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Abstract. Probabilistic model checking is an automated method for verifying the
correctness and performance of probabilistic models. Property specifications are
expressed in probabilistic temporal logic, denoting, for example, the probability
of a given event, the probability of its occurrence within a given time interval,
or expected number of times it has occurred in a time period. This chapter fo-
cuses on the application of probabilistic model checking to biological systems
modelled as continuous-time Markov chains, illustrating the usefulness of these
techniques through relevant case studies performed with the probabilistic model
checker PRISM. We begin with an introduction to discrete-time Markov chains and
the corresponding model checking algorithms. Then continuous-time Markov chain
models are defined, together with the logic CSL (Continuous Stochastic Logic), and
an overview of model checking for CSL is given, which proceeds mainly by reduc-
tion to discrete-time Markov chains. The techniques are illustrated with examples
of biochemical reaction networks, which are verified against quantitative tempo-
ral properties. Next a biological case study analysing the Fibroblast Growth Factor
(FGF) molecular signalling pathway is summarised, highlighting how probabilistic
model checking can assist in scientific discovery. Finally, we consider DNA compu-
tation, and specifically the DSD formalism (DNA Strand Displacement), and show
how errors can be detected in DNA gate designs, analogous to model checking for
digital circuits.

Keywords. Temporal logic, Model checking, Markov chains, Chemical reaction
networks, Biological signalling pathways, DNA computation

1. Introduction

Probabilistic model checking is an automated verification technique for the analysis of
systems that exhibit stochastic characteristics. It involves the construction and systematic
analysis of a probabilistic model, typically a variant of a Markov chain, against a range
of quantitative properties, for example performance or reliability. Such an exhaustive
analysis can confirm that the probability of some undesirable event is indeed apprpri-
ately small, or it can reveal anomalies or unusual trends in the quantitative behaviour un-
der different scenarios. Probabilistic model checking, and in particular the probabilistic
model checker PRISM [21], has been used to analyse and detect faults in a wide vari-
ety of protocols and systems, drawn from distributed systems, wireless protocols, power
management, nanotechnology and biology.

In this chapter we describe how probabilistic model checking (also known as
stochastic model checking) [19] can be used to study the behaviour of biological sys-
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tems, where we have concentrated on modelling and analysis of molecular networks.
There are two established frameworks for modelling molecular reactions, the continuous
deterministic approach and the discrete stochastic approach [14,32]. In the deterministic
approach, one approximates the number of molecules using a continuous function that
represents the change in molecular concentrations using differential equations (ODEs)
based on mass action kinetics. The ODE approach is suitable for modelling average be-
haviour and assumes large numbers of molecules. The discrete stochastic approach, on
the other hand, models the stochastic evolution of populations of molecules, where reac-
tions are discrete events, governed by stochastic rates typically assumed to be constant
and dependent on the number of molecules, which admits their modelling in terms of
continuous-time Markov chains. This approach is more accurate in cases where the num-
ber of molecules are small, since it can capture the situation when the system behaviour
becomes non-continuous due to, e.g., molecules degrading [22]. Conventionally, discrete
stochastic models have been analysed using stochastic simulation; here, we focus on the
complementary technique of probabilistic model checking [16], which, in contrast to
simulation, is exhaustive and able to discover best- and worst-case scenarios.

We begin this chapter by giving an introduction to probabilistic model checking
based on the discrete-time Markov chain models. We model molecular networks as
continuous-time Markov chains (CTMCs), in which transitions between states are anno-
tated by real-valued rates, interpreted as the parameters of negative exponential distribu-
tions. CTMCs can be additionally annotated by (state or transition) rewards, which can
be non-negative real numbers. Quantitative properties will be written in temporal logic
CSL (Continuous Stochastic Logic), and can express, e.g., “what is the probability that
phosphorylation occurs within 30 minutes?”, “what is the expected time until phosphory-
lation?” and “what is the expected number of phosphorylation reactions before degrada-
tion?”. Probabilistic model checking, as e.g. implemented in PRISM [21], can be invoked
to compute the probability or expectation that the property is satisfied in the model. The
computation can be exact, involving numerical algorithms based on uniformisation (es-
sentially a discretisation of the CTMC), or approximate, based on probability estimation
of the proportion of simulated trajectories that satisfy the property (known as statistical
model checking [33]). We include examples of chemical reaction networks to illustrate
the working of numerical model checking.

We then describe two case studies of molecular networks analysed in PRISM, with
the aim to highlight the potential that these techniques offer to accelerate the scien-
tific discovery and to become a key component of computer-aided design tools for nan-
otechnology. The first study of the FGF signalling pathway [16] was modelled directly
in PRISM’s input language; more information on how to model molecular networks in
PRISM can be found [20]. We demonstrate how model checking against quantitative
properties can be used to perform in silico genetics, and highlight the predictive power
of such models with which we were able to identify trends that were later confirmed in
wetlab experiments [17]. In the second case study, a DNA transducer was modelled in
the DSD (DNA Strand Displacement) tool [26], from which PRISM models were auto-
matically generated for analysis [23]. We show that, analogous to conventional circuit
designs, automated verification techniques can be applied to check for correctness and
identify flaws in the designs [23].

The case studies discussed in this chapter demonstrate the usefulness of probabilistic
model checking techniques in supporting the design, analysis, prediction and debugging
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Figure 1. A DTMC and its transition probability matrix P for an approximate majority chemical reaction
network (CRN) that initially contains 2 molecules of X and 1 molecule of Y .

for molecular-scale processes and devices. DNA computation, in particular, is an exciting
new direction likely to benefit from future developments of this field.

2. Model Checking for Discrete-time Markov Chains

In this chapter, continuous-time Markov chains (CTMCs) will be used to model the be-
haviour of populations of molecules and their interaction via biochemical reactions. As
we will see later, probabilistic model checking for CTMCs follows by discretisation, and
hence we first introduce the model of discrete-time Markov chains (DTMCs) and the
corresponding model checking algorithms. More information about these topics can be
found in tutorial papers [19,20].

2.1. Discrete-time Markov Chains

In a DTMC model, discrete probability distributions are used to denote transitions be-
tween states, quantifying the likelihood of moving to a given target state.

Definition 1 (Discrete-time Markov chain (DTMC)). A discrete-time Markov chain
(DTMC) is a tuple D= (S, s̄,P,L), where is S a finite set of states, s̄∈ S is a distinguished
initial state, P : S×S→ [0,1] is a transition probability matrix such that ∑s′∈S P(s,s′) = 1
for all s ∈ S, and L(s)⊆ AP is labelling with atomic propositions.

The behaviour of a DTMC is represented by the set of its execution paths s0s1s2 . . .
such that s0 = s̄ and P(si,si+1)> 0 for all i≥ 0. A probability space can be defined over
paths of the DTMC [4], where events correspond to measurable sets of paths, for example
those reaching an error state. Probabilistic model checking then involves computing the
probability of a given event, and will be described later. The simpler case of probabilistic
reachability refers to the probability of reaching a given set of target states.
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Example 1. A chemical reaction equation, such as A+B→C, describes a process where
reactant molecules can interact to create product molecules. In this instance, a molecule
A and a molecule B will be consumed to produce a new molecule of C. A chemical
reaction network (CRN) is a set of chemical reaction equations and a count of initial
molecules. For example, consider a CRN that initially contains 2 molecules of species X,
1 molecule of species Y , and has the following four chemical reaction equations:

(a) X+Y →X+B (b) X+Y →B+Y (c) X+B→X+X (d) Y +B→Y +Y

Equations (a)–(d) describe an approximate majority algorithm [2]. Given some initial
quantity of X and Y molecules, the network will converge to one of two consensus states:
only X molecules are present, or only Y molecules are present. The consensus that is
reached favours whichever species is initially present in a larger quantity (the majority);
however, it is possible to reach a consensus which favours the species initially present in
a smaller quantity (the minority). In the approximate majority CRN the transitions are
taken uniformly at random, and we can model it as a DTMC D = (S, s̄,P,L) shown in
Figure 1. The states of the DTMC are pairs of molecule counts, respectively for X and
Y molecules, and hence when there are initially 2 molecules of X and 1 molecule of Y
(i.e., initial state s̄ = s0) the DTMC has 9 states, S = {s0, . . . ,s8}. Note that we do not
explicitly include the count for the auxiliary species B, and instead use labelling with
atomic propositions. The matrix P gives the probability of transitioning from one state to
another. The set of atomic propositions AP is {x,y,a,2b}— x and y denote a consensus
of X and Y molecules, respectively — and function L labels s2 with x and s8 with y. The
state containing 2 Y molecules and 1 X molecule is labelled a and the states containing
two B molecules are labelled 2b.

2.2. Probabilistic Computation Tree Logic (PCTL)

To reason about DTMCs, we use the temporal logic PCTL (Computation Tree Logic)
[15,5], with which one can express probabilistic path-based properties. In common with
the logic CTL, PCTL distinguishes between state (Φ) and path (ψ) formulas and includes
path operators XΦ (next state), Φ1 UΦ2 (until and its bounded variant U≤k), as well as
the usual derived operators FΦ ≡ trueUΦ (eventually) and GΦ ≡ ¬F¬Φ (always). In-
stead of the A and E path quantifiers, PCTL introduces the probabilistic operator P∼p [ · ]

Definition 2 (Probabilistic Computation Tree Logic (PCTL) syntax). The syntax of
PCTL is given by:

Φ ::= true
∣∣ a
∣∣ ¬Φ

∣∣ Φ∧Φ
∣∣ P∼p[ψ ]

ψ ::= XΦ
∣∣ ΦU≤k

Φ
∣∣ ΦUΦ

where a is an atomic proposition, ∼∈{<,≤,≥,>}, p ∈ [0,1] and k ∈ IN.

PCTL formulas are interpreted over the states of a DTMC. Path formulas can occur
only within the scope of the probabilistic operator. The semantics for the PCTL formulas
other than the probabilistic operator is the same as for CTL. We say that a state s ∈ S
satisfies the formula P∼p [ψ ] if the probability of the set of paths from s that satisfy
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ψ meets the probability bound ∼ p. We can also use PCTL in quantitative form, e.g.
P=? [ ψ ], which returns the probability of satisfying ψ .

Example 2. Given the DTMC of Figure 1, we can formulate a number of queries using
PCTL formulas. For example:

• P=? [F y ] - “the probability that a consensus of Y molecules is reached”
• P=? [¬aU x ] - “the probability that a consensus of X molecules is reached with-

out passing through the state containing 2 Y molecules and 1 X molecule (state
labelled a)”

• P=? [F 2b ] - “the probability that a state is reached where B molecules form a
strict majority (states are labelled 2b)”.

2.3. Model Checking for PCTL over DTMCs

The PCTL model checking algorithm [15] takes as inputs a labelled DTMC D =
(S, s̄,P,L) and a PCTL formula Φ. The intuition is that the probability measure of the
set of ψ-paths, which is measurable as shown in [30], is calculated and compared to the
probability bound, yielding true or false respectively. The algorithm is based on that for
CTL [10] and proceeds by bottom-up traversal of the parse tree for Φ, recursively com-
puting the sets Sat(Φ′) = {s ∈ S |s |=Φ′} of all states satisfying each subformula Φ′. The
algorithm decides if a given state s satisfies Φ by checking if s ∈ Sat(Φ).

For the non-probabilistic operators, the algorithm works as for CTL and computes:
Sat(true) := S, Sat(a) := {s ∈ S | a ∈ L(s), Sat(¬Φ) := S\Sat(Φ), and Sat(Φ1∧Φ2) :=
Sat(Φ1)∩Sat(Φ2).

For the probabilistic operator P∼p [ψ ], first the probability measure of the set of
paths satisfying ψ for all states is computed, and then compared it to the probability
bound ∼ p before deciding which states to include in the Sat(P./p[ψ]) set. The probabil-
ities are calculated as follows. For the next state formula XΦ, representing Sat(Φ) as a
column vector Φ : S−→{0,1} given by Φ(s) = 1 if s |= Φ and 0 otherwise, we compute
the probabilities for all states by a single matrix-by-vector multiplication, P ·Φ. For the
path formula Φ1UΦ2, the probabilities are obtained as the unique solution of the linear
equation system in variables {xs | s ∈ S}:

xs =


0 if s ∈ Sno

1 if s ∈ Syes

∑s′∈S P(s,s′) · xs′ if s ∈ S?

where Sno := Sat(P≤0[Φ1UΦ2]) and Syes := Sat(P≥1[Φ1UΦ2]) denote the sets of all
states that satisfy Φ1UΦ2 with probability exactly 0 and 1, respectively, and S? =
S \ (Sno∪Syes). The solution of the resulting linear equation system in |S?| variables can
be obtained by any direct method (e.g. Gaussian elimination) or iterative method (e.g.
Jacobi, Gauss-Seidel). The bounded until operator Φ1U≤kΦ2 is similar, and computed
using recursive equations.

It is worth mentioning that probability 1 and 0 states (so called precomputation)
can be implemented by simply using graph traversal, which helps avoid the problem of
round-off errors that are typical for numerical computation. For Sno, we first compute the
set of states from which we can reach, with positive probability, a Φ2-state passing only
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Figure 2. Determining the probabilities Prob(S, ¬aUx) for the DTMC from Figure 1. The DTMC has been
labelled with the Syes and Sno sets of states from the precomputation. The linear equation system on the right
is used to determine the probabilities for the remaining states (i.e., s0 and s3).

through states satisfying Φ1, and then subtract this set from S. For Syes, we reuse Sno and
compute the set of states from which we can reach, with positive probability, a Sno-state
passing only through Φ1, and then subtract this from S.

Example 3. From the previous example, consider the query P=? [¬aUx ]. How can this
be computed? Figure 2 shows in detail how to calculate this until query for the DTMC
of Figure 1. The left side of Figure 2 demonstrates the results of the precomputation.
The group of states labelled Sno are those from which we cannot reach, with positive
probability, a x-state passing only through states that do not satisfy a. With respect to the
PCTL formula, the probability for each state in Sno is 0. The group of states labelled Syes

correspond to those that, with probability 1, can reach a state labelled x by passing only
through states not labelled with a. After the precomputation, the probabilities for only
two states remain unknown (s0 and s3). This results in a system of two linear equations
with two unknowns, that could be easily solved using a number of standard methods.
From the initial state s0, we find that the probability of eventually reaching the state
labelled x, without passing through the state labelled a, is 5

7 .

2.4. Extending PCTL and DTMCs with Rewards

In order to reason about a broad range of quantitative properties, we augment probabilis-
tic models with reward (or cost) information. For a DTMC D, a reward structure (ρ, ι)
consists of a vector of state rewards ρ : S→ IR≥0 incurred per time unit, together with a
matrix ι : S×S→ IR≥0 of transition rewards, incurred each time a transition is taken. For
a given a reward structure, we can perform quantitative analysis by computing expec-
tations of (instantaneous or cumulative) rewards with respect to the previously defined
probability space on paths, for example expected energy usage until termination.

To capture expected rewards, we extend the logic PCTL with the reward operator
R=? [ · ] [19] as follows:

R∼r[C
≤k]
∣∣ R∼r[F Φ]
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where ∼∈{<,≤,≥,>}, r ∈ IR≥0, k ∈ IN and Φ is a PCTL state formula.
Intuitively, a state s satisfies R∼r[C

≤k] (cumulative reward) if, from state s, the ex-
pected reward cumulated over k time-steps satisfies ./r; and R./r[F Φ] (reachability re-
ward) is true if, from state s, the expected reward cumulated before a state satisfying
Φ is reached meets ./r. Formally, the semantics of the reward operator is defined us-
ing the expectation of random variables XC≤k andXF φ , which are defined, for any path
ω = s0s1s2 . . . , as follows:

XC≤k(ω) :=
{

0 if k = 0
∑

k−1
i=0 ρ(si)+ ι(si,si+1) otherwise

XF Φ(ω) :=


0 if s0 |=Φ

∞ if ∀i ∈ IN.si 6|=Φ

∑
min{ j|s j |=Φ}−1
i=0 ρ(si)+ ι(si,si+1) otherwise.

Model checking of the reward operator is similar to computing probabilities for
the probabilistic operator, and follows through the solution of recursive equations (for
R∼r[C

≤k]) or a system of linear equations (for R∼r[F Φ]). We can also use the reward
operator as a quantitative query, namely R=?[·], and return the expectation instead. The
reward operator can also be used in conjunction with the name of the reward structure,
e.g. R{“time”}=?[·] denotes the expected reward for the reward structure called “time”.
For more details on this, and other aspects of probabilistic model checking for DTMCs,
see e.g. [19,4].

Example 4. The previous examples demonstrate the usefulness of PCTL to formulate
queries to determine the probability of reaching certain states, or for satisfying certain
path formulas. The use of rewards allows us to express the following queries:

• R=?[F (x∨ y)] - “the expected number of reactions before reaching a consensus
state”, assuming state rewards of 0 and transition rewards of 1

• R=?[F y] - “the expected number of times the state labelled a is reached before a
consensus of Y molecules”, where the transition rewards are 0 and state reward
is 1 for each state labelled with a

• R{“eq”}=?[C
≤100] - “the expected number of times the system enters a state with

equal numbers of X and Y molecules in the first 100 steps”, where “eq” is the
reward structure that assigns transition rewards of 0 and state rewards of 1 to
states which have equal numbers of X and Y molecules.

3. Model Checking for Continuous-time Markov Chains

In DTMCs, the progress of time is modelled by discrete time steps, and the model is
appropriate for systems which progress in lock-step synchrony. For many applications, it
is preferable to use a continuous model of time, where the delays between transitions can
be arbitrary real values. The classical model of continuous-time Markov chains (CTMCs)
extends DTMCs with real-time by modelling transition delays with exponential distribu-
tions.
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3.1. Continuous-time Markov Chains

We define continuous-time Markov chains as follows.

Definition 3 (Continuous-time Markov chain (CTMC)). A continuous-time Markov
chain (CTMC) is C= (S, s̄,P,E,AP,L) where:

• (S, s̄,P,AP,L) is a DTMC (called the embedded DTMC);
• E : S→ IR≥0 is the exit rate.

In a CTMC C, the residence time of a state s∈ S is a random variable governed by an
exponential distribution with rate parameter E(s). The rate of an exponential distribution
corresponds to the number of times a given event occurs in a unit of time. Therefore,
the probability to exit state s in t time units is given by

∫ t
0 E(s) · e−E(s)τ dτ . To take the

transition from s to another state s′ in t time units, the probability equals P(s,s′) ·∫ t
0 E(s) ·

e−E(s)τ dτ , where P is the embedded DTMC of the CTMC C.
Alternatively, a CTMC can be defined by specifying the rates matrix R : S× S→

IR≥0, where R(s,s′) is the rate of transitioning from state s to s′. A transition can only
occur between states s and s′ if R(s,s′)>0, and the probability of this transition being
triggered within t time-units is 1− e−R(s,s′)·t . If there is more than one state s′ for which
R(s,s′)>0, the first transition to be triggered determines the next state of the CTMC.
The exit rate E(s) is then equal to ∑s′ 6=s R(s,s′) and the embedded DTMC is obtained as
follows: P(s,s′) = R(s,s′)/E(s) if E(s) 6= 0, 1 if E(s) = 0 and s = s′, and 0 otherwise.

Intuitively, the CTMC executes as follows: in each state s, it stays in this state for
time t, drawn from the exponential distribution with parameter E(s), and then moves
to state s′ with probability P(s,s′). A timed path (or simply path) of C is a finite or
infinite sequence s0t0s1t1s2 · · · tn−1sn . . ., where ti ∈ IR>0 for each i ≥ 0. As for DTMCs,
a probability space over the paths through a CTMC can be defined [3], where events
correspond to certain sets of paths.

3.2. Continuous Stochastic Logic (CSL)

To specify quantitative properties of CTMCs, the logic CSL [3] has been proposed, which
is syntactically similar to PCTL, except that it replaces the step-bounded path operators
with the continuous time-bounded variants. For example, in PCTL we can query the
probability of reaching a Φ-state in 10 steps (P=? [F≤10 Φ ]), whereas in CSL it is possible
query the probability of reaching a Φ-state in 10.5 units of time (P=? [F[0,10.5] Φ ]).

Definition 4. The syntax of CSL is given by:

Φ ::= true
∣∣ a
∣∣ ¬Φ

∣∣ Φ∧Φ
∣∣ Φ∨Φ

∣∣ P∼p[ψ ]
∣∣ S∼p[Φ ]

ψ ::= XΦ
∣∣ ΦU[t,t ′]

Φ
∣∣ ΦUΦ

where a is an atomic proposition, ∼∈{<,≤,≥,>}, p ∈ [0,1] and t, t ′ ∈ IR≥0.

The path formula Φ1 U[t,t ′] Φ2, where t, t ′ ∈ IR≥0 is true for a path if Φ1 is satisfied
at all time points until Φ2 becomes true at a time point belonging to the interval [t, t ′].
The usual unbounded until Φ1 UΦ2 corresponds to the interval [0,∞). As for PCTL, we
can define the derived variants, e.g. F Φ (eventually). The probabilistic operator formula
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Figure 3. (Left) A CTMC C, with reaction rates, that formalises the approximate majority CRN with 2 initial
molecules of X and 1 initial molecule of Y . The DTMC of Figure 1 is the embedded DTMC of C. (Right) The
uniformised DTMC of C for q = 4
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Figure 4. The infinitesimal generator matrix (left) and the uniformised DTMC matrix (right) for CTMC C of
Figure 3.

P∼p[ψ ] is true in state s if the probability of paths from s that satisfy ψ meets the prob-
ability bound ∼ p. The formula S∼p[Φ ] denotes steady-state, and is true in state s if the
long-run probability of residing in state satisfying Φ meets the probability bound ∼ p.

3.3. Model Checking for CSL over CTMCs

CSL model checking for the probabilistic operator reduces to transient probability cal-
culation, defined as the probability of being in a certain state at time instant t, and typ-
ically proceeds through discretisation via uniformisation (a numerical transformation
which optimises and numerically stabilises the computation of the transient probabili-
ties). More specifically, for a CTMC C = (S, s̄,P,E,AP,L) with the rates matrix R we
define its infinitesimal generator matrix Q : S× S→ IR by Q(s,s′) = R(s,s′) if s = s′

and −∑s′ 6=s R(s,s′) = E(s) otherwise. The uniformised DTMC U : S×S→ [0,1] is then
computed by U = I−Q/q, where I is the identity matrix and q ≥ max{E(s) | s ∈ S}.
Intuitively, the execution of the CTMC is considered in terms of discrete jumps of the
uniformised DTMC, each step corresponding to one ‘epoch’, where the value q is the
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rate of the ‘epoch’. The transient probability at time t can be approximated via an infinite
summation of Poisson-distributed jumps corresponding to the epoch. Note that the uni-
formised DTMC is different from the embedded DTMC, in that it can contain additional
self-loops on states where the residence time in the state is longer than 1/q.

Example 5. The infinitesimal generator matrix for CTMC C of Figure 3 is shown in
Figure 4. The uniformised DTMC is computed by using the maximum waiting rate, q= 4

3 ,
determined from matrix Q.

Model checking for CSL proceeds as for PCTL, by bottom-up traversal of the parse
tree of the formula. For next state and unbounded until, computing the probability can
can be done directly on the embedded DTMC P. Model checking for the probabilistic
operator P[Φl U[t,t ′] Φ2] reduces to the computation of transient probability, which is
computed numerically on the uniformised DTMC U. Model checking for the steady-state
operator involves solving the linear equation system π ·Q = 0 subject to the constraint
∑s′∈S π(s′) = 1 for each bottom strongly connected component and combining the values
probabilistic reachability for the bottom strongly connected components, and is usually
computed on the embedded DTMC P.

Reward structures and operators R∼r[C
≤t ] (cumulative reward up to time t) and

R./r[FΦ] (reachability reward) can also be added, similarly to the case of DTMCs. The
intuition that state rewards are incurred in proportion to residence time, and this fact must
be captured in the definition of the corresponding random variable. The meaning of a
reward formula is defined in terms of the expectation of the corresponding random vari-
able. The computation proceeds, as for the probabilistic operator, through uniformisation
and recursive equations; for more information, see [19].

Example 6. In a stochastic chemical reaction network, the propensity of a particular
reaction follows an exponential distribution with a well defined rate [11]. In the ap-
proximate majority CRN, each reaction is bimolecular as there are always two reactant
molecules. The propensity of a bimolecular reaction α , of the form A+B→ . . ., is equal
to kα · #A·#B

v where kα is reaction α’s rate constant, #A is the number of A molecules (sim-
ilarly for B) and v is the size of the reaction volume. If we assume a uniform rate constant
of 1 for all reactions and a reaction volume of size 3, the approximate majority CRN
with 2 initial copies of molecule X and 1 initial copy of molecule Y can be formulated
by CTMC C depicted in Figure 3 (left). The uniformised DTMC of C is also depicted in
Figure 3 (right). The DTMC we studied in Example 1 is the embedded DTMC of C. As we
have learned in this section, we must begin with a CTMC to answer queries concerning
time. For example, while the embedded DTMC is sufficient to determine the number of
expected reaction steps until a consensus is reached, we require the uniformised DTMC
to determine the expected elapsed time until a consensus is reached.

We complete this section by demonstrating how probabilistic model checking can
be applied to analyse the behaviour of molecular networks modelled as CTMCs against
temporal properties expressed in the logic CSL.

Example 7. We now analyse the approximate majority system modelled by the CTMC
shown in Figure 3 by probabilistic model checking. First, we show how to compute tran-
sient properties. Note that each curve in Figure 5 shows the probability that the num-
ber of X molecules in the system equals some particular quantity. The red curve is the
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Figure 5. An example of computing transient properties of CTMC C. Shown is the probability, over time, that
the X molecule is present in one of four possible quantities.

only one to have positive probability at time 0, as the system initially begins with 2 X
molecules (and 1 Y molecule). Similarly, only the teal and blue curves converge towards
a positive probability as the system will eventually form a consensus of 3 X molecules
(teal curve) or a consensus of 3 Y molecules (blue curve). The probability for the system
to have exactly i molecules of X at time T can be formulated as the query P=?[F[T,T ]ai ],
where atomic proposition ai is defined to be true for a state if and only if the number of
X molecules equals i. Solving the query for different instances of time gives insight into
the evolution of the system as it reaches a consensus.

4. Biological Case Studies

In the remainder of this chapter, we describe two cases studies where probabilistic model
checking as described in previous sections has been used, with great effect, to study
biological systems. We begin with a brief summary of an in silico study of a real-
world molecular signalling pathway performed in collaboration with biologists [16]. We
use this case study to introduce the probabilistic model checking tool PRISM and also
demonstrate how it can be used to help answer biological hypotheses. Many details
for this case study have been omitted, but the interested reader can find them, together
with additional model checking techniques relevant to molecular networks, in the origi-
nal publication [16]. We then describe, in greater detail, the application of probabilistic
model checking in the context of DNA computing. The systems we study use strands of
DNA to perform computation, including the approximate majority algorithm modelled
earlier in the chapter. For this second case study, we demonstrate how PRISM can be
used to verify a number of PCTL and CSL formulas (with and without rewards). For ad-
ditional details of DNA strand displacement systems, or results omitted in this summary,
the reader is referred to the original publication [23].

We also note that probabilistic model checking, and the PRISM tool in particular,
has been used for a number of biologically motivated studies, including modelling of the
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cell cycle switch [9], and verification of nanoscale DNA ‘robots’ that walk autonomously
along a network of tracks [12].

4.1. Model Checking Molecular Networks

In this section, we show how one can use the probabilistic model checker PRISM [1,21]
to model and analyse molecular networks. PRISM is a symbolic model checker which,
amongst other model types, supports both discrete- and continuous-time Markov chains
introduced earlier in this chapter, together with the associated logics PCTL and CSL.
PRISM supports both numerical model checking for PCTL and CSL formulas [18], as
well as the sampling-based, statistical model checking (confidence interval and hypothe-
sis testing methods) [33]. It is a free, open source application which runs on all major op-
erating systems, and comes with a GUI that supports a range of functionalities, including
graph plotting and import/export to other tools, including via SBML (Systems Biology
Markup Language).

Models are supplied to PRISM written in a simple textual language, which is a prob-
abilistic variant of Reactive Modules due to Alur and Henzinger. A model is composed
(by synchronising parallel composition) from modules, where each module represents
an entity whose state is determined by a number of state variables which it controls,
and which can transition to other states depending on the values of variables belonging
to other modules or its own. A module therefore can naturally represent the behaviour
of a molecule (or a population of molecules), where the transitions model biochemical
reactions such as binding, releasing or degradation.

We will explain the modelling of molecular networks in PRISM using a simplified
FGF (Fibroblast Growth Factor) case study [16]. FGF are a family of proteins which play
an important role in cell signalling, and have been linked to e.g. skeletal development
and wound healing. The mechanisms of FGF signalling are not well understood, and
several hypotheses exist, particularly regarding the role of phosphorylation and degrada-
tion. Since certain molecules in the pathway occur in small numbers in the cell, the dis-
crete stochastic modelling framework, and in particular continuous-time Markov chain
models, are particularly appropriate. In [16], we studied a number of detailed hypotheses
using probabilistic model checking in PRISM.

The simplified set of reactions based on the role of FGF in receptor biosynthesis is
given below. An FGF molecule can bind to FGF receptor (FGFR) to form a compound
molecule FGFR:FGF, via reversible reaction (1), and the compound can unbind via reac-
tion (2). Whilst bound, FGFR can become phosphorylated, resulting in FGFRP, reaction
(3), and FGFRP can dephosphorylate, via the reverse reaction (4). Finally, the phospho-
rylated FGFR (FGFRP) can relocate, but only when phosphorylated, via reaction (5). The
reactions are annotated with kinetic rates k1, · · · ,k5 in s−1 and (for bimolecular reactions)
also molar concentrations, i.e. the units are M−1s−1.

FGF binds/releases FGFR:

FGF +FGFR→ FGFR : FGF with rate k1 = 5000M−1s−1 (1)

FGF +FGFR← FGFR : FGF with rate k2 = 0.002s−1 (2)
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Figure 6. The resulting CTMC that models reaction equations (1)–(5).

Phosphorylation of FGFR (whilst FGFR:FGF):

FGFR→ FGFRP with rate k3 = 0.1s−1 (3)

Dephosphorylation of FGFR:

FGFRP→ FGFR with rate k4 = 0.01s−1 (4)

Relocation of FGFR (whilst FGFRP):

FGFR→ relocFGFR with rate k5 = 1/60min−1 (5)

If we assume a spatially uniform mixture in a fixed volume at constant pressure
and temperature, the above biochemical reactions can be shown to induce a (time-
homogeneous) continuous-time Markov chain, since the rates are only dependent on
the states. The resulting CTMC, where we model one molecule of each species only, is
shown in Figure 6. The stochastic rates (ki) are obtained from the kinetic rates (ki) by
dividing by volume multiplied by the Avogadro number [14,20].

In the modelling language of PRISM, the reaction network is shown in Figure 7. We
represent the network by two modules, molecule FGF and FGFR, which encode their
states (e.g. free, bound, etc) using an integer variable. The reactions between the species
are modelled by synchronisation via the actions bind and rel. Guarded commands,
e.g. [bind] fgf=0 -> (fgf’=1); state the conditions (e.g. fgf = 0) under which an
update (which assigns a new value to the variable), e.g. fgf’ = 1 can be executed, while
synchronising on action bind. The auxiliary module RATES takes care of the handling
of the rates via synchronisation. Note that this model represents a single molecule of
FGF and FGFR, but it is also possible to devise models that consist of populations of
molecules. More detail about modelling approaches can be found in [20].

PRISM models of molecular networks can now be subjected to detailed quantitative
analysis, but how should we use the models to aid the process of scientific discovery?
The key idea is to represent each hypothesis in terms of a network of reactions, model
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1 ctmc
2

3 c o n s t double k1 = 5000 ; / / r a t e o f b i n d i n g
4 c o n s t double k2 = 0 . 0 0 2 ; / / r a t e o f r e l e a s e
5 c o n s t double k3 = 0 . 1 ; / / r a t e o f p h o s p h o r y l a t i o n
6 c o n s t double k4 = 0 . 0 1 ; / / r a t e o f d e p h o s p h o r y l a t i o n
7 c o n s t double k5 = 1 / ( 6 0 ∗ 6 0 ) ; / / r a t e o f r e l o c a t i o n
8

9 module FGF
10

11 f g f : [ 0 . . 2 ] i n i t 0 ; / / 0 − f r e e , 1 − bound , 2 − removed from sys tem
12 [ b ind ] f g f =0 −> ( f g f ’ = 1 ) ; / / FGF and FGFR bind
13 [ r e l ] f g f =1 −> ( f g f ’ = 0 ) ; / / FGF and FGFR unbind
14 [ r e l o c ] f g f =1 −> ( f g f ’ = 2 ) ; / / FGF d i s a p p e a r s from t h e sys tem s i n c e
15 / / t h e t ime i t was bound and FGFR r e l o c a t e s
16 endmodule
17

18 module FGFR
19

20 f g f r : [ 0 . . 1 ] i n i t 0 ; / / 0 − f r e e , 1 − bound
21 phos : [ 0 . . 1 ] i n i t 0 ; / / 0 − u n p h o s p h o r y l a t e d , 1 − p h o s p h o r y l a t e d
22 r e l o c : [ 0 . . 1 ] i n i t 0 ; / / 0 − n o t r e l o c a t e d , 1 − r e l o c a t e d
23

24 [ bnd ] r e l o c =0 & f g f r =0 −> k1 : ( f g f r ’ = 1 ) ; / / FGF and FGFR bind
25 [ r e l ] r e l o c =0 & f g f r =1 −> k2 : ( f g f r ’ = 0 ) ; / / FGF & FGFR r e l e a s e
26 [ ] r e l o c =0 & f g f r =1 & phos =0 −> k3 : ( phos ’ = 1 ) ; / / FGFR p h o s p h o r y l a t e s
27 [ ] r e l o c =0 & phos =1 −> k4 : ( phos ’ = 0 ) ; / / FGFR d e p h o s p h o r y l a t e s
28 [ ] r e l o c =0 & phos =1 −> k5 : ( r e l o c ’ = 1 ) ; / / FGFR r e l o c a t e s
29

30 endmodule
31

32 module RATES
33

34 [ b ind ] t rue −> k1 : t rue ; / / FGF and FGFR bind
35 [ r e l ] t rue −> k2 : t rue ; / / FGF and FGFR unbind
36 [ r e l o c ] t rue −> k5 : t rue ; / / FGFR r e l o c a t e s
37

38 endmodule

Figure 7. PRISM model for the CTMC of Figure 6.

the reactions in PRISM or input them into PRISM via SBML, and perform a series of in
silico experiments on the resulting model for a range of CSL properties. The outcome of
probabilistic model checking can be collected in quantitative plots of probability and/or
expected cost, shown over the time evolution of the model or for a range of model or
formula parameters. The trends in the quantitative plots can be used to either confirm
known facts, or help identify unusual behaviour that can guide wetlab experiments. This
type of analysis can also include in silico genetic knock-out experiments, where a species
is removed in order to study its influence on the network behaviour. Indeed, in the FGF
case study [16] we successfully identified predictions that were later confirmed in wetlab
experiments [17].
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Fig. 7. Transient properties of FGFR for the model of Figure 4

3.4 Exercises

1. Based on the model in Figure 4 and the reward structures in Figure 6, write
CSL specifications for the following properties:

(a) ‘if FGFR is currently phosphorylated, then the probability that it re-
mains phosphorylated until relocation occurs is at most 0.65’;

(b) ‘the probability that FGFR is phosphorylated at time instant t’;

(c) ‘the probability that FGFR is phosphorylated for the first time within
the time interval [t1, t2]’;

(d) ‘the expected time that FGFR is phosphorylated before it relocates’;

(e) ‘the expected number of times that FGF and FGFR bind before FGFR
relocates’.

2. Construct appropriate reward structures for properties of the model in Fig-
ure 4 relating to the expected time that FGF and FGFR are bound and the
expected number of bindings and unbindings. Write CSL specifications for
calculating the expected time that FGF and FGFR spend bound during the
first t seconds, the expected number of bindings and unbindings in this time,
and the expected time spent bound before relocation occurs.

3. Extend the model of Figure 4 with a variable to count the number of phos-
phorylations and write CSL specifications for the properties:

(a) ‘the probability that at least l phosphorylations occur within the first t
seconds’;

(b) ‘the probability that at most l phosphorylations occur before relocation’.

Hint: Since the variable you add to the model must be bounded, make sure
that the bound is larger than required for the property.

4. Based on the model of Figure 4, write a new version in which each of the
six possible species (FGF, FGFR, FGF:FGFR, FGF:FGFRP, FGFRP, re-
locFGFR) is represented by a separate PRISM module. Check that the states
and transitions in the new model match those of the original one and that
numerical results such as those in Figure 7 agree.
Hint: In this model the relevant modules will need to synchronise when phos-
phorylation and dephosphorylation occurs.

Figure 8. Shown are the probabilities, over three time scales, for the FGFR system to be in one of three states.

For the simplified FGF network, and assuming appropriate reward structures, the
following are examples of properties that can be analysed:

• (phos = 1) =⇒ P>0.1[F[0,t] (reloc = 1)] - “if FGFR is currently phosphorylated,
then the probability of it being relocated within the next t seconds is greater than
0.1”

• P=?[F[t,t] (fgf = 1)] - “the probability that FGF is bound to FGFR at time instant
t”

• R{“time”}=?[F (reloc = 1)] - “the expected time taken before FGFR relocates”,
where “time” is a reward structure that assigns state rewards of 1 and transition
rewards of 0

• (reloc = 0) =⇒ R{“bind”}≥2.4[C
≤t ] - “if FGFR is not relocated, the expected

number of bindings during the next t seconds is at least 2.4”, where “bind” is the
reward structure which assigns the transition rewards of 1 iff the reaction is bind
and state reward 0 for all states.

To illustrate the quantitative analysis and what can be learnt, in Figure 8 we show
results obtained with PRISM, over different timescales, for the probabilities that, at time
instant t, FGFR is: (i) bound to FGF; (ii) phosphorylated; and (iii) relocated. For example,
Figure 8(a) demonstrates that, initially, FGF and FGFR bind very quickly and remain
bound, but that, as time progresses (Figure 8(b)), their chance of binding diminishes and
FGFR becomes fully relocated (Figure 8(c)).

Summarising, we have shown here how to model a hypothesis about molecular in-
teractions using PRISM, and the type of quantitative analysis that can be obtained by
exploiting CSL model checking. For simplicity, we have worked with a model which
contains one molecule each of FGF and FGFR, but in the next section we will show how
populations of molecules can also be modelled. We note, however, that scalability can
be an issue for large population counts and methods to tackle state-space explosion are
sought for. Techniques such as symmetry reduction, for example, can assist in reducing
the size of the model so that analysis with PRISM becomes feasible [16].

4.2. Model Checking DNA Strand Displacement Systems

The examples up until now have focused on the approximate majority chemical reaction
network. But how can these reactions be implemented in practice? Recent work in DNA
computing provides an answer. Soloveichik et al. [29] have shown that any chemical re-
action network can be realized using so called DNA strand displacement systems (DSD)
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Figure 9. Top panel: A DNA duplex with an unbound toehold is formed by the base pairing of comple-
mentary long domains of two strands of DNA. In domain level diagrams (top right), the sequences of strands
are abstracted into domains indicating which are complementary to others. Bottom panel: Toehold-mediated
DNA strand displacement (DSD) is initiated when the green invading strand forms base pairs with an unbound
toehold on the blue template strand (events a–c). The invading strand competes for base pairs with the red
incumbent strand (event d), via a random walk process, until the incumbent is displaced and disassociates from
the template strand (event e).

[34,36,35]. In a DSD, molecules of a particular species are represented by a strand of
DNA. Chemical reactions can be simulated by a series of strand displacement events,
where a free signal strand can displace another strand that shares a common domain, or
sequence. In this section, we give an overview of DSD systems, how strand displacement
works, and then highlight key examples from a recent study that explored the use of
probabilistic model checking techniques in DSDs [23]. The study used the DNA strand
displacement programming language (DSD) [27,24] developed to facilitate the design,
simulation and analysis of DNA strand displacement devices. DSD has been integrated
with PRISM, via SBML, to enable probabilistic verification, as an alternative to stochas-
tic simulation.

4.2.1. DNA strand displacement systems (DSD)

Strands of DNA are an oriented sequence of four bases: A, C, G and T. We say strands
are oriented because there is a 5’ and 3’ end. Two strands in opposite orientation can hy-
bridize to one another by creating hydrogen bonds between Watson-Crick base pairs: an
A base can bond with a T base, and a C base can bond with a G base. Consider the red and
blue strands of DNA in the top of Figure 9. The sequence of the red strand is abstracted
into a domain labeled 1. This domain is complementary and in opposite orientation to a
domain on the blue strand labeled 1∗. Because these domains are complementary, the red
and blue strand can hybridize to form a duplex region. The stability of binding between
two strands is dependent on the temperature of the system. In this simplified example, 1
and 1∗ are long domains, meaning that they form enough bonds such that they will not
spontaneously disassociate. Note that the blue strand still has a short, unbound domain
(2∗) called a toehold. Now consider what happens when the green strand is introduced
to the system (see Figure 9 bottom). The green strand is fully complementary to the blue
strand. Roughly speaking, in a well-mixed solution of DNA, the system becomes most
stable when the number of base pairs is maximized. Because of this, the complementary
toehold domain of the green strand, labeled 2, will eventually hybridize to the free toe-
hold on the blue strand, labeled 2∗. A toehold domain is too short to ensure a stable bind-
ing between strands. Therefore, the green strand may spontaneously disassociate and as-
sociate with the blue (events a–c in Figure 9). Eventually, because it is a complement
of the blue strand, the green strand will compete for base pairs with the red strand in a
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(a) (b)

Figure 10. Two of the possible states of a DNA strand displacement system that implements the transducer
reaction X → Y . A universal toehold domain, t, is used throughout the implementation. The signal X is repre-
sented by a strand consisting of a toehold t followed by a long domain x (similarly for signal Y ). The quantity
for each strand type is shown in parentheses. (a) The initial state of the transducer consisting of the strand
representing signal X and the remaining strands and complexes that comprise the transducer gate. (b) The final
state of the transducer gate which consists of the strand representing signal Y and unreactive waste produced
by the transducer gate. Note that this final state is a deadlock state as there are no free toeholds to permit an
additional strand displacement.

random-walk like process called branch migration (event e in Figure 9). When the green
strand has formed all possible complementary base pairs to the blue strand, the red strand
will disassociate. This process is referred to as toehold-mediated strand displacement
and the red strand is said to have been displaced. In a DSD, we refer to the blue strand as
the template, the red strand as the incumbent, and the green strand as the invader. Note
that this displacement is considered irreversible as there is no free toehold for the red
strand to bind and initiate branch migration.

Sets of strands can be designed to perform useful computation. For example, we
could consider the strands of Figure 9 to behave as a primitive logic gate: if the green
strand is present (the input), then it can react with the red and blue complex (the gate)
to release the red strand (the output). A number of gate designs for DSD systems have
been proposed and demonstrated to work in experiments. In the remainder of this case
study, we will focus on variations of gates proposed by Cardelli [7,8]. In the examples we
study, we will assume a universal toehold domain, meaning that all toehold domains use
the same sequence. Similarly, the complementary toehold domains of template strands
share a common sequence.

4.2.2. Verifying the correctness of DSD transducer gates

How can we implement the chemical equation X →Y with a DSD system? One solution
is depicted in Figure 10. In this scheme, molecules such as X are represented by a signal
strand consisting of one toehold and one long domain that identifies the species of the
molecule it represents. The quantity of X present is equal to the number of reactive signal
strands that represent X . A strand is said to be reactive if it contains a toehold and is
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Figure 11. A graph showing the inputs and outputs (depicted in large boxes) of reactions (depicted as small
boxes) between the initial and final states of the transducer gate in Figure 10. The species in the initial state are
shown in bold.

not bound to any other strand. Similarly, a gate is reactive if it contains a free toehold.
Figure 10a shows the initial state of a system consisting of a single reactive copy of signal
X ; the remaining strands and complexes form a transducer gate capable of consuming
a signal strand X and producing a signal strand Y . The final state of this system (see
Figure 10b), consisting of a single copy of Y , is reached after a series of displacement
reactions. Note that, by design, there are no free toeholds of the transducer gate in the
final state. The gate is said to be unreactive — a desirable property once it has completed
its goal.

The state-space for DSD systems can be very large. For example, a compressed rep-
resentation of the simple system described above —depicting input and outputs of dis-
placement reactions— is shown in Figure 11. Manual verification of this simple system
is possible, but much more complicated systems require the use of automated verifica-
tion. We now illustrate the use of non-probabilistic model checking to identify a design
error in a more complicated transducer example.

Consider a system that begins with a single copy of molecule X0 and should end
with a single copy of X2 by using two chemical reactions: X0 → X1, X1 → X2. This
system could be implemented by two transducer gates in series (one for each reaction).
However, as previously pointed out in the literature [8], this has the potential for cross-
talk between the two gates. Cross-talk could lead to an undesirable state of the system.
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(a) (b)

Figure 12. Two final states are shown for a system that should implement two transducer gates in series:
X0 → X1, X1 → X2. (a) The correct final state which has produced X2 with the intended sequence of dis-
placement reactions and does not have free toehold domains. (b) An incorrect final state which has produced
X2 by an unintended sequence of displacement reactions and does have free toehold domains.

Two unique deadlock states (i.e., no additional reactions are possible) are shown for this
system in Figure 12. Figure 12a shows the intended final state of the system: the X2 signal
strand has been produced and all gates are unreactive. In contrast, Figure 12b shows an
undesirable deadlock state: the X2 signal has been produced by an unintended sequence
of reactions resulting in gates that are still reactive.

PRISM can be used to automatically identify this error and produce a trace of reac-
tions from the initial state to the unintended deadlock state. First, we must identity the
intended final state of the system where the correct output is produced and no gates are
reactive. This is formalised in PRISM with the following code:

label "all_done" = strands_reactive=output &

output=N & gates_reactive=0

The code uses two formulas, strands reactive and gates reactive, that re-
spectively count the number of strands and gates that are reactive in a state. In this ex-
ample, the variable output is the number of reactive signal strands that represent X2
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(a)

(b)

(c)

(d)

Figure 13. A series of reactions of two, in series, transducer gates (X0 → X1, X1 → X2) that leads to the
incorrect final state depicted in Figure 12b.

and N is the number of parallel copies of the system in the same solution. Therefore,
the intended behaviour of the system is to produce N copies of the signal strand repre-
senting X2, before reaching a deadlock state that contains no reactive gates and no reac-
tive strands other than those representing X2. This can be formalized using the following
(non-probabilistic) CTL properties which can be verified by PRISM:

A [ G "deadlock" => "all_done" ]

E [ F "all_done" ]

The first property ensures that all deadlock states, reachable from the initial state,
are correct, i.e., all output strands are produced and no other gates or strands are reactive.
The second property ensures that a correct final state is reachable from the initial state.
Using PRISM on this example we find the second property is verified to be true, but the
first is found to be false and results in a counterexample in the form of a reaction trace
leading from the initial state to the incorrect deadlock state, given in Figure 13. The first
two reactions proceed, as intended, on the same gate and produce a strand with a long
domain labeled a (Figures 13a and 13b). This strand should next react with the second
complex of the gate that produces the X1 signal. Instead, it is possible for this strand
to react immediately with the gate that produces the X2 signal (Figure 13c), permitting
another strand to displace the X2 signal (Figure 13d), without the X1 signal ever having
being produced. The trace produced by PRISM makes it clear why this unintended state
is reached: both the X0 → X1 and X1 → X2 transducer use an auxiliary strand with the
same long domain (labeled a). By instead using unique domains for auxiliary strands of
different gates, this bug is removed and the gates act as intended.

4.2.3. Verifying the reliability and performance of DSD transducer gates

In addition to correctness properties, PRISM can be used to examine quantitative prop-
erties of DSD systems. Consider again the faulty pair of in series transducers (i.e., those
implementing X0 → X1, X1 → X2). The following CSL formulas (in PRISM syntax)
can be used to determine the probability, at a specific time T , that the system will have
(a) terminated, (b) terminated correctly, and (c) terminated incorrectly:
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T Success Error Terminate
0 0.0 0 0 0

1000 0.1 6.04E-08 0.004215004 0.004215065
2000 0.2 3.25E-05 0.042001326 0.042033834
3000 0.3 7.11E-04 0.116206436 0.116917803
4000 0.4 0.004577197 0.201506636 0.206083833
5000 0.5 0.015761274 0.278992548 0.294753822
6000 0.6 0.037536451 0.341388454 0.378924905
7000 0.7 0.070507885 0.388366422 0.458874308
8000 0.8 0.112634127 0.422373965 0.535008092
9000 0.9 0.160352574 0.446420879 0.606773453
10000 1.0 0.209822876 0.463185418 0.673008294
11000 1.1 0.257777666 0.474773408 0.732551074
12000 1.2 0.30190094 0.482742111 0.784643051
13000 1.3 0.340856348 0.488205069 0.829061417
14000 1.4 0.374124967 0.491943345 0.866068311
15000 1.5 0.401777056 0.494498657 0.896275713
16000 1.6 0.424252238 0.496244239 0.920496477
17000 1.7 0.442182012 0.497436235 0.939618247
18000 1.8 0.456262795 0.498250032 0.954512826
19000 1.9 0.467174495 0.498805556 0.96598005
20000 2.0 0.47553459 0.499184747 0.974719337
21000 2.1 0.481877252 0.499443566 0.981320818
22000 2.2 0.486648613 0.49962022 0.986268833
23000 2.3 0.490211459 0.499740792 0.989952251
24000 2.4 0.492854675 0.499823085 0.99267776
25000 2.5 0.494804446 0.499879252 0.994683699
26000 2.6 0.496235429 0.499917587 0.996153016
27000 2.7 0.497280936 0.499943752 0.997224688
28000 2.8 0.498041732 0.49996161 0.998003342
29000 2.9 0.498593351 0.499973798 0.998567149
30000 3.0 0.498992002 0.499982117 0.998974118
31000 3.1 0.499279255 0.499987794 0.999267049
32000 3.2 0.499485684 0.499991669 0.999477354
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Example 1

K/N 1 2 3 4 5
0 0.499999046 0.496540246 0.49438125 0.492974327 0.492006907
3 0.499999046 0.349990509 0.323478388 0.313295239 0.308138231
6 0 0.153466783 0.141016844 0.136339267 0.134004854
9 0 0 0.041119773 0.047009559 0.049095489

12 0 0 0 0.010378617 0.014216717
18 0 0 0 0 0.002535549
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0 0 0 0 0
1.499997139 1.049971528 0.970435164 0.939885718 0.924414694

0 0.920800697 0.846101063 0.8180356 0.804029126
0 0 0.370077959 0.423086027 0.441859399
0 0 0 0.12454341 0.170600599
0 0 0 0 0.045639882

0
N 1 2 3 4 5

1.499997139 1.970772225 2.186614186 2.305550754 2.3865437
exp % 37.49992849 24.63465282 18.22178488 14.40969221 11.9327185

0.1 0.499999046 0.496540246 0.49438125 0.492974327 0.492006907
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.499999046 0.496540246 0.49438125 0.492974327 0.492006907
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Figure 14. (a) Shown are the probabilities, over time, of a pair of faulty, in series, transducer gates to (i)
terminate, (ii) terminate in an error state, and (iii) terminate in a correct state. (b) As the number of parallel
copies of the faulty, in series, transducer gates increase, the expected number of unreacted gates in the final
state decreases.

P=? [ F[T,T] "deadlock" ]

P=? [ F[T,T] "deadlock" & "all_done" ]

P=? [ F[T,T] "deadlock" & !"all_done" ]

The probability for these three queries is shown for different values of time in Fig-
ure 14a. As expected, the probability that the system eventually deadlocks converges to-
wards 1. Otherwise, the plot indicates that, early on, the system is more likely to proceed
towards the error state than the intended state. The reasoning for this is that reaching the
intended state requires a number of additional intermediate reactions compared to reach-
ing the erroneous state. The plot also shows that the probabilities for the system to end
in a correct or incorrect state each converge towards 0.5. The following queries, which
do not use a time bound, confirm that the probability of reaching each of the final states
is 0.5 (i.e., they are equally likely):

P=? [ F "deadlock" & "all_done" ]

P=? [ F "deadlock" & !"all_done" ]

This is also expected as the strand with long domain a produced in the first complex
of the first gate could either interact with the second complex of the first gate (intended
reaction), or the second complex of second gate (unintended reaction). In either case, the
very next reaction is irreversible and only one of the two final states of Figure 12 will be
reachable.

Clearly, a 0.5 probability of failure of a logic gate, without a mitigating design, is
unacceptable for reliable computation. Fortunately, computer science has a rich tradition
of performing reliable computation from unreliable parts [31]. Cardelli suggests that,
by increasing the number of parallel copies of these faulty transducer gates, the overall
reliability will increase [8]. The hypothesis is that the increased number of additional
auxiliary strands could be used to unblock gates in the incorrect deadlock state. This
hypothesis can be tested by determining, for different numbers of initial parallel copies,
the expected number of reactive gates in the incorrect deadlock state. The following
query determines this probability when the number of reactive gates equals i:

P=? [ F "deadlock" & gates_reactive=i ]
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Figure 14b shows the percentage of reactive gates for various numbers of initial
copies of the system. The hypothesis is supported by this plot which shows that, indeed,
the percentage of reactive gates decreases as the number of initial copies of the system
increases (i.e., the more copies of the system, the more reliable the computation).

As previously stated, the faulty behaviour of the transducer gates can be corrected
by ensuring auxiliary strands are unique to each gate. Using these corrected gates, we
can test another hypothesis related to performance. It has been formally shown that the
expected time for a DSD circuit to complete scales linearly with the depth of the cir-
cuit [28]. We have so far focused on two transducer gates in series. To test the per-
formance hypothesis, we can instead see how expected time for a circuit to complete
scales by increasing the number of transducers in the series (e.g., X0 → X1, X1 →
X2, . . . , Xk−1 → Xk). This can be accomplished with a rewards structure called
“time”, that assigns 1 to each state of the model, and with the following query:

R{"time"}=? [ F "all_done" ]

Intuitively, the above query determines the expected time that will elapse before
reaching the deadlock state. (With the corrected transducers, this will always be the cor-
rect state with no reactive gates.) The results for 1 . . .7 transducers in series, which con-
firm the linear scaling of expected time, are plotted in Figure 15a.

4.2.4. Verifying a DSD implementation of approximate majority

We end this case study by briefly considering a DSD implementation of the approxi-
mate majority CRN that we investigated in the examples of Section 2 and Section 3. The
approximate majority CRN consists of four bimolecular reactions. While the ideas are
similar, the details of a DSD gate that implements a bimolecular reaction are more com-
plicated than one implementing a transducer gate. Readers interested in these details are
directed to the original study [23]. Furthermore, as each reaction of the CRN is imple-
mented by a cascade of multiple DSD reactions, the resulting CTMC of the DSD imple-
mentation is significantly larger than the CTMC shown in Figure 3, making automated
verification all the more useful.

Recall that the input to the approximate majority algorithm is some quantity of X
molecules and some quantity of Y molecules. The final state of the system results in a
consensus of either X molecules or Y molecules. It has been formally shown that the ap-
proximate majority algorithm will form a consensus of the species initially present in the
majority, with high probability, provided that the majority outnumbers the minority by
a significant margin [2]. In particular, if the system consists of Θ(N) molecules in total,
and X forms the initially majority and outnumbers the quantity of Y by Ω(

√
N), then the

algorithm will converge to an X consensus with high probability. We can determine the
probability of reaching an X consensus or Y consensus, in a system where sum of initial
X and Y molecules is N, using the following queries:

P=? [ F output_x=N ]

P=? [ F output_y=N ]

Here, the variables output x and output y count the number of X and Y
molecules, respectively, in the consensus state. The probabilities for the DSD systems to
converge to an X consensus are given in Figure 15b for different initial counts of X and
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K exp time
1 6749.982838
2 12274.51804
3 17775.47774
4 23275.50787
5 28775.48498
6 34275.46153
7 39775.44272
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Y = 1 Y = 2 Y = 3 Y = 4 Y = 5
X = 1 0.5000 0.2531 0.1290 0.0658 0.0334
X = 2 0.7468 0.5000 0.3156 0.1917 0.1131
X = 3 0.8709 0.6843 0.5000 0.3462 0.2299
X = 4 0.9341 0.8082 0.6537 0.5000 0.3651
X = 5 0.9665 0.8869 0.7699 0.6349 0.5000

(b)

Figure 15. (a) The expected time for a chain of k transducer gates to complete increases with linearly in k. (b)
The probability of reaching an X consensus in the DSD implementation of the approximate majority CRN is
shown for various initial population sizes of X and Y .

Y molecules (strands). As one would expect, when both X and Y are initially present in
equal quantity, there is a 0.5 probability of reaching an X consensus. Furthermore, the
probability of an X consensus becomes more or less likely depending on the initial ratio
of X and Y molecules.

5. Conclusions

In this chapter we briefly overviewed probabilistic model checking for discrete- and con-
tinuous time Markov chains, and introduced the main features of the probabilistic model
checker PRISM [21]. More detail on probabilistic model checking can be found in the
textbook [4], the tutorial paper [19] and the PRISM website [1]. We then discussed ap-
plications of probabilistic model checking in the context of biological systems, focusing
on molecular signalling and DNA computation. The former study [16] enables predic-
tive modelling of signalling pathways, which has been shown to assist in gaining a bet-
ter understanding of biological functions in the wetlab [17]. The latter application [23]
is more akin to the use of model checking in hardware verification, where it serves the
function of a computer-aided design and verification environment, opening up exciting
opportunities for probabilistic verification to play a part in designing, debugging and op-
timising molecular-scale devices. In addition, PRISM has been used in several biologi-
cally motivated studies, including RKIP-inhibited ERK pathway [6], influenza virus fu-
sion [13], bone pathologies [25], modelling of the cell cycle switch [9], and verification
of nanoscale DNA ‘robots’ that walk autonomously along a network of tracks [12]; see
the Case Studies section of the PRISM website [1].
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