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Abstract15

Game-theoretic concepts have been extensively studied in economics to provide insight into competit-16

ive behaviour and strategic decision making. As computing systems increasingly involve concurrently17

acting autonomous agents, game-theoretic approaches are becoming widespread in computer science18

as a faithful modelling abstraction. These techniques can be used to reason about the competitive19

or collaborative behaviour of multiple rational agents with distinct goals or objectives. This paper20

provides an overview of recent advances in developing a modelling, verification and strategy syn-21

thesis framework for concurrent stochastic games implemented in the probabilistic model checker22

PRISM-games. This is based on a temporal logic that supports finite- and infinite-horizon temporal23

properties in both a zero-sum and nonzero-sum setting, the latter using Nash and correlated equilibria24

with respect to two optimality criteria, social welfare and social fairness. We summarise the key25

concepts, logics and algorithms and the currently available tool support. Future challenges and26

recent progress in adapting the framework and algorithmic solutions to continuous environments27

and neural networks are also outlined.28
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1 Introduction35

Game-theoretic techniques have long been a source of fundamental insights into strategic36

decision making for multi-agent systems. They have been widely studied in areas such as37

economics [27], control [43] and robotics [36]. Concurrent stochastic multi-player games38

(CSGs), in particular, provide a natural framework for modelling a set of interactive, rational39

agents operating concurrently within an uncertain or stochastic environment. They can be40

viewed as a collection of players (agents) with strategies for determining their actions based41

on the execution so far, and where the resulting evolution of the system is probabilistic.42
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4:2 Probabilistic Model Checking for Strategic Equilibria-based Decision Making

Game-theoretic analysis is versatile, in that it can support both zero-sum and nonzero-43

sum (equilibria) analysis. Zero-sum properties focus on scenarios in which one player (or44

a coalition of players) aims to optimise some objective, while the remaining players form45

a coalition with the directly opposing goal. On the other hand, nonzero-sum (equilibria)46

properties correspond to situations where two or more players (or coalitions of players) in a47

CSG have distinct objectives to be maximised or minimised. In nonzero-sum properties the48

goals of the players (or coalitions) are not necessarily directly opposing, and therefore it may49

be beneficial for players to collaborate. Competitive scenarios occur in many applications,50

e.g., attackers and defenders in the context of computer security. Similarly, collaborative51

behaviour can be essential, e.g., to effectively control a multi-robot system, or for users to52

send data efficiently through a shared medium in a communication protocol.53

Probabilistic model checking is a powerful approach to the formal analysis of systems54

with stochastic behaviour. It relies on the construction and analysis of a probabilistic model,55

guided by a formal specification of its desired behaviour in temporal logic. It is of particular56

benefit in the context of models, such as stochastic games, which combine nondeterministic57

and probabilistic behaviour. This is because the interplay between these aspects of the model58

can be subtle and lead to unexpected results if not carefully modelled and analysed. This is59

exacerbated when the system comprises multiple agents with differing objectives.60

Until recently, practical applications of probabilistic model checking based on stochastic61

games had focused primarily on turn-based models [15], in which simultaneous decision62

making by agents is forbidden. Alternatively, model checking of non-stochastic games has63

been extensively studied, and tool support developed [5, 39]. CSGs provide a more powerful64

and realistic modelling formalism, but also bring considerable challenges, in terms of the65

higher computational complexity or undecidability for some key problems.66

There has nonetheless been significant amounts of work on tackling verification problems67

for CSGs. A number of algorithms have been proposed for solving CSGs against formally68

specified zero-sum properties, e.g. [17, 18, 11]. In the case of nonzero-sum properties,69

[14, 25] study the existence of and the complexity of finding equilibria for stochastic games.70

Complexity results for finding equilibria are also considered in [9] and [23] for quantitative71

reachability properties and temporal logic properties, respectively. Other work concerns72

finding equilibria for discounted properties; we mention [49], which formulates a learning-73

based algorithm, and [40], which presents iterative algorithms. However these advances are74

mostly lacking in implementations, tool support or case studies. Tools exist for solving turn-75

based stochastic games [13, 16] and non-stochastic concurrent games [16, 8, 10, 55, 24, 45],76

with the latter class including support for computing equilibria.77

At the same time, there is an increasing trend to incorporate data-driven decision making,78

which necessitates the incorporation on of machine learning components within autonomous79

systems, which are built largely using conventional, symbolic methods. Examples of such80

neuro-symbolic systems are self-driving cars whose vision function is provided via a neural81

network image classifier, or an aircraft controller whose collision avoidance system uses a82

neural network for decision support. Design automation support for such systems is lacking,83

yet automatic computation of equilibria aids in ensuring stable solutions.84

This paper provides an overview of recent advances in developing a modelling, verification85

and strategy synthesis framework for concurrent stochastic games, as implemented in the86

PRISM-games probabilistic model checker [33]. The framework uses a temporal logic that87

supports a wide range of finite- and infinite-horizon properties, relating to the probability88

of an event’s occurrence or the expected amount of reward or cost accumulated. The logic89

allows specification of both zero-sum and nonzero-sum properties, with the latter expressed90
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using either Nash equilibria or correlated equilibria. For both types of equilibria, strategies91

are synthesised in which it is not beneficial for any player to unilaterally alter their chosen92

actions, but correlated equilibria also allow players to coordinate through public signals.93

Since several, varied such equilibria may exist, we also support distinct optimality criteria94

to select between them; we consider social welfare, which maximises the sum of the players95

utilities, and social fairness, which minimises the difference between the utilities.96

We summarise the key concepts, logics and algorithms that underlie this framework and97

discuss the tool support provided by PRISM-games, including an illustrative case study98

of formally modelling and analysing a multi-agent communication protocols using CSGs.99

Future challenges and recent progress in extending the framework and algorithmic solutions100

to modelling of neuro-symbolic CSGs are also outlined. In contrast to the majority of prior101

research, the focus of this strand of work is on software tool development, applications and102

case studies.103

2 Normal form games104

We introduce the main concepts used in this paper by means of simple one-shot games known105

as normal form games (NFGs), where players make their choices at the same time. We106

consider both zero-sum NFGs and nonzero-sum NFGs, then define equilibria concepts for107

these games and summarise existing algorithms for equilibria computation.108

We first require the following notation. Let Dist(X) denote the set of probability109

distributions over set X. For any vector v ∈ Rn, we use v(i) to refer to the ith entry of the110

vector. For any tuple x = (x1, . . . , xn) ∈ Xn, element x′ ∈ X and i 6 n, we define the tuples111

x−i
def= (x1, . . . , xi−1, xi+1, . . . , xn) and x−i[x′]

def= (x1, . . . , xi−1, x
′, xi+1, . . . , xn).112

I Definition 1 (Normal form game). A (finite, n-player) normal form game (NFG) is a tuple113

N = (N,A, u) where:114

N = {1, . . . , n} is a finite set of players;115

A = A1× · · ·×An and Ai is a finite set of actions available to player i ∈ N ;116

u = (u1, . . . , un) and ui : A→ R is a utility function for player i ∈ N .117

In a normal form game N, the players choose actions simultaneously, with player i ∈ N118

choosing an action from the set Ai and, assuming that each player i ∈ N selects action119

ai, player j receives the utility uj(a1, . . . , an). The objective of each player is to maximise120

their utility and their choices are governed by strategies, which we now define. We will also121

distinguish strategy profiles, which comprise a strategy for each player, and correlated profiles,122

which correspond to choices of the players when they are allowed to coordinate through a123

(probabilistic) public signal.124

I Definition 2 (Strategies, profiles and correlated profiles). For an NFG N:125

a strategy σi for player i in an NFG N is a probability distribution over the set of actions126

Ai and we let ΣiN denote the set of all strategies for player i;127

a strategy profile (or profile) σ = (σ1, . . . , σn) is a tuple of strategies for each player;128

a correlated profile is a tuple (τ, ς) comprising τ ∈ Dist(D1× · · ·×Dn), where Di is a129

finite set of signals for player i, and ς = (ς1, . . . , ςn), where ςi : Di → Ai is a function130

from the signals of player i to the actions of player i.131

For a correlated profile (τ, ς) of N, the public signal τ is a joint distribution over signals Di132

for each player i such that, if player i receives the signal di ∈ Di, then it chooses action133

MFCS 2022



4:4 Probabilistic Model Checking for Strategic Equilibria-based Decision Making

ςi(di). We can consider any correlated profile (τ, ς) as a joint strategy, i.e., a distribution134

over A1× · · ·×An where:135

(τ, ς)(a1, . . . , an) =
∑
{τ(d1, . . . , dn) | di ∈ Di ∧ ς(di) = ai for all i ∈ N} .136

Conversely, any joint strategy τ ∈ Dist(A1× · · ·×An) of N can be considered as a correlated137

profile (τ, ς), where Di = Ai and ςi is the identity function for i ∈ N . Any profile σ of an138

NFG N can be mapped to an equivalent correlated profile (in which τ is the joint distribution139

σ1× · · ·×σn and ςi is the identity function). On the other hand, there are correlated profiles140

with no equivalent strategy profile.141

Under profile σ or correlated profile (τ, ς) the expected utilities of player i are:142

ui(σ) def=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)

ui(τ, ς)
def=

∑
(d1,...,dn)∈D τ(d1, . . . , dn) · ui(ς1(d1), . . . , ςn(dn)) .

143

144

I Example 3. Consider the two-player NFG with available action sets Ai = {headsi, tailsi}145

for 1 6 i 6 2 and a correlated profile corresponding to the joint distribution τ ∈ Dist(A1×A2),146

where τ(heads1, heads2) = τ(tails1, tails2) = 0.5. Under this correlated profile, the players147

share a fair coin and choose their action based on the outcome of the coin toss. There is no148

equivalent strategy profile.149

2.1 Zero-sum NFGs150

A zero-sum NFG is a two-player NFG N such that u1(α)+u2(α) = 0 for all α ∈ A, meaning151

that the objectives of the players are directly opposing. Such an NFG is often called a152

matrix game, as it can be represented by a single matrix Z ∈ Ql×m, where A1 = {a1, . . . , al},153

A2 = {b1, . . . , bm} and zij = u1(ai, bj) = −u2(ai, bj).154

We next introduce the notion of the value of a zero-sum NFG and recall classical results155

about the existence of optimal strategies.156

I Theorem 4 (Minimax theorem [56, 57]). For any zero-sum NFG N = (N,A, u) and157

corresponding matrix game Z, there exists v? ∈ Q, called the value of the game and denoted158

val(Z), such that:159

there is a strategy σ?1 for player 1, called an optimal strategy of player 1, such that under160

this strategy the player’s expected utility is at least v? regardless of the strategy of player161

2, i.e., infσ2∈Σ2
N
u1(σ?1 , σ2) > v?;162

there is a strategy σ?2 for player 2, called an optimal strategy of player 2, such that under163

this strategy the player’s expected utility is at least −v? regardless of the strategy of player164

1, i.e., infσ1∈Σ1
N
u2(σ1, σ

?
2) > −v?.165

The value of a matrix game Z ∈ Ql×m can be found by solving a linear programming (LP)166

problem [56, 57].167

I Example 5. Table 1 shows a classic example of a two-player zero-sum game known as168

matching pennies. Columns α and ui represent the collective choice (profile) and player i’s169

utility, respectively. In this example, each player has a coin for which they may choose the170

value to be heads or tails, i.e., Ai = {headsi, tailsi}. If the coins match, player 1 wins the171

round, which is indicated by being awarded a utility of 1, while player 2 receives utility −1.172

If the coins do not match, then the players’ utilities are negated.173
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α u1(α) u2(α)
(heads1, heads2) 1 −1
(heads1, tails2) −1 1

α u1(α) u2(α)
(tails1, heads2) −1 1
(tails1, tails2) 1 −1

Table 1 Matching pennies game in normal form.

The value for the corresponding matrix game is the solution to the following LP problem:174

Maximise v subject to:175

x1 − x2 > v, x2 − x1 > v, x1 + x2 = 1176

which yields the value v? = 0 with optimal strategy σ?1 = ( 1
2 ,

1
2 ) for player 1 (the optimal177

strategy for player 2 is the same).178

2.2 Nonzero-sum NFGs179

The requirement for players to have directly opposing objectives is often too limiting, and it is180

necessary to allow distinct objectives, which cannot be modelled in a zero-sum fashion. These181

scenarios can be captured using the notion of equilibria, defined by a separate, independent182

objective for each agent. We now define the concepts of Nash equilibrium [57] and correlated183

equilibrium [6] for NFGs, which ensure stability against deviations by individual agents,184

improving the overall game outcomes. Since many equilibria may exist, we also introduce185

optimality criteria for these equilibria: social welfare, which is standard [46], and social186

fairness, which was first defined in [35].187

Before giving the formal definitions, we first extend our notation as follows: for any188

profile σ and strategy σ?i , the strategy tuple σ−i corresponds to σ with the strategy of player189

i removed and σ−i[σ?i ] to the profile σ after replacing player i’s strategy with σ?i .190

I Definition 6 (Best response). For any nonzero-sum NFG N and profile σ or correlated191

profile (τ, ς) of N, the best response moves for player i to σ−i and (τ, ς−i) are, respectively:192

a strategy σ?i for player i such that ui(σ−i[σ?i ]) > ui(σ−i[σi]) for all σi ∈ ΣiN;193

a function ς?i : Di → Ai for player i such that ui(τ, ς−i[ς?i ]) > ui(τ, ς−i[ςi]) for all functions194

ςi : Di → Ai.195

I Definition 7 (NE and CE). For any nonzero-sum NFG N, a strategy profile σ? is a Nash196

equilibrium (NE) and a correlated profile (τ, ς?) of N is a correlated equilibrium (CE) if:197

σ?i is a best response to σ?−i for all i ∈ N ;198

ς?i is a best response to (τ, ς?−i) for all i ∈ N ;199

respectively.200

Any NE of N is also a CE, while there exist CEs that cannot be represented by a strategy201

profile, and therefore are not NEs. For each class of equilibria, NE and CE, we introduce202

two optimality criteria, the first maximising social welfare (SW), defined as the sum of the203

utilities, and the second maximising social fairness (SF), which minimises the difference204

between the players’ utilities. Other variants of fairness have been considered for NEs, such205

as in [38], where the authors seek to maximise the lowest utility among the players.206

I Definition 8 (SW and SF). An equilibrium σ? is a social welfare (SW) equilibrium if the207

sum of the utilities of the players under σ? is maximal over all equilibria, while σ? is a social208

fair (SF) equilibrium if the difference between the player’s utilities under σ? is minimised209

over all equilibria.210

MFCS 2022
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c1

c2

c3

α u1(α) u2(α) u3(α)
(pro1, pro2, pro3) −1000 −1000 −100
(pro1, pro2, yld3) −1000 −100 −5
(pro1, yld2, pro3) 5 −5 5
(pro1, yld2, yld3) 5 −5 −5
(yld1, pro2, pro3) −5 −1000 −100
(yld1, pro2, yld3) −5 5 −5
(yld1, yld2, pro3) −5 −5 5
(yld1, yld2, yld3) −10 −10 −10

Figure 1 Example from [35]: Cars at an intersection and the corresponding NFG.

We can also define the dual concept of social cost (SC) equilibria [34], where players try211

to minimise, rather than maximise, their expected utilities by considering equilibria of the212

game N− = (N,A,−u) in which the utilities of N are negated. We remark that SC equilibria213

strategies are not a subset of classically defined NE or CE strategies of N.214

I Example 9. Consider the scenario from [35], based on an example from [50], where three215

cars meet at an intersection and want to proceed as indicated by the arrows in Figure 1.216

Each car can either proceed or yield. If two cars with intersecting paths proceed, then there217

is an accident. If an accident occurs, the car having the right of way, i.e., the other car is218

to its left, has a utility of −100 and the car that should yield has a utility of −1000. If a219

car proceeds without causing an accident, then its utility is 5 and the cars that yield have220

a utility of −5. If all cars yield, then, since this delays all cars, all have utility −10. The221

3-player NFG is given in Figure 1. The different optimal equilibria of the NFG are:222

the SWNE and SWCE are the same: for c2 to yield and c1 and c3 to proceed, with the223

expected utilities of the players (5,−5, 5);224

the SFNE is for c1 to yield with probability 1, c2 to yield with probability 0.863636225

and c3 to yield with probability 0.985148, with the expected utilities of the players226

(−9.254050,−9.925742,−9.318182);227

the SFCE gives a joint distribution where the probability of c2 yielding and of c1 and c3228

yielding are both 0.5 with the expected utilities of the players (0, 0, 0).229

Modifying u2 such that u2(pro1, pro2, pro3) = −4.5 to, e.g., represent a reckless driver, the230

SWNE becomes for c1 and c3 to yield and c2 to proceed with the expected utilities of the231

players (−5, 5,−5), while the SWCE is still for c2 to yield and c1 and c3 to proceed. The232

SFNE and SFCE also do not change.233

Algorithms for computing equilibria in NFGs. Finding NEs in two-player NFGs is in234

the class of linear complementarity problems (LCPs). Established algorithms include the235

Lemke-Howson algorithm [37], which is based on the method of labelled polytopes [46],236

support enumeration [48] and regret minimisation [52]. In [34] a method for NE computation237

is developed, which reduces the problem to SMT via labelled polytopes [46] by considering238

the regions of the strategy profile space. This method iteratively reduces the search space239

of profiles as positive probability assignments are found and added as constraints on the240

profiles. This approach can also be used for finding both an SWNE and SFNE by computing241

all NEs and then selecting an optimal one.242

In the case of NFGs with more than two players, the computation of NEs is more243

complex since, for a given support (i.e., a sub-region of the strategy profile space which fixes244

the set of actions chosen with nonzero probability by each player), finding NEs cannot be245
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reduced to an LP problem. A method for such NFGs is presented in [32], based on support246

enumeration [48], which exhaustively examines all supports one at a time, checking whether247

that sub-region contains NEs. For each support, finding an SWNE can be reduced to a248

nonlinear programming problem [32]. This nonlinear programming problem can be modified249

to find an SFNE in each support [35].250

In the case of CEs, the approach introduced in [35] is to first find a joint strategy for the251

players, i.e., a distribution over the action tuples, which can then be mapped to a correlated252

profile. For SWCEs, [35] reduces the computation to solving a LP problem which has |A|253

variables, one for each action tuple, and
∑
i∈N (|Ai|2−|Ai|) + |A|+ 1 constraints. For SFCEs,254

on the other hand, the method of [35] involves solving an optimisation problem with an255

additional has |N | + 2 variables and 3 · |N | constraints compared to the LP problem for256

finding SWCEs.257

3 Concurrent Stochastic Games258

This section introduces concurrent stochastic games (CSGs) [54], in which players repeatedly259

make simultaneous choices over actions and the action choices cause a probabilistic update260

of the game state. CSGs thus provide a natural framework for modelling a set of interactive,261

rational agents operating concurrently within an uncertain or probabilistic environment.262

Compared to normal form games, they are classified as multi-stage, which is more conveni-263

ent for specifying repeated or sequential interactions among agents. The introduction of264

stochasticity facilitates modelling of a wide range of important phenomena, for example265

uncertain behaviour due to noisy sensors or unreliable hardware in a multi-robot system, or266

the use of randomisation for coordination in a distributed security or networking protocol.267

I Definition 10 (Concurrent stochastic game). A concurrent stochastic multi-player game268

(CSG) is a tuple G = (N,S, s̄, A,∆, δ) where:269

N = {1, . . . , n} is a finite set of players;270

S is a finite set of states and s̄ ∈ S is an initial state;271

A = (A1 ∪ {⊥})× · · ·×(An ∪ {⊥}) where Ai is a finite set of actions available to player272

i ∈ N and ⊥ is an idle action disjoint from the set ∪ni=1Ai;273

∆: S → 2∪n
i=1Ai is an action assignment function;274

δ : S×A→ Dist(S) is a probabilistic transition function.275

Given a CSG G, the set of actions available to player i ∈ N in state s ∈ S is given by276

Ai(s)
def= ∆(s) ∩ Ai. The CSG G starts in the initial state s̄ and, if G is in the game state277

s, then each player i ∈ N selects an action from its available actions in state s if this set is278

non-empty, and from {⊥} otherwise. Next, supposing each player i ∈ N chooses action ai,279

the game state is updated according to the distribution δ(s, (a1, . . . , an)). We allow sets of280

players C ⊆ N to form coalitions, and will consider the induced CSG, called the coalition281

game, with coalitions as players.282

A path π of a CSG G is a sequence π = s0
α0−→ s1

α1−→ · · · , where si ∈ S, αi ∈ A and283

δ(si, αi)(si+1) > 0 for all i > 0. We denote by FPathsG,s and IPathsG,s the sets of finite and284

infinite paths starting in state s of G, respectively, and drop the subscript s when considering285

all finite and infinite paths of G. As for NFGs, we can define strategies of G that resolve the286

choices of the players. Here, a strategy for player i is a function σi : FPathsG → Dist(Ai∪{⊥})287

mapping finite paths to distributions over available actions, such that, if σi(π)(ai)>0, then288

ai ∈ Ai(last(π)) where last(π) is the final state of π. Furthermore, we can define strategy289

profiles, correlated profiles and joint strategies analogously to Section 2.290

MFCS 2022
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A labelled CSG is a tuple (G,AP,L), where G is a CSG, as in Definition 10, AP is a291

set of atomic propositions and L : S → 2AP is a labelling function, specifying which atomic292

propositions are true in each state. We also associate CSGs with reward structures, which293

annotate states and transitions with real values. More precisely a reward structure is a pair294

r=(rA, rS) consisting of an action reward function rA : S×A→ R and state reward function295

rS : S → R. We use atomic propositions and rewards as the building blocks to specify players’296

utilities in a CSG, which will be described in Section 4.297

Formally, the utility function or objective of player i in a CSG is given by a random298

variable Xi : IPathsG → R over infinite paths. For a profile σ and state s, using standard299

techniques [31], we can construct a probability measure ProbσG,s over the paths that start300

in state s corresponding to σ, denoted IPathsσG,s, and define the expected value EσG,s(Xi) of301

player i’s utility from s under σ. Similarly, we can also define such a probability measure302

and expected value given a correlated profile or joint strategy of G.303

3.1 Zero-sum CSGs304

Similarly to NFGs (see Section 2.1), zero-sum CSGs are two-player games that have a single305

utility function X for player 1, with the utility function of player 2 given by −X, and both306

players aiming to maximise the expected value of their utility. Equivalently, we can suppose307

that player 1 tries to maximise the expected value of X, while player 2 tries to minimise308

it. As for NFGs (see Theorem 4), a CSG has a value with respect to X if it is determined,309

i.e., if the maximum value that player 1 can ensure equals the minimum value that player310

2 can ensure when starting from any state of the CSG. Since the CSGs we discuss in this311

paper are finite-state and finitely-branching, it follows that they are determined for all of the312

objectives that we consider [44].313

Given a multi-player CSG and objective X, we can divide the players into two coalitions,314

C ⊆ N and N\C, and then construct a two-player zero-sum coalition game, in which each315

coalition acts as a single player, with one coalition trying to maximise the value of X and316

the other trying to minimise that value.317

3.2 Nonzero-sum CSGs318

We define nonzero-sum CSGs similarly to NFGs: we assume that there is a distinct and319

independent objective Xi for each player i (or coalitions of players). We can then define NE320

and CE for CSGs (see Definition 7), as well as the restricted classes of SW and SF equilibria,321

similarly to those for NFGs (see Definition 8). Following [34, 32], we focus on subgame-perfect322

equilibria [47], which are equilibria in every state of G. Furthermore, because we include323

infinite-horizon objectives, where the existence of NE is an open problem [7], we will in some324

cases use ε-NE, which do exist for any ε > 0 for all the infinite-horizon objectives we consider.325

326

I Definition 11 (Subgame-perfect ε-NE). For CSG G and ε > 0, a strategy profile σ? is327

a subgame-perfect ε-Nash equilibrium for objectives 〈Xi〉i∈N if and only if Eσ?

G,s(Xi) >328

supσi∈Σi
Eσ

?
−i[σi]

G,s (Xi)− ε for all i ∈ N and s ∈ S.329

I Example 12. As an example scenario that can be modelled as a CSG, consider a number330

of users trying to send packets using the slotted ALOHA protocol studied in [32, 34, 35]. If331

there is a collision or if sending a packet fails, a user waits for some number of slots before332

resending, with the wait set according to an exponential backoff scheme.333
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If we model this scenario as a CSG then, when a player has a packet to send, the actions334

available to the player correspond to either sending their packet or waiting to send the packet335

at some future time step. In the case when one coalition of players has an objective related336

to sending their packets efficiently, e.g., minimising the expected time to send their packets,337

and the remaining players form a second coalition and have the dual objective, we can model338

this scenario as a zero-sum CSG. In such a zero-sum CSG, the optimal strategy for the first339

coalition is to try and choose times to send that avoid collisions, while the second coalition340

will do the opposite and instead try and cause collisions. On the other hand, when there are341

more coalitions and each coalition’s goal corresponds to sending their own packets efficiently,342

we can model this as a nonzero-sum CSG. Here we would be looking for equilibria, i.e.,343

profiles such that no coalition could improve its objective by changing its strategy, which are344

also optimal, e.g., the sum of the expected times is minimal or the difference between the345

expected time to send for each coalition is minimal.346

4 Property specifications and model checking for CSGs347

Probabilistic model checking is a technique for systematically constructing a stochastic model348

and analysing it against a quantitative property formally specified in temporal logic. This349

approach can be used either to verify that a specification is always satisfied or to perform350

strategy synthesis, i.e., to construct a witness to the satisfaction of a property. In the context351

of CSGs, the latter means synthesising strategies for one or more players (or coalitions) such352

that the resulting behaviour of the game satisfies the specification.353

To specify properties of labelled CSGs, we use the property specification language of the354

PRISM-games model checker [33], which is based on the logic PCTL (probabilistic compu-355

tation tree logic) [26], extended with operators to specify expected reward properties [21]356

and the coalition operator 〈〈C〉〉 from alternating temporal logic (ATL) [4]. The variant357

of this logic that just considers zero-sum formulae is referred to as rPATL (probabilistic358

alternating-time temporal logic with rewards) in [15], but here we use a further extended359

version that also supports nonzero-sum properties, using the notion of equilibria [34, 35].360

I Definition 13 (PRISM-games logic [34, 35]). The syntax of the PRISM-games logic is given361

by the grammar:362

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ ] | 〈〈C〉〉Rr∼x[ ρ ] | 〈〈C〉〉(?1, ?2)opt∼x(θ)363

ψ := Xφ | φ U6k φ | φ U φ364

ρ := I=k | C6k | F φ365

θ := P[ψ ]+· · ·+P[ψ ] | Rr[ ρ ]+· · ·+Rr[ ρ ]366

where a is an atomic proposition, C = C1: · · · :Cm, C and C1, . . . , Cm are coalitions of players367

such that C ′ = N\C, Ci ∩ Cj = ∅ for all 1 6 i 6= j 6 m, (?1, ?2) ∈ {ne,ce}×{sw, sf},368

opt ∈ {min,max}, ∼∈ {<,6,>, >}, q ∈ Q∩ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.369

The syntax distinguishes between state (φ), path (ψ) and reward (ρ) formulae. State formulae370

are evaluated over states of a CSG, while path and reward formulae are both evaluated over371

paths. Sums of formulae (θ) are used to specify multiple objectives for equilibria.372

We omit the formal semantics, which can be found in [34, 35]. Path and reward formulae373

are used to express the utilities of the players, i.e., random variables over paths. For path374

formulae, we allow next (Xφ), bounded until (φ U6k φ) and unbounded until (φ U φ). We375

also allow the usual equivalences such as F φ ≡ true U φ (i.e., probabilistic reachability)376

and F6k φ ≡ true U6k φ (i.e., bounded probabilistic reachability). The random variable377
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corresponding to the path formula ψ returns 1 for paths that satisfy ψ and zero otherwise.378

For reward formulae, we allow instantaneous (state) reward at the kth step (instantaneous379

reward I=k), reward accumulated over k steps (bounded cumulative reward C6k), and reward380

accumulated until a formula φ is satisfied (expected reachability F φ). The random variable381

corresponding to the reward formula ρ returns for a path the reward corresponding to ρ.382

4.1 Zero-sum formulae383

A state satisfies a formula 〈〈C〉〉P∼q[ψ ] if the coalition of players C ⊆ N can ensure that384

the probability of the path formula ψ being satisfied is ∼q, regardless of the actions of the385

other players (N\C) in the game. A state satisfies a formula 〈〈C〉〉Rr∼x[ ρ ] if the players in386

C can ensure that the expected value of the reward formula ρ for reward structure r is ∼x,387

whatever the other players do.388

The model checking algorithms presented in [34] involve graph-based analysis followed389

by backward induction [53, 57] for exact computation of finite-horizon properties and value390

iteration [51, 12] for approximate computation of infinite-horizon properties. During both391

backward induction and value iteration for each state, at each iteration, an LP problem of392

size |A| must be solved (corresponding to finding the value of a zero-sum one-shot game),393

which has complexity PTIME [30].394

Strategy synthesis for the formulae 〈〈C〉〉P∼q[ψ ] and 〈〈C〉〉Rr∼x[ ρ ] corresponds to finding395

optimal strategies for the players in coalition C when their objective, respectively, is max-396

imising the probability of satisfying the formula ψ and maximising the expected value of397

the reward formula with respect to the reward structure r. All strategies synthesised are398

randomised and can be found during model checking by extracting not just the value of the399

zero-sum one-shot game solved in each state, but also an optimal (randomised) strategy. For400

infinite-horizon objectives, the synthesised strategies are memoryless, while for finite-horizon401

objectives, the synthesised strategies are finite-memory, with a separate distribution required402

for each state and each time step.403

4.2 Nonzero-sum formulae404

Nonzero-sum formulae allow us to reason about equilibria, for either of the types (NE405

or CE) and optimality criteria (SW or SF) considered here. A probabilistic formula406

〈〈C1:· · ·:Cm〉〉(?1, ?2)max∼x(P[ψ1 ]+· · ·+P[ψm ]) is true in a state if, when the players form407

the coalitions C1, . . . , Cm, there is a subgame-perfect equilibrium of type ?1 meeting the408

optimality criterion ?2 for which the sum of the values of the objectives P[ψ1 ], . . . , P[ψm ]409

for the coalitions C1, . . . , Cm satisfies ∼x. The objective of coalition Ci is to maximise the410

probability of satisfying a path formula ψi.411

For a reward formula 〈〈C1:· · ·:Cm〉〉(?1, ?2)max∼x(Rr1 [ ρ1 ]+· · ·+Rrm [ ρm ]) the meaning is412

similar; however, here the objective of coalition Ci refers to a reward formula ρi with respect413

to reward structure ri. Formulae of the form 〈〈C1:· · ·:Cm〉〉(?1, ?2)min∼x(θ) correspond to the414

dual notion of cost equilibria, which are also supported. We also allow numerical queries of the415

form 〈〈C1:· · ·:Cm〉〉(?1, ?2)opt=?(θ), which return the sum of the subgame-perfect equilibrium’s416

values of of type ?1 meeting the optimality criterion ?2.417

Model checking algorithms, presented in [34, 32, 35], involve solving an m-player coalition418

game GC, where C = {C1, . . . , Cm} and the choices of each player i in GC correspond to419

the choices of the players in coalition Ci in G. If all the objectives in θ are finite-horizon,420

then backward induction [53, 57] can be applied to compute (precise) optimal equilibria421

values. On the other hand, if all the objectives are infinite-horizon, value iteration [12] can422
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be used to approximate optimal equilibria values. When there is a combination of finite- and423

infinite-horizon objectives, the game under study is modified in a standard manner to make424

all objectives infinite-horizon.425

Both backward induction and value iteration over the CSG GC work by iteratively426

computing new values for each state s of GC. The values for each state, in each iteration,427

are found by computing optimal equilibria values, with respect to the criterion ?2 and428

equilibrium type ?1, of an NFG N whose utility function is derived from the outgoing429

transition probabilities from s in the CSG and the values computed for successor states of s430

in the previous iteration.431

We can synthesise a strategy profile representing the appropriate type of equilibrium for432

the CSG by combining the optimal strategies for the equilibria generated in each individual433

state during solution. As for zero-sum formulae, randomisation is required and memory434

is needed both to keep track of both the step bound of finite-horizon objectives and the435

satisfaction of each player’s objective.436

I Example 14. We now return to the scenario from Example 12, where a number users437

are attempting to send packets using the slotted ALOHA protocol. The zero-sum formulae438

〈〈usr1, . . . , usrk〉〉Rtime
min=?[ F sent1...k ] and 〈〈usr1, . . . , usrk〉〉Pmax=?[ F sent1...k ∧ t 6 D ] repres-439

ent the case where the first k users form a coalition and try to minimise the expected time440

to send their packets or maximise the probability they send their packets within a deadline441

D ∈ N, respectively, while the remaining users form a second coalition and try and achieve442

the opposite objective, i.e., maximise the expected time or minimise the probability.443

On the other hand, in the nonzero-sum case, if we suppose there arem users and the object-444

ive of each user is to minimise the expected time to send their packet, this can be expressed by445

the nonzero-sum formula 〈〈usr1: · · · :usrm〉〉(?1, ?2)min=?(Rtime[ F sent1 ]+· · ·+Rtime[ F sentm ]).446

5 Tool support and case studies447

Tool support for the modelling and automated verification of CSGs has been implemented in448

PRISM-games [33], which is available from [61]. A variety of case studies have been modelled449

and analysed as CSGs with the tool, using both zero-sum and nonzero-sum properties. These450

include: a robot coordination problem [34]; futures market investors [34, 35]; medium access451

control [32, 34]; power control [34, 35]; a public good game [32, 35] and secret sharing [32].452

The results for these case studies demonstrate: the advantages of using CSGs for modelling453

(for example, with respect to simpler turn-based games); that using nonzero-sum properties454

can yield gains for the players (or coalitions); and that the use of correlated equilibria and455

social fairness results may be advantageous compared to Nash equilibria and social welfare.456

We give a brief description of the functionality and implementation of PRISM-games and457

then present a representative case study: the slotted ALOHA protocol.458

5.1 PRISM-games459

PRISM-games [33] is an extension of the PRISM model checker, which provides support460

for a variety of stochastic game models, including turn-based and concurrent multi-player461

stochastic games, and (turn-based) timed probabilistic games.462

These are all described in the PRISM-games modelling language, a stochastic extension463

of the Reactive Modules formalism [3]. The language facilitates the specification of systems464

comprising multiple components, referred to as modules, that operate in parallel, both465

asynchronously and synchronously through action labels. Each module has a number of466
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finite-valued variables and a state of the system specifies the values of the variables of all467

modules. The behaviour of each module is defined by probabilistic guarded commands,468

where the guard is a predicate over the variables of the modules and the command specifies469

a probabilistic update of the module’s variables. In a CSG model, each player constitutes a470

set of modules, and these therefore execute concurrently.471

PRISM-games provides a graphical user interface for designing and simulating stochastic472

games models, but its core functionality is to exhaustively construct a game and perform473

verification and strategy synthesis against a logical specification. For CSGs, the PRISM-474

games logic described in Definition 13 is supported, and the resulting strategies can be475

exported, simulated or further verified.476

The implementation of CSG model checking is built within PRISM’s ‘explicit’ engine,477

which is based on sparse matrices and implemented in Java. Computing values (and optimal478

strategies) for zero-sum NFGs, needed for zero-sum formulae, is performed using the LPSolve479

library [41] via linear programming. The computation of SWNE or SFNE for nonzero-480

sum NFG, required for nonzero-sum formulae, depends on the number of players. For481

two players [34], labelled polytopes are used to characterise and find NE values through a482

reduction to SMT in both Z3 [19] and Yices [20]. If there are more than two players, the483

implementation [32] is based on support enumeration and uses a combination of the SMT484

solver Z3 [19] and the nonlinear optimisation suite Ipopt [58]. In the case of SWCE for485

nonzero-sum NFGs, as the problem reduces to an LP problem [35], either Gurobi [22] or the486

SMT solver Z3 [19] is used. Finally, for SFCE, since the problem does not reduce directly to487

an LP problem, only Z3 can be used.488

5.2 The ALOHA case study489

We now return to the slotted ALOHA protocol discussed in Examples 12 and 14 to illustrate490

the benefits of game-theoretic analysis with CSGs. For further details of this case study, as491

well as several others, see [61]. Recall that, in the slotted ALOHA protocol, a number of492

users are attempting to send packets on a shared medium. We assume that, in any time493

slot, if a single user tries to send a packet then there is a probability (q) that the packet is494

sent and, as more users try and send, then the probability of success decreases. If sending a495

packet fails, the user waits for a number of slots before resending, defined according to an496

exponential backoff scheme. More precisely, each user maintains a backoff counter, which497

it increases each time there is a failure (up to bmax) and, if the counter equals k, randomly498

chooses the slots to wait from {0, 1, . . . , 2k−1}.499

Zero-sum properties. We first consider the zero-sum properties 〈〈usr1〉〉Pmax=?[ F6Dsent1 ]500

and 〈〈usr1〉〉Rtime
min=?[ F sent1 ] from Example 14, which correspond to the first user trying to501

maximise the probability that their packet is sent before a deadline and trying to minimise502

the expected time to send their packet, respectively. The results for the first property when503

q = 0.9 as the deadline D varies, and for the second property as the probability q varies,504

are presented in Figure 2 for different values of bmax. We see that the probability decreases505

and the expected time decreases as bmax increases; this is because, as bmax increases, the506

additional time the first user can spend in backoff outweighs the gains in reducing the chance507

of avoiding further collisions. By performing strategy synthesis we see that it is optimal508

for the first user to initially randomly decide as to when to send their packet in order to509

avoid collisions with the coalition of the second and third user. However, this changes to a510

deterministic strategy of just sending its packet when the other users have sent their packets511

or the deadline is getting close, and therefore waiting will mean the deadline is missed.512
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Figure 2 Results from a CSG model of the ALOHA protocol: one user maximising the probability
of sending their packet before a deadline D (left); and minimising the expected time to send the
packet, assuming a message transmission failure probability q (right).
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Figure 3 Results from CSG equilibria synthesis on the ALOHA protocol, maximising the
probabilities of sending packets by deadline D for two coalitions (user 1, and users 2 and 3):
probability sums (left) and individual probabilities (right).

Benefits of equilibria. We next highlight the analysis from [34], which demonstrates the513

advantages of cooperation through nonzero-sum properties when using Nash equilibria (NE)514

and the social welfare (SW) optimality criterion, as opposed to adopting a strategy that515

assumes antagonistic behaviour. The first non-zero sum property we consider corresponds516

to the case when each user is trying to maximise the probability of sending their packet517

before a deadline D, with users 2 and 3 forming a coalition, represented by the formula518

〈〈usr1:usr2,usr3〉〉(ne, sw)max=?(P[ F (sent1 ∧ t6D) ] + P[ F (sent2 ∧ sent3 ∧ t6D) ]).519

Figure 3 presents total values (the sum of the probabilities for user 1 and the coalition520

of user 2 and 3) as D varies (left) and individual values as q varies (right). By performing521

strategy synthesis, the analysis found that the collaboration is dependent on both D and q.522

In particular, if the users have more time there is a greater chance for the users to collaborate523

by sending in different slots, whereas, when q is large, it is unlikely users need to repeatedly524

send, so again can send in different slots. As Figure 3 (right) demonstrates, since the coalition525

has more packets to send, their probabilities are lower.526

Equilibria types and optimality criteria. Finally, we report on the experiments of [35], which527

investigate the benefits of using different types of equilibria, i.e., correlated (CE) over Nash528

equilibria, and optimality criteria, i.e., social fairness (SF) over social welfare (SW). The529

experiments varied the number of users and considered the case when the objective of each530

individual user is to minimise the expected time to send their packet, which is represented by531

the nonzero-sum formula 〈〈usr1: · · · :usrm〉〉(?1, ?2)min=?(Rtime[ F sent1 ]+· · ·+Rtime[ F sentm ]).532
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Figure 4 Results from different types of equilibria (correlated vs. Nash) and optimality criteria
(social fairness vs. social welfare) for minimising the expected times for users to send packets in the
ALOHA protocol., for varying numbers of users.

Synthesising optimal strategies for this specification, it was found that the cases for533

SWNE and SWCE coincide (although SWCE returns a joint strategy for the users, this joint534

strategy can be separated to form a strategy profile). This profile required one user to try535

and send first, and then for the remaining users to take turns to try and send afterwards. If536

a user fails to send, then they enter backoff and allow all remaining users to try and send537

before trying to send again. The reason for this is that there is no gain in a user trying to538

send at the same time as another user, as this will increase the probability of a collision and539

thus their packets not being sent, and therefore the users having to spend time in backoff.540

For SFNE, which has only been implemented for the two-player case, the two users541

followed identical strategies, which involve randomly deciding whether to wait or transmit,542

unless they are the only user that has not transmitted, and then they always try to send543

when not in backoff. In the case of SFCE, users employed a shared probabilistic signal to544

coordinate which user sends next. Initially, this was a uniform choice over the users, but as545

time progresses the signal favoured the users with lower backoff counters as these users had546

fewer opportunities to send their packet previously.547

Figure 4 plots the optimal values for the users, where SWi corresponds to the optimal548

values (expected times to send their packets) for user i for both SWNE and SWCE for the549

cases of two, three and four users. We see that the optimal values for the different users550

under SFNE and SFCE coincide, while under SWNE and SWCE they are different for each551

user (with the user sending first having the lowest and the user sending last the highest).552

Comparing the sum of the SWNE (and SWCE) values and that of the SFCE values, we see553

a small decrease in the sum of less than 2% of the total, whereas for SFNE there is a greater554

difference as the users cannot coordinate, and hence try and send at the same time.555

6 Recent Developments: Neuro-symbolic CSGs556

The recent encouraging advances of AI, and particularly deep learning, have resulted in557

computing architectures that integrate components that are synthesized from data (e.g.,558

implemented as neural networks) with conventional, symbolic modules (e.g., controllers).559

Design automation support for such neuro-symbolic systems is, however, lacking. To this560

end, we have developed the model of neuro-symbolic concurrent stochastic games (NS-561

CSGs) [60, 59], which is targeted at AI-based autonomous systems, e.g., autonomous driving562

or aircraft controllers. NS-CSGs are a variant of (continuous-space) CSGs, in which each563

player is a neuro-symbolic agent and the agents act concurrently in a shared, continuous-state564

environment. As for the players of CSGs, each agent has a finite set of available actions and565

agents choose their actions simultaneously; however, in NS-CSGs the action choices cause566
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the agents’ local states to be updated probabilistically and the agents are endowed with a567

perception mechanism implemented as a neural network, through which they can observe the568

local states of the other agents and that of the environment and encode these observations as569

locally stored percepts. The global states of NS-CSGs comprise the state of the environment570

together with the local state and percept of each agent, and are therefore infinite-state, in571

contrast to the CSGs discussed in the rest of this paper.572

I Definition 15 (Neuro-symbolic concurrent stochastic game [60, 59]). A neuro-symbolic573

concurrent stochastic multi-player game (NS-CSG) NSC comprises players (Agi)i∈N , for574

N = {1, . . . , n}, and an environment E where:575

Agi = (Si, Ai,∆i, obsi, δi) for i ∈ N, E = (SE , δE)576

and we have:577

Si = Loci × Per i is a set of states for Agi, where Loci ⊆ Rbi and Per i ⊆ Rdi are finite578

sets of local states and percepts, respectively;579

SE ⊆ Re is a closed infinite set of environment states;580

Ai is a nonempty finite set of actions for Agi and A := (A1 ∪ {⊥})× · · · × (An ∪ {⊥}) is581

the set of joint actions, where ⊥ is an idle action disjoint from ∪ni=1Ai;582

∆i : Si → 2Ai is an available action function, defining the actions Agi can take in each583

state;584

obsi : (Loc1 × · · · × Locn × SE) → Per i is a perception function for Agi, mapping the585

local states of all agents and the environment to a percept of the agent, implemented via586

a neural network (NN) classifier;587

δi : Si × A → P(Loci) is a partial probabilistic transition function for Agi determining588

the distribution over the agent’s local states given its current state and joint action;589

δE : SE ×A→ SE is a partial deterministic environment transition function determining590

the environment’s next state given its current state and joint action.591

A (global) state for an NS-CSG NSC comprises a state si = (loci, per i) for each agent592

Agi (a pair of a local state and percept) and an environment state sE . If an NS-CSG is593

in a state s = (s1, . . . , sn, sE), then each Agi simultaneously chooses one of the actions594

available in its state si (if no action is available, i.e., ∆i(si) = ∅, it picks the idle action ⊥)595

yielding a joint action α = (a1, . . . , an) ∈ A. Next, each Agi updates its local state to596

loc′i ∈ Loci, according to its probabilistic local transition function δi, applied to its current597

state (loci, per i) and the joint action α. The environment updates its state to s′E ∈ SE598

according to its local deterministic transition function δE , based on its state sE and on α.599

Finally, each agent, based on its new local state loc′i, observes the new local states of the600

other agents and environment through its perception function obsi to generate a new percept601

per ′i = obsi(loc′1, . . . , loc′n, s′E). Thus, the game reaches the state s′ = (s′1, . . . , s′n, s′E), where602

s′i = (loc′i, per ′i) for i ∈ N . We assume that each perception function obsi is implemented603

via an NN fi : Rb+e → P(Per i) yielding a normalised score over different percept values,604

where b =
∑n
i=1 bi; however, it can be any function including other types of machine learning605

models. A rule is then applied that selects the percept value with the maximum score.606

Formally, the semantics of an NS-CSG NSC is given by an infinite-state CSG [[NSC]] over607

the product of the states of the agents and environment, which assumes a particular structure608

of the transition function that distinguishes between agent and environment states and uses609

the NN-based perception function to define which states have the same characteristics.610

I Definition 16 (Semantics of an NS-CSG). Given an NS-CSG NSC consisting of n players611

and an environment, the semantics of NSC is [[NSC]] = (N,S, (Ai)i∈N ,∆, δ) where:612
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Figure 5 Geometry with trust levels and advisories for the agents of the VCAS[2] case study.

S = S1 × · · · × Sn × SE is the set of (global) states, which contain both discrete and613

continuous elements;614

∆(s1, . . . , sn, sE) = ∪ni=1∆i(si);615

δ : (S × ((A1 ∪ {⊥})× · · · × (An ∪ {⊥})))→ P(S) is the partial probabilistic transition616

function, where for states s = (s1, . . . , sn, sE), s′ = (s′1, . . . , s′n, s′E) ∈ S and joint action617

α = (a1, . . . , an) ∈ A, if ai ∈ ∆i(si) when ∆i(si) 6= ∅ and ai = ⊥ otherwise, then618

δ(s, α) is defined and if s′i = (loc′i, per ′i), per ′i = obsi(loc′1, . . . , loc′n, s′E) for all i ∈ N and619

s′E = δE(sE , α), then620

δ(s, α)(s′) =
(∏n

i=1δi(si, α)(loc′i)
)

621

and otherwise δ(s, α)(s′) = 0.622

To illustrate NS-CSGs, we present the VerticalCAS Collision Avoidance Scenario (VCAS[2])623

[28, 29], modelled in [59], which is a variant of the one studied in [2], where the agents’ trust624

level is modelled probabilistically to account for possible uncertainty.625

I Example 17. The geometry of the VCAS[2] case study is shown in Figure 5. There are626

two aircraft (ownship and intruder), constituting the agents of the NS-CSG, both equipped627

with an NN-controlled collision avoidance system called VCAS. At each time unit (i.e., every628

second), VCAS issues an advisory (ad ∈ {1, . . . , 9}) from which, together with the current629

trust level (tr ∈ {1, . . . , 4}) from the previous advisory, the pilot needs to make a decision630

about the rate of acceleration, aimed at avoiding a near mid-air collision (NMAC) [1].631

The input to the VCAS system is the tuple (h, ḣown, ḣint , t) ∈ R4 including the relative632

altitude h of the aircraft, the climb rate ḣown of ownship, the climb rate ḣint of intruder, and633

the time t until loss of horizontal separation between the aircraft. VCAS is implemented634

via nine feed-forward NNs F = {fi : R4 → R9 | 1 6 i 6 9}, each of which corresponds to an635

advisory and outputs the scores of the nine possible advisories. Each advisory will provide a636

set of accelerations for the agent to select from and the trust level increases probabilistically637

if the current advisory is compliant with the executed accelerations, and decreases otherwise.638

We formulate the NS-CSG with agents Agi for i ∈ {own, int} as follows:639

the set of states for Agi is given by Si = {1, . . . , 4} × {1, . . . , 9}, where the agent state640

si = (tr i, adi) ∈ Si has local state (trust level) tr i and percept (advisory) adi;641

the set of environment states is given by SE = R4, where sE = (h, ḣown, ḣint , t) ∈ SE642

represents the relative altitude, the climb rate of the ownship, the climb rate of the643

intruder, and the time until loss of their horizontal separation;644

the set of actions of Agi is given by Ai = {0,±3.0,±7.33,±9.33,±9.7,±11.7} representing645

the acceleration options of Agi;646

the available action function ∆i : Per i → Ai of Agi is independent of the local state of647

the agent and returns the set consisting two non-zero acceleration actions from Table 2648

for a given percept and the zero acceleration action;649
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Label Advisory Description Vertical Range Actions
(adi) (Min, Max) ft/min ft/s2

1 COC Clear of Conflict (−∞,+∞) −3, +3
2 DNC Do Not Climb (−∞, 0] −9.33, −7.33
3 DND Do Not Descend [0,+∞) 7.33, +9.33
4 DES1500 Descend at least 1500 ft/min (−∞,−1500] −9.33, −7.33
5 CL1500 Climb at least 1500 ft/min [+1500,+∞) +7.33, +9.33
6 SDES1500 Strengthen Descend to at least 1500 ft/min (−∞,−1500] −11.7, −9.7
7 SCL1500 Strengthen Climb to at least 1500 ft/min [+1500,+∞) +9.7, +11.7
8 SDES2500 Strengthen Descend to at least 2500 ft/min (−∞,−2500] −11.7, −9.7
9 SCL2500 Strengthen Climb to at least 2500 ft/min [+2500,+∞) +9.7, +11.7

Table 2 Actions available for the agents of VCAS[2] for each advisory [2].

the perception function obsi : Per i × SE → {1, . . . , 9} of Agi is independent of the local650

state of the agent and is given by the feed forward NNs F of VCAS;651

the local transition function δi of Agi updates the agent’s trust level probabilistically652

according to its current trust level, its current advisory and its executed action;653

the environment transition function δE is given by δE((h, ḣown, ḣint , t), (ḧown, ḧint)) =654

(h′, ḣ′own, ḣ
′
int , t

′) where for time step ∆t = 1:655

h′ = h−∆t(ḣown − ḣint)− 0.5∆t2(ḧown − ḧint);656

ḣ′own = ḣown + ḧown∆t;657

ḣ′int = ḣint + ḧint∆t;658

t′ = t−∆t.659

6.1 Zero-sum NS-CSGs660

In view of the uncountable state spaces, [60] presents an approach for zero-sum discounted661

infinite-horizon cumulative rewards under the assumption of full state observability for662

NS-CSGs, which exploits Borel state space decomposition and identifies model restrictions to663

ensure determinacy, and therefore existence of a value that corresponds to a unique fixed point.664

Value iteration and policy iteration algorithms to compute values and synthesise optimal665

strategies are also derived based on formulating piecewise linear or constant representations666

of the value functions and strategies for NS-CSGs.667

6.2 Nonzero-sum NS-CSGs668

In the case of nonzero-sum NS-CSGs, [59] studies the undiscounted, finite-horizon equilibria669

synthesis problem. The use of finite-horizon objectives simplifies the analysis (note that670

the existence of infinite-horizon NE for CSGs is an open problem [7], and the verification671

of non-probabilistic infinite-horizon reachability properties for neuro-symbolic games is672

undecidable [2]). Both NE and CE using the SW optimality criteria are considered. The673

algorithms, based on backward induction and non-linear programming, compute globally674

optimal equilibria which, from a fixed initial state, are optimal over the chosen time horizon,675

in contrast to the local optimality of equilibria for finite-state CSGs [34, 35].676

I Example 18. The NS-CSG model of the VCAS[2] system described in Example 17 is677

studied in [59], comparing equilibria strategies to the zero-sum strategies analysed in [2].678

Figure 6 plots the relative altitude h of the two aircraft for equilibria and zero-sum strategies679

when maximising this value for a given time instant k, plotted for several different initial680

MFCS 2022
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Figure 6 Relative altitude h of the two aircraft at time instants k for equilibria and zero-sum
strategies for the VCAS[2] case study.

values of h. It can be seen that, with respect to the safety criterion established in [28, 2], i.e.,681

avoiding an NMAC when two aircraft are separated by less than 100 ft vertically (dotted682

line) and 500 ft horizontally, equilibria strategies allow the two aircraft to reach a safe683

configuration within a shorter horizon, which would be missed through a zero-sum analysis.684

The analysis of [59] also considers a reward structure that incorporates both the trust685

level and fuel consumption. Figure 7 shows the resulting equilibria strategies when both686

safety and trust are prioritised, using two different time horizons. When t = 3 initially687

(left), it is optimal to follow the advisories and the trust levels trown and trint of the two688

aircraft never decrease from their initial values of 4. However, when t = 3 initially (right),689

the optimal strategy shows a deviation from the advisory, denoted by action aown = 0, in690

state s2, resulting in trown dropping to 3 in s3 with probability 0.9.691

The experiments from [59], summarised above, and from [60] are developed using prototype692

tools that build upon parts of PRISM-games, but full tool support for NS-CSGs is not yet693

provided. Efforts in this direction are continuing.694

7 Conclusions and Future Challenges695

This paper has provided an overview of modelling, verification and strategy synthesis696

techniques that have been developed and implemented for concurrent stochastic games in697

the PRISM-games model checker. Through case studies, we have demonstrated the uses698

and advantages of zero-sum and equilibria-based reasoning in strategic decision making,699

highlighting Nash and correlated equlilibria in conjunction with two optimality criteria, social700

welfare and social fairness. We have also discussed recent trends in autonomous systems701

towards neural-symbolic architectures, and summarised the first steps towards developing a702

modelling framework to support the development of such AI-based systems. Despite some703

progress, many problems remain open in this area, in particular, the development of (efficient)704

approximate algorithms for (undiscounted infinite-horizon) temporal logic specifications705

where the underlying problem is undecidable even in the finite-state case [42].706
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