on the model under consideration.

Definition 5. A reward structure for an MDP with state space S and action
set Act is a partial function r : S ×Act ⇀ R≥0 assigning a reward to each state
and enabled action. For an MC, a reward structure is a function r : S → R≥0

assigning a reward to each state.

Similar to the probability matrices, if r is a reward structure for an MDP
and δ is a simple scheduler, we define rδ such that rδ(s) = r(s, δ(s)). Given a
function sink : S → {true, false} and a reward structure r for an MDP, we let
r[sink](s, α) = 0 if sink(s) = true and r[sink](s, α) = r(s, α) otherwise. For an
MC, we define r[sink](s) = 0 if sink(s) = true and r[sink](s) = r(s) otherwise.

2.2 Probabilistic CTL

To specify properties, we consider the logic Probabilistic CTL (PCTL) [6, 19].
The syntax is given by:

Φ = true | a | ¬Φ | Φ ∧ Φ | P⊲⊳p(ϕ) | R⊲⊳m(♦Φ), ϕ = X Φ | Φ U Φ | Φ U≤n Φ,

where ⊲⊳ ∈ {<,≤,≥, >}, n ∈ N, p ∈ [0, 1], m ∈ R and a ∈ AP . Here, Φ is a
formula which has a boolean value in a state, whereas ϕ is interpreted on paths.
PCTL can be interpreted on MDPs [6].

The truth values of true, a and ∧ in a state are straightforward. For state s,
the formula P⊲⊳p(ϕ) is fulfilled if for all schedulers the probability of paths which
start in s and fulfil ϕ meets the bound ⊲⊳ p. For ⊲⊳ ∈ {<,≤}, this is equivalent
to asking whether the maximal probability fulfils ⊲⊳ p, whereas for ⊲⊳ ∈ {≥, >}
we only need to consider the minimal probability.

Given a path, the next formula X Ψ asks whether on the second state of
this path Ψ holds. The unbounded until formula Ψ1 U Ψ2 requires that a state
on the path fulfils Ψ2, and for all states on the path before that point, Ψ1 must
hold. The bounded until formula Ψ1 U≤n Ψ2 is similar, but additionally requires
that Ψ2 occurs at latest n steps after the first state of the path. The formal
semantics of PCTL on MDPs has been introduced by Bianco and De Alfaro [6].
We write M |= Φ if the initial state of an MDP fulfils the PCTL state formula
Φ. The reachability reward formula [20, 23] R⊲⊳m(♦Ψ) states that the expected
accumulated reward until a state satisfying Ψ is reached should meet the bound
⊲⊳ m. The formula holds, if under all schedulers this expectation fulfils ⊲⊳ m.

2.3 Parametric Models

We fix V = {x1, . . . , xn} as the set of variables with domain R. With each
variable x, we associate a closed interval range(x) = [Lx, Ux] specifying which
values of x are valid. An evaluation v is a function v : V → R respecting the
variable ranges. A polynomial g over V is a sum of monomials

g(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inx
i1
1 · · ·xin

n ,

where each ij ∈ N0 and each ai1,...,in ∈ R. A rational function f over a set of

variables V is a fraction f(x1, . . . , xn) = g1(x1,...,xn)
g2(x1,...,xn)

of two polynomials g1, g2

over V . Let FV denote the set of rational functions from V to R. Given f ∈ FV

and an evaluation v, we let f〈v〉 := f(v(x1), . . . , v(xn)) denote the rational
number obtained by substituting each occurrence of xi with v(xi).

We now extend MCs to parametric models [11, 24]. The difference to the
original model lies in the extension by parameters and the definition of the
probability matrix.

Definition 6. A parametric Markov chain (PMC) is defined as a tuple D =
(S, s0,P, L, V) where S, s0 and L are as in Definition 1, V = {x1, . . . , xn} is a
finite set of parameters and P is the probability matrix P : S × S → FV .

A parameter evaluation induces a non-parametric MC from a PMC.

Definition 7. Let D = (S, s0,P, L, V) be a PMC. The MC Dv induced by
an evaluation v is defined as Dv := (S, s0,Pv, L) where the transition matrix
Pv : S × S → [0, 1] is given by Pv(s, s

′) := P(s, s′)〈v〉 if this matrix fulfils the
requirements of Definition 1.

We already considered [16, 17] how to compute a rational function which
represents the unbounded reachability probability from the initial state to a
set of target states in a PMC. Evaluating this rational function with a certain
parameter evaluation leads to the same result as first computing the induced
PMCs and then computing the probability in this model. With a simple extension
of our previous techniques, we can compute reachability values for all states of
the model at the same time, which is necessary when checking nested formulae.
Below we define parametric MDPs.

Definition 8. A parametric Markov decision process (PMDP) is a tuple M =
(S, s0,Act ,P, L, V) where S, s0, L and V are as for PMCs, and Act is a finite
set of actions. The transition matrix P is of the form P : S ×Act × S → FV .

As for PMCs, we introduce the MDP induced by a valuation function.

Definition 9. Given a PMDP M = (S, s0,Act ,P, L, V) and an evaluation v,
the MDP induced by v is defined by Mv := (S, s0,Act ,Pv, L) where Pv :
S × Act × S → [0, 1] is defined by Pv(s, α, s

′) := P(s, α, s′)〈v〉. For Pv, the
requirements of Definition 2 must be fulfilled.

The notions of making a state absorbing as well as models and rewards in-
duced by a scheduler are defined as in the non-parametric models. We allow
reward structures to take rational functions as values. In turn, for an evaluation
v, we define rv as rv(s, α) := r(s, α)〈v〉 or rv(s) := r(s)〈v〉 respectively. As re-
quired by the optimality equation used in the later model checking algorithm, we
assume nonnegative rewards, i.e., rv ≥ 0, for all evaluations under consideration.

We assume that our evaluation functions fulfil the following assumption.

Assumption 1. Let v be an evaluation function and let P be the probability
matrix of a PMC or PMDP. Then no transition probability of Pv is zero or one,
except this entry is zero or one for any evaluation.

s0 s1
x

1− x

Fig. 2. Example PMC of Assumption 1.

Our assumption guarantees that
the structure of the underlying graph
of P remains unchanged from v. In
other words, a transition with a pa-
rameter should not disappear (due to
the null probability) no matter what
value it takes. It excludes extreme
cases such as when x = 0 or x = 1 (see Fig. 2). This is not a severe restric-
tion, as such cases are seldom interesting in practice: They correspond to cases
where an error happens either not at all or with certainty. These corner cases can
be treated separately, with exponential blow-up in the number of variables, by
fixing each such possible evaluation combinations before applying our approach.

2.4 Hyper-rectangles

A region is a high-dimensional rectangle r = ×x∈V
[lx, ux] such that for all

x ∈ V it is [lx, ux] ⊆ range(x). A region represents those evaluations v with
v(x) ∈ [lx, ux] for all x ∈ V : In this case, we write v ∈ r. We define the centre
of a region r =×x∈V

[lx, ux] by centre(r)(x) := lx+ux

2 for x ∈ V . Later on, we
might have to split a region r into several smaller parts, provided r is too coarse
with respect to a property, i.e., we are not sure whether the property holds for
all evaluations it represents. For this, we introduce the splitting function. For
A ⊆ V , we let

INT2(r, x, A) :=

{

{[lx, ux]} if x 6∈ A,

{[lx, centre(r)(x)], [centre(r)(x), ux]} if x ∈ A

be the function dividing the interval [lx, ux] (of region r) on dimension x ∈ A

into two halves. Define

split(r, 2, A) :=

{

×
x∈V

Intx

∣

∣

∣
∀x ∈ V. Intx ∈ INT2(r, x, A)

}

as the set of split (small) regions, or sub-regions. Moreover, INTm(r, x, A) and
split(r,m,A) for m > 2 can be defined in a very similar way, where they equally
divide the interval in each dimension for each x ∈ A into m sub-intervals and
compute the set of m-divided regions, respectively. The set A will be skipped in
case of A = V , and we also write split(r) for split(r, 2).

We define the volume µ of a region r =×x∈V
[lx, ux] in a straight-forward

way by setting µ(r) :=
∏

x∈V
ux−lx
Ux−Lx

. This way, the volume is the product of the
relative lengths of sides of the hyper-rectangle. For a set K = {r1, . . . , rn} of
regions, we define µ(K) :=

∑n

i=1 µ(ri).
A decision procedure is a tool deciding the validity of formulae for a given

region. There exist both approximate decision procedures [18] as well as precise
ones [14, 25, 27]. Consider a predicate constraint := f ⊲⊳ q where f is a rational
function over the variables in V , ⊲⊳ ∈ {<,≤,≥, >} and q ∈ R. Let r be a
given region. For an evaluation v, with constraint〈v〉 we denote f〈v〉 ⊲⊳ q, i.e.,
the constraint obtained under the valuation v. We assume that we are given a
decision procedure check(constraint , r) which

– returns true only if for all v ∈ r we have that constraint〈v〉 is true, and
– returns false in case this does not hold or the result can not be decided.

3 Synthesis for PCTL

In this section we present the algorithm for synthesising PCTL formulae against
PMDPs. The main routine of the algorithm is given in Algorithm 1. It main-
tains a set unprocessed of regions for which the result is still unknown, initially
containing only×x∈V

range(x). Then, it takes a largest region out of this set

Algorithm 1: main(M = (S, s0,Act ,P, V), Φ, ε)

unprocessed := {×x∈V
range(x)}

result := ∅
while µ(unprocessed) ≥ ε do

choose one largest r ∈ unprocessed
unprocessed := unprocessed \ {r}
b := checkState(r, Φ)
if b = ? then

unprocessed := unprocessed ∪ split(r)
else

result := result ∪ {(r, b)}

return result

and tries to decide its value using the procedure checkState. If checkState
returns a definite answer, the pair (r, b) is added to result . In this case, the truth
value for a state s is the same for all non-parametric MDPs represented by r.
Then, b(s) maps each state s to this truth value, which is constant within the
region. If ? is obtained, we split the region and add the newly generated regions
to unprocessed . The procedure is repeated until the volume of unprocessed is
smaller than ε.

Algorithm 2 describes the procedure checkState discussed above. If suc-
cessful, it returns a function mapping each state to either true or false . It may
also return ? if either the truth value is different for certain parts of the region,
or the truth values can not be decided for the whole region at once. Notice that
for two functions b, b′ : S → {true, false, ?}, the boolean connectors b ∧ b′, etc.
are to be understood state-wise, that is (b ∧ b′)(s) = b(s) ∧ b′(s), etc. For ∧
and ¬ operations, the result is always ? in case one of the operands is ?. For
⊲⊳ ∈ {<,≤,≥, >}, we define the negation as < := ≥, ≤ :=>, ≥ :=<, > :=≤.
Boolean formulae are trivial. Below we discuss the probabilistic and reward for-
mulae.

Since the maximal and minimal probabilities are dual, in the rest of the paper
we will only consider the minimal properties and set ⊲⊳ ∈ {>,≥} for simplicity.

3.1 Reward formula R⊲⊳m(♦Ψ)

Recursively, we first compute reach := checkState(r, Ψ). Then, we instanti-
ate the PMDP with reward structure at centre(r) where r is the region under
consideration. We obtain a non-parametric MDP, from which we compute the
minimising scheduler. It is well-known that simple schedulers are sufficient to
minimise (or maximise) reachability rewards for MDPs [8,10,29,30]. The proce-
dure minReachRewSched returns this simple scheduler δ such that the reach-
ability reward is minimised for each state in the induced MDP with respect
to the evaluation centre(r). A PMC Mδ is further induced under this simple

Algorithm 2: checkState(r, Φ)

switch Φ do
case a return b such that b(s) = (if a ∈ AP(s) then true else false)
case ¬Ψ return ¬checkState(r, Ψ)
case Ψ1 ∧ Ψ2 return checkState(r, Ψ1) ∧ checkState(r, Ψ2)
case P⊲⊳p(ϕ)

val := computeProb(r, ϕ)
if val = ? then return ?

for s ∈ S do b(s) :=

true if check(val (s) ⊲⊳ p, r),
false if check(val(s) ⊲⊳ p, r),
? else

if ∃s.b(s) = ? then return ? else return b

case R⊲⊳m(♦Ψ)
reach := checkState(r, Ψ)
if reach = ? then return ?
c := centre(r)
δ := minReachRewSched(Pc[reach], rc[reach], reach)

optRew := reachRew(Pδ[reach], rδ[reach], reach)
for s ∈ S, α ∈ Act(s) do

checkRew(s) := r[reach](s, α)+
∑

s′∈S P[reach](s, α, s′)·optRew(s′)
valid := valid ∧ check(optRew (s) ≤ checkRew(s), r)

if ¬valid then return ?
for s ∈ S do b(s) := check(optRew(s) ⊲⊳ m, r)
if ∃s.b(s) = ? then return ? else return b

scheduler δ, with the corresponding matrix Pδ. Using reachRew, we compute
the parametric reachability rewards function optRew : S → FV in this induced
PMC (as in a previous publication [17]).

Recall that the scheduler δ is minimising with respect to the evaluation
centre(r). Our next for loop checks whether this is also the case for all evalua-
tions in the region r. It works in a similar way as the optimality equation [26,30].
For all states s and enabled actions α, we check whether δ is indeed minimising,
but this time for all concrete models represented by the region, through the de-
cision procedure check. In more detail, if the obtained reward checkRew(s) in
the for loop satisfies the constraint optRew(s) ≤ checkRew (s) for each concrete
model in the region, then indeed δ(s) is minimising. In this case we have proven
that δ is locally optimal for each state, which induces global optimality of the
current scheduler.

3.2 Probabilistic formula P⊲⊳p(ϕ)

The function computeProb, in Algorithm 3, returns a function mapping each
state s to the minimal probability of all paths which fulfil ϕ when starting in
s. Again, if this value can not be decided, the result is ?. The functions work

recursively: The cases for atomic propositions, negation and conjunction are as
for usual model checking procedures. For P⊲⊳p(ϕ), we use the procedure check

discussed in Section 2.4 to decide the truth value for each state, if this is possible.

Algorithm 3: computeProb(r, ϕ)

switch ϕ do
case Ψ1 U Ψ2

left := checkState(r, Ψ1), right := checkState(r, Ψ2)
if (left = ? or right = ?) then return ?
c := centre(r)
δ := minUReachSched(Pc[¬left ∨ right], right)

optProb := uReachProb(Pδ[¬left ∨ right], right)
valid := true
for s ∈ S, α ∈ Act(s) do

checkProb(s) :=
∑

s′∈S P[¬left ∨ right](s, α, s′) · optProb(s′)
valid := valid ∧ check(optProb(s) ≤ checkProb(s), r)

if valid then return optProb else return ?
case Ψ1 U≤n Ψ2

left := checkState(r, Ψ1), right := checkState(r, Ψ2)
if (left = ? or right = ?) then return ?
c := centre(r)
δ := minBReachSched(Pc[¬left ∨ right], right)
forall the s do optProb(s) := if right(s) then 1 else 0
valid := true
for step = n, . . . , 1 do

optProb ′ := Pδ(·,step)[¬left ∨ right] · optProb
for s ∈ S, α ∈ Act(s) do

checkProb(s) :=
∑

s′∈S P[¬left ∨ right](s, α, s′) · optProb(s′)
valid := valid ∧ check(optProb ′(s) ≤ checkProb(s), r)

optProb := optProb ′

if valid then return optProb else return ?

In computeProb, for Ψ1 U Ψ2 we compute a minimising scheduler to fulfil
the unbounded until formula for the centred parameter evaluation, using stan-
dard means, by calling minUReachSched. Notice that the minimising scheduler
is a simple scheduler, which suffices for minimal reachability probabilities [6]. By
uReachProb, we compute the reachability probability of the PMC induced by
this scheduler (as in a previous work [17]). Note that the probability obtained
this way is only valid for parameter evaluations which fulfil Assumption 1. Af-
terwards, we use another optimality equation [4] to check whether the decision
is minimal for all parameter evaluations of the region.

For the bounded until Ψ1 U≤n Ψ2, we need to consider the minimum over all
counting schedulers. We compute the minimising scheduler for one instantiation.

Afterwards, we use a recursive (backward) characterisation [2] to prove that
for each step the choices the scheduler takes are indeed optimal for the whole
parameter region. We leave out the case X Ψ , as it can be handled by a simpler
variant of the algorithm for the bounded until.

3.3 Termination and Correctness

To guarantee termination of our algorithm, we need the following assumption.

Assumption 2. Let r0 :=×x∈V
range(x) denote the initial region, and ε the

given precision. We assume that there exists m ∈ N with the following property.
There exists a set K ⊆ split(r0,m) of regions such that 1.) for all regions r ∈ K,
either for all evaluations v ∈ r it is Mv |= Φ, or for all evaluations v ∈ r it is
Mv 6|= Φ, 2.) µ(K) > 1 − ε and 3.) the decision procedure is able to decide all
constraints occurring during the parameter synthesis of all regions r ∈ K.

The assumption requires that by repeated splitting we arrive at a sufficiently
large set of regions (with volume larger than 1 − ε) in which each state has a
constant truth value, decidable by the (possibly incomplete) decision procedure.
It is similar to an assumption used to reason about the quasi-decidability of hy-
brid systems [28]. In case the assumption is valid, the following lemma guarantees
termination.

Lemma 1. Let M be a PMDP, Φ be a PCTL formula and ε > 0 the analysis
precision. Then Algorithm 1 terminates in finite time with this input, given that
Assumption 2 holds.

Lemma 1 follows by a simple structural induction on the formula, provided
Assumption 2 holds. We now state the correctness of the algorithm.

Lemma 2. Let M = (S, s0,Act ,P, V) be a PMDP, Φ be a PCTL state formula
and ε > 0 the analysis precision. Further, assume we are using a precise decision
procedure. Then Algorithm 1 is correct in the following sense. For each tuple
(r, b) of the result, and for each v ∈ r for which Mv is a valid MDP and for
which Assumption 1 is valid, we have Mv |= Φ iff b(s0)〈v〉 = true.

Notice that its correctness does not depend on Assumption 2, thus the result
is correct also in case termination is not guaranteed. The proof of the correct-
ness of Lemma 2 also follows by structural induction. For atomic propositions
and boolean connectors, the induction step is trivial. For until and reachability
rewards, we use the correctness of the corresponding optimality equations.

4 Experiments

We implemented the model checking procedure of Algorithm 1 in a prototypical
way in our tool Param 2.0α. For the analysis to be feasible, it was necessary
to implement a number of optimisations. We minimise induced PMCs using

weak [3] or strong [12] bisimulation. We use a caching technique to avoid com-
puting reachability probabilities in PMCs twice, in case the same PMCs are
induced from several calls to checkState or checkRegion. We also reuse
known truth values of constraints. Because we usually have to split large regions
into smaller ones anyway, we do some pre-checks whether the truth value may be
constant. To minimise the number of regions to be considered, and thus the over-
all time, we split regions along one widest side, i.e., split(r, 2, {x}) with variable
x representing the (or a) widest side. For the case study under consideration,
we extended an approximate decision method [18], which does not guarantee
correctness. Initial experiments with exact solvers have not been successful, as
verifying a single region did not terminate within several minutes. In the method
used, for a constraint f ⊲⊳ q we evaluate f in the corners of the region as well
as some randomly chosen points inside. The more points we evaluate, the more
unlikely is a wrong result, but still correctness cannot be guaranteed formally.

We applied the implementation on a randomised consensus shared coin pro-
tocol by Aspnes and Herlihy [1], based on an existing Prism model [22]. In this
case study, there are N processes sharing a counter c, which initially has the
value 0. In addition, a value K is fixed for the protocol. Each process i decides
to either decrement the counter with probability pi or to increment it with prob-
ability 1−pi. In contrast to the original Prism model, we do not fix the pi to

1
2 ,

but use them as parameters of the model. After writing the counter, the process
reads the value again and checks whether c ≤ −KN or c ≥ KN . In the first
case, the process votes 1, in the second it votes 2. In both cases, the process stops
afterwards. If neither of the two cases hold, the process continues its execution.
As all processes which have not yet voted try to access the counter at the same
time, there is a nondeterministic choice on the access order.

A probabilistic formula. As the first property, we ask whether for each execu-
tion of the protocol the probability that all processes finally terminate with a
vote of 2 is at least K−1

2K . With appropriate atomic propositions finished and
allCoinsEqualTwo , this property can be expressed as P

≥
K−1

2K

(true U (finished ∧

allCoinsEqualTwo)). For the case N = 2 and K = 2, we give results in Fig. 3.

0.2

0.2
0

0.5

1

0.8

p2

p1 p1

p2

0.2 0.8

0.2

p1

p2

0.2 0.8

0.2

1

2
1

2

2

1

1
2

2
1

2
1

2
1

Fig. 3. Randomised consensus: P
≥

K−1

2K

(true U (finished ∧ allCoinsEqualTwo)).

The leftmost part of the figure provides the minimal probabilities among
all schedulers that all processes terminate with a vote of 2, depending on the

parameters pi. With decreasing pi, the probability that all processes vote 2
increases, since it becomes more likely that a process increases the counter and
thus also the chance that finally c ≥ KN holds. The plot is symmetric, because
both processes are independent and have an identical structure.

On the right part of the figure, we give an overview which schedulers are
optimal for which parameter values. Here, boxes labelled with the same number
share the same minimising scheduler. In case p1 < p2, to obtain the minimal
probability the nondeterminism must be resolved such that the first process is
activated if it has not yet voted. Doing so maximises the probability that we
have c ≤ −KN before c ≥ KN , and in turn minimises the probability that both
processes vote 2. For p1 > p2, the second process must be preferred.

In the middle part of the figure, we give the truth values of the formula.
White boxes correspond to regions where the property holds, whereas in black
boxes it does not hold. In gray areas, the truth value is undecided. To keep the
gray areas viewable, we chose a rather high tolerance of 0.15. The truth value
decided is as expected by inspecting the plot on the left part of the figure, except
for the gray boxes along the diagonal of the figure. In the gray boxes enclosed by
the white area, the property indeed holds, while in the gray areas surrounded by
the black area, it does not hold. The reason that these areas remain undecided
is that the minimising scheduler changes at the diagonals, as discussed in the
previous paragraph. If the optimal scheduler in a box is not constant for the
region considered, we have to split it. Because the optimal scheduler always
changes at the diagonals, there are always some gray boxes remaining.

A reward formula. As a second property, we ask whether the expected number
of steps until all processes have voted is above 25, expressed as R>25(♦ finished).
Results are given in Fig. 4. On the left part, we give the expected number of
steps. This highest value is at pi =

1
2 . Intuitively, in this case the counter does

not have a tendency of drifting to either side, and is likely to stay near 0 for
a longer time. Again, gray boxes surrounded by boxes of the same colour are
those regions in which the minimising scheduler is not constant. We see from
the right part of the figure that this happens along four axes. For some values
of the parameters, the minimising scheduler is not always the one which always
prioritises one of the processes. Instead, it may be necessary to schedule the first
process, then the second again, etc. As we can see, this leads to a number of
eight different schedulers to be considered for the considered variable ranges.

0.2

0.2
20

40

0.8

p2

p1 p1

p2

0.2 0.8

0.2

p1

p2

0.2 0.8

0.2

1

2

3

4

53

6

3

4

2

3

1

1

1

27

4

2

4

8

66

6

3

5

5

7

8

5

8

8

7 4

7

6

3

51

5

2

5

5

2

4

6

2

66

1

1

2

1

7

4

3

4

2

2

2

3

1

1

3

4

Fig. 4. Randomised consensus: R>25(♦ finished)

Runtime. In Table 1 we give the runtime of our tool (on an Intel Core 2 Duo
P9600 with 2.66 GHz running on Linux) for two processes and different constants
K. Column“States” contains the number of states. The columns labelled with
“Until” contain results of the first property while those labelled with “Reward”
contain those of the second. Columns labelled with “min” contain just the time
to compute the minimal values whereas those labelled with “truth” also include
the time to compare this value against the bound of the formula. For all analyses,
we chose a tolerance of ε = 0.05. The time is given in seconds, and “–” indicates
that the analyses did not terminate within 90 minutes.

K States
Until Reward

min truth min truth

2 272 4.7 22.8 287.8 944.7
3 400 13.7 56.7 4610.1 –
4 528 31.7 116.1 – –
5 656 65.5 215.2 – –
6 784 123.4 374.6 – –
7 912 272.6 657.4 – –

Table 1. Randomised consensus: per-
formance statistics

As we see, the performance drops
quickly with a growing number of states.
For reward-based properties, the perfor-
mance is worse than for unbounded until.
These analyses are more complex, as re-
wards have to be taken into account, and
weak bisimulation can not be applied for
minimisation of the induced models. In ad-
dition, a larger number of different sched-
ulers has to be considered to obtain mini-
mal values, which also increases the anal-
ysis time. We are however optimistic that
we will be able to improve these figures, using a more advanced implementation.

5 Conclusion

In this paper, we have studied the parameter synthesis problem of PCTL formu-
lae for PMDPs. We have demonstrated the principal applicability of the method,
using a prototypical implementation. As future work we aim to make the method
applicable to models with larger state space. It will be necessary to improve the
technique, from both the theory and implementation perspective. To guarantee
correctness of the results, we intend to try out different solver tools, and to bring
the rational functions into a form which is easier to be handled by the respective
solver. Another possible future work is to extend the recent interesting work
about model repair systems for PMCs [5] to PMDPs.

Acknowledgements. This work was supported by the SFB/TR 14 AVACS, FP7-
ICT Quasimodo, NWO-DFGROCKS, DAAD-MinCyT QTDDS, ERCAdvanced
Grant VERIWARE, MT-LAB—a VKR Centre of Excellence.

We thank Alexandru Mereacre for many comments and insightful discussions.

References

1. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal
of Algorithms 11(3), 441–461 (1990)

2. Baier, C.: On algorithmic verification methods for probabilistic systems (1998),
Habilitationsschrift, Mannheim University

3. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
CAV. pp. 119–130. LNCS, Springer (1997)

4. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

5. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: TACAS. LNCS, Springer (2011)

6. Bianco, A., Alfaro, L.D.: Model checking of probabilistic and nondeterministic
systems. In: FSTTCS. pp. 499–513. LNCS, Springer (1995)

7. Blackwell, D.: On the functional equation of dynamic programming. Journal of
Mathematical Analysis and Applications 2(2), 273–276 (1961)

8. Blackwell, D.: Positive dynamic programming. In: Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability. pp. 415–418 (1967)

9. Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-
optimization of the IPv4 Zeroconf protocol. In: DSN. pp. 531–540. IEEE Computer
Society (2003)

10. van Dawen, R.: Finite state dynamic programming with the total reward criterion.
Mathematical Methods of Operations Research 30, A1–A14 (1986)

11. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: ICTAC. pp. 280–294. LNCS, Springer (2004)

12. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. IPL 87(6), 309–315 (2003)

13. Dubins, L.E., Savage, L.: How to Gamble If You Must. McGraw-Hill (1965)
14. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of

large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3–4), 209–236 (2007)

15. Fribourg, L., André, É.: An inverse method for policy iteration based algorithms.
In: INFINITY. pp. 44–61. EPTCS, Open Publishing Association (2009)

16. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker for
parametric Markov models. In: CAV. pp. 660–664. LNCS, Springer (2010)

17. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13, 3–19 (2010)

18. Han, T.: Diagnosis, synthesis and analysis of probabilistic models. Ph.D. thesis,
RWTH Aachen University/University of Twente (2009)

19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC 6,
102–111 (1994)

20. Haverkort, B.R., Cloth, L., Hermanns, H., Katoen, J.P., Baier, C.: Model checking
performability properties. In: DSN. pp. 103–112 (2003)

21. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edition. SIGACT News 32(1), 60–65 (2001)

22. Kwiatkowska, M., Norman, G., Segala, R.: Automated verification of a randomized
distributed consensus protocol using Cadence SMV and PRISM. In: CAV. LNCS,
vol. 2102, pp. 194–206. Springer (2001)

23. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM.
pp. 220–270. LNCS, Springer (2007)

24. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. FAC 19(1), 93–109 (2007)

25. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential
theory of the reals. In: Proceedings of the 16th Symposium, 8th International
Conference. Held as Part of CICM ’09 on Intelligent Computer Mathematics. Cal-
culemus, Springer (2009)

26. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley and Sons (1994)

27. Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. CoRR cs.LO/0211016 (2002)

28. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-
semidecidable. In: TAMC, LNCS, vol. 6108, pp. 397–408. Springer (2010)

29. Strauch, R.E.: Negative dynamic programming. Annals of Mathematical Statistis-
tics 37(4), 871–890 (1966)

30. van der Wal, J.: Stochastic dynamic programming. The Mathematical Centre, Am-
sterdam (1981)

