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Abstract

Markov decision processes (MDPs) are formal models commonly used in sequen-
tial decision-making. MDPs capture the stochasticity that may arise, for instance,
from imprecise actuators via probabilities in the transition function. However,
in data-driven applications, deriving precise probabilities from (limited) data in-
troduces statistical errors that may lead to unexpected or undesirable outcomes.
Uncertain MDPs (uMDPs) do not require precise probabilities but instead use
so-called uncertainty sets in the transitions, accounting for such limited data.
Tools from the formal verification community efficiently compute robust policies
that provably adhere to formal specifications, like safety constraints, under the
worst-case instance in the uncertainty set. We continuously learn the transition
probabilities of an MDP in a robust anytime-learning approach that combines
a dedicated Bayesian inference scheme with the computation of robust policies.
In particular, our method (1) approximates probabilities as intervals, (2) adapts
to new data that may be inconsistent with an intermediate model, and (3) may
be stopped at any time to compute a robust policy on the uMDP that faithfully
captures the data so far. Furthermore, our method is capable of adapting to changes
in the environment. We show the effectiveness of our approach and compare it to
robust policies computed on uMDPs learned by the UCRL2 reinforcement learning
algorithm in an experimental evaluation on several benchmarks.

1 Introduction

Sequential decision-making in realistic scenarios is inherently subject to uncertainty, commonly
captured via probabilities. Markov decision processes (MDPs) are the standard model to reason
about such decision-making problems [Puterman, 1994, Bertsekas, 2005]. Safety-critical scenarios
require assessments of correctness which can, for instance, be described by temporal logic [Pnueli,
1977] or expected reward specifications. A fundamental requirement for providing such correctness
guarantees on MDPs is that probabilities are precisely given. Methods such as variants of model-
based reinforcement learning [Moerland et al., 2020] or PAC-learning [Strehl et al., 2009] can
learn MDPs by deriving point estimates of probabilities from data to satisfy this requirement. This
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derivation naturally carries the risk of statistical errors. Optimal policies are highly sensitive to small
perturbations in transition probabilities, leading to sub-optimal outcomes such as a deterioration in
performance [Mannor et al., 2007, Goyal and Grand-Clement, 2020].

Uncertain MDPs (uMDPs; also known as interval or robust MDPs) extend MDPs to incorporate such
statistical errors by introducing an additional layer of uncertainty via uncertainty sets on the transition
function [Nilim and Ghaoui, 2005, Wiesemann et al., 2013, Goyal and Grand-Clement, 2020, Rigter
et al., 2021]. The solution of a uMDP is a robust policy that allows an adversarial selection (i.e., the
worst-case scenario) of probabilities within the uncertainty set, and induces a worst-case performance
(a conservative bound on, e.g., the reachability probability or expected reward). The problem of
computing such robust policies, also called robust verification, is solved using value iteration or
convex optimization, where the uncertainty sets are convex [Wolff et al., 2012, Puggelli et al., 2013].

Our approach. We study the problem of learning an MDP from data. We propose an iterative
learning method which uses uMDPs as intermediate models and is able to adapt to new data which
may be inconsistent with prior assumptions. Furthermore, the method is task-aware in the sense
that the learning procedure respects temporal logic specifications. In particular, our method learns
intervals of probabilities for individual transitions. This Bayesian anytime-learning approach employs
intervals with linearly updating conjugate priors [Walter and Augustin, 2009], and can iteratively
improve upon a uMDP that approximates the true MDP we wish to learn. This method not only
decreases the size of each interval, but may also increase it again in case of a so-called prior-data
conflict where new data suggests the actual probability lies outside the current interval. Consequently,
a newly learned interval does not need to be a subset of its prior interval. This property makes our
method especially suitable to learn MDPs where the transition probabilities change. Alternatively, we
also include probably approximately correct (PAC) intervals via Hoeffding’s inequality [Hoeffding,
1963], which introduces a correctness guarantee for each transition.

We summarize the key features of our learning method, and what sets it apart from other methods.

• An anytime approach. The ability to iteratively update intervals that are not necessarily
subsets of each other allows us to design an anytime-learning approach. At any time, we
may stop the learning and compute a robust policy for the uMDP that the process has yielded
thus far, together with the worst-case performance of this policy against a given specification.
This performance may not be satisfactory, e.g., the worst-case probability to reach a set of
critical states may be below a certain threshold. We continue learning towards a new uMDP
that more faithfully captures the true MDP due to the inclusion of further data. Thereby, we
ensure that the robust policy gradually gets closer to the optimal policy for the true MDP.

• Specification-driven. Our method features the possibility to learn in a task-aware fashion,
that is, to learn transitions that matter for a given specification. In particular, for reachability
or expected reward (temporal logic) specifications which require a certain set of target
states to be reached, we only learn and update transitions along paths towards these states.
Transitions outside those paths do not affect the satisfaction of the specification.

• Adaptive to changing environment dynamics. When using linearly updating intervals, our
approach is adaptive to changing environment dynamics. That is, if during the learning
process the probability distributions of the underlying MDP change, our method can easily
adapt and learns these new distributions.

2 Related Work

Uncertain MDPs have (often implicitly) been used by reinforcement learning (RL) algorithms, for
instance, to optimize the exploration/exploitation trade-off by guiding the RL agent towards unex-
plored parts of the environment, following the optimism in the face of uncertainty principle [Jaksch
et al., 2010, Fruit et al., 2017]. We use the same principle in the exploration phase of our procedure,
but compute robust policies as output to account for the uncertainty in an adversarial (or pessimistic)
way. Similarly, uncertain MDPs are used to compute robust policies when the data available is
limited [Nilim and Ghaoui, 2005, Wiesemann et al., 2013, Russel and Petrik, 2019]. Such robustness
is connected to a pessimistic principle that has been effective in offline RL settings [Lange et al.,
2012], where the agent only has access to a fixed dataset of past trajectories, meaning it needs to base
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decisions on limited data [Rashidinejad et al., 2021, Buckman et al., 2021, Jin et al., 2021]. Likewise,
our method may be stopped early and return a policy before the problem is fully explored.

Robust RL concerns the standard RL problem, but explicitly accounts for input disturbances and
model errors [Morimoto and Doya, 2005]. Often there is a focus on ensuring that a reasonable
performance is achieved during data collection. To that end, Lim et al. [2013] and Derman et al.
[2019] sample trajectories using a robust policy, which can slow down the process to find an optimal
policy. We assume sampling access to the underlying MDP, which allows us to use more efficient
exploration. It should be noted that we only use uMDPs as an intermediate model towards learning a
standard MDP, whereas in robust RL the model itself may also be an (adversarial) uncertain MDP. As
a result, our method converges to an MDP, while robust RL attempts to learn and possibly converge
to an uncertain MDP.

Learning MDPs from data is also related to model learning, which typically assumes no knowledge
about the states and thus iteratively increases the set of states [Vaandrager, 2017]. In [Tappler et al.,
2019, 2021] the L∗ algorithm for learning finite automata is adapted for MDPs. These methods only
yield point estimates of probabilities, and make strong assumptions on the structure of the MDP that
is being learned. Ashok et al. [2019] use PAC-learning to estimate the transition functions of MDPs
and stochastic games in order to perform statistical model checking with a PAC guarantee on the
resulting value. In [Bacci et al., 2021] the Baum-Welch algorithm for learning hidden Markov models
is adapted to learn MDPs.

Finally, the literature distinguishes two types of uncertainty: aleatoric and epistemic uncer-
tainty [Hüllermeier and Waegeman, 2021]. Aleatoric uncertainty refers to the uncertainty generated
by a probability distribution, like the transition function of an MDP, and is also known as irreducible
uncertainty. In contrast, epistemic uncertainty is reducible by collecting and accounting for (new)
data. Our work can be seen as adding an additional layer of epistemic uncertainty on the probability
distributions of the transition function that is then, by gathering and including more data, reduced.

3 Preliminaries

A discrete probability distribution over a finite set X is a function µ : X → [0, 1] ⊂ R with∑
x∈X µ(x) = 1. We write D(X) for the set of all discrete probability distributions over X , and by

|X| we denote the number of elements in X . For any closed interval I ⊆ R we write I and I for the
lower and upper bounds of the interval, that is, I = [I, I].
Definition 1 (Markov decision process). A Markov decision process (MDP) is a tuple (S, sI , A, P,R)
with S a finite set of states, sI ∈ S the initial state, A a finite set of actions, P : S ×A× S → [0, 1]
with ∀s, a ∈ S × A,∑s′ P (s, a, s

′) = 1 (such that P (s, a) ∈ D(S)) the probabilistic transition
function, and R : S ×A→ R≥0 the reward (or cost) function.

A trajectory in an MDP is a finite sequence (s0, a0, s1, a1, . . . , sn) ∈ (S ×A)∗ × S where s0 = sI
and P (si, ai, si+1) > 0 for 0 ≤ i < n. A memoryless policy is a function π : S → D(A). If π maps
to Dirac distributions, then it is a memoryless deterministic (or pure) policy. Applying a policy to
an MDP M resolves all the non-deterministic choices and yields an (induced) discrete-time Markov
chain (DTMC); see, e.g., Puterman [1994] for details.
Definition 2 (Uncertain MDP). An uncertain MDP (uMDP) is a tuple (S, sI , A, I,P, R) where
S, sI , A,R are as for MDPs, I is a set of probability intervals I = {[a, b] | 0 < a ≤ b ≤ 1}, and
P : S×A×S → (I∪{0}) is the uncertain transition function, assigning either a probability interval,
or the exact probability 0 to any transition.

Uncertain MDPs can be seen as an uncountable set of MDPs that only differ in their transition
functions. For a transition function P , we write P ∈ P if for every transition the probability of
P lies within the interval of P , i.e., P (s, a, s′) ∈ P(s, a, s′) for all (s, a, s′) ∈ S × A × S. We
only allow intervals with a lower bound greater than zero, to ensure a transition cannot vanish under
certain distributions generated by the uncertainty. This assumption is standard in uMDPs [Wiesemann
et al., 2013, Puggelli et al., 2013]. Applying a policy to a uMDP yields an induced interval Markov
chain [Jonsson and Larsen, 1991].

Specifications. We consider reachability or expected reward (cost) specifications. The value
PMπ (♦T ) is the probability to reach a set of target states T ⊆ S in the MDP M under the policy π,
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also referred to as the performance of π.2 Likewise, RMπ (♦T ) describes the expected accumulated
reward to reach T under π. Note that for probabilistic specifications, we can replace the formula ♦T
by more general reach-avoid specifications using the until operator from temporal logic.

Formally, the specification PMax(♦T ) = maxπ Pπ(♦T ) expresses that the probability of eventually
reaching the target set T ⊆ S should be maximized. Likewise, the specification RMax(♦T ) requires
the expected reward for reaching T to be maximized. For minimization, we write PMin(♦T ) and
RMin(♦T ), respectively. Besides optimizing a probability or reward, a specification may also express
an explicit user-provided threshold to compare the performance of a policy to.

For uMDPs, we define optimistic and pessimistic specifications. In optimistic specifications, we
assume the best-case scenario of the uncertainty to satisfy the specification by also minimizing (or
maximizing) over the uncertainty set, written as PMinMin(♦T ) = minπminP∈P PM[P ]

π (♦T ) (or
PMaxMax(♦T )), where the first Min (Max) signals what the decision-maker is trying to achieve, and
the second what the uncertainty does. In pessimistic specifications, the uncertainty does the opposite
of the goal: PMaxMin(♦T ) or PMinMax(♦T ). The notation is similar for reward specifications. A
(standard) specification ϕ can be extended to be optimistic or pessimistic by adding a second Min or
Max. We write ϕO for its optimistic extension, and ϕP for its pessimistic extension.

For an MDP M , the aim is to compute a policy π that either optimizes a given specification ϕ, or
whose performance respects a given threshold that, e.g., provides an upper bound on the probability of
reaching a set of critical states. Common methods are value iteration or linear programming [Puterman,
1994, Baier and Katoen, 2008]. For uncertain MDPs M, the goal is to compute a policy π that
satisfies an optimistic or pessimistic specification ϕO or ϕP . In the latter case, we call π a robust
policy. Optimal policies in uMDPs can be computed via robust dynamic programming or convex
optimization [Wolff et al., 2012, Puggelli et al., 2013].

4 Problem Statement and Outline of the Procedure

We have an unknown but fixed MDP M = (S, sI , A, P,R), which we will refer to as the
true MDP, an initial prior uMDP M = (S, sI , A, I,P, R), and a specification ϕ which we
want to satisfy. A discussion of prior (and other parameter) choices follows in Section 6.

Input
uMDP M
Specification ϕ
Sampling access to
true MDP M

Robust Policy Computation

Sample from M UpdateM

Anytime-learning procedure
Output
Robust policy π
Learned uMDP M
Performance of π

7
3

Figure 1: Procedure outline.

Assumption 1 (Underlying graph). We assume
that the underlying graph of the true MDP is
known. In particular: transitions that do not
exist in the true MDP (transitions of probability
0) do also not exist in the uMDP, transitions
of probability 1 in the true MDP are assigned
the point interval [1, 1] in the uMDP, and any
other transition of non-zero probability p has an
interval I ∈ I in the uMDP.

Under Assumption 1 and Definition 2, we construct the initial prior uMDPM to have transitions of
probability 0 and 1 exactly where the true MDP M has these too, and interval transitions [ε, 1− ε]
for all other transitions, with ε > 0 free to choose. In particular, our approach does not require ε to
be smaller than the smallest probability p > 0 occurring in M , which we also do not assume to be
known. Alternatively, in case further knowledge is available, one may use any other prior uMDP as
long as it satisfies Assumption 1. Our learning problem is expressed as follows:

The problem is to learn the transition probabilities of a true MDP M , driven by a specification ϕ,
via intermediate uncertain MDPsM that are iteratively updated to account for newly collected
data, such that at any time a robust policy can be computed.

In the following we outline our anytime-learning procedure as illustrated in Figure 1.

1. Input. We start with an initial prior uMDPM and a specification ϕ we wish to verify. We
assume (black box) access to the unknown true MDP M to sample trajectories from, or
alternatively, assume a (constant) stream of observations from the true MDP.

2We will omit the policy π and the MDP M whenever they are clear from the context.
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(d) Intermediate
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(e) Converging to-
wards the true MDP.

Figure 2: Process flow on an example MDP.

2. Robust policy computation. We compute a robust policy π for the pessimistic extension
of ϕ, i.e. ϕP , in the uncertain MDP M, together with the worst-case performance of
the specification in the current uMDP. If the specification contains an explicit threshold,
the value can be compared against the threshold for automatic termination. In case of
specifications that optimize a probability or reward, termination needs to be done manually,
as it is impossible to tell if the maximum (minimum) was achieved.

3. Anytime learning. If the result from step 2 is unsatisfactory, we start learning:
(a) Exploration. We sample one or more trajectories from the true MDP M , using the

optimism in the face of uncertainty principle.
(b) Update. We update the intervals of the uMDP M in accordance with the newly

collected data. This update yields a new uMDP that more faithfully captures all
collected data up to this point than the previous uMDP.

(c) Repeat. We start again at step 2 with this new uMDP until (manual) termination.
4. Output. The process may be stopped at any moment and yields the latest uMDPM together

with robust policy π and the performance of π onM.

The effects of this procedure are illustrated in Figure 2. In 2a, we see an example MDP M to learn,
and 2b shows the assumed knowledge about M . 2c shows the initial uMDPM constructed from 2b,
using a (symbolic or explicit) lower bound ε > 0 to ensure that all lower bounds ofM are strictly
greater than zero. In 2d, we see an intermediate learned uMDP. Some intervals may already have
successfully converged towards the probability of that transition in the true MDP, while others may
be very inaccurate due to a low sample size and thus a bad estimate. Finally, 2e depicts the learned
uMDP converging towards the true MDP.

5 Bayesian Learning

We assume access to trajectories through the true MDP. Due to the Markov property of the MDP, i.e.,
the fact that the transition probabilities only depend on the current state and not on any further history,
we may split each trajectory τ into separate sets of independent experiments where a state-action pair
(s, a) is sampled and a successor state si is observed; see also Appendix A of [Strehl and Littman,
2008]. We count the number of occurrences of the transition (s, a, si) in each trajectory τ , and the
number of occurrences of the state-action pair (s, a) in each trajectory τ , denoted by #(s, a, si) and
#(s, a), respectively. In the following, we introduce the two approaches of learning intervals: the
standard approach of PAC learning via Hoeffding’s inequality which provides a PAC guarantee on
the value of the learned model, and a new approach using linearly updating intervals (LUI), which
is more flexible due to the inclusion of prior-data conflicts and its closure properties. Finally, we
introduce a minor modification to the LUI approach, making it also applicable to situations where
the underlying MDP changes over time. Such a modification is not possible in PAC learning as
Hoeffding’s inequality assumes independent samples from a fixed distribution.

5.1 Learning PAC Intervals

We use the standard method of maximum a-posteriori probability (MAP) estimation to infer point
estimates of probabilities; see Appendix A for details. These point estimates can then easily be turned
into probably approximately correct (PAC) intervals via Hoeffding’s inequality. Given N = #(s, a)
samples and a fixed error rate γ, we use Hoeffding’s inequality [Hoeffding, 1963] to compute the
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interval size δ =
√

log(2/γ)/2N. This δ may then be used to construct intervals that are PAC with
respect to the true transition probability. To lift the PAC guarantee to the entire learned MDP, and
consequently also the optimal value for some specification, we need to distribute δ over all transitions,
i.e., δP = δ/

∑
(s,a)∈S×A |Succ(s,a)|, where Succ(s, a) is the set of successor states of (s, a). Using

this δP , we then construct the intervals

P(s, a, si) = [max(ε, P̃ (s, a, si)− δP ),min(P̃ (s, a, si) + δP , 1)], (1)

where P̃ is the (MAP) point estimate, and ε is again a small value to ensure that the interval lower
bounds are non-zero. As a result, we have the following Proposition, whose proof is a direct
application of Hoeffding’s inequality.
Proposition 1. The true MDP M∗ lies within the learned uMDPM with probability greater or
equal to 1− γ.

This is a standard result and also used in, e.g., PAC statistical model checking [Ashok et al., 2019].

5.2 Learning Linearly Updating Probability Intervals

We use the Bayesian approach of intervals with linearly updating conjugate priors [Walter and
Augustin, 2009] to learn intervals of probabilities. Each uncertain transition P(s, a, si) is assigned
a prior interval Pi = [Pi,Pi], and a prior strength interval [ni, ni] that represents a minimum and
maximum number of samples on which the prior interval is based. The greater the values of the
strength interval, the more emphasis is placed on the prior, and the more data is needed to significantly
change the prior when computing the posterior. The greater the difference between the ni and ni, the
greater the difference between a prior-data conflict and a prior-data agreement.

Definition 3 (Posterior interval computation). The interval [Pi,Pi] can be updated to [P ′i,P
′
i], using

N = #(s, a) and ki = #(s, a, si), as follows:

P ′i =


niPi+ki
ni+N

if ∀j.kjN ≥ Pj (prior-data agreement),
niPi+ki
ni+N

if ∃j.kjN < Pj (prior-data conflict).
(2)

P ′i =


niPi+ki
ni+N

if ∀j.kjN ≤ Pj (prior-data agreement),
niPi+ki
ni+N

if ∃j.kjN > Pj (prior-data conflict).
(3)

The strength interval is updated by adding the number of samplesN to it: [n′i, n
′
i] = [ni+N,ni+N ].

The initial values for the priors of each state-action pair can be chosen freely subject to the constraints
0 < Pi ≤ Pi ≤ 1, and ni ≥ ni ≥ 1.

Key properties of linearly updating probability intervals.

• Convergence in the infinite run. Under the assumption that the true MDP does not change,
each interval will converge to the exact transition probability when the total number of
samples processed tends to infinity, regardless of how many samples are processed per
iteration [Walter and Augustin, 2009]. This assumption is, however, not required for our
work. If the true MDP changes over time, or is adversarial (i.e., a uMDP), our method is
still applicable, but will not converge to a fixed MDP.

• Prior-data conflict. When the estimated probability ki/N lies outside the current interval, a
so-called prior data conflict occurs. Consequently, if at some point we derive an interval
that does not contain the true transition probability, the method will correct itself later on.

• Closure properties under updating. Finally, updating is closed in two specific ways. First,
any interval of probabilities is updated again to a valid interval of probabilities, and second,
any set of intervals at a state-action pair that contains a valid distribution over the successor
states will again contain a distribution over successor states after updating.

A key requirement for computing robust policies on uMDPs is that the lower bound of every interval
is strictly greater than zero (see Definition 2). This closure property is formalized as follows.
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Theorem 1 (Closure of intervals under learning). For any valid prior interval [P,P] with 0 < P ≤
P ≤ 1, we have that the posterior [P ′,P ′] computed via Definition 3 also satisfies 0 < P ′ ≤ P ′ ≤ 1.

Furthermore, we also have closure properties at each state-action pair. In particular, if we choose our
prior intervals such that there is at least one valid probability distribution at the state-action pair, then
the posterior intervals will again contain a valid probability distribution. We formalize this notion by
examining the sum of the lower and upper bounds of the intervals in the following Theorem:
Theorem 2 (Closure of distributions under learning). We have the following bounds on the set of
posterior distributions. In case of a prior data agreement, we have that the sum of the posterior
bounds is bounded by the sum of the prior bounds, and the value 1. That is,∑

i

Pi ≤
∑
i

P ′i ≤ 1, 1 ≤
∑
i

P ′i ≤
∑
i

Pi. (4)

In case of a prior-data conflict, the sum of posterior bounds is no longer necessarily bounded by the
prior, and we only have ∑

i

P ′i ≤ 1 ≤
∑
i

P ′i. (5)

Note, however, that this last constraint (5) is already sufficient to ensure that there is a valid probability
distribution at the state-action pair.

The proofs for both Theorem 1 and 2 can be found in Appendix B.

5.3 Efficient exploration

Above, we assumed that a set of trajectories was given. To actually obtain the trajectories, we use
the well-established optimism in the face of uncertainty principle [Munos, 2014]. We compute the
optimal policy for the optimistic extension (see Section 3) of the specification ϕ, i.e. ϕO, in the
current uMDP and use this policy for exploration. To make exploration specification-driven, we only
sample transitions along trajectories towards the target state(s) of the specification. When the last
seen state has probability zero or one to reach the target for reachability, or reward zero or infinity, we
restart. States satisfying these conditions can be found by analyzing the graph of the true MDP [Baier
and Katoen, 2008].

Trajectories and iterations. As explained in Section 4, our method is iterative in terms of updating
the uMDPM and computing a robust policy. After updating the uMDP, we also compute a new
exploration policy, based on the new uMDP. Each iteration consists of processing at least one, but
possibly more trajectories. To determine how many trajectories to collect, we use a doubling-counting
scheme, where we keep track of how often every state-action pair and transition is visited during
exploration [Jin et al., 2020]. An iteration is completed when any of the counters is doubled with
respect to the previous iteration. A detailed description of this schedule is given in Appendix C.

5.4 Learning under changing environments

Previously, we assumed a fixed unknown true MDP M∗ to learn. But what if the transition probabili-
ties of M∗ suddenly change? More precisely, we assume two unknown true MDPs, M∗1 and M∗2 with
the same underlying graph but (possibly) different transition probabilities. After an unknown number
of interactions with the true environment M∗1 , we suddenly continue interacting with M∗2 . We modify
our LUI approach by introducing a bound on the strength of the prior, nMax = [nMax, nMax], and
update the strength intervals by the following rule

[n′i, n
′
i] = [min(ni +N,nMax),min(ni +N,nMax)].

The probability intervals themselves are updated in the same way as before in Definition 3. By
limiting the prior strength in this way, we trade some rate of convergence for adaptability. The weaker
the prior, the greater the effect of a prior-data conflict, and hence adaptability to new data. When
suddenly changing environments, new data will likely lead to prior-data conflicts, and thus a higher
adaptability of the overall learning method.

We add randomization to the pure optimistic exploration policy. We introduce a hyperparameter
ξ ∈ [0, 1], and follow with probability ξ the action of the optimistic policy, and distribute the
remaining 1− ξ uniformly over the other actions, yielding a memoryless randomized policy.
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6 Experimental Evaluation

We implement our approach, with both linearly updating intervals (LUI) and PAC intervals (PAC), in
Java on top of the verification tool PRISM [Kwiatkowska et al., 2011], together with a variant of value
iteration to compute robust policies for uMDPs with convex uncertainties [Wolff et al., 2012].3 We
compare our method to point estimates derived via MAP-estimation (MAP) and with uMDPs learned
by the UCRL2 reinforcement learning algorithm [Jaksch et al., 2010] (UCRL2). We modify UCRL2
to make it more comparable to our setting. In particular, we use optimistic policies for exploration,
but robust policies to compute the performance, in contrast to the standard UCRL2 setting which
only uses optimistic policies, see Appendix E for further details.

Without knowledge about the true MDP apart from Assumption 1, we have to define an appropriate
prior interval for every transition. We set ε = 1e-4 as constant and define the prior uMDP with
intervals Pi = [ε, 1 − ε] and strength intervals [ni, ni] = [5, 10] at every transition P(s, a, si), as
in Figure 2c. For MAP, we use a prior of αi = 10 for all i. The same prior is used for the point
estimates of both PAC and UCRL2, together with an error rate of γ = 0.01.

Evaluation metrics. We consider two metrics to evaluate the four learning methods.

• Performance. How does the robust policy computed on the learned model perform on the
true MDP? We evaluate the probability of satisfying the given specification PMπ (♦T ) or
expected reward RMπ (♦T ) of the robust policy π computed after each update of the model.

• Performance estimation error. How well do we expect a robust policy to perform on the
true MDP based on the performance on the intermediate learned uMDP? We compute
the difference between the performance of the robust policy on the learned uMDP (the
worst-case performance) and the performance on the true MDP. While values closer to zero
are preferable, we do not accept methods with positive estimation errors, since this indicates
their estimated performance is not a lower (conservative) bound on the actual performance
of the policy. In particular, an estimation error above zero shows the policy is misleading in
terms of predicting its performance.

We benchmark our method using several well-known environments: the Chain Problem [Araya-López
et al., 2011], Aircraft Collision Avoidance [Kochenderfer, 2015], a slippery Grid World [Derman
et al., 2019], a 99-armed Bandit [Lattimore and Szepesvári, 2020], and two version of a Betting
Game [Bäuerle and Ott, 2011]. For details on all these environments we refer to Appendix D. We
highlight the Betting Game and Chain Problem environments here, as they will be used to explain
some of the key observations we make from our experimental results.

• Betting Game. The agent starts with 10 coins and attempts to maximize the number of
coins after 6 bets. When a bet is won, the number of coins placed is doubled; when lost, the
number of coins placed is removed. The agent may bet 0, 1, 2, 5, or 10 coins. We consider
two versions of the game, one which is favourable to the player, with a win probability of
0.8, and one that is unfavourable with win probability 0.2. After 6 bets the player receives a
reward equal to the number of coins left. The specification is to maximize the reward.

• Chain Problem. We consider a chain of 30 states. There are three actions, one progresses
with probability 0.95 to the next state, and resets the model to the initial state with probability
0.05. The second action does the same, but with reversed probabilities. The third action
has probability 0.5 for both cases. Every action gets a reward of 1. As specification, we
minimize the reward to reach the last state of the chain.

Results

We present an excerpt of our experimental results here, and refer the reader to Appendix F for the full
set of results, which in particular also includes the estimation error for all environments, an additional
model error metric, and further experiments regarding different priors and changing environments.
All experiments were performed on a machine with a 4GHz Intel Core i9 CPU, using a single core.
Each experiment is repeated 100 times, and reported with a 95% confidence interval.

3The implementation is available at https://github.com/LAVA-LAB/luiaard.
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Figure 3: Comparison of the performance of robust policies on different environments against the
number of trajectories processed (on log-scale). The dashed line indicates the optimal performance.
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Figure 4: Estimation error on the two Betting Game environments and the Bandit, against the number
of trajectories processed (on log-scale).

Figure 3 shows the performance of the robust policies computed via each learning method against the
number of trajectories processed on the different environments. We first note that in all environments,
our LUI method is the first to find an optimal policy. Depending on the environment, the performance
of LUI and PAC may be roughly equivalent (Chain, Grid). When also taking the estimation error into
account (Figure 4), we see LUI outperforming other methods on that metric. UCRL2 is the slowest
to converge to an optimal policy. This due to UCRL2 being a reinforcement learning algorithm, and
thus it is slower in reducing the intervals in favour of a broader exploration.

Recovering from bad estimates. On the Chain environment, we see LUI and PAC (around
trajectory 5), and UCRL2 (around trajectory 103) choose the wrong action(s), with an decrease in
performance as a result. This is most likely due to getting a bad estimate on some of the transitions
later on in the chain, leading to many resets to the initial state, and thus decreasing the performance
significantly. While all three methods manage to recover and then find the optimal policy, UCRL2
takes significantly longer: only after trajectory 105, where LUI and PAC only need about 100
trajectories. MAP-estimation typically sits between LUI and PAC in terms of performance. It is less
sensitive to mistakes like the one discussed above, but is less reliable in providing a conservative
bound on its performance, as will be discussed below. Furthermore, we see that in the unfavourable
Betting Game, only MAP-estimation gives sub-optimal performance, due to bad estimates. It is able
to recover from this, but needs almost 104 trajectories to do so. Due to the low win probability in this
Betting Game, a robust policy on the uMDPs is by default an optimal policy for the true MDP, and
we see that LUI, PAC, and UCRL2 do not change to a sub-optimal policy.

Robust policies are conservative. Consider Figure 4. We note the undesirable behaviour of having
an Estimation Error above zero, which means the performance of the policy on the learned model
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Figure 5: Environment change on the Chain Problem at different points † ∈ {102, . . . , 105} using
randomization parameter ξ = 0.8 in the exploration.

was higher than the performance of that policy on the true MDP. MAP-estimation is particularly
susceptible to this, while all three uMDP methods yield policies that are conservative in general,
though some exceptions exist as shown in the full results in Appendix F.

LUI is adaptive to changing environments. Finally, we investigate the behaviour of the learning
methods when after a fixed number of trajectories the probabilities of the true MDP change, as
introduced in Section 5.4. Figure 5 shows the performance of the robust policy for each learning
method on the Chain environment, results for the same experiment on the Betting Game can be found
in Appendix F. After † ∈ {102, . . . , 105} trajectories, we change the environment by swapping the
transition probabilities, for three different bounds on the strength intervals. We similarly bound the
MAP-estimation priors for MAP and UCRL. PAC is omitted from this experiment as PAC guarantees
lose all meaning when changing the underlying distribution. After the change in environment, the
new optimal policy has to use the opposite action from the previously optimal policy. We see that
LUI is the only method capable of converging to optimal policies both before and after the change
in environment. Furthermore, the lower the bounds on the prior strength, the faster it adapts to the
change. We conclude that LUI is an effective approach to deal with learning an MDP under potential
adversarial sampling conditions.

7 Conclusion and Future Work

We presented a new Bayesian method that learns uMDPs to approximate an MDP, either via linearly
updating intervals, or PAC-intervals. Robust policies computed on learned uMDPs are shown to be
conservative and reliable in predicting their performance when applied on the MDP that is being
learned. The approach of linearly updating intervals is also effective at continuously learning a
potentially changing environment. For future work, we aim to extend our method to uncertain
POMDPs [Suilen et al., 2020, Cubuktepe et al., 2021]. While we do not see any immediate negative
societal impacts of our work, we acknowledge that potential misuse of our work cannot be ruled out
due to the generality of MDPs.
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A MAP-estimation

We describe a general setup for learning point estimates of probabilities via maximum a-posteriori
estimation (MAP-estimation). For a fixed state-action pair (s, a) with m different successor states
s1, . . . , sm that is sampled N = #(s, a) times, and where each successor state is observed ki =
#(s, a, si) times for i = 1, . . . ,m, we have the multinomial likelihood

Mn(k1, . . . , kn | P (s, a, ·)) =
N !

k1! · . . . · km!
·
m∏
i=1

P (s, a, si)
ki , (6)

where the transition probabilities P (s, a, si) are unknown and given by a Dirichlet distribution with
parameters α1, . . . , αm [Bishop, 2007]:

Dir(P (s, a, ·) | α1, . . . , αm) ∝
m∏
i=1

P (s, a, si)
αi−1. (7)

The Dirichlet distribution is a conjugate prior to the multinomial likelihood, meaning that we do not
need to compute the posterior distribution explicitly, but instead we just update the parameters of the
prior Dirichlet distribution. Formally, conjugacy is a closure property, see [Jacobs, 2020].

Given a prior Dirichlet distribution with parameters α1, . . . , αm, and observing the i-th successor
state ki times, the posterior Dirichlet distribution is given by simply adding ki to parameter αi:

Dir(P (s, a, ·) | α1 + k1, . . . , αm + km). (8)

Having computed the posterior Dirichlet distribution, MAP-estimation can be used to infer the
probabilities. These estimates are given by the mode of each parameter of the posterior distribution:

P̃ (s, a, si) =
αi − 1

(
∑m
j=1 αj)−m

. (9)

When all parameters αi are equal, MAP-estimation yields uniform distributions.

B Proofs

The proof of Theorem 1 is straightforward and relies on the observation that for any amount of finite
data, a single update can only grow closer to zero but not become zero, and that iterated updates
converge to the true probability which is assumed to be non-zero.

Proof Theorem 1. For any transition (s, a, si) the following holds. We assume a valid prior, that is,
0 < Pi ≤ Pi ≤ 1. We have an empirical estimate of ki/N. Then we also have 0 < P ′i ≤ P

′
i ≤ 1,

where the first inequality 0 < P ′i follows from the fact that Equation 2 can only be 0 when their
nominator is zero, which is not possible when ni ≥ 1 (or ni ≥ 1) and Pi > 0. The second inequality,
P ′i ≤ P

′
i follows directly from Equations 2 and 3 together with Pi ≤ Pi. The third inequality P ′i ≤ 1

follows again from Equation 3 when Pi <≤ 1 and ki ≤ N . All reasoning above is independent of
prior-data agreement or conflict and thus applies to both cases in each of the equations.

The proof of Theorem 2 uses the following Lemma:
Lemma 1. At a state-action pair with m successor states, there can be at most m− 1 prior-data
conflicts on the upper (or lower) bound.

Proof. We prove the lemma for the upper bound, a proof for the lower bound follows by symmetry.
Assume a valid prior, that is,

∑
i Pi ≥ 1. Suppose there is a prior-data conflict for every interval, i.e.,

∀i.kiN > Pi. Then we also have

1 =
∑
i

ki
N

>
∑
i

Pi ≥ 1,

which is clearly not possible. The possibility for m − 1 prior-data conflicts is witnessed in the
following example. Take a state-action pair with two successor states, s1 and s2. Then m = 2. Take
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one sample, i.e., N = 1, and suppose we observe s1, such that k1 = 1 and k2 = 0. Then for any
valid prior intervals I1 = [P1,P1] and I2 = [P2,P2] we have k1/N = 1 > P1 and k2/N = 0 < P2.
Hence, a prior-data conflict at I1 but not at I2, thusm−1 conflicts at the state-action pair in total.

We additionally have the following Lemma:
Lemma 2. A prior-data conflict at the upper bound implies a prior-data agreement at the lower
bound, and vice versa.

Proof. Assume a conflict at the upper bound Pi. Then ki
N > Pi ≥ Pi, which is a prior-data

agreement with Pi by definition. The other way around follows by symmetry.

Now we prove Theorem 2.

Proof Theorem 2. We start with the constraints in Equation 4.

First, 1 ≤∑i P
′
i. We use that there is a prior-data agreement, that is, ∀i.kiN ≤ Pi. Then we derive∑

i

P ′i =
∑
i

niPi + ki
ni +N

≥
∑
i

ni
ki
N + ki

ni +N
=
∑
i

niki+kiN
N

ni +N

=
∑
i

ki(ni+N)
N

ni +N
=
∑
i

ki
N

=
1

N

∑
i

ki =
N

N
= 1.

The bound
∑
i P
′
i ≤

∑
i Pi is derived using that

∀i. ki
N
≤ Pi ⇐⇒ ∀i.ki ≤ PiN.

Then, it follows that∑
i

P ′i =
∑
i

niPi + ki
ni +N

≤
∑
i

niPi + PiN
ni +N

=
∑
i

Pi(ni +N)

ni +N
=
∑
i

Pi.

The proof for the bounds ∑
i

Pi ≤
∑
i

P ′i ≤ 1

is symmetrical to the one above.

Next, we consider the case for a prior-data conflict, that is, the bounds from Equation 5. The
existential condition ∃j.kjN ≥ Pj does not have to be unique, hence we make a case distinction on the
indexes for which the existential quantification holds and for which it does not. Let I = {1, . . . ,m}
be the set of indices that enumerates the m successor states at the state-action pair we consider. By
Lemma 1 we know that there are at most m− 1 prior-data conflicts. Hence, we can partition I into
two non-empty subsets, IA containing all indices where the point estimate agrees with the prior
interval, and IC the set of indices where there is a prior-data conflict. That is,

IA = {i ∈ I | ki
N
≤ Pi}, IC = {i ∈ I | ki

N
> Pi}.

We use this partition to split the sum over all indices in two:∑
i

P ′i =
∑
i∈I

niPi + ki
ni +N

=
∑
i∈IA

niPi + ki
ni +N

+
∑
i∈IC

niPi + ki
ni +N

We now reason on each part separately.

For i ∈ IA we have ki
N ≤ Pi, which also means N ≤ ki

Pi
.∑

i∈IA

niPi + ki
ni +N

≥
∑
i∈IA

niPi + ki(
ni +

ki
Pi

) =
∑
i∈IA

niPi + ki(
niPi+ki
Pi

) =
∑
i∈IA

Pi
(
niPi + ki

niPi + ki

)
=
∑
i∈IA

Pi.
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Next, for i ∈ IC we have ki
N > Pi, and thus also ki > PiN . Then we have the following:∑

i∈IC

niPi + ki
ni +N

>
∑
i∈IC

niPi + PiN
ni +N

=
∑
i∈IC

Pi
ni +N

ni +N
=
∑
i∈IC

Pi.

Finally, we put the two partitions back together using the inequalities derived on both, and conclude
by using the assumption that the prior is valid, i.e.,

∑
i Pi ≥ 1:∑

i

P ′i =
∑
i∈IA

niPi + ki
ni +N

+
∑
i∈IC

niPi + ki
ni +N

>
∑
i∈IA

Pi +
∑
i∈IC

Pi =
∑
i∈I
Pi ≥ 1.

The proof for the lower bounds, that
∑
i P ′i ≤ 1, follows the same reasoning by symmetry.

C Exploration Scheme

We detail the exploration scheme in Algorithm 1 below.

Algorithm 1 Exploration scheme.

Input: K : number of trajectories.
Input: H : max trajectory length.
Input: M(S, sI , A, P,R) : underlying MDP.
Input: ϕ : specification.
Input: A: algorithm for exploration and robust verification.

1: for s, a ∈ S ×A do
2: . Initialize counters
3: #(s, a) = 0
4: #(s, a, s′) = 0 : ∀s′ ∈ S
5: #i(s, a) = 0
6: #i(s, a, s

′) = 0 : ∀s′ ∈ S
7: end for
8: for k ∈ [1, · · · ,K] do
9: if ∃s, a ∈ S ×A : #i(s, a) >= #(s, a) then

10: . Compute new policies.
11: Give iteration counters #i(s, a) and #i(s, a, s

′) to A
12: Get sampling policy from A : πsampling
13: Get robust policy from A : πrobust
14: Evaluate πrobust on M according to ϕ
15: . Update global counters
16: #(s, a) += #i(s, a) : ∀s, a ∈ S ×A
17: #(s, a, s′) += #i(s, a, s

′) : ∀s, a ∈ S ×A× S
18: . Reset iteration counters
19: #i(s, a) = 0 : ∀s, a ∈ S ×A
20: #i(s, a, s

′) = 0 : ∀s, a ∈ S ×A× S
21: end if
22: Sample τ from M following πsampling with max size H
23: Increment #i(s, a) and #i(s, a, s

′) according to τ .
24: end for

D Detailed Problem Domain Descriptions

We give a detailed description of each model we use in the experimental evaluation below, together
with the specification and (if applicable) its source.

Chain problem. We consider a larger version of the chain problem Araya-López et al. [2011]
with 30-states. There are three actions, one progresses with probability 0.95 to the next state, and
resets the model to the initial state with probability 0.05. The second action does the same, but with
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reversed probabilities. The third action has probability 0.5 for both progressing and resetting. Every
action gets a reward of 1. As specification, we minimize the reward to reach the last state of the chain:
RMin(♦T ). This can be seen as an instance of the stochastic shortest path problem [Bertsekas, 2005].

Aircraft collision avoidance. We model a small, simplified instance of the aircraft collision
avoidance problem Kochenderfer [2015]. Two aircraft, one controlled, one adversarial, approach
each other. The controlled aircraft can increase, decrease, or stay at the current altitude with a success
probability of 0.8. The adversarial aircraft can do the same, but does so with probabilities 0.3, 0.3,
0.4 respectively. To goal is to maximize the probability of the two aircraft passing each other without
a collision, expressed by the temporal logic specification PMax(¬collisionU passed).

Grid world. We consider a slippery 10× 10 grid world as in Derman et al. [2019], where a robot
starts in the north-west corner and has to navigate towards a target position. The robot can move in
each of the four cardinal directions with a success probability of 0.55, and a probability of 0.15 to
move in each of the other directions. Throughout the grid, the robot has to avoid traps. The model
has 100 states and 1450 transitions. We consider safety specifications that maximize the probability
for reaching the north-east (NE) corner without getting trapped, i.e. PMax(¬trappedUNE).

Bandit. We consider a 99-armed bandit Lattimore and Szepesvári [2020], where each arm (action)
has an increased probability of success, 0.01, 0.02, . . . , 0.99 respectively. The goal is to find the
action that has the highest probability of success: PMax(♦ success).

Betting game. We consider a betting game from [Bäuerle and Ott, 2011], in which an agent starts
with 10 coins and attempts to maximize the number of coins after 6 bets. When a bet is won, the
amount of coins placed is doubled, when lost the amount of coins placed is removed. The agent
may place bets of 0, 1, 2, 5, and 10 coins. We consider two versions of the game, one which is
FAVOURABLE to the player, with a win probability of 0.8, and one that is unFAVOURABLE to
the player, with a win probability of 0.2. After six bets the player receives a state-based reward
that equals the number of coins left. This yields an MDP of 300 states and 1502 transitions. The
specification is to maximize the reward after for reaching a terminal state after these six bets.

E Comparison with UCRL2.

UCRL2 [Jaksch et al., 2010] is a reinforcement learning algorithm, meaning it is designed to
collect reward while exploring, in contrast to our setting where we have a clear separation between
exploration and policy computation (i.e. computing the reward). We use UCRL2 to learn a uMDP,
but then compute a robust policy on that learned model, instead of an optimistic policy as is standard
for UCRL2. Furthermore, we make the following changes to the UCRL2 algorithm to make it more
comparable to our setting:

1. Just as with the PAC intervals, we use MAP-estimation instead of the frequentist approach
to estimate the point estimates.

2. UCRL2 does not compute individual intervals, but a set of distributions around the distribu-
tion of point estimates. In particular, it takes the set of distributions for which the `1 norm to
the estimated distribution is less than or equal to√

14|S| log(2|A|tk · 1/γ)
max(1, N)

, (10)

see [Jaksch et al., 2010] for details on this bound. We use this bound for the individual
intervals (bounded by ε to ensure lower bounds greater than zero). As the robust value
iteration for uMDPs restricts to valid distributions with the product of these intervals, we do
not use the `1 norm, but put in the intervals derived from MAP-estimation with this bound.

3. Finally, the UCRL2 algorithm assumes that the reward function is also unknown, and
attempts to learn that as well. We assume the reward function to be known in our setting.

18



F Complete Experimental Evaluation

In this Section we present the full experimental evaluation of our method. For our main conclusions,
we refer back to Section 6, and only comment here on additional experiments not found in the main
text.

In Figure 7 we show the Performance, and Estimation Error for all six environments and all four
learning methods. Additionally, we also define a model error: For each transition, we compute the
maximum distance between the true probability and the lower and upper bounds of the interval in the
uMDP (or the point estimate for MAP-estimation), and then take the average over all these distances.

Figure 6 shows the performance of LUI on the Grid environment with different prior strength choices.
We note little difference, and thus conclude that our LUI approach is not very sensitive to small
changes in prior choices.

Figures 8 and 9 shows the results for switching the probabilities on the Chain environment, for two
different randomization parameters in the exploration: ξ = 0.8 and ξ = 1.0 (no randomization).
Figures 10 and 11 show the same experiment on the Betting Game, switching from a favourable game
to an unfavourable one, again with randomization parameters ξ = 0.8 and ξ = 1.0. We note the need
for randomization during exploration, especially in the Chain environment.
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Figure 6: Prior strength evaluation on the Grid environment.
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Figure 7: Performance, model error, and estimation error for all four learning methods on all six
environments.
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Figure 8: Environment change on the Chain environment at different points † ∈ {102, . . . , 105} using
randomization parameter ξ = 0.8 in the exploration.
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Figure 9: Environment change on the Chain environment at different points † ∈ {102, . . . , 105} using
randomization parameter ξ = 1.0 in the exploration.

21



0

10

20

30

40

RM
π (♦T )

nMax = [20, 30] — † = 100 nMax = [20, 30] — † = 1000 nMax = [20, 30] — † = 10000 nMax = [20, 30] — † = 100000

0

10

20

30

40

RM
π (♦T )

nMax = [200, 300] — † = 100 nMax = [200, 300] — † = 1000 nMax = [200, 300] — † = 10000 nMax = [200, 300] — † = 100000

102 104 106

Trajectory

0

10

20

30

40

RM
π (♦T )

nMax = [∞,∞] — † = 100

102 104 106

Trajectory

nMax = [∞,∞] — † = 1000

102 104 106

Trajectory

nMax = [∞,∞] — † = 10000

102 104 106

Trajectory

nMax = [∞,∞] — † = 100000

Algorithm
LUI
MAP
UCRL

Figure 10: Environment change on the Betting Game environment at different points † ∈
{102, . . . , 105} using randomization parameter ξ = 0.8 in the exploration.
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Figure 11: Environment change on the Betting Game environment at different points † ∈
{102, . . . , 105} using randomization parameter ξ = 1.0 in the exploration.
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