
On Learning Assumptions for
Compositional Verification of

Probabilistic Systems

Lu Feng

Trinity College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

March 2013

Abstract

Probabilistic model checking is a powerful formal verification method that can en-

sure the correctness of real-life systems that exhibit stochastic behaviour. The work

presented in this thesis aims to solve the scalability challenge of probabilistic model

checking, by developing, for the first time, fully-automated compositional verification

techniques for probabilistic systems. The contributions are novel approaches for auto-

matically learning probabilistic assumptions for three different compositional verifica-

tion frameworks.

The first framework considers systems that are modelled as Segala probabilistic

automata, with assumptions captured by probabilistic safety properties. A fully-

automated approach is developed to learn assumptions for various assume-guarantee

rules, including an asymmetric rule (Asym) for two-component systems, an asymmetric

rule (Asym-N) for n-component systems, and a circular rule (Circ). This approach

uses the L* and NL* algorithms for automata learning.

The second framework considers systems where the components are modelled as

probabilistic I/O systems (PIOSs), with assumptions represented by Rabin probabilis-

tic automata (RPAs). A new (complete) assume-guarantee rule (Asym-Pios) is pro-

posed for this framework. In order to develop a fully-automated approach for learning

assumptions and performing compositional verification based on the rule (Asym-Pios),

a (semi-)algorithm to check language inclusion of RPAs and an L*-style learning method

for RPAs are also proposed.

The third framework considers the compositional verification of discrete-time

Markov chains (DTMCs) encoded in Boolean formulae, with assumptions represented

as Interval DTMCs (IDTMCs). A new parallel operator for composing an IDTMC

and a DTMC is defined, and a new (complete) assume-guarantee rule (Asym-Idtmc)

that uses this operator is proposed. A fully-automated approach is formulated to learn

assumptions for rule (Asym-Idtmc), using the CDNF learning algorithm and a new

symbolic reachability analysis algorithm for IDTMCs.

All approaches proposed in this thesis have been implemented as prototype tools and

applied to a range of benchmark case studies. Experimental results show that these

approaches are helpful for automating the compositional verification of probabilistic

systems through learning small assumptions, but may suffer from high computational

complexity or even undecidability. The techniques developed in this thesis can assist

in developing scalable verification frameworks for probabilistic models.

Acknowledgements

I would like to thank my supervisor Professor Marta Kwiatkowska, without whose

support this thesis would not have been completed. Marta gave me a lot of guidance

on doing research and writing papers. She was always available for discussion whenever

I got stuck, giving me valuable insights and keeping me on the right track. She read

every draft of my writing, provided suggestions for improvement, and even corrected

my grammar and spelling mistakes. She was a wonderful supervisor who offered me

opportunities to network with other researchers, for example, arranging for me to visit

Dr Corina Pasareanu at NASA Ames Research Centre. Marta was also very helpful

in my personal development: she wrote letters of recommendation for me; and when

I competed at the UK ICT Pioneers Competition in London, she was there for me.

Marta’s attitude to science, enthusiasm for research, and patience with students will

deeply influence me in my future academic career.

My thanks also go to Dr Dave Parker and Dr Tingting Han, who were coauthors

of several papers with me. Dave was very patient with my endless questions about

PRISM and taught me how to write scientific papers. Tingting helped me a great deal

with the theoretical work, and we had many fruitful discussions.

I would like to express my appreciation of the EPSRC-funded UK Large Scale

Complex IT Systems (LSCITS) initiative for their financial support. Special thanks go

to Professor Dave Cliff, the director of LSCITS initiative, for giving me the opportunity

to chair the LSCITS Postgraduate Workshop and writing recommendations for me.

I must also take this opportunity to thank all my colleagues at the Department of

Computer Science and my friends at the Trinity College, for making my life pleasant

and joyful during the past few years. Finally, I would like to thank my parents for their

untiring love, support and encouragement.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline and Contributions . 4

1.3 Other Publications and Credits . 5

2 Review of Related Work 7

2.1 Model Checking . 7

2.1.1 Property Checking . 7

2.1.2 Preorder and Equivalence Relations 11

2.1.3 Compositional Verification . 12

2.1.4 Counterexample Generation . 13

2.2 Learning . 14

2.2.1 Learning Finite-State Automata 14

2.2.2 Learning Probabilistic Automata 15

2.2.3 Learning Boolean Functions . 16

2.3 Using Learning in Model Checking . 17

2.3.1 Learning Assumptions for Compositional Verification 17

2.3.2 Other Applications . 19

3 Preliminaries 21

3.1 Formal Languages and Finite-State Automata 21

3.2 Probabilistic Models . 24

3.2.1 Discrete-Time Markov Chains . 24

3.2.2 Probabilistic Automata . 26

3.2.3 Interval Discrete-Time Markov Chains 28

3.3 Probabilistic Model Checking . 30

3.3.1 Specifying Properties . 30

i

CONTENTS

3.3.2 Model Checking for DTMCs . 35

3.3.3 Model Checking for PAs . 38

3.4 Probabilistic Counterexamples . 43

3.5 Learning Algorithms . 45

3.5.1 The L* Algorithm . 46

3.5.2 The NL* Algorithm . 51

3.5.3 The CDNF Algorithm . 55

3.6 Learning Non-Probabilistic Assumptions 59

3.6.1 Learning assumptions using the L* Algorithm 60

3.6.2 Learning assumptions using the CDNF Algorithm 62

4 Learning Assumptions for Asynchronous Probabilistic Systems 65

4.1 Compositional Verification for PAs . 66

4.1.1 Concepts for Compositional Reasoning about PAs 67

4.1.2 Assume-Guarantee Reasoning Rules 72

4.2 Probabilistic Counterexamples for PAs 74

4.3 Learning Assumptions for Rule (Asym) 76

4.4 Extensions . 87

4.4.1 Learning Assumptions using the NL* Algorithm 87

4.4.2 Generalisation to Rule (Asym-N) 88

4.4.3 Generalisation to Rule (Circ) 94

4.5 Implementation and Case studies . 96

4.6 Summary and Discussion . 101

5 Learning Assumptions for Synchronous Probabilistic Systems 105

5.1 Compositional Verification for PIOSs . 106

5.1.1 Probabilistic I/O Systems . 107

5.1.2 Rabin Probabilistic Automata 111

5.1.3 Assume-Guarantee Reasoning Rule (Asym-Pios) 113

5.2 Checking Language Inclusion for RPAs 119

5.3 L*-style Learning for RPAs . 125

5.4 Learning Assumptions for Rule (Asym-Pios) 131

5.5 Implementation and Case Studies . 134

5.6 Summary and Discussion . 138

ii

CONTENTS

6 Learning Implicit Assumptions 141

6.1 Implicit Encoding of Probabilistic Models 142

6.1.1 Encoding Models as MTBDDs 143

6.1.2 Encoding Models as Boolean Functions 146

6.1.3 Conversion between MTBDDs and Boolean functions 148

6.2 Compositional Verification for DTMCs 149

6.2.1 Refinement between DTMCs and IDTMCs 149

6.2.2 Synchronous Parallel Composition for DTMCs/IDTMCs 150

6.2.3 Assume-Guarantee Reasoning Rule (Asym-Idtmc) 155

6.3 Reachability Analysis of IDTMCs . 157

6.3.1 The Value Iteration Algorithm 158

6.3.2 The MTBDD-based Value Iteration Algorithm 162

6.4 Learning Assumptions for Rule (Asym-Idtmc) 165

6.5 Implementation and Case Studies . 172

6.6 Summary and Discussion . 177

7 Conclusions 179

A Proofs for Chapter 5 183

B Basic MTBDD Operations 185

C Case Studies for Chapter 4 187

D Case Studies for Chapter 5 213

E Case Studies for Chapter 6 223

iii

CONTENTS

iv

List of Figures

3.1 A 4-state NFA A . 23

3.2 A 3-state DTMC D and its transition probability matrix P 25

3.3 A 4-state PA M (taken from [KNPQ10]) 28

3.4 A 3-state IDTMC I and the probability bounds matrices Pl,Pu 30

3.5 A DTMC D and its corresponding weighted digraph GD′ 45

3.6 Learning language L = α∗bα with Angluin’s L* 48

3.7 Minimal DFA accepting language L = α∗bα with 4 states 48

3.8 Learning language L = α∗bα with the improved L* 51

3.9 Learning language L = α∗bα with NL* 54

3.10 Minimal RFSA accepting language L = α∗bα with 3 states 54

3.11 Learning Boolean function x1 ∧ ¬x2 with the CDNF algorithm 59

4.1 A pair of PAs M1,M2 (taken from [KNPQ10]) 67

4.2 Parallel composition product M1‖M2 (taken from [KNPQ12]) 68

4.3 PA M1[α] for M1 in Figure 4.1 and α = {a} 69

4.4 Learning probabilistic assumptions for rule (Asym) 78

4.5 Implementation of a teacher for equivalence queries of rule (Asym) . . . 79

4.6 A DFA Gerr and a product PAM2 ⊗Aerr
2 ⊗Gerr (taken from [KNPQ12]) 82

4.7 Two learnt DFAs Aerr
1 and Aerr

2 (taken from [FKP10]) 83

4.8 Observation tables corresponding to DFAs Aerr
1 , Aerr

2 in Figure 4.7 . . . 83

4.9 PA Mσ
1 and PA fragment M(σ,C)

1 (taken from [FKP10]) 84

4.10 Product PA M1 ⊗Aerr
2 (taken from [KNPQ12]) 84

4.11 Two PAs M1,M2 for Example 4.15 . 85

4.12 DFA Gerr for Example 4.15 . 85

4.13 Learnt DFAs Aerr
1 , Aerr

2 for Example 4.15 86

4.14 Observation tables corresponding to Aerr
1 and Aerr

2 in Figure 4.13 86

4.15 Learnt DFA Aerr for Examples 4.15 and 4.17 86

v

LIST OF FIGURES

4.16 Learning probabilistic assumptions for rule (Asym-N) 89

4.17 PAs M1 and M2 for Example 4.16 . 91

4.18 PA M3 and a DFA Gerr for Example 4.16 92

4.19 DFAs Aerr
2′ , A

err
2 learnt by the L* instance for A2 in Example 4.16 92

4.20 DFAs Aerr
1′ , A

err
1 learnt by the L* instance for A1 in Example 4.16 93

4.21 PA fragment Mσ1,C1
1 ‖M2 for Example 4.16 93

4.22 PA fragment (M1‖M2)σ2,C2‖M3 for Example 4.16 93

4.23 The DFA for assumption A′ in Example 4.17 95

4.24 Performance of the learning-based compositional verification using rule

(Asym) . 98

4.25 Performance of the learning-based compositional verification using rule

(Asym-N) . 98

5.1 A pair of PIOSs M1 and M2 (taken from [FHKP11a]) 109

5.2 RPA A and its PIOS conversion pios(A) (taken from [FHKP11a]) . . . 116

5.3 pios(A)‖M2 and a DFA Gerr for Example 5.16 118

5.4 A pair of RPAs A1,A2 for Example 5.17 121

5.5 Tree nodes for Example 5.17 . 122

5.6 Learning probabilistic assumptions for rule (Asym-Pios) 131

5.7 Two learnt RPAs A1,A2 for Example 5.23 133

5.8 Observation tables corresponding to RPAs A1,A2 in Figure 5.7 133

5.9 Performance of the learning-based compositional verification using rule

(Asym-Pios) . 137

6.1 An MTBDD M representing the transition matrix P in Figure 3.2 . . . 145

6.2 Boolean Encoding Scheme for the IDTMC I in Figure 3.4 148

6.3 Two DTMCs D1, D2 and their parallel composition product D1‖D2 . . . 151

6.4 An IDTMC I, a DTMC D2, and their synchronous product I‖sD2 . . . 152

6.5 The synchronous parallel composition I‖D2 (for I and D2 in Figure 6.4) 155

6.6 The behaviour of state s0t0 in an example IDTMC I‖D 161

6.7 Learning probabilistic assumptions for rule (Asym-Idtmc) 166

6.8 Two DTMCs D1 and D2 for Example 6.19 169

6.9 Boolean Encoding Scheme for DTMC D1 in Figure 6.8 169

6.10 The MTBDD of DTMC D1 for Example 6.19 170

6.11 The lower/upper MTBDDs of IDTMC I for Example 6.19 171

6.12 Performance of the learning-based compositional verification using rule

(Asym-Idtmc) . 176

vi

List of Algorithms

1 Angluin’s L* learning algorithm [Ang87a] 47

2 The improved L* learning algorithm by Rivest and Schapire [RS93] . . . 50

3 The NL* learning algorithm [BHKL09] 53

4 The CDNF learning algorithm [Bsh95] 56

5 Function walkTo(a, ν,x) used in Algorithm 4 58

6 Semi-algorithm of checking language inclusion for RPAs 120

7 L*-style learning algorithm for RPAs . 126

8 Value iteration/adversary generation for Prmax
I‖D,s(reachs(T)) 158

9 Function detAdv(I,D, ~v) used in Algorithm 8 160

10 Symbolic (MTBDD-based) variant of Algorithm 8 163

vii

Chapter 1

Introduction

1.1 Motivation

We are entering an era of ubiquitous computing, in which devices are becoming more

and more autonomous. These smart devices and sensors are often connected through

heterogeneous wired and wireless networks, and exhibit probabilistic behaviour due to

the presence of failures (e.g. message loss in unreliable communication protocols) or the

use of randomisation (e.g. symmetry breaker in distributed systems). Unfortunately,

the breakdown of these devices, e.g. a bug in a piece of flight control software or a flaw

in the medical cyber-physical systems, may lead to catastrophic risks and damages.

Formal verification is an approach that provides mathematically rigorous guarantees

about the correctness of such devices, by systematically exploring all the possible ex-

ecutions. In particular, probabilistic model checking is a formal verification technique

that focuses on analysing quantitative, dependability properties of probabilistic sys-

tems, e.g. “what is the probability of an airbag failing to deploy?”. Probabilistic model

checking has been applied to a wide range of systems in many different application

domains, from cloud computing [CKJ12], to biological cellular processes [KNP10], to

communication protocols [DKN+10], to nanoscale computing devices [LPC+12], and

1

1. Introduction

many more.

A key challenge of formal verification is scalability, because the increasing scale and

complexity of real-life systems yields models that are orders of magnitude larger than

those that are within the capacity of current techniques. A promising solution is to use

compositional verification, in which the verification of large-scale complex systems is

decomposed into sub-tasks of verifying each of its constituent components separately.

In the non-probabilistic setting, several compositional verification frameworks (e.g. see

[CGP03, PGB+08, CCF+10]) have been developed using the assume-guarantee reason-

ing approach. In assume-guarantee reasoning, each system component is verified in

isolation under an assumption about its contextual environment; such assumptions can

be generated automatically through algorithmic learning.

The compositional verification of probabilistic systems, however, only received scant

attention prior to the start of my doctoral research. Kwiatkowska et al. [KNPQ10]

proposed the first fully-automated assume-guarantee verification framework for Segala

probabilistic automata, but this work requires non-trivial manual effort to derive as-

sumptions, limiting its practical usage. To overcome this limitation, I proposed a novel

approach to learn probabilistic assumptions automatically, which was published in a

jointly authored paper [FKP10]. To the best of my knowledge, my doctoral research is

pioneering work in the area of fully-automated assumption generation for compositional

verification of probabilistic systems.

To date, as reported in this thesis, I have developed approaches for learning assump-

tions for three different probabilistic compositional verification frameworks, which differ

not only in the format of their assume-guarantee rules, but also in the type of model

and assumption. Apart from working with the framework proposed in [KNPQ10], I

also actively contributed to the development of the other two frameworks.

2

1. Introduction

A typical assume-guarantee reasoning rule looks like the following:

M1 ∼ A
A‖M2 |= G
M1‖M2 |= G

In order to guarantee that a system composed from two components M1 and M2

satisfies a property G, we need to

(a) find an appropriate assumption A related to one component, say M1 ∼ A,

(b) prove that A‖M2 satisfies G.

If both steps succeed, we can claim that property G is guaranteed on systemM1‖M2.

When defining a compositional verification framework, in order to formulate effec-

tive compositional reasoning rules, we need to carefully consider the models, assump-

tions, and the relations between them:

• the model (e.g.M1 andM2) should be realistic for real-life systems, and verifiable

with efficient model checking techniques;

• the assumption (e.g. A) should be expressive enough to capture the abstract be-

haviour of models and amenable to automatic generation via algorithmic learning;

• the relation (e.g. ∼) between assumptions and corresponding components should

preserve compositionality, and be checkable with efficient procedures.

All approaches developed in my thesis follow the above guidelines. I have implemented

these approaches as prototype tools and applied them to a range of benchmark case

studies, which indicate that the results of my doctoral research can be used to improve

the scalability of probabilistic model checking techniques.

3

1. Introduction

1.2 Thesis Outline and Contributions

My doctoral research aims to develop fully-automated approaches for learning assump-

tions for compositional verification of probabilistic systems, with a focus on verifying

probabilistic safety properties. This thesis reports the main results of my research.

In the remainder of the thesis, I will review the related work in Chapter 2, introduce

technical background in Chapter 3, present the contributions in Chapter 4-6, and lastly

draw conclusions and point out potential directions for future work in Chapter 7. The

following is a brief summary of the three main contributions.

Firstly, in Chapter 4, I propose a novel approach for learning assumptions that are

represented as probabilistic safety properties, for the compositional verification frame-

work of asynchronous probabilistic systems modelled as Segala probabilistic automata.

This approach is adapted to handle three different assume-guarantee rules proposed

in [KNPQ10]: an asymmetric rule for two-component systems (Asym), an asymmetric

rule for n-component systems (Asym-N), and a circular rule (Circ). In this chapter,

I also consider and compare the use of two different learning algorithms, L* [Ang87a]

for learning deterministic finite-state automata and NL* [BHKL09] for learning resid-

ual finite-state automata (i.e. a subclass of nondeterministic finite-state automata). A

prototype tool is implemented and applied to several benchmark case studies such as a

module from the flight software for JPL’s Mars Exploration Rover, Aspnes & Herlihy’s

randomised consensus algorithm, and a sensor network model; small assumptions that

enable the compositional verification of large models in these case studies are learnt

successfully.

Secondly, in Chapter 5, I consider the learning of a class of more expressive as-

sumptions formalised as Rabin probabilistic automata (RPAs). I first propose a new

(complete) compositional verification framework that targets synchronous probabilis-

tic systems composed of probabilistic I/O systems (PIOSs), i.e. an extension of discrete

4

1. Introduction

Markov chains (DTMCs) with input/output actions. To build a fully-automated imple-

mentation of this new assume-guarantee rule (Asym-Pios), I develop a semi-algorithm

for the undecidable problem of checking language inclusion between RPAs and a novel

L*-style active learning algorithm for RPAs. A prototype tool is also implemented and

experimental results on benchmark case studies, including the contract signing protocol

and the bounded retransmission protocol, are reported in this chapter.

Thirdly, in Chapter 6, I develop a novel approach for learning implicit assumptions

for the compositional verification of DTMC models. I formulate the notion of assump-

tions as interval DTMCs (IDTMCs), which are encoded implicitly as Boolean functions

using an eager encoding scheme, and present a new (complete) assume-guarantee rule

(Asym-Idtmc) for verifying probabilistic safety properties on DTMCs compositionally.

I also propose a symbolic value-iteration algorithm for computing reachability probabil-

ities on IDTMCs using the data structure of multi-terminal binary decision diagrams

(MTBDDs). A fully-automated implementation is built based on the rule (Asym-

Idtmc) using the CDNF learning algorithm [Bsh95], and applied to case studies such

as the contract signing protocol and a client-server model.

1.3 Other Publications and Credits

Some of the work in this thesis has previously been published in jointly authored papers.

However, I present the relevant content in the thesis in my own words and point out

the credits of the technical chapters below.

Chapter 4 is an extension of [FKP10] and [FKP11], which are jointly authored

papers with Marta Kwiatkowska and David Parker. The compositional verification

framework presented in Section 4.1 was originally proposed by Marta Kwiatkowska

and David Parker et al. in [KNPQ10]. The probabilistic counterexample for PAs in

Section 4.2 first appeared in [FKP10] and was David Parker’s contribution. I worked

5

1. Introduction

actively with David Parker on the learning approach for rule (Asym) [FKP10], and

rewrote this part in Section 4.3 based on my own understanding. Among the three

extensions presented in Section 4.4, the use of NL* algorithm and the generalisation

of learning for (Asym-N) were briefly mentioned in [FKP11], and are extended here

with more details and additional running examples; the generalisation of learning for

rule (Circ) is new. The prototype implementation and experiments of case studies

reported in Section 4.5 were my work, and David Parker helped me with some of the

case studies.

Chapter 5 is based on [FHKP11a] and the technical report [FHKP11b]. I worked

jointly with Tingting Han, Marta Kwiatkowska and David Parker on the compositional

verification framework, and presented in Section 5.1 with my own words. The semi-

algorithm of checking language inclusion for RPAs in Section 5.2 and the L*-style

learning for RPAs in Section 5.3 were my independent work; the presentation in the

thesis contains more details than in the paper (e.g. proofs and running examples). I

was also solely responsible for the development of the assumption learning approach in

Section 5.4 and the prototype implementation in Section 5.5.

Chapter 6 is based on recent joint work with Tingting Han, Marta Kwiatkowska

and David Parker, and has not been published yet. The encoding scheme of translating

probabilistic models into Boolean functions presented in Section 6.1 was my indepen-

dent work. I worked actively with Tingting Han and David Parker on defining the

compositional verification framework presented in Section 6.2. The value iteration al-

gorithm proposed in Section 6.3 was worked out jointly with Tingting Han, and the

symbolic algorithm based on MTBDDs was my own work. I was solely responsible for

the learning approach in Section 6.4 and the prototype implementation in Section 6.5.

6

Chapter 2

Review of Related Work

This chapter provides a review of the related work. Section 2.1 covers various topics of

model checking, Section 2.2 provides a bibliography note of relevant learning algorithms,

and Section 2.3 introduces applications of using learning in model checking.

2.1 Model Checking

In this section, we survey the main model checking techniques that are relevant to this

thesis. We start with the techniques of checking temporal properties for models such

as labelled transition systems, discrete-time Markov chains, Markov decision processes,

probabilistic automata and interval discrete-time Markov chains. Then, we introduce

preorder and equivalence relations such as simulation and bisimulation for comparing

the behaviour of models. Moreover, we also review the techniques of compositional

verification and counterexample generation.

2.1.1 Property Checking

Model checking is a formal verification technique for automatic verification of finite-

state systems against correctness properties, where systems are usually modelled as

7

2. Review of Related Work

labelled transition systems (Kripke structures) and properties are often specified in

temporal logics. A model checker exhaustively explores all relevant execution paths

from the initial state in a model and analyses whether these paths satisfy a given

property specification. Model checking was pioneered independently by Clarke and

Emerson [CE81] and by Queille and Sifakis [QS82] in the early 1980’s; more recently,

Clarke, Emerson and Sifakis shared the 2007 A.M. Turing Award for their original

work in this area. Today, model checking is widely used to detect and diagnose errors

in hardware and software designs. However, the main difficulty with model checking

is the state explosion problem, i.e. the number of states grows exponentially with the

number of components, while model checking algorithms are linear or worse in the

number of such states. Hence, apply model checking to real-world problems which often

have enormous state spaces can be difficult. Several approaches have been proposed to

address this problem, such as symbolic model checking with BDDs [BCM+90], bounded

model checking using SAT solvers [CBRZ01], and counterexample-guided abstraction

refinement (CEGAR) [CGJ+00]. Compositional verification, which is the main focus

of this thesis, is another popular approach to tackle the state explosion problem.

Since many real-world systems exhibit probabilistic behaviour (e.g. due to randomi-

sation and uncertainty), model checking has been extended to handle probabilistic mod-

els, and is referred to as probabilistic model checking. The simplest probabilistic model

is the discrete-time Markov chains (DTMCs), modelling purely probabilistic systems.

DTMCs can be considered as an extension of labelled transition systems, in which each

labelled transition leads to a set of states based on a probabilistic distribution rather

than a single state. Model checking DTMCs involves computing the exact probability

of a set of paths satisfying a given property, which can be expressed in linear-time

logic, e.g. linear temporal logic (LTL), or branching-time logic, e.g. probabilistic com-

putation tree logic (PCTL). The first algorithm for LTL model checking for DTMCs

was proposed by Vardi [Var85], and an improved algorithm was developed later by

8

2. Review of Related Work

Courcoubetis and Yannakakis [CY88, CY95]. The algorithm for PCTL model check-

ing for DTMCs was proposed by Hansson and Jonsson [HJ94], where the problem was

reduced to computing the reachability probability via solving a linear equation system.

A more complex type of probabilistic models is the Markov decision processes

(MDPs), which extend DTMCs with nondeterminism and can be used to model systems

exhibiting both probabilistic and nondeterministic behaviour. Nondeterminism is an

essential tool for modelling concurrency and underspecification. A transition between

states in an MDP occurs in two steps: firstly, a nondeterministic choice between one

or more transition labels is made; and then, a probabilistic choice of successor states

is taken similarly as in a DTMC. Model checking MDPs relies on the resolution of

nondeterminism via adversaries. An adversary picks one enabled labelling action for

each state in an MDP. Under a given adversary, the behaviour of an MDP is purely

probabilistic and induces a DTMC. We check whether a given temporal logic property

holds in an MDP by computing the minimum and maximum probability of satisfying

the property over all adversaries. Model checking algorithms for probabilistic prop-

erties of MDPs were first proposed by Courcoubetis and Yannakakis [CY90] and by

Bianco and de Alfaro [BdA95], and involved graph-based analysis in conjunction with

linear programming. An alternative approach is value iteration [Put94], which provides

approximate results but has better scalability than linear programming. Later, Parker

[Par02] demonstrated that MDPs can be verified efficiently via an implementation of

value iteration with symbolic data structures. In addition, Etessami and Kwiatkowska

et al. [EKVY07] proposed multi-objective model checking techniques, enabling the

analysis of trade-offs between multiple linear-time properties of MDPs. Multi-objective

model checking for MDPs reduces to solving a linear programming problem.

In this thesis, we also consider the model checking of probabilistic automata (PAs)

defined by Segala [Seg95], which is a slight generalisation of MDPs. The essential

difference between PAs and MDPs is that a state of a PA permits the nondeterminism

9

2. Review of Related Work

between equally-labelled outgoing transitions. Indeed, MDPs can be considered as a

subclass of PAs. The model checking algorithms for MDPs can be adapted for PAs.

Interval discrete-time Markov chains (IDTMCs) is another type of models that can

be used to capture the uncertainty of probabilistic systems. IDTMCs are extensions of

DTMCs in the sense that the exact transition probabilities are unspecified but restricted

by intervals. There are two common semantic interpretations of IDTMCs: uncertain

Markov chains (UMCs) [JL91] and interval Markov decision processes (IMDPs) [KU02].

With the UMC interpretation, an IDTMC is considered as a family of DTMCs whose

transition probabilities lie within the transition intervals of the IDTMC; once a DTMC

is picked at the very beginning, the behaviour of IDTMC follows the chosen DTMC. By

contrast, with the IMDP interpretation, the uncertainty of IDTMC is resolved step by

step; each time a state is visited, a transition distribution is picked nondeterministically

based on the given intervals. Sen et al [SVA06, CSH08] studied the problem of PCTL

model checking for IDTMCs (with both UMC and IMDP interpretations), and the

complexity results of the problem have been improved recently by Chen, Han and

Kwiatkowska [CHK13]. For the LTL model checking of IDTMCs, a practical algorithm

based on the expectation-maximisation procedure was proposed by Benedikt, Lenhardt

and Worrell [BLW13]. Note that there are also models that can be considered as variants

of IDTMCs, for example, three-valued abstraction of DTMCs [KKLW12], Constraint

Markov Chains [CDL+11] and Markov set-chains [Har98, HS94]. IDTMCs were also

studied in the representation of a central DTMC with an interval confidence score

matrix for the purpose of approximate model checking in [GDK+12].

There are several software tools available for probabilistic model checking, such

as PRISM [KNP11], LiQuor [CB06] and MRMC [KZH+09]. A extensive list of these

tools can be found at http://www.prismmodelchecker.org/other-tools.php. This thesis

mainly uses PRISM, which is one of the most widely used probabilistic model checkers.

PRISM supports the model checking of DTMCs, MDPs and PAs as reviewed above.

10

2. Review of Related Work

It can also be used to analyse continuous-time models such as continuous-time Markov

chains (CTMCs) and probabilistic timed automata (PTAs), which are not considered

in this thesis. PRISM implements state-of-the-art symbolic techniques for probabilistic

model checking, based on the data structures of BDDs (Binary Decision Diagrams)

[Bry92] and MTBDDs (Multi-Terminal Binary Decision Diagrams) [KNP04, Par02].

2.1.2 Preorder and Equivalence Relations

We compare the behaviour of two models via preorder and equivalence relations. Such

relations can also serve as a basis of compositional verification, if they preserve linear-

time or branching-time properties through composition.

Given two labelled transition systems TS and TS’, if all (infinite) traces of TS

are exhibited in TS’, then we say that there is a trace inclusion preorder relation

between TS and TS’. Note that TS’ may have some traces that TS does not have.

If all traces of TS’ are also exhibited in TS, then these two models are related by

trace equivalence. The trace inclusion and equivalence relations preserve linear-time

properties. For example, given trace-equivalent TS and TS’, if TS satisfies a linear-

time property P , then TS’ also satisfies P . Trace theory was first introduced by Hoare

[Hoa78] and has been further developed over the past decades. A comprehensive survey

of trace inclusion and trace equivalence notions was given by Bruda [Bru04].

On the other hand, simulation preorder and bisimulation equivalence relations are

often used to compare the branching-time behaviour of labelled transition systems.

Simulation between two labelled transition systems TS and TS’ requires that the ini-

tial state of TS can mimic all stepwise behaviour of the initial state of TS’, whereas

bisimulation requires TS and TS’ mutually mimic all transitions. There are strong

and weak variants of such relations: strong relations consider every transition, while

weak relations only take into account “observable” transitions but ignore “silent” (or

“internal”) transitions. The concepts of simulation and bisimulation were originated by

11

2. Review of Related Work

Milner [Mil71, Mil80], and efficient decision algorithms for simulation preorders were

proposed in [BP95] and [HHK95]. A comprehensive comparison of various trace-based

and (bi)simulation relations was provided by van Glabbeek [vG90, vG93].

Simulation and bisimulation relations were extended for probabilistic models such as

DTMCs by Jonsson and Larsen [JL91], which require the distributions of two DTMCs

to have a stepwise mapping via weight functions. Segala and Lynch [SL95] further

extended simulation and bisimulation relations to PAs, where each distribution in a

PA must have a corresponding equal-labelled distribution in the other related PA; they

also define the concept of probabilistic simulation, which is less strict than simulation

in the sense that the stepwise mapping is allowed between a convex combination of

multiple distributions rather than a single distribution. Effective decision algorithms

for (strong) simulation relations for both DTMCs and PAs have been developed [Zha09].

Segala [Seg95] also studied trace-based relations for PAs, but he observed that trace

distribution inclusion, which is a conservative extension of trace inclusion preorder in

labelled transition systems, is not a precongruence and hence not compositional. The

simulation relation for IDTMCs was first introduced by Jonsson and Larsen [JL91],

but the problem of deciding whether there is a simulation relation between two given

IDTMCs had remained open until recently [DLL+11].

2.1.3 Compositional Verification

Compositional verification addresses the state explosion problem of model checking by

decomposing systems into components and verifying each component separately under

contextual assumptions. The compositional verification techniques of non-probabilistic

systems via assume-guarantee reasoning have been widely studied, e.g. in [EDK89,

GL94, Jon83, Pnu85].

For probabilistic systems, a number of compositional verification techniques have

also been developed. Segala and Lynch [Seg95, SL95] proposed several compositional

12

2. Review of Related Work

proof techniques for probabilistic automata (PAs) based on variants of simulation re-

lations. There are also compositional frameworks built on top of trace-based relations,

for example, the synchronous parallel composition of probabilistic Reactive Modules by

de Alfaro et al. [dAHJ01] and the switched I/O automata by Cheung et al. [CLSV04].

However, none of these techniques has presently a practical implementation.

Kwiatkowska et al. [KNPQ10] proposed the first fully-automated assume-guarantee

verification framework for PAs based on multi-objective model checking techniques

[EKVY07]. This framework focused on the verification of probabilistic safety properties,

and was further extended in [FKN+11] for a richer class of properties such as liveness.

A limitation of these approaches is that they require non-trivial human effort to find

appropriate assumptions for assume-guarantee reasoning.

2.1.4 Counterexample Generation

Counterexamples are of crucial importance in model checking, because they provide

valuable diagnostic feedback about the property violation; they are also essential for

techniques such as counterexample-guided abstraction refinement and learning-based

assume-guarantee model checking. In the non-probabilistic setting, a counterexample

is usually a single path leading to some “bad” state. The counterexample generation

techniques for non-probabilistic systems have been investigated extensively, see e.g.

[dAHM00, BNR03, JRS04].

By contrast, counterexamples for probabilistic model checking are often more com-

plex and sometimes cannot be captured by a single path due to the stochastic nature

of probabilistic models. Han et al. [HKD09] defined a probabilistic counterexample as

a set of paths, with the sum of path probabilities indicating the violation of a property,

and proposed counterexample generation techniques for LTL and PCTL model checking

of probabilistic models such as DTMCs and MDPs. An alternative method was pro-

posed by Aljazzar et al. in [AL10], where probabilistic counterexamples are represented

13

2. Review of Related Work

in a more compact format of diagnostic subgraphs; based on this method, a practical

tool named DiPro [ALFLS11] was implemented. Fecher and Huth et al. [FHPW10] con-

sidered counterexamples in the branching-time setting, and proposed a game-theoretic

method in which diagnostic information for truth and falsity of model checking PCTL

on countable labeled Markov chains are encoded as monotone strategies. More recently,

Braitling and Wimmer et al. [BWB+11] proposed a counterexample generation method

for DTMCs using SMT-based bounded model checking.

2.2 Learning

Grammatical inference [dlH10], also called learning, refers to the problem of learning

a formal grammar (usually represented by automata) that characterises a set of given

data (e.g. strings, trees, graphs). From the wide spectrum of learning techniques,

we survey three topics relevant to this thesis: learning finite-state automata, learning

probabilistic automata and learning Boolean functions. We consider techniques that

learn from strings only (rather than trees or graphs).

2.2.1 Learning Finite-State Automata

The learnability of finite-state automata was first studied by Gold [Gol67] under the

model of identification in the limit (i.e. a learning algorithm identifies an exactly correct

grammar for the given data after a finite number of wrong hypotheses). Gold [Gol78]

showed that the representation class of deterministic finite-state automata (DFAs) is

identified in the limit in polynomial time and data, while de la Higuera [dlH97] proved

a negative result for nondeterministic finite-state automata (NFAs). Apart from the

learning model of identification in the limit, Valiant [Val84] proposed the probably ap-

proximately correct (PAC) learning model, which learns a grammar with low general-

ization error (”approximately correct”) given any arbitrary distribution of the samples.

14

2. Review of Related Work

In this thesis, we are interested in learning exact grammars rather than PAC learn-

ing, because, to enable the assume-guarantee verification, we need to learn the exact

representation of assumptions.

Biermann and Feldman [BF72] proposed one of the first offline algorithms that learn

a DFA from a fixed set of examples, such that the learnt automaton accepts the positive

examples and rejects the negative examples. Another well-known offline algorithm for

learning DFAs is the RPNI algorithm proposed in [OG92]. An alternatively approach

is the online algorithms that work incrementally and have the possibility of asking for

further examples in the learning process, for example, the L* algorithm proposed by

Angluin [Ang87a] that learns a minimal DFA for a regular language in polynomial time.

The L* algorithm was later improved by Rivest and Schapire [RS93]. Angluin’s work

pioneered a classical online learning model named the minimal adequate teacher (MAT),

in which a teacher capable of answering certain types of queries (e.g. membership and

equivalence queires) proposed by the learning algorithm is employed. All the learning

algorithms that we will use in later chapters of this thesis follow the MAT model; we

also call them active learning algorithms since they are actively asking queries.

The learning of NFAs is hard since the class of NFAs does not have the charac-

terisation of right-congruence, i.e. there is no unique minimal NFA for a given regu-

lar language. Research in this area has been mainly focused on a subclass of NFAs

called residual finite-state automata (RFSAs), which exhibit the properties of right-

congruence. For learning RFSAs, an offline algorithm named DeLeTe2 and an online

algorithm named NL* (following the MAT model of L*) were proposed in [DLT04] and

[BHKL09], respectively.

2.2.2 Learning Probabilistic Automata

Many learning techniques have been developed to learn probabilistic automata. Many

methods aim to learn deterministic probabilistic automata (PDFAs) that represent a

15

2. Review of Related Work

probabilistic distribution over finite words. For example, [CO94] proposed the well-

known ALERGIA algorithm to learn PDFAs using a state merging method, and

[dlHO04] discussed the active learning of PDFAs with queries. In addition, Tzeng

[Tze92a] presented an approach to learn a more general class of probabilistic automata

via asking queries that require the state space of the target automaton to be known as

a priori.

My co-authored paper [FHKP11a] proposed a novel active learning method for

Rabin probabilistic automata (RPAs) [Rab63] (with all states accepting). Our method

was inspired by [BV96], which considered the active learning of multiplicity automata

(a generalisation of RPAs by replacing transition probabilities with arbitrary rationals),

following the MAT learning model.

A recent paper [MCJ+11] proposed a variant of the ALERGIA algorithm to learn

probabilistic automata from a sequence of observed system behaviours. In comparison

with our method [FHKP11a], their work follows the style of black-box learning, i.e. the

target is a black-box system and the learning can only provide approximate results,

whereas our method is white-box learning and the learnt result is exactly correct.

2.2.3 Learning Boolean Functions

There are many results concerning the learnability of Boolean functions: for example,

[AK91, AHP92] showed that learning Boolean functions in polynomial time w.r.t. the

size of the disjunctive normal form (DNF) and the number of variables is hard (i.e.

not learnable with membership and equivalence queries), and [Ang87b, AP92, BR92]

investigated subclasses of Boolean functions that are learnable in their DNF represen-

tations.

Bshouty [Bsh95] developed an active learning method, called the CDNF algorithm,

based on monotone Boolean functions. The CDNF algorithm follows Angluin’s MAT

learning model and interacts with a teacher via asking membership and equivalence

16

2. Review of Related Work

queries. It learns any arbitrary Boolean function with a polynomial number of queries

in the sizes of its corresponding minimal DNF, minimal CNF (conjunctive normal form)

and the variable set. Bshouty’s CDNF learning algorithm assumes that the target

Boolean function is over a fixed set of variables. A recent work [CW12] improved

this algorithm and proposed an incremental method of learning Boolean functions over

indefinitely many variables, which is essential for real-world applications such as loop

invariant generation where the variable set is not fixed.

2.3 Using Learning in Model Checking

Over the past decade, learning techniques have become popular in the domain of model

checking to address problems such as learning system models and learning program

invariants. In this section, we review a number of such applications, with emphasis on

the learning of assumptions for compositional verification since this is the main topic

of this thesis.

2.3.1 Learning Assumptions for Compositional Verification

Compositional verification, as mentioned in Section 2.1.3, is a promising approach to

tackle the state explosion problem of model checking. However, in practice, it often

requires a considerable human effort to derive assumptions for the assume-guarantee

reasoning of composition verification.

Cobleigh, Giannakopoulou and Pasareanu [CGP03] proposed an automatic method

to generate assumptions, where the L* learning algorithm [RS93] was applied to learn-

ing assumptions for an asymmetric assume-guarantee rule of two-component labelled

transition systems. This work has been generalised for the verification of systems with

n components and for learning assumptions of other assume-guarantee rules (e.g. sym-

metric and circular) in [BGP03, PG06, GGP07, PGB+08].

17

2. Review of Related Work

Following the seminal work of [CGP03], the research on learning assumptions for

compositional verification in the non-probabilistic setting has flourished. For example,

[CS07] suggested a few optimisations to the L*-based assumption generation method,

including the computation of a minimal alphabet for assumptions; [NMA08] presented

an assumption generation approach using the symbolic BDD implementation of L*;

[CFC+09] formulated the assumption generation problem as the learning of the small-

est automaton separating two regular languages, and proposed a new learning algo-

rithm named LSep to learn such minimal separating automata; [CCF+10] proposed

an approach for generating assumptions encoded implicitly as Boolean functions using

the CDNF learning algorithm [Bsh95]; and [LLS+12] considered the assume-guarantee

verification of timed systems, using the TL* learning algorithm [LAD+11] to generate

timed assumptions modelled as event-recording automata.

For probabilistic systems, however, this problem remained open until 2010 when my

co-authored paper [FKP10] was published. In this work, we proposed an approach for

learning assumptions, represented as probabilistic safety properties, for an asymmetric

assume-guarantee rule of two-component systems modelled as probabilistic automata

(PAs) using the L* learning algorithm. We further extended this approach in [FKP11]

for the compositional verification of systems with n components, and investigated the

use of an alternative learning algorithm named NL* [BHKL09], which learns a subclass

of nondeterministic finite automata. Later, we studied learning of a more expressive

class of assumptions represented as probabilistic finite automata in [FHKP11a], for the

compositional verification of systems modelled as discrete-time Markov chains.

The research into the automated generation of probabilistic assumptions has re-

ceived increasing attention recently. Apart from our work, Komuravelli, Pasareanu and

Clarke [KPC12a, KPC12b] considered the compositional verification of PAs with re-

spect to strong simulation conformance. In [KPC12b], they proposed a semi-algorithm

for learning PAs from tree samples and applied it to learn assumptions; however,

18

2. Review of Related Work

no practical implementation or experimental results of this work were reported. In

[KPC12a], they presented an alternative way of generating assumptions based on the

use of abstraction refinement instead of learning. Although [KPC12a] reported exper-

imental results on the same set of benchmark case studies as those used in our work

[FKP10, FKP11], we cannot compare their results with ours directly because [KPC12a]

considered strong simulation relations between PAs, whereas our work verified PAs

against probabilistic safety properties.

2.3.2 Other Applications

We also mention some other popular applications of learning in the domain of model

checking, such as learning system models, mining specifications and learning invariants

for program analysis.

A major barrier to the practicality of model checking is that system models and

specifications are often unknown or inaccurate. [PVY99] developed a method for model

checking black-box systems, where models are unknown, by firstly learning an initial

model through observing system executions and then refining the model with counterex-

amples provided by model checking. [GPY02] proposed an approach named adaptive

model checking, which is capable of updating an inaccurate model automatically by

learning from counterexamples. Along similar lines, several other methods have been

developed to learn various models using statistical learning techniques in the context of

model checking, see e.g. [SVA04, MCJ+11, MJ12, CMJ+12]. In addition, [CJR11] pro-

posed a new Bayesian technique to learn state transition probabilities of discrete-time

Markov chains for the model checking of quality-of-service properties.

Learning has also been applied in software verification for mining specifications:

for example, [ABL02] developed a mining tool which learns temporal specifications

from the static or runtime behaviour of programs, [AvMN05] used the L* algorithm

to synthesise interface specifications for Java classes, and [GS08] proposed a symbolic

19

2. Review of Related Work

BDD-based approach which expands the tractability of the specification mining by

orders of magnitude.

More recent work applied learning techniques to automatically find loop invari-

ants, which is one of the most important problems in the static analysis of imperative

programs. [JKWY10] proposed an automated technique for finding loop invariants

in propositional formulae using the CDNF learning algorithm that we also employ in

this thesis. This work was extended for solving the predicate generation problem in

[JLWY11] and for program termination analysis in [LWY12].

20

Chapter 3

Preliminaries

This chapter introduces the necessary technical background material for this thesis.

Section 3.1 reviews finite-state automata and regular languages. Section 3.2 covers three

different types of probabilistic models, including discrete-time Markov chains, interval

discrete-time Markov chains and Segala probabilistic automata. Section 3.3 shows how

properties can be specified and verified on probabilistic models. Section 3.4 introduces

the concept of probabilistic counterexamples. Section 3.5 describes active learning

algorithms relevant for the remainder of the thesis. Finally, Section 3.6 reviews two

settings for the learning of non-probabilistic assumptions for compositional verification.

The material presented in this chapter is mainly based on the textbook [BK08] and

the tutorial paper [FKNP11], as well as various other papers that will be cited later.

3.1 Formal Languages and Finite-State Automata

First of all, we review some basic concepts of formal languages used in this thesis. Let

N = {0, 1, 2, . . . } be the set of natural numbers. An alphabet α is a finite non-empty set

of symbols. The elements of α are called letters. An infinite word over α is an infinite

sequence of letters a0a1a2 . . . where ai ∈ α for all i ∈ N; and similarly, a finite word

21

3. Preliminaries

over α is a finite sequence a0a1 . . . an. The length of a finite word w, denoted by |w|, is

the number of letters in it. A special case of |w| = 0 is allowed; we call it empty word

and denote it by ε. The concatenation of two words u and v, denoted by u · v or uv,

yields a new word w of length |u|+ |v| such that

w[i] =

u[i] if 0 ≤ i < |u|

v[i] if |u| ≤ i < |u|+ |v|.

We denote by αω and α∗ the set of all infinite and finite words over alpabet α,

respectively. A language L over α contains a set of finite words w ∈ α∗. Two languages

L1 and L2 are equivalent if they contain the same set of finite words; and, if L1 ⊆ L2,

then they are related by language inclusion. The concatenation of words is lifted to

languages such that L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2}.

Next, we introduce the classical concept of finite-state automata, which accept finite

words. Note that the automata on infinite words, e.g. deterministic Rabin automata,

will be introduced later (see Definition 3.10).

Definition 3.1 (NFA/DFA) A nondeterministic finite automaton (NFA) is a tuple

A = (S, s, α, δ, F) where S is a finite set of states, s ∈ S is an initial state, α is an

alphabet, δ ⊆ S ×α×S is a transition relation, and F ⊆ S is a set of accepting states.

A is a deterministic finite automaton (DFA) if |δ(s, a)| ≤ 1 for all states s ∈ S and

actions a ∈ α, where |δ(s, a)| is the size of the set δ(s, a). A is called a complete DFA

if |δ(s, a)| = 1 for all s ∈ S and a ∈ α.

We also use s
a−→s′ to represent a transition δ(s, a) = s′. A run of A is a finite sequence

of transitions s0
a0−→s1

a1−→· · · an−1−−−→sn where s0 = s, si ∈ S and ai ∈ α for all i ∈ N;

it is called accepting if sn ∈ F . We call the finite sequence of observable actions

a0a1 . . . an−1 a trace of A. A language accepted by A, denoted by L(A), is a set of

finite words such that each word w ∈ L(A) corresponds to the trace of an accepting run

22

3. Preliminaries

t
1

t
1

t
0

t
2t

3
off

warn

fail

shutdown
shutdown

shutdown

Figure 3.1: A 4-state NFA A

of A. A language is regular if and only if it is accepted by some finite-state automaton.

Two automata A1,A2 are equivalent if they accept the same language, i.e. L(A1) =

L(A2). Given a NFA A = (S, s, α, δ, F), we can apply the standard subset construction

algorithm [RS59] to convert it into an equivalent DFA A′ = (S′, s′, α, δ′, F ′), where

S′ = {Q : Q ⊆ S}, s′ = {s}, δ′(Q, a) =
⋃
s∈Q δ(s, a) for all Q ⊆ S and a ∈ α, and

F ′ = {Q ⊆ S : Q∩F 6= ∅}. We call a DFA minimal if there is no equivalent DFA with

strictly fewer states. For each regular language L, there exists a unique minimal DFA

A that accepts it, i.e. L = L(A).

Example 3.2 Figure 3.1 shows an NFA A = (S, s, α, δ, F) with four states S =

{t0, t1, t2, t3} and alphabet α = {warn, shutdown, fail, off}. It represents a device that

powers down correctly if it receives a “warn” signal before a “shutdown” command;

otherwise, the device may “fail” upon receiving “shutdown” in the initial state s = t0.

The transition relation δ is defined by:

δ(t0,warn) = {t1} δ(t0, shutdown) = {t2, t3} δ(t2, off) = {t2}

δ(t3, fail) = {t3} δ(t1, shutdown) = {t2}

The set F = {t2} is accepting (the accepting state t2 is drawn with a double circle).

The accepting runs of A include, for instance, t0t1t2 over a word 〈warn, shutdown〉 and

t0t2t2 over a word 〈shutdown, off〉. However, the word 〈shutdown, fail〉 would not be

accepted by A, because there is no corresponding run containing t2. If we remove the

23

3. Preliminaries

transition t0
shutdown−→ t2, then A becomes a DFA.

3.2 Probabilistic Models

Here we introduce probabilistic models which, in contrast to finite-state automata,

incorporate information about the likelihood of transitions occurring between states.

We consider three different types of probabilistic models in this thesis: discrete-time

Markov chains, interval discrete-time Markov chains and Segala probabilistic automata.

For the rest of this thesis, we denote by Dist(S) the set of probability distributions

over a set S, i.e. functions µ : S → [0, 1] satisfying
∑

s∈S µ(s) = 1, and by SDist(S) the

set of sub-distributions over S, i.e. functions µ : S → [0, 1] satisfying
∑

s∈S µ(s) ≤ 1.

We use ηs for the point distribution on s∈S and µ1×µ2 for the product distribution of

µ1 and µ2, defined by µ1×µ2((s1, s2))
def
= µ1(s1) · µ2(s2). We assume probabilities are

rational numbers.

3.2.1 Discrete-Time Markov Chains

We first consider so called discrete-time Markov chains (DTMCs), which model fully

probabilistic systems.

Definition 3.3 (DTMC) A discrete-time Markov chain is a tuple D = (S, s, α, δ, L)

where S is a finite set of states, s ∈ S is an initial state, α is an alphabet, δ : S ×

(α ∪ {τ}) → Dist(S) is a (partial) transition relation such that, for any state s ∈ S,

δ(s, a) is defined for at most one action a ∈ α ∪ {τ}, where τ denotes a “silent” (or

“internal”) action, and L : S → 2AP is a labelling function mapping states to atomic

propositions from a set AP.

The behaviour of a DTMC D in each state s is represented by the function δ. If

δ(s, a) = µ, then the DTMC can make a transition, labelled with action a, and move to

state s′ with probability µ(s′). Since δ(s, a) is defined for at most one action a ∈ α ∪ {τ}

24

3. Preliminaries

s0

0.4

s1 s2

1

1

0.6

{}

{} {a}

P =

 0 0.4 0.6
0 0 1
0 0 1

Figure 3.2: A 3-state DTMC D and its transition probability matrix P

in each state s, the sum of probabilities of all outgoing transitions from s equals one.

Therefore, we can use a matrix P : S×S → [0, 1] to represent the transition probabilities

between states, such that
∑

s′∈S P(s, s′) = 1 for all states s ∈ S. Sometimes we also

write a DTMC as D = (S, s,P, L) with the alphabet α of action labels omitted.

An infinite path through a DTMC D is a sequence π = s0
a0−→s1

a1−→· · · where

δ(si, ai) > 0 (also written P(si, si+1) > 0) for all i ∈ N. The trace of a path π,

denoted tr(π), is defined as the sequence of action labels a0a1 . . . after removal of any

“silent” τ actions. A finite path ρ = s0
a0−→s1

a1−→· · · an−1−−−→sn is a prefix of an infinite path

ending in a state sn. We use IPathsD,s and FPathsD,s to denote the set of all infinite

and finite paths starting from state s of D, respectively.

To reason about the behaviour of D, we need to determine the probability of certain

paths occurring. In the following, we construct a probability space over the set of infinite

paths IPathsD,s for each state s. We start by defining the probability of a finite path ρ =

s0
a0−→s1

a1−→· · · an−1−−−→sn as P(ρ)
def
=
∏n−1
i=0 P(si, si+1). For each finite path ρ ∈ FPathsD,s,

we define a basic cylinder Cρ which consists of all infinite paths starting with ρ as a

prefix. Using properties of cylinders [KSK76], we can then construct the probability

space (IPathsD,s,FD,s,PrD,s) where FD,s is the smallest σ-algebra generated by the

basic cylinder sets {Cρ|ρ ∈ FPathsD,s} and PrD,s is the unique measure such that

PrD,s(Cρ) = P(ρ) for all finite paths ρ ∈ FPathsD,s.

Example 3.4 Figure 3.2 shows a DTMC D and its transition probability matrix P.

The states set is S = {s0, s1, s2}, and the initial state s0 is indicated by an incoming

25

3. Preliminaries

arrow. The labelling function L is given by L(s0) = L(s1) = ∅ and L(s2) = {a} where a

is an atomic proposition. The transition action labels are omitted. We give an example

of a finite path as ρ1 = s0 → s1 → s2 with the path probability P(ρ1) = 0.4 × 1 = 0.4.

And π1 = s0 → s1 → s2 → s2 → · · · is an infinite path starting with ρ1 as a prefix.

3.2.2 Probabilistic Automata

We consider a second type of model, probabilistic automata (PAs) [Seg95], for systems

that exhibit both probabilistic and nondeterministic behaviour. To distinguish this

model with the probabilistic automata defined by Rabin [Rab63], which will be used

in Chapter 5, we call Segala’s model as PAs and Rabin’s model as RPAs in this thesis.

Definition 3.5 (PA) A probabilistic automaton is a tupleM = (S, s, α, δ, L) where S

is a set of states, s ∈ S is an initial state, α is an alphabet, δ ⊆ S× (α∪{τ})×Dist(S)

is a probabilistic transition relation with τ a “silent” action, and L : S → 2AP is a

labelling function mapping states to a set AP of atomic propositions.

One or more transitions, denoted s
a−→ µ, are available in a state s of a PA M, where

a ∈ α∪{τ} is an action label, µ is a probability distribution over states and (s, a, µ) ∈ δ.

There may exist multiple outgoing distributions in a state labelled with the same action.

Note that a popularly studied model called Markov decision processes (MDPs) is a

subclass of PAs, where a state in an MDP can have at most one outgoing probability

distribution for a given action.

In each step of an execution of the PA, firstly, a nondeterministic choice is made

between available transitions from s, and then a probabilistic choice of successor state

is determined according to the chosen distribution µ. It is possible to allow µ to be

sub-distributions (i.e. sum to less than 1), with the interpretation that a PA may choose

to deadlock in the source state with certain probability [Seg95]. We call such models

sub-stochastic PAs.

26

3. Preliminaries

An infinite path through the PA M is a sequence π = s0
a0,µ0−−−→s1

a1,µ1−−−→· · · where

si ∈ S and si
ai−→ µi is a transition with µi(si+1) > 0 for all i ∈ N. A finite path ρ is

a prefix of an infinite path ending in a state, and we denote last(ρ) its last state. The

trace tr(π) of a path π is defined the same as for DTMCs. And we denote by tr(π)�α′

the restriction of a trace to an alphabet α′ ⊆ α. The set of infinite (resp. finite) paths

starting from state s ofM is denoted by IPathsM,s (resp. FPathsM,s). And the sets of

all infinite and finite paths in M are denoted as IPathsM and FPathsM, respectively.

We use the notion of adversaries (also known as ‘schedulers’ or ‘policies’) to reason

about PAs. An adversary resolves the nondeterministic choices in a PA, based on its

execution history. Formally, an adversary is a function σ : FPathsM → Dist(α ×

Dist(S)) such that, for any finite path ρ ∈ FPathsM, the distribution σ(ρ) only assigns

non-zero probabilities to action-distribution pairs (a, µ) for which (last(ρ), a, µ) ∈ δ.

We call adversaries defined in this manner as complete adversaries, and, by contrast,

we call an adversary partial if it contains some sub-distributions. Intuitively, a partial

adversary can opt to take none of the available transitions and remain in the current

state (with some probability). We denote by AdvM the set of all possible adversaries

for M. Under an adversary σ, the behaviour of PA M is purely probabilistic and can

be captured by a (countably infinite-state) DTMC, each state of which corresponds

to a finite path of M. We denote by IPathsσM,s (resp. FPathsσM,s) the set of infinite

(resp. finite) paths through M that start in state s and under σ. We can define a

probability measure PrσM,s over paths IPathsσM,s in a similar manner as for DTMCs

(Section 3.2.1). Note that s can be dropped if it is clear from the context.

We distinguish several different classes of adversaries. An adversary is deterministic

if it selects a unique action for the current state; otherwise, if it selects enabled actions

probabilistically, the adversary is randomised. In this thesis, we consider deterministic

adversaries only. We say that an adversary is memoryless if it always selects the same

action in a given state and the choice is independent of the execution history, i.e. which

27

3. Preliminaries

0.9

t
1

t
0

t
2t

3

0.1

off

warn

fail

shutdown shutdown

Figure 3.3: A 4-state PA M (taken from [KNPQ10])

path led to the current state; otherwise, the adversary is history-dependent. A variant of

memoryless adversaries are finite-memory adversaries, in which the selection of actions

depends on the current state of the PA and the current state (called mode) of memory

stored in a DFA. Under a deterministic, memoryless adversary σ, the behaviour of a PA

M with states S can be represented by another PA over the same state space, denoted

Mσ, in which each s ∈ S contains only the choices made by σ in s. Similarly, under

a deterministic, finite-memory adversary σ, the behaviour of a PA M with states S

can be represented by a PA Mσ with states S×Q where Q is the set of modes of σ’s

memory DFA.

Example 3.6 Figure 3.3 shows a PA M = (S, s, α, δ, L), where S = {t0, t1, t2, t3},

s = t0, and α = {warn, shutdown, fail, off}. The labelling function L over states is

omitted here. Each transition ofM is labelled with an action and a probability (omitted

if probability is 1). For example, from state t0, there is a nondeterministic choice of

distributions between δ(t0, warn) = [t1 → 1] and δ(t0, shutdown) = [t2 → 0.9, t3 → 0.1].

The PA M models a device whose nondeterministic behaviour is controlled by the

signal that it receives. If a “warn” signal is received before “shutdown”, then the device

powers down correctly; otherwise, a failure may occur with probability 0.1.

3.2.3 Interval Discrete-Time Markov Chains

The third type of model we consider, named interval discrete-time Markov chains

(IDTMCs) [JL91, KU02], is a generalisation of DTMCs with the transition probabilities

28

3. Preliminaries

unspecified but assumed to lie within an interval.

Definition 3.7 (IDTMC) An interval discrete-time Markov chain is a tuple I =

(S, s,Pl,Pu, L) where S is a finite set of states, s ∈ S is an initial state, Pl,Pu : S ×

S → [0, 1] are matrices representing the lower/upper bounds of transition probabilities

such that
∑

s′∈S Pl(s, s′) ≤ 1 ≤ ∑s′∈S Pu(s, s′) and Pl(s, s′) ≤ Pu(s, s′) for all states

s, s′ ∈ S, and L : S → 2AP is a labelling function assigning atomic propositions from a

set AP to states. (Note that the alphabet α of transition actions is omitted.)

Recall from Section 2.1.1 that there are two common semantic interpretations of

IDTMCs: uncertain Markov chains (UMCs) and interval Markov decision processes

(IMDPs). In this thesis, we adopt the latter, where each IDTMC defines an IMDP.

Definition 3.8 (IDTMC semantics) An IDTMC I = (S, s,Pl,Pu, L) defines an

IMDP dIe = (S, s, δ, L), where S, s, L are the same as in I, and δ ⊆ S × Dist(S) is

the transition relation such that the set of available distributions in state s is given by

δ(s) = {µ ∈ Dist(S) | ∀s′ ∈ S,Pl(s, s′) ≤ µ(s′) ≤ Pu(s, s′)}.

IMDPs are very similar to MDPs (a subclass of PAs) mentioned before. The only differ-

ence is that a state of an IMDP may have an infinite number of available distributions,

whereas the set of available distributions in an MDP state is finite. However, as stated

in [CHK13], IMDPs can be treated as MDPs in terms of model checking. Therefore,

we do not distinguish IMDPs from MDPs in this thesis. We use the same notions of

paths, adversaries and probabilistic measures defined in Section 3.2.2 here for IMDPs

(with the transition actions omitted).

Example 3.9 Figure 3.4 shows an IDTMC I = (S, s,Pl,Pu, L) and its lower (resp.

upper) transition bound matrix Pl (resp. Pu). The state set is S = {s0, s1, s2}, the ini-

tial state is s = s0, and the labelling function L assigns L(s0) = L(s1) = ∅, L(s2) = {a}

where a is an atomic proposition. The transitions of I are labelled with the correspond-

29

3. Preliminaries

s0

[0,1]

s1 s2

[0,1]

[1,1]

[1,1]

{}

{} {a}

Pl =

 0 0 0
0 0 1
0 0 1

 Pu =

 0 1 1
0 0 1
0 0 1

Figure 3.4: A 3-state IDTMC I and the probability bounds matrices Pl,Pu

ing intervals. For instance, Pl(s0, s1) = 0 and Pu(s0, s1) = 1, and thus the transition

probability between states s0 and s1 is bounded by interval [0, 1].

The IMDP dIe = (S, s, δ, L) induced by I has the same S, s, L as above. The

transition relation δ is given by δ(s0) = {µ |µ(s0) = 0, 0 ≤ µ(s1) ≤ 1, 0 ≤ µ(s2) ≤

1, and µ(s1) + µ(s2) = 1}, and δ(s1) = δ(s2) = {µ |µ(s0) = 0, µ(s1) = 0, µ(s2) = 1)}.

3.3 Probabilistic Model Checking

We now describe how to specify and verify quantitative properties for DTMCs and

PAs. We will discuss the model checking for IDTMCs separately in Chapter 6. The

material presented in this section is based on the textbook [BK08] and tutorial paper

[FKNP11].

3.3.1 Specifying Properties

There are various different specification formalisms for expressing properties of proba-

bilistic models. In this thesis, we mainly focus on three types of properties: probabilistic

reachability, probabilistic LTL specifications and probabilistic safety properties.

Probabilistic Reachability

A fundamental property of probabilistic models is probabilistic reachability, i.e. the

probability of reaching a set of target states when starting from a given state.

30

3. Preliminaries

For a DTMC D, let reachs(T) be the set of all infinite paths that start from state

s and contain a target state from the set T ⊆ S, formally:

reachs(T)
def
= {π ∈ IPathsD,s |π(i) ∈ T for some i ∈ N}.

We write reach(T) instead of reachs(T) when s is clear from the context. reachs(T)

is measurable for any T ⊆ S, because reachs(T) is the union of all basic cylinders of

finite paths from s ending in T and each element of this union is measurable. Thus,

we can define the reachability probability formally as PrD,s(reachs(T)), where PrD,s

is the probability measure over paths as defined in Section 3.2.1.

For a PA M, we define reachs(T) similarly as a set of infinite paths from s to T ,

i.e. {π ∈ IPathsM,s |π(i) ∈ T for some i ∈ N}. Due to the nondeterministic behaviour

of PA, the reachability probability is not a single value; rather, we define the minimum

and maximum probability, when starting from a state s, of reaching a set of target

states T ⊆ S as:

Prmin
M,s(reachs(T))

def
= infσ∈AdvMPrσM,s(reachs(T))

Prmax
M,s(reachs(T))

def
= supσ∈AdvMPrσM,s(reachs(T))

where PrσM,s is the probabilistic measure capturing the behaviour of M from state s

under adversary σ (defined in Section 3.2.2).

Probabilistic LTL Specifications

Linear temporal logic (LTL) [Pnu77] is a widely used temporal logic for linear time

properties. The syntax of LTL is as follows:

ψ ::= true
∣∣ a ∣∣ ψ ∧ ψ ∣∣ ¬ψ ∣∣ X ψ

∣∣ ψ U ψ

31

3. Preliminaries

where a ∈ AP is an atomic proposition, and X (next) and U (until) are standard

temporal logic operators. For an infinite path π of DTMC/PA, the satisfaction relation

|= is defined inductively by:

π |= true always

π |= a ⇐⇒ a ∈ L(π(0))

π |=ψ1 ∧ ψ2 ⇐⇒ π |=ψ1 ∧ π |=ψ2

π |=¬ψ ⇐⇒ π 6|=ψ

π |=X ψ ⇐⇒ π[1 . . .] |=ψ

π |=ψ1 U ψ2 ⇐⇒ ∃j ∈ N. π[j . . .] |=ψ2 and π[i . . .] |=ψ1, for all i < j

where L(π(0)) is the labelling of the first state in path π, and π[i . . .] is a suffix of path

π starting from the i-th state.

In this thesis, we also use temporal operators 3 (future) and 2 (globally), which

can be derived as follows:

3ψ
def
= true U ψ

2ψ
def
= ¬(3¬ψ)

3ψ means that ψ is eventually satisfied, and 2ψ represents that ψ is always satisfied.

We can use 3T to represent the reachability reach(T) of hitting a set of states T .

The probability measure of satisfying an LTL formula ψ in state s of DTMC D is

defined as:

PrD,s(ψ)
def
= PrD,s({π ∈ IPathsD,s | π |=ψ}).

Similarly, for a PA M, it is straightforward to define the probability of satisfying

an LTL formula ψ in state s under adversary σ as:

PrσM,s(ψ)
def
= PrσM,s({π ∈ IPathsσM,s | π |=ψ}).

32

3. Preliminaries

The minimum and maximum probabilities of satisfaction over all adversaries ofM are:

Prmin
M,s(ψ)

def
= infσ∈AdvMPrσM,s(ψ)

Prmax
M,s(ψ)

def
= supσ∈AdvMPrσM,s(ψ).

A probabilistic LTL specification is a formula P./ p[ψ] where ./ ∈ {≥, >,≤, <}, p ∈

[0, 1] is a rational probability and ψ is an LTL formula. A probabilistic LTL specification

P./ p[ψ] is satisfied in a state s of DTMC D iff PrD,s(ψ) ./ p. Analogously, P./ p[ψ] is

satisfied in a state s of PA M iff PrσM,s(ψ) ./ p for all adversaries σ ∈ AdvM. In

particular, if ./ ∈ {≥, >}, then s |= P./ p[ψ] iff Prmin
M,s(ψ) ./ p; while if ./ ∈ {≤, <},

then s |= P./ p[ψ] iff Prmax
M,s(ψ) ./ p. We say a DTMC D (resp. a PA M) satisfies a

probabilistic LTL specification P./ p[ψ], denoted D |= P./ p[ψ] (resp. M|= P./ p[ψ]), iff

the specification is satisfied in the initial state s.

Probabilistic Safety Properties

Safety properties characterise the requirements that “the bad thing should never hap-

pen”. Typical examples of safety properties include the mutual exclusion property (i.e.

the bad scenario of having two or more processes in their critical section simultaneously

never occurs) and the deadlock freedom property (i.e. the unwanted deadlock should be

avoided). Formally, a safety property is defined as a set of infinite words, none of

which has a bad prefix (i.e. a finite word where the bad thing has happened). Any

word that violates a safety property has a bad prefix. If all the bad prefixes of a safety

property constitute a regular language (i.e. accepted by a finite-state automaton, see

Section 3.1), then the property is called a regular safety property.

Safety properties can be defined over a set of atomic propositions AP or an alphabet

α of action labels. In this thesis, if a regular safety property is defined over atomic

propositions, we represent it as an LTL formula ψ; for example, ψ = 2(¬3err) means

33

3. Preliminaries

that states labelled with the atomic proposition err should never be reached. Otherwise,

we use an automaton representation G, where the set of bad prefixes are stored in a

(complete) DFA Gerr over alphabet α. We define language L(G) as the set of infinite

words w ∈ αω such that no prefix of w is in the regular language characterised by Gerr .

An (infinite) path π of DTMC/PA satisfies G, denoted π |=G, if its trace tr(π) is in

L(G).

A probabilistic safety property, denoted by P≥ p[ψ] (or 〈G〉≥p), is given by a regular

safety property ψ (or automaton G), and a rational lower probability bound p. For

example, “the device always receives a warn signal before shutdown with probability at

least 0.98” is a probabilistic safety property. The satisfaction of P≥ p[ψ] for DTMC/PA

follows the semantics of probabilistic LTL specifications as discussed previously.

In the following, we explain the semantics of satisfying 〈G〉≥p for DTMCs and PAs.

We define the probability of a DTMC D satisfying G as:

PrD(G)
def
= PrD,s({π ∈ IPathsD,s | π |=G})

where s is the initial state of D. We say that a probabilistic safety property 〈G〉≥p is

satisfied by D, denoted D |= 〈G〉≥p, if PrD(G) ≥ p.

Similarly, the probability of a PAM satisfying G under an adversary σ is given by:

PrσM(G)
def
= PrσM,s({π ∈ IPathsσM,s | π |=G})

where s is the initial state of M. We say that a probabilistic safety property 〈G〉≥p is

satisfied by M, denoted M|= 〈G〉≥p, if the probability of satisfying G is at least p for

any adversary:

M|= 〈G〉≥p ⇔ ∀σ∈AdvM . PrσM(G) ≥ p

⇔ Prmin
M (G) ≥ p

34

3. Preliminaries

where Prmin
M (G)

def
= infσ∈AdvMPrσM(G). According to [BK08], it suffices to consider

deterministic, finite-memory adversaries for checkingM|= 〈G〉≥p on a PAM, i.e. there

always exists such an adversary σ for which PrσM(G) = Prmin
M (G).

3.3.2 Model Checking for DTMCs

In the following, we introduce the model checking techniques for DTMCs, including

the computation of probabilistic reachability and the verification of probabilistic LTL

specifications, as well as probabilistic safety properties.

Computing Probabilistic Reachability

The following is an efficient way of computing reachability probabilities for a DTMC

D = (S, s,P, L). Let variable xs denote PrD,s(reachs(T)), the probability of reaching

target states T from state s ∈ S, then xs can be computed as the unique solution of

the following linear equation system [CY88]:

xs =

1 if s ∈ T

0 if T is not reachable from s∑
s′∈S P(s, s′) · xs′ otherwise.

It is straightforward to find the set of states that can reach T through graph analysis

(e.g. backward depth-first or breath-first search from T). Then we can (approximately)

solve the above linear equation system using an iterative method such as the Gauss-

Seidel value iteration [BK08].

Verifying Probabilistic LTL Specifications

Recall from Section 3.3.1 that model checking a probabilistic LTL specification P./ p[ψ]

in a state s of a DTMC D requires computing the probability of a set of infinite paths

35

3. Preliminaries

in D for which ψ holds, denoted PrD,s(ψ). In the following, we introduce an automata-

based approach, in which an LTL formula ψ is represented by means of a deterministic

Rabin automaton (DRA) Aψ and the computation of PrD,s(ψ) reduces to computing

reachability probabilities in the product of D and Aψ, denoted by D ⊗Aψ.

Definition 3.10 (DRA) A deterministic Rabin automaton (DRA) is a tuple A =

(S, s, α, δ, Acc), where S is a finite set of states, s ∈ S is an initial state, α is an

alphabet of actions, δ : S × α→ S is a transition function, and Acc = {(Li,Ki)}ki=1 is

an acceptance condition where k ∈ N and Li,Ki ⊆ S for 1 ≤ i ≤ k.

For each infinite word w = a0a1a2 · · · over alphabet α, there is a unique corresponding

run s
a0−→s1

a1−→s2
a2−→· · · of DRA A (since A has a deterministic transition function). We

say that an infinite word w ∈ αω is accepted by A if its corresponding path contains

finitely many states from Li and infinitely many states from Ki for some 1 ≤ i ≤ k.

The language of the DRA A, denoted by L(A), is the set of infinite words accepted

by A. For any LTL formula ψ, we can construct a corresponding DRA Aψ such that

an infinite path π |=ψ if and only if L(π) ∈ Aψ, where L(π) = L(s0)L(s1) . . . is the

sequence of atomic propositions over states in path π. We refer the reader to [BK08]

for the details of how to construct such a DRA Aψ from ψ.

Now we define the product D ⊗ Aψ. Since we consider LTL formulae over atomic

propositions only, the transition actions of DTMCs are omitted for convenience. Given a

DTMC D = (S, s,P, L) and a DRA Aψ = (Q, q, 2AP , δ, Acc) with Acc = {(Li,Ki)}ki=1,

their product is a DTMC D ⊗ Aψ = (S × Q, (s, qs),P′, L′) where qs = δ(q, L(s)), the

transition matrix P′ is given by

P′((s, q), (s′, q′)) =

P(s, s′) if q′ = δ(q, L(s))

0 otherwise

36

3. Preliminaries

for states (s, q), (s′, q′) ∈ S × Q, and the labelling function is defined as L′((s, q)) =

L(s)∪H if q ∈ H for anyH ∈ {L1, . . . , Lk,K1, . . . ,Kk}, and L′((s, q)) = L(s) otherwise.

The computation of PrD,s(ψ) reduces to computing the probability of reaching

certain bottom strongly connected components (BSCCs) in the product D ⊗ Aψ. Such

BSCCs, named accepting BSCCs, are defined such that the set of states T ⊆ S × Q

of an accepting BSCC should fulfil T ∩ (S × Li) = ∅ and T ∩ (S ×Ki) 6= ∅ for some

1 ≤ i ≤ k. See [BK08] for the formal definition of BSCCs and how to detect them

using graph analysis algorithms.

In summary, model checking a probabilistic LTL specification P./ p[ψ] in a state s

of a DTMC D involves the following steps:

(1) generate a DRA Aψ for ψ,

(2) construct the product DTMC D ⊗Aψ,

(3) identify accepting BSCCs of D ⊗Aψ,

(4) compute PrD,s(ψ) as the probability of reaching accepting BSCCs

from state (s, qs) in D ⊗Aψ where qs = δ(q, L(s)),

(5) check whether PrD,s(ψ) ./ p is satisfied.

The complexity of checking LTL specification ψ on DTMC D is doubly exponential in

the size of formula ψ and polynomial in the size of model D.

Verifying Probabilistic Safety Properties

Recall that probabilistic safety properties can be represented as a probabilistic LTL

formula P≥ p[ψ], or as 〈G〉≥p where the set of bad prefixes are stored in a DFA Gerr .

The verification of probabilistic LTL formulae has just been explained. In the following,

we describe how to check 〈G〉≥p for a DTMC D.

Firstly, we construct the product D⊗Gerr . The intuition is to synchronise common

actions. Given a DTMC D = (S, s, αD, δD, L) and DFA Gerr = (Q, q, αG, δG, F) with

37

3. Preliminaries

αG ⊆ αD, their product is a DTMC D ⊗ Gerr = (S × Q, (s, q), αD, δ′, L′), where the

transition function δ′ is given by

δ′((s, q), a) =

δD(s, a)× ηq′ if a ∈ αG ∩A(s)

δD(s, a)× ηq if a ∈ (αD \ αG) ∩A(s)

undefined otherwise

with q′ = δG(q, a) and A(s) = {a ∈ αD | δD(s, a) is defined}, and the labelling function

L′((s, q)) = L(s) ∪ {err} if q ∈ F and L′((s, q)) = L(s) otherwise.

Let T be the set of states labelled with err in D⊗Gerr . We then have the probability

of satisfying G on DTMC D as:

PrD(G) = 1− PrD⊗Gerr (reach(T))

where PrD⊗Gerr (reach(T)) is the probability of reaching states T from the initial state

(s, q) in D ⊗Gerr . If PrD(G) ≥ p, then D |= 〈G〉≥p.

3.3.3 Model Checking for PAs

In the following, we describe several model checking techniques for PAs, including the

computation of reachability probabilities, the verification of probabilistic LTL formulae

and probabilistic safety properties, and the multi-objective model checking.

Computing Probabilistic Reachability

It has been demonstrated [CY90, dA97] that the computation of minimum and maxi-

mum reachability probabilities of PAs can be phrased as linear programming problems.

38

3. Preliminaries

For a PA M = (S, s, αM, δM, L), we first define the following sets of states:

S0
min

def
= {s ∈ S |Prmin

M,s(reachs(T)) = 0}

S1
min

def
= {s ∈ S |Prmin

M,s(reachs(T)) = 1}

S0
max

def
= {s ∈ S |Prmax

M,s(reachs(T)) = 0}

S1
max

def
= {s ∈ S |Prmax

M,s(reachs(T)) = 1}

where Prmin
M,s(reachs(T)) and Prmax

M,s(reachs(T)) are the minimum and maximum prob-

abilities of reaching target states T ⊆ S from state s inM, respectively. We also denote

by A(s) the set of actions available in state s, i.e. {a ∈ αM | δM(s, a) is defined}.

Let variable xs = Prmin
M,s(reachs(T)), then the minimum reachability probabilities

can be computed as unique solution xs of the following linear program:

maximise
∑

s∈S xs subject to the constraints:

xs = 1 for all s ∈ S1
min

xs = 0 for all s ∈ S0
min

xs ≤
∑

s′∈S δM(s, a, µ)(s′) · xs′ for all s 6∈ S1
min ∪ S0

min, a ∈ A(s) and µ ∈ δM(s, a)

Similarly, the following linear program yields a unique solution for the maximum

reachability probabilities xs = Prmax
M,s(reachs(T)):

minimise
∑

s∈S xs subject to the constraints:

xs = 1 for all s ∈ S1
max

xs = 0 for all s ∈ S0
max

xs ≥
∑

s′∈S δM(s, a, µ)(s′) · xs′ for all s 6∈ S1
max ∪ S0

max, a ∈ A(s) and µ ∈ δM(s, a)

The state sets S0
min, S

1
min, S

0
max and S1

max can be obtained by standard (non-

probabilistic) model checking, and the linear programs can be solved using LP solvers,

or by approximate value iteration or policy iteration algorithms. We refer the details

of these algorithms to [BK08].

39

3. Preliminaries

Verifying Probabilistic LTL Specifications

Recall from Section 3.3.1 that checking whether a probabilistic LTL specification P./ p[ψ]

is satisfied in a state s of a PAM requires the computation of Prmax
M,s(ψ) if ./∈ {≤, <}

or Prmin
M,s(ψ) if ./∈ {≥, >}. We show below that the computation of Prmin

M,s(ψ) can be

easily reduced to computing Prmax
M,s(¬ψ), due to the fact that a path π of M satisfies

either ψ or ¬ψ. The reduction is shown below:

Prmin
M,s(ψ) = infσ∈AdvMPrσM,s({π |π |=ψ})

= infσ∈AdvM(1− PrσM,s({π |π 6|=ψ}))

= infσ∈AdvM(1− PrσM,s({π |π |=¬ψ}))

= 1− supσ∈AdvMPrσM,s({π |π |=¬ψ})

= 1− Prmax
M,s(¬ψ).

Now we describe how to compute Prmax
M,s(ψ), the maximum probability of satisfying

an LTL formula ψ in a state s of PA M. Similarly to checking LTL formulae for

DTMCs, we first convert the LTL formula ψ to a DRA Aψ (Definition 3.10). Then we

construct a PA-DRA product M⊗Aψ. Given a PA M=(S, s, α, δM, L) and a DRA

Aψ = (Q, q, 2AP , δA, Acc) with Acc = {(Li,Ki)}ki=1, their product is a PA M⊗Aψ =

(S ×Q, (s, qs), α, δ′, L′), where qs = δ(q, L(s)), the transition relation δ′ is defined such

that we have (s, q)
a−→ µ× ηq′ if and only if s

a−→ µ and q′ = δA(q, L(s)) holds, and the

labelling function is L′((s, q)) = L(s)∪H if q ∈ H for any H ∈ {L1, . . . , Lk,K1, . . . ,Kk}

and L′((s, q)) = L(s) otherwise.

Recall from Section 3.3.2 that checking LTL formulae for DTMCs reduces to com-

puting the probabilistic reachability of accepting BSCCs. For PAs, we have an anal-

ogous notion of BSCCs in DTMCs, named end components. An end component is a

strongly connected sub-PA, which comprises a subset of PA states and a partial tran-

40

3. Preliminaries

sition function of those states. We refer the reader to the tutorial paper [FKNP11] for

the formal definition and detecting algorithms of end components.

We say that an end component ofM⊗Aψ is accepting if its set of states T ⊆ S×Q

satisfies T ∩ (S ×Li) = ∅ and T ∩ (S ×Ki) 6= ∅ for some 1 ≤ i ≤ k, which is related to

the Rabin accepting condition of Aψ that states in Li should be visited finitely often

and states in Ki be visited infinitely often. We have

Prmax
M,s(ψ) = Prmax

M⊗Aψ ,(s,q)(reach(s,q)(T))

where state (s, q) ∈ T if and only if (s, q) appears in some accepting end components of

M⊗Aψ. Thus, verifying probabilistic LTL specifications for PAs reduces to computing

probabilistic reachability of accepting end components.

Verifying Probabilistic Safety Properties

Recall that we can represent a probabilistic safety property as P≥ p[ψ] or 〈G〉≥p. Model

checking P≥ p[ψ] for PAs just follows the LTL verification techniques. We now describe

how to verify 〈G〉≥p on a PA M. Recall from Section 3.3.1 that M|= 〈G〉≥p if and

only if Prmin
M (G) ≥ p. The computation of Prmin

M (G) reduces to checking probabilistic

reachability in the product M⊗ Gerr , where Gerr is a DFA recognising all the bad

prefixes of regular safety property G.

Given a PAM=(S, s, αM, δM, L) and a DFAGerr=(Q, q, αG, δG, F) with αG ⊆ αM,

their product is a PAM⊗Gerr = (S×Q, (s, q), αM, δ′, L′), where the transition function

δ′ is defined such that we have (s, q)
a−→ µ× ηq′ if and only if one of the following holds:

• s a−→ µ, q′ = δG(q, a) and a ∈ αG

• s a−→ µ, q′ = q and a /∈ αG

and L′((s, q)) = L(s)∪{err} if q ∈ F and L′((s, q)) = L(s) otherwise. Let T be the set

41

3. Preliminaries

of states labelled with err in M⊗Gerr . It is proved in [KNPQ10] that

Prmin
M (G) = 1− Prmax

M⊗Gerr (reach(T))

and thus,

M|= 〈G〉≥p ⇔ Prmax
M⊗Gerr (reach(T)) ≤ 1− p

where Prmax
M⊗Gerr (reach(T)) is the maximum probability of reaching error states T from

the initial state (s, q) of M⊗Gerr .

Multi-objective Model Checking

The multi-objective model checking approach allows us to analyse the trade-offs between

several linear-time properties, e.g. “the probability of reaching error states is at most

0.02 and, with probability at least 0.9, the process always stays in good states”.

Given k predicates of the form PrσM,s(ψi) ∼i pi where ψi is an LTL formula,

pi ∈ [0, 1] is a rational probability bound and ∼i ∈ {≥, >}, then, using the techniques in

[EKVY07], we can verify whether there exists an adversary satisfying their conjunction

∃σ∈AdvM . ∧ki=1 (PrσM,s(ψi) ∼i pi)

by a reduction to a linear programming problem. The generalisations to checking

existential or universal queries over a Boolean combination of predicates for which

∼i∈ {≥, >,≤, <} are also available. In all cases, if an adversary satisfying the predicates

exists, then it can also be constructed.

We can also check quantitative multi-objective queries [KNPQ10, FKN+11]. Given

a multi-objective LTL query θ = ∧ki=1PrσM,s(ψi) ∼i pi and an additional LTL formula

ψ, we can compute the maximum probability of satisfying ψ whilst maintaining the

42

3. Preliminaries

satisfaction of θ:

Prmax
M,s(ψ | θ) = sup{PrσM,s(ψ) |σ ∈ AdvM ∧ σ, s |= θ)} .

This is done by adding an objective function to the set of linear inequalities given by θ

and solving the new linear program.

3.4 Probabilistic Counterexamples

Unlike in the non-probabilistic setting, where the violation of a property such as “an

error never occurs” can be captured by a counterexample of a single finite path to an

error state, the probabilistic counterexamples are often more complex. In this section,

we introduce the notion of probabilistic counterexamples for DTMCs based on [HKD09].

Probabilistic counterexamples for PAs will be introduced later in Section 4.2.

Recall from Section 3.3.2 that model checking DTMCs against LTL formulae or

probabilistic safety properties reduces to checking probabilistic reachability properties.

Therefore, in the following, we only consider finding counterexamples for the violation of

(upper bound) probabilistic reachability properties of DTMCs. As shown in [HKD09],

the generation of counterexamples for lower bound probabilistic reachability properties

of DTMCs reduces to the case of upper probability bounds.

Let us consider the violation of properties of the form P≤ p[3T], where p is a proba-

bility value and T is a set of target states. The property is refuted in state s of DTMC

D whenever the total probability mass of all paths that start in s and reach any state

s′ ∈ T exceeds p. Let FPathsmin
D,s (T) be the set of finite paths in DTMC D that start in

s and end in a target state s′ ∈ T . Any finite path ρ ∈ FPathsmin
D,s (T) is an evidence for

violating P≤ p[3T] in state s of D, because it might contribute to the probability mass

of violation. And the evidence that contributes the most (i.e. the one with the largest

path probability) is called the strongest evidence.

43

3. Preliminaries

A counterexample for violating P≤ p[3T] in state s is a set C of evidences such that

C ⊆ FPathsmin
D,s (T) and PrD,s(c) > p. Intuitively, for a probabilistic property such as

“an error state is reached with probability at most p”, a single path may not be enough

to serve as a counterexample on its own; indeed, a probabilistic counterexample usually

consists of a set of such paths whose the combined probability exceeds p. In practice,

we are interested in generating counterexamples that are succinct in representation

and most distinctive to indicate the violation. The notion of smallest counterexample

is thus defined as the one that deviates most from the probability bound p given that

it has the smallest number of paths.

Generating strongest evidences or smallest counterexamples for P≤ p[3T] on a

DTMC reduces to finding (k-)shortest paths as follows. Firstly, we need to adapt

the DTMC D by adding an extra state t such that all outgoing transitions from a tar-

get state s ∈ T are replaced by a transition to t with probability 1. The next step is to

convert the adapted DTMC D′ = (S, s,P, L) into a weighted digraph GD′ = (V,E,w),

where the vertex set V = S, the edges set E is defined by (v, v′) ∈ E iff P(v, v′) > 0,

and the edge weight between two vertices v, v′ is w(v, v′) = − log P(v, v′). Then, find-

ing the strongest evidence for violating P≤ p[3T] in state s of DTMC D reduces to the

shortest path problem, i.e. determine a finite path ρ from s to t such that w(ρ) ≤ w(ρ′)

for any path ρ′ from s to t in GD′ , which can be solved using various algorithms (e.g.

Dijkstra’s algorithm [Dij59]). Finding the smallest counterexample reduces to the k-

shortest paths (KSP) problem, i.e. finding k distinct paths ρ1, . . . , ρk between s and t in

GD′ such that (1) for 1 ≤ i < j ≤ k, w(ρi) ≤ w(ρj) and (2) for every ρ between s and t,

if ρ /∈ {ρ1, . . . , ρk}, then w(ρ) ≥ w(ρk). Note that the value of k should be determined

on-the-fly, because the number of paths in the smallest counterexample is not known

as a priori. Eppstein’s algorithm [Epp98] can be applied to solve this problem. In

this thesis (Section 6.4), we also implement a symbolic solution [GSS10] to the KSP

problem based on the data structure of MTBDDs.

44

3. Preliminaries

0.8
s
1

s
0

s
3

0.2

s
2

0.8

1.0

1.0

0.2

log 1.25
s1s0

s3

log 5

s2

log 1.25

0

0

log 5

t

Figure 3.5: A DTMC D and its corresponding weighted digraph GD′

Example 3.11 Consider the DTMC D shown in Figure 3.5. We want to verify if its

initial state s0 satisfies the probabilistic reachability property P≤ 0.8[3s3]. We first adapt

D into the DTMC D′ by adding an extra state t and replacing the self-loop on state

s3 in D with a transition s3
1.0−−→ t in D′. Then we convert D′ into a weighted digraph

GD′ as shown Figure 3.5, by taking the negation of the logarithm of the corresponding

transition probabilities in D′ as the edge weights. The shortest path from the initial

state s0 to t in GD′ is s0 → s1 → s2 → s3 → t, thus the strongest evidence for the

violation of P≤ 0.8[3s3] is the finite path ρ1 = s0
0.8−−→ s1

0.8−−→ s2
1.0−−→ s3 with probability

Pr(ρ1) = 0.64. The second shortest path from s0 to t in GD′ is s0 → s2 → s3 → t, and

the corresponding path in D is ρ2 = s0
0.2−−→ s2

1.0−−→ s3 with probability Pr(ρ2) = 0.2.

Since Pr(ρ1) + Pr(ρ2) = 0.84 > 0.8, the smallest counterexample for P≤ 0.8[3s3] in

state s0 of DTMC D is C = {ρ1, ρ2}.

3.5 Learning Algorithms

In this section, we describe several active learning algorithms which are used in this

thesis for learning assumptions. These algorithms all follow the active learning model, in

which a learner actively interacts with a teacher by asking membership and equivalence

queries, though the queries are different depending on the algorithm used.

We introduce, firstly, the L* algorithm for learning minimal DFAs in Section 3.5.1,

then the NL* algorithm for learning residual finite-state automata (RFSAs), a sub-

45

3. Preliminaries

class of NFAs, in Section 3.5.2, and finally the CDNF algorithm for learning arbitrary

Boolean functions in Section 3.5.3.

3.5.1 The L* Algorithm

The L* algorithm aims to learn a DFA with a minimal number of states that accepts an

unknown regular language. It proposes two kinds of queries to a teacher : membership

queries (i.e. whether some word is in the target language) and equivalence queries (i.e.

whether a conjectured DFA accepts the target language). If the conjectured DFA is not

correct, the teacher would return a counterexample to L* to refine the automaton being

learnt. The L* algorithm was first proposed by Angluin [Ang87a] and later improved

by Rivest and Schapire [RS93]. We describe both versions of the algorithm below.

Angluin’s L* Algorithm

Algorithm 1 shows the pseudo code of the original L* algorithm by Angluin. We

use this algorithm in Chapter 4 to learn assumptions for compositional verification of

asynchronous probabilistic systems.

At the implementation level, L* maintains an observation table (U, V, T). Here U

is a nonempty finite prefix-closed set of words, V is a nonempty finite suffix-closed set

of words, and T is a finite function mapping ((U ∪U ·α) ·V)→ {+,−}, where α is the

alphabet of the target language and +,− represent whether or not a word is accepted

by the target language. The observation table can be visualised as a two-dimensional

array with rows labelled by elements of (U ∪ U · α) and columns labelled by elements

of V , while the entry for row u and column v is equal to T (uv).

As shown in Algorithm 1, L* initially sets U, V to {ε} where ε is the empty word

and asks membership queries to fill T (w) for all words w ∈ (U ∪U ·α) ·V . It then, from

line 3 to 14, makes sure that the observation table (U, V, T) is closed (i.e. for all u ∈ U ,

v ∈ V and a ∈ α, there is a u′ ∈ U such that T (uav) = T (u′v)) and consistent (i.e.

46

3. Preliminaries

Algorithm 1 Angluin’s L* learning algorithm [Ang87a]

Input: alphabet α, a teacher who knows the target language L
Output: DFA A

1: initialise (U, V, T): let U = V = {ε}, ask membership queries and fill T (w) for all
words w ∈ (U ∪ U · α) · V

2: repeat
3: while (U, V, T) is not closed or not consistent do

4: if (U, V, T) is not closed then
5: find u ∈ U , a ∈ α, and v ∈ V such that T (uav) 6= T (u′v) for any u′ ∈ U ,
6: add ua to U ,
7: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
8: end if
9: if (U, V, T) is not consistent then

10: find a ∈ α, v ∈ V and u, u′ ∈ U s.t. T (uv) = T (u′v) but T (uav) 6= T (u′av),
11: add av to V ,
12: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
13: end if
14: end while
15: construct a conjectured DFA A and ask an equivalence query
16: if a counterexample c ∈ (L(A)\L) ∪ (L\L(A)) is provided then
17: add c and all its prefixes to U ,
18: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
19: else
20: the correct DFA A has been learnt such that L(A) = L
21: end if
22: until L(A) = L
23: return A

for all u, u′ ∈ U , v ∈ V and a ∈ α, T (uv) = T (u′v) implies T (uav) = T (u′av)). Once

(U, V, T) is both closed and consistent, L* builds a conjectured DFA A = (S, s, α, δ, F),

where the set of states S corresponds to the set of distinct rows labelled by u ∈ U ,

the initial state s corresponds to the row labelled by the empty word ε, the transition

relation δ is defined as δ(u, a) = u′ with ∀v ∈ V : T (uav) = T (u′v), and the accepting

set F consists of states corresponding to u ∈ U with T (u) = +. An equivalence query

is made for A in line 15. If the teacher’s answer is “yes”, then A accepts the target

language L, i.e. L(A) = L, and the algorithm terminates; otherwise, a counterexample

word c that witnesses the symmetric difference of L(A) and L is provided. L* adds c

47

3. Preliminaries

and all its prefixes to U , and extends T for all words w ∈ (U∪U ·α)·V using membership

queries. It then continues to make sure that (U, V, T) is closed and consistent. The

above procedure repeats until a correct DFA A is learnt.

L* is guaranteed to terminate with a minimal DFA for a target regular language

[Ang87a]. The conjectured DFAs built by L* strictly increase in size, that is, each

conjectured DFA is smaller than the next one and all incorrect DFAs are smaller than

the correct DFA A. Therefore, if A has n states, L* makes at most n− 1 equivalence

queries. Moreover, the number of membership queries is bounded by O(kmn2) where

k is the size of alphabet α and m is the length of the longest counterexample.

T1 ε

ε −
a −
b −

T2 ε

ε −
b −
ba +

a −
bb +
baa −
bab −

T3 ε a

ε − −
b − +
ba + −
a − −
bb + +
baa − −
bab − +

T4 ε a

ε − −
b − +
ba + −
bb + +

a − −
baa − −
bab − +
bba + −
bbb + +

Figure 3.6: Learning language L = α∗bα with Angluin’s L*

s
0

s
1

a

a

a

a

b

b
b

b

s
2

s
3

Figure 3.7: Minimal DFA accepting language L = α∗bα with 4 states

Example 3.12 Figure 3.6 shows a run of Angluin’s L* to learn a regular language L =

α∗bα over the alphabet α = {a, b}. The observation table T1 is closed and consistent, but

does not represent the correct DFA because the word ba, which is in L, is not accepted.

Therefore, L* adds the word ba and its prefix b to U . The updated observation table T2

48

3. Preliminaries

is closed but not consistent, because T (ε) = T (b) but T (a) 6= T (ba). A column labelled

by a is added in T3. However, T3 is not closed, since there is no equivalent row labelled

by elements of U for bb. After making T3 closed, we obtain T4, which is both closed and

consistent. Based on T4, a DFA with 4 states is constructed as shown in Figure 3.7.

It passes the equivalence query and, therefore, is the minimal DFA for language α∗bα.

In this example run, the total number of equivalence queries is 2 and the number of

membership queries is 18 (given by the entries of T4).

The Improved L* Algorithm

Rivest and Schapire [RS93] proposed a variant of Angluin’s L* algorithm to improve

the worst-case number of membership queries. In this thesis, we call this algorithm the

improved L* and use it to learn assumptions in Section 3.6.1.

Algorithm 2 shows the pseudo code of the improved L* algorithm. It maintains

an observation table (U, V, T) in the same way as Angluin’s L*. Indeed, the whole

learning process is very similar to that of Angluin’s algorithm. There are two essential

differences. Firstly, when a counterexample c is found in the improved L*, only a suffix

v of c would be added to V to update the observation table (line 11-13); on the contrary,

in Angluin’s L*, the counterexample word c and all its prefixes would be added to U

(see line 17 of Algorithm 1). Secondly, the improved L* only checks whether (U, V, T)

is closed, as there is no need to check the consistency condition because it is satisfied

by construction; however, in Angluin’s L*, both closedness and consistency conditions

have to be checked explicitly.

Now we describe how to analyse a counterexample word c and find a suffix v to

update (U, V, T). This is done by finding the earliest point in c at which the conjectured

DFA A and the DFA that would accept L diverge in behaviour. This point i is found

by determining ζi 6= ζi+1, where ζi is computed as follows:

1. for 0 ≤ i ≤ |c|, let words pi, ri be such that c = pi · ri, and |pi| = i;

49

3. Preliminaries

Algorithm 2 The improved L* learning algorithm by Rivest and Schapire [RS93]

Input: alphabet α, a teacher who knows the target language L
Output: DFA A

1: initialise (U, V, T): let U = V = {ε}, ask membership queries and fill T (w) for all
words w ∈ (U ∪ U · α) · V

2: repeat
3: while (U, V, T) is not closed do

4: find u ∈ U , a ∈ α, and v ∈ V such that T (uav) 6= T (u′v) for any u′ ∈ U ,
5: add ua to U ,
6: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
7: end while
8: construct a conjectured DFA A and ask an equivalence query
9: if a counterexample c ∈ (L(A)\L) ∪ (L\L(A)) is provided then

10: determine a suffix v of c that distinguishes L(A) and L ,

11: add v to V ,
12: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
13: else
14: the correct DFA A has been learnt such that L(A) = L
15: end if
16: until L(A) = L
17: return A

2. let si be the state reached in A after the first i actions of c have been executed;

by construction, this state si corresponds to a row u ∈ U of the observation table;

3. perform a membership query on the word u · ri;

4. return the result of the membership query as ζi.

By using binary search, the point i where ζi 6= ζi+1 can be found in O(logm) queries

(m is the length of the counterexample c).

Therefore, the worst-case number of overall membership queries for the improved

L* has a bound of O(kn2 + n logm) where n is the size of a minimal DFA and k is

the size of the alphabet α. Recall that the membership queries of Angluin’s L* are

bounded by O(kmn2), so there is indeed a significant improvement.

Example 3.13 Figure 3.8 shows a run of the improved L* to learn a regular language

α∗bα over the alphabet α = {a, b}, which is the language learnt in Example 3.12. The

50

3. Preliminaries

T1 ε

ε −
a −
b −

T2 ε a

ε − −
a − −
b − +

T3 ε a

ε − −
b − +
ba + −
bb + +

a − −
baa − −
bab − +
bba + −
bbb + +

Figure 3.8: Learning language L = α∗bα with the improved L*

first conjectured DFA based on the closed and consistent observation table T1 does not

pass the equivalence query, because it does not accept the word ba, which is actually in

the target language. Unlike Angluin’s L*, which adds the counterexample ba and all its

prefixes to U , the improved L* adds a suffix a of ba to the column V and obtains T2. The

updated observation table T2 is not closed, because there is no row in U equivalent to

row(b). By making T2 closed, a new T3 is built. Note that this T3 is exactly the same as

T4 shown in Figure 3.6. Therefore, the improved L* learns the same minimal DFA for

language α∗bα as shown in Figure 3.7, using 2 equivalence queries and 18 membership

queries. Compared to the run of Angluin’s L* in Example 3.12, the improved L* does not

show any improvement over the number of membership queries in this simple example.

However, it may improve the worst-case scenario in some large examples.

3.5.2 The NL* Algorithm

The NL* algorithm [BHKL09] is the first active learning algorithm for residual finite-

state automata (RFSAs) [DLT02, DLT04], a subclass of NFAs. RFSAs share important

properties with DFAs: for every regular language, there is a unique minimal RFSA

accepting it. This characterisation enables L*-style learning of RFSAs. Indeed, RFSAs

are the preferred class for learning regular languages, because they can be exponentially

more succinct than the corresponding DFAs [DLT02] (for example, the minimal DFA

51

3. Preliminaries

recognising word α∗0αn has 2n states while its equivalent RFSA only needs n+2 states).

We use NL* to learn assumptions represented as RFSAs later in Section 4.4.1.

For a regular language L over alphabet α, a language L′ ⊆ α∗ is a residual language

of L if there is a u ∈ α∗ with L′ = u−1L = {v ∈ α∗|uv ∈ L}. We denote by Res(L) the

set of residual languages of L. A residual finite-state automaton (RFSA) is an NFA

whose states correspond to residual languages of the language it recognised. Formally,

given a RFSA A = (S, s, α, δ, F), for each state s ∈ S, let Ls be the set of words w ∈ α∗

with δ(s, w)∩F 6= ∅, then we have Ls ∈ Res(L(A)). Intuitively, the states of an RFSA

are a subset of the states of the corresponding minimal DFA; with nondeterminism,

certain states of the DFA are no longer needed, since they correspond to the union of

languages of other states. A residual is composed if it is the union of other residuals;

otherwise, it is called prime.

Similarly to L*, the NL* algorithm also maintains an observation table (U, V, T)

where U is a prefix-closed set of words, V is a suffix-closed set of words, and T is a finite

function mapping ((U∪U ·α)·V)→ {+,−}. We associate each word u ∈ (U∪U ·α) with

a mapping row(u) : V → {+,−} such that row(u)(v) = T (uv). We denote by Rows

the set of rows in observation table (U, V, T), and by RowsU the set {row(u)|u ∈ U}.

The join (r1 t r2) : V → {+,−} of two rows r1, r2 ∈ Rows is defined component-

wise for each v ∈ V : (r1 t r2) · v = (r1 · v) t (r2 · v) where (− t −) = − and

(+ t +) = (+ t −) = (− t +) = +. A row r ∈ Rows is called composed if there are

rows r1, . . . , rn ∈ (Rows \ {r}) such that r = r1 t · · · t rn. Otherwise, r is called a

prime row. The set of prime rows in (U, V, T) is denoted by Primes. We denote by

PrimesU = Primes ∩ RowsU . For two rows r, r′ ∈ Rows, r is covered by r′, denoted

by r v r′, if for all v ∈ V , T (rv) = + implies T (r′v) = +; moreover, if r′ 6= r, then r is

strictly covered by r′, denoted as r < r′.

Algorithm 3 illustrates the pseudo code of NL*, which follows a similar pattern

as Angluin’s L* (see Algorithm 1). Starting with the sets U, V only containing the

52

3. Preliminaries

Algorithm 3 The NL* learning algorithm [BHKL09]

Input: alphabet α, a teacher who knows the target language L
Output: RFSA A

1: initialise (U, V, T): let U = V = {ε}, ask membership queries and fill T (w) for all
words w ∈ (U ∪ U · α) · V

2: repeat
3: while (U, V, T) is not RFSA-closed or not RFSA-consistent do

4: if (U, V, T) is not RFSA-closed then
5: find u ∈ U and a ∈ α such that row(ua) ∈ Primes\PrimesU ,
6: add ua to U ,
7: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
8: end if
9: if (U, V, T) is not RFSA-consistent then

10: find u ∈ U, a ∈ α and v ∈ V such that T (uav) = − and T (u′av) = + for
some u′ ∈ U with row(u′) v row(u),

11: add av to V ,
12: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
13: end if
14: end while
15: construct a conjectured RFSA A and ask an equivalence query
16: if a counterexample c ∈ (L(A)\L) ∪ (L\L(A)) is provided then
17: add c and all its suffixes to V ,
18: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
19: else
20: the correct RFSA A has been learnt such that L(A) = L
21: end if
22: until L(A) = L
23: return A

empty word ε, the NL* fills the observation table incrementally by asking membership

queries for all words w ∈ (U ∪U ·α) · V . Then, from line 3 to 14, NL* makes sure that

the observation table (U, V, T) is RFSA-closed (i.e. for each row r ∈ (Rows\RowsU),

r =
⊔{r′ ∈ PrimesU |r′ v r}) and RFSA-consistent (i.e. for all u, u′ ∈ U and a ∈

α, row(u) v row(u) implies row(u′a) v row(ua)). Once (U, V, T) is both RFSA-

closed and RFSA-consistent, a conjectured RFSA A = (S, s, α, δ, F) is constructed

such that the states set S corresponds to the set of rows in PrimesU , the initial state

s corresponds to row(ε), the transition relation δ is defined by δ(row(u), a) = {r ∈

S|r v row(ua)} for u ∈ U with row(u) ∈ S and a ∈ α, and the accepting state set

53

3. Preliminaries

T1 ε

ε −
b −
a −

T2 ε ba a

ε − + −
a − + −
b − + +

T3 ε ba a

ε − + −
b − + +
ba + + −
a − + −
bb + + +
baa − + −
bab − + +

Figure 3.9: Learning language L = α∗bα with NL*

s
0 s

1

a,b

b

a,b

a,b

a,b

b

b

s
2

Figure 3.10: Minimal RFSA accepting language L = α∗bα with 3 states

F = {r ∈ S|row(r)(ε) = +}. An equivalence query is asked for A, and if the teacher’s

answer is “yes”, then the correct RFSA has been learnt and the algorithm terminates;

otherwise, a counterexample c illustrating the difference between the language L(A)

and the target L is provided. NL* adds c and all its suffixes to V and continues the

learning by updating (U, V, T).

Let n be the number of states of the minimal DFA for a regular language, m be the

length of the longest counterexample, and k be the size of alphabet α. The theoretical

complexity of the NL* algorithm is restricted by at most O(n2) equivalence queries and

O(kmn3) membership queries, which is worse than the complexity of the L* algorithm

(see Section 3.5.1). However, NL* often needs fewer equivalence and membership

queries than L* in practice [BHKL09].

Example 3.14 Figure 3.9 shows a run of NL* to learn a regular language L = α∗bα

over alphabet α = {a, b}. The observation table T1 is RFSA-closed and RFSA-

consistent, but its corresponding RFSA does not accept the word ba, which actually

belongs to the language L. Thus, the counterexample word ba and its suffix a are added

54

3. Preliminaries

to V . The updated observation table T2 is not RFSA-closed, because row(b) cannot be

represented using row(ε). By making T2 RFSA-closed, a new observation table T3 is

obtained. T3 is both RFSA-closed and RFSA-consistent, and its corresponding RFSA

(Figure 3.10) passes the equivalence query. We can observe that the size of this RFSA

(3 states) is smaller than the corresponding minimal DFA (4 states, see Figure 3.7).

The total number of equivalence queries of this NL* run is 2, and the number of mem-

bership queries is 22 (given by the entries of T3 and the additional check for determining

counterexample suffix).

3.5.3 The CDNF Algorithm

The CDNF algorithm [Bsh95] is an exact learning algorithm for Boolean functions. It

learns a formula in conjunctive disjunctive normal form (CDNF) for a target Boolean

function λ(x) over a fixed set of Boolean variables x. Later, we use this algorithm to

learn assumptions for systems represented by Boolean functions in Section 3.6.2 and

Chapter 6.

Before we describe the CDNF algorithm, we first introduce some terminology. We

call a Boolean variable or its negation a literal. A formula is in disjunctive normal form

(DNF) if it is a disjunction of conjunctions of literals, and a formula is in conjunctive

normal form (CNF) if it is a conjunction of disjunctions of literals. A CDNF formula

is a conjunction of DNF formulae.

Similarly to the L* and NL* algorithms introduced in previous sections, the CDNF

algorithm also follows the active learning model. It interacts with a teacher who knows

about the target function λ(x) via asking membership and equivalence queries. The

membership query, denoted MQ(ν), asks whether a valuation ν over Boolean variables

x satisfies the target function λ(x). We use λ[ν] to denote the result of evaluating

λ(x) by replacing each x ∈ x with ν(x). If λ[ν] = true, then the teacher answers

the membership query with “yes”, denoted by MQ(ν) → YES ; otherwise, the teacher

55

3. Preliminaries

Algorithm 4 The CDNF learning algorithm [Bsh95]

Input: a teacher who knows about the target Boolean function λ(x)
Output: a CDNF formula θ(x) such that θ(x) = λ(x)

1: t := 0
2: if EQ(true)→ YES then
3: θ(x) := true
4: else
5: let ν be the counterexample obtained from EQ(true)→ ν
6: t := t+ 1
7: (Ht, St, at) := (false, ∅, ν)
8: if EQ(

∧t
i=1Hi)→ YES then

9: θ(x) :=
∧t
i=1Hi

10: else
11: let ν be the counterexample obtained from EQ(

∧t
i=1Hi)→ ν

12: I := {i |Hi[ν] = false}
13: if I = ∅ then
14: goto line 6
15: else
16: for each i ∈ I do
17: s := walkTo(ai, ν,x)
18: Si := Si ∪ {s⊕ ai}
19: end for
20: for each 1 ≤ i ≤ t do
21: Hi := MDNF (Si)[x→ x⊕ ai]
22: end for
23: end if
24: end if
25: goto line 8
26: end if
27: return θ(x)

answers “no”, denoted by MQ(ν) → NO . The equivalence query, denoted EQ(θ(x)),

asks whether a conjectured Boolean function θ(x) is equivalent to λ(x). If so, the

teacher answers “yes”, denoted by EQ(θ(x))→ YES ; otherwise, the teacher provides a

counterexample ν, which is a valuation over Boolean variables x such that θ[ν] 6= λ[ν],

denoted by EQ(θ(x))→ ν.

At the implementation level, unlike L* and NL*, the CDNF algorithm does not

maintain an observation table. Instead, it builds a conjunction of DNF formulae as

56

3. Preliminaries

a conjecture for each equivalence query. As illustrated in Algorithm 4, the algorithm

uses a variable t to record the number of DNF formulae in the current conjecture. The

initial value of t is set as 0 (line 1), and the corresponding conjecture is degenerated

to true. If the answer to the equivalence query EQ(true) is YES (line 2), then true is

a representation of the target function λ(x) and the learning terminates. Otherwise,

the teacher would provide a counterexample ν such that λ[ν] = false. The learning

algorithm continues to refine the conjecture by adding a new DNF formula (line 6).

The algorithm uses three variables (Hi, Si, ai) to keep track of every DNF formula

in the conjecture, where Hi represents the i-th DNF formula, Si is a set of valuations

over Boolean variables x, and ai is just one valuation over x. When a new DNF formula

Ht is added to the conjecture, the algorithm sets Ht as false, St as an empty set ∅, and

the valuation at = ν (line 7). If the current conjecture
∧t
i=1Hi yields YES for the

equivalence query (line 8), then the algorithm terminates and returns the learnt CDNF

formula as θ(x) =
∧t
i=1Hi.

If, on the other hand, the equivalence query EQ(
∧t
i=1Hi) fails, then the algorithm

refines the conjecture with the following procedure (line 10-24 of Algorithm 4). Given

a counterexample ν of EQ(
∧t
i=1Hi), the algorithm checks if the set {i |Hi[ν] = false}

is empty (line 12-13). If it is an empty set, then no DNF formula Hi in the current

conjecture can be further refined and the conjecture has to be updated by adding a

conjunction of a new DNF formula (line 14). If there exists some Hi[ν] = false, then the

algorithm refines the i-th DNF formula by adding s⊕ai to the set Si (line 18), where s is

the result of walkTo(ai, ν,x) (see Algorithm 5) and ⊕ is the component-wise exclusive-

or operator (we define that by (s ⊕ ai)(x) = s(x) ⊕ ai(x) for each Boolean variable

x ∈ x). The refined i-th DNF formula Hi is derived by function MDNF (Si)[x→ x⊕ai]

(line 21), where MDNF (Si) =
∨
ν∈SiMDNF (ν) and MDNF (ν) =

∧
x for all x ∈ x

with ν(x) = true. Moreover, given a Boolean function θ(x), a new Boolean function

θ[x→ x⊕ai] is obtained by replacing x ∈ x with ¬x if ai(x) = true. The algorithm then

57

3. Preliminaries

Algorithm 5 Function walkTo(a, ν,x) used in Algorithm 4

Input: valuations a, ν over a set of Boolean variables x
Output: a valuation ν ′ closest to a such that MQ(ν ′)→ YES

1: ν ′ := ν, j := 1
2: while j ≤ |x| do
3: if ν ′(xj) = a(xj) then
4: j := j + 1
5: else
6: ν ′(xj) := a(xj)
7: if MQ(ν ′)→ NO then
8: ν ′(xj) := ¬a(xj), j := j + 1
9: else

10: j := 0
11: end if
12: end if
13: end while
14: return ν ′

asks a new equivalence query EQ(
∧t
i=1Hi) for the refined conjecture (line 25). The

learning continues until a correct representation θ(x) that is equivalent to the target

function λ(x) is learnt.

We now explain the details of walkTo(a, ν,x) as shown in Algorithm 5. The func-

tion walkTo(a, ν,x) computes a valuation ν ′ over Boolean variables x such that ν ′

is the closest (measured in Hamming distance) valuation to a and MQ(ν ′) → YES .

Starting with ν ′ = ν, the algorithm finds a variable x ∈ x with ν ′(x) 6= a(x) and flips

the value of ν ′(x). If the membership query MQ(ν ′) of the new valuation ν ′ yields NO ,

the algorithm reverts ν ′(x) to its old value and keeps flipping another value; otherwise,

the algorithm continues to flip other values of ν different from a.

As proved by [Bsh95], the CDNF algorithm learns an unknown Boolean function

λ(x) within O(mnk2) membership and O(mn) equivalence queries, where m (resp. n)

is the minimal size of all CNF (resp. DNF) formulae representing λ(x), and k is the

size of the Boolean variable set x.

Example 3.15 Figure 3.11 shows a run of the CDNF algorithm to learn a Boolean

58

3. Preliminaries

EQ answer I Si Hi ai

true ν(x1x2) = 00 S1 = ∅ H1 = false a1(x1x2) = 00

false ν(x1x2) = 10 {1} S1 = {10} H1 = x1

x1 ν(x1x2) = 11 ∅ S2 = ∅ H2 = false a2(x1x2) = 11

x1 ∧ false ν(x1x2) = 10 {2} S2 = {01} H2 = ¬x2

x1 ∧ ¬x2 YES

Figure 3.11: Learning Boolean function x1 ∧ ¬x2 with the CDNF algorithm

function x1 ∧ ¬x2. The algorithm first makes an equivalence query EQ(true), and

obtains a counterexample valuation ν(x1x2) = 00. Since t = 1, it sets S1 = ∅, H1 =

false and a1(x1x2) = ν(x1x2) = 00. Next, an equivalence query EQ(false) is made

and another counterexample ν(x1x2) = 10 is returned. The set I equals {1} because

H1[10] = false. The algorithm now walks from ν(x1x2) = 10 to a1(x1x2) = 00, and

the result is ν(x1x2) = 10. The set S1 is expanded to S1 = ∅ ∪ {10 ⊕ 00} = {10},

and H1 is refined as x1. A counterexample ν(x1x2) = 11 is provided as the answer

to equivalence query EQ(x1). Since H1[11] 6= false, we have I = ∅ and the value of t

increases to 2, which means that a second approximation H2 = false would be added.

The algorithm continues by asking equivalence query for H1 ∧H2, i.e. EQ(x1 ∧ false).

With the counterexample ν(x1x2) = 10, H2 is refined to ¬x2. Now, the conjunction of

approximations H1 and H2 gives us the target Boolean function x1 ∧ ¬x2. Therefore,

the algorithm terminates.

3.6 Learning Non-Probabilistic Assumptions

In this section, we describe two settings of learning non-probabilistic assumptions for

compositional verification. The first setting is taken from [CGP03], in which the L*

algorithm (Section 3.5.1) is used to learn assumptions represented as DFAs. The second

setting is based on [CCF+10], where the CDNF algorithm (Section 3.5.3) is used to learn

assumptions encoded implicitly as Boolean functions. In the following presentation, we

use slightly different notations from the original papers for consistency reasons.

59

3. Preliminaries

3.6.1 Learning assumptions using the L* Algorithm

[CGP03] shows how the L* learning algorithm could be adapted to learn assumptions

for compositional verification of finite labelled transition systems (LTSs), which can be

viewed as finite-state automata with all states accepting (Section 3.1).

The compositional verification is based on the following asymmetric assume-

guarantee reasoning rule:

〈true〉M1〈A〉
〈A〉M2〈G〉

〈true〉M1 ‖ M2〈G〉

(Asym-Lts)

where components M1,M2 and the assumption A are all LTSs, and G is a regular

safety property (see Section 3.3.1). The assume-guarantee rule reasons about triples

of the form 〈A〉M〈G〉, which means that “whenever component M is part of a sys-

tem satisfying the assumption A, then the system is guaranteed to satisfy property

G”. The satisfaction check of 〈A〉M〈G〉 reduces to the standard (non-probabilistic)

model checking of A‖M|=G. When the assumption is absent from the triple, denoted

〈true〉M〈G〉, it means that “the componentM always satisfies the property G”. Thus,

based on the assume-guarantee rule (Asym-Lts), verifying a safety property G on a

two-component LTSM1‖M2 reduces to two separate checks on the models ofM1 and

A‖M2, which can be more efficient if the size of A is smaller than M1.

L* is adapted to automatically learn the assumption A for rule (Asym-Lts). This is

done by phrasing the problem in a language-theoretic setting: the set of (finite) traces

of A forms a regular language over the alphabet α = αM1 ∩ (αM2 ∪ αG), where αM1 ,

αM2 and αG are the alphabets of M1, M2 and G, respectively. The target language

L is defined by the notion of weakest assumption, i.e. the set of all possible traces of a

process that, when put in parallel with M2, do not violate the regular safety property

G. The approach presented in [CGP03] uses the improved L* algorithm by Rivest and

60

3. Preliminaries

Schapire (see Section 3.5.1), and uses the process algebra model checker LTSA [JJ99]

as a teacher to answer membership and equivalence queries.

A membership query asks whether a trace t is in the target language L. The

teacher answers the query by checking whether t ‖M2 |= G holds, where t denotes

the LTS comprising the single trace t. An equivalence query asks if a conjecture A is

a correct assumption for rule (Asym-Lts). To answer this query, the teacher needs

to check both premises of the rule. The teacher first verifies 〈A〉M2〈G〉 via model

checking A ‖M2 |=G. If a violation and a counterexample trace c is detected, then

the trace c�α (obtained by removing any action not in α from c) is returned to L* to

refine the conjecture; otherwise, the teacher continues to verify premise 〈true〉M1〈A〉

via checking M1 |=A. If both premises hold, then A is an assumption of rule (Asym-

Lts) that proves the satisfaction of G on the system M1‖M2. Note that the learnt

assumption A can be stronger than the weakest assumption, i.e. L(A) ⊆ L.

However, if M1 6|=A and a trace c of M1 is found as a counterexample such that

c�α 6∈ L(A), then the teacher needs to perform a counterexample analysis to determine

whether c would really cause the violation of G on the full systemM1‖M2. This is done

by checking c�α ‖M2 |=G. If it is true, then the trace c�α is in the target language,

i.e. c�α ∈ L. Thus, c�α witnesses a difference between L and L(A), and should be

returned to L* to refine A. On the other hand, if c�α ‖M2 6|=G, then we can claim that

M1 ‖M2 6|=G because c is a trace of M1.

The assumption learning approach described above tends to perform particularly

well in practice when the size of a generated assumption and the size of its alphabet

remain small. There are also a variety of subsequent improvements and extensions

developed beyond this basic technique (see e.g. [PGB+08] for details).

61

3. Preliminaries

3.6.2 Learning assumptions using the CDNF Algorithm

In contrast to L*-based assumption learning approaches, [CCF+10] uses the CDNF

algorithm (Section 3.5.3) to learn assumptions encoded implicitly as Boolean func-

tions. This has the advantage of generating more succinct assumptions than L*-based

methods, and thus is more scalable.

This approach is based on the following assume-guarantee rule:

M1 � A
A‖M2 |=φ

M1‖M2 |=φ

(Asym-Bool)

where Mi = (xi, ιi(xi), δi(xi,x
′
i)) for i = 1, 2 and A = (x1, ιA(x1), δA(x1,x

′
1)) are

transition systems with state variables xi, initial predicates ιi(xi), ιA(x1) and transi-

tion relations δi(xi,x
′
i), δA(x1,x

′
1), and φ is a state predicate over x1 ∪ x2. We say

that M1 refines A, denoted M1 � A, if the following implication conditions hold:

∀x1. ι1(x1) =⇒ ιA(x1) and ∀x1x
′
1. δ1(x1,x

′
1) =⇒ δA(x1,x

′
1). The composition of

M1 and M2 is given by M1‖M2 = (x1 ∪ x2, ι1(x1) ∪ ι2(x2), δ1(x1,x
′
1) ∪ δ2(x2,x

′
2)).

A trace t = ν0ν1 · · · νn of M = (x, ι(x), δ(x,x′)) is a finite sequence of valuations

νj over x such that ι[ν0] = true and δ[νj , νj+1] = true for 0 ≤ j < n. We denote by

Traces(M) the set of traces in M. Let a state predicate φ(x) be a Boolean function

over variables x. We say thatM satisfies φ(x), denotedM|=φ(x) if, for any trace t =

ν0ν1 · · · νn ∈ Traces(M), we have φ[νj] = true for 0 ≤ j ≤ n. A witness toM6|=φ(x) is

a trace ν0ν1 · · · νn of M such that φ[νj] = true for 0 ≤ j < n but φ[νn] = false.

In order to learn the assumption A = (x1, ιA(x1), δA(x1,x
′
1)), two instances of the

CDNF algorithm are used: one for the initial predicate ιA(x1), and the other for the

transition relation δA(x1,x
′
1). Let ν be a valuation over x1. The membership query

MQ(ν) asks if ν is a satisfying valuation for the initial predicate ιA(x1) of an unknown

assumption A. The teacher checks whether ι1[ν] = true holds. If so, then ιA[ν] = true

62

3. Preliminaries

because ∀x1. ι1(x1) =⇒ ιA(x1) due toM1 � A. Thus, the answer to MQ(ν) is YES .

Otherwise, the teacher simply returns NO for the sake of termination. Similarly, given

valuations ν, ν ′ over x1 and x′1 respectively, the answer to membership query MQ(ν, ν ′)

for the target transition relation δA(x1,x
′
1) is YES if δ1[ν, ν ′] = true and NO otherwise.

Let C = (x1, ι(x1), δ(x1,x
′
1)) be a conjectured assumption. The answer to an

equivalence query EQ(ι, δ) is YES if and only if M1 � C and C‖M2 |=φ. To verify

M1 � C, the teacher first checks if ι1(x1)∧¬ι(x1) is satisfiable. If there is a valuation

ν such that ι1[ν] ∧ ¬ι[ν] = true, then ∀x1. ι1(x1) =⇒ ι(x1) does not hold and hence

M1 6� C. The valuation ν is returned to the CDNF learning instance for ιA(x1) as a

counterexample. Similarly, if δ1(x1,x
′
1) ∧ ¬δ(x1,x

′
1) is satisfied by valuation νν ′, then

νν ′ is returned as a counterexample to the CDNF learning of δA(x1,x
′
1). Assume that

M1 � C holds, the teacher continues to check if C‖M2 |=φ by using the interpolation-

based model checking algorithm [McM03]. If the model checking result is true, then

both premises of the assume-guarantee rule are fulfilled, and thus we can conclude

that M1‖M2 |=φ. Otherwise, the model checking algorithm returns a witness t to

C‖M2 |=φ. However, t may not necessarily be a witness for M1‖M2 6|=φ because t�x1

may not be trace of M1, where t�x1 is the restriction of trace t on x1. Therefore, an

additional check is needed to inspect if t�x1 is a trace of M1. If so, then M1‖M2 6|=φ;

otherwise, the conjecture C = (x1, ι(x1), δ(x1,x
′
1)) needs to be modified.

[CCF+10] reports very encouraging experimental results of this assumption learning

approach, which performs better than the monolithic interpolation-based model check-

ing in three parametrised case studies: the MSI cache coherence protocol, synchronous

bus arbiters, and dining philosophers.

63

3. Preliminaries

64

Chapter 4

Learning Assumptions for

Asynchronous Probabilistic

Systems

In this chapter, we present a novel approach to automatically learn probabilistic as-

sumptions for compositional verification of systems modelled as probabilistic automata

(PAs). Such a system is always composed from two or more PA components using

the asynchronous parallel operator, modelling the concurrent behaviour of multiple

probabilistic processes.

Our approach builds upon the compositional verification framework of [KNPQ10],

in which several assume-guarantee reasoning rules for PAs are proposed. In these

rules, assumptions and guarantees are represented as probabilistic safety properties.

This framework has been successfully applied on a set of large case studies, including

cases where non-compositional verification is infeasible due to the size of models. A

limitation, however, is that it requires non-trivial manual effort to construct appropriate

assumptions to enable the compositional verification.

65

4. Learning Assumptions for Asynchronous Probabilistic Systems

We address this limitation by proposing a fully-automated approach to generate

assumptions for the compositional verification framework. Inspired by the work of

learning non-probabilistic assumptions with L* [CGP03, PGB+08], our approach also

uses active learning algorithms (e.g. L* and NL*) to generate a series of conjectured

finite-state automata for assumptions.

In this chapter, we first introduce the compositional verification framework of

[KNPQ10] in Section 4.1. We define the notion of probabilistic counterexamples for

the model checking of PAs in Section 4.2. In Section 4.3, we present our approach for

learning assumptions for a basic assume-guarantee rule (Asym) using the L* algorithm.

Then, we discuss three extensions in Section 4.4, including learning assumptions using

the NL* algorithm and generalisations for learning assumptions for rule (Asym-N) and

(Circ). We illustrate the applicability of our approach through experiments on a range

of case studies in Section 4.5. Finally, we summarise the strengths and weaknesses of

our approach in Section 4.6.

This work was previously published in two jointly authored papers [FKP10] and

[FKP11], and is presented here with more explanations and discussions, additional

running examples and extensions. See Section 1.3 for the credits of this chapter.

4.1 Compositional Verification for PAs

In this section, we introduce the compositional verification framework for PAs based

on [KNPQ10], including a few concepts needed for reasoning about systems consisting

of multiple PA components (e.g. parallel composition, adversary projection), and three

different assume-guarantee rules (Asym), (Asym-N) and (Circ).

66

4. Learning Assumptions for Asynchronous Probabilistic Systems

detect 0.8
s
1

s
0

s
3

0.2

warn

off

s
2

shutdown
0.9

t
1

t
0

t
2t

3

0.1

off

warn

fail

shutdown shutdown

Figure 4.1: A pair of PAs M1,M2 (taken from [KNPQ10])

4.1.1 Concepts for Compositional Reasoning about PAs

Firstly, we describe how two or more PAs (Definition 3.5) are composed together. This

is done by using the standard asynchronous parallel operator defined by [Seg95], where

PAs synchronise over shared actions and interleave otherwise.

Definition 4.1 (Parallel composition of PAs) Let M1,M2 be two PAs such that

Mi = (Si, si, αi, δi, Li) for i = 1, 2. Their parallel composition is the PA M1‖M2 =

(S1×S2, (s1, s2), α1 ∪ α2, δ, L), where the transition relation δ is defined such that

(s1, s2)
a−→ µ1 × µ2 if and only if one of the following holds:

• s1
a−→ µ1, s2

a−→ µ2 and a ∈ α1 ∩ α2

• s1
a−→ µ1, µ2 = ηs2 and a ∈ (α1\α2) ∪ {τ}

• s2
a−→ µ2, µ1 = ηs1 and a ∈ (α2\α1) ∪ {τ}

and L(s1, s2) = L1(s1) ∪ L2(s2).

Example 4.2 Figure 4.1 shows a pair of PAs: M1 represents a sensor which issues

a “warn” signal followed by “shutdown” when it detects some unusual condition, but it

may also issue “shutdown” directly with probability 0.2; M2 represents a device which

powers down correctly when receiving “warn” before “shutdown”, and may cause system

failure with probability 0.1 otherwise. The product PA M1‖M2 obtained from their

parallel composition is shown in Figure 4.2, where M1,M2 synchronise over their

shared actions “warn”, “shutdown” and “off”, and interleave with “detect” and “fail”.

67

4. Learning Assumptions for Asynchronous Probabilistic Systems

warn shutdown

s
0
t
0

0.1

0.9

fail

s
1

s
2
t
0

t
0

s
2
t
1 s

3
t
2

detect

0.8

0.2

s
3

s
3
t
3

t
2

shutdown

off

off

Figure 4.2: Parallel composition product M1‖M2 (taken from [KNPQ12])

We also need the notion of projections to decompose models that are constructed

through parallel composition. Given any state s = (s1, s2) of M1‖M2, the projection

of s onto a component Mi, denoted by s�Mi , equals si. We can extend this notation

to distributions over M1‖M2 in the standard manner. The projection of any path π

of M1‖M2 onto Mi, denoted π�Mi , is the path obtained from π by projecting each

state of π onto Mi and removing all the actions not in the alphabet of Mi together

with the subsequent states. Note that the projection of an infinite path may be finite.

Recall from Section 3.2.2 that PAs use adversaries to resolve the nondeterminism; the

projection of a (complete) adversary σ ofM1‖M2 onto one componentMi is a (partial)

adversary of Mi, formally:

Definition 4.3 (Adversary projection) LetM1,M2 be PAs and σ an adversary of

M1‖M2. The projection of σ onto Mi, denoted σ�Mi, is the (partial) adversary on

Mi, where, for any finite path ρi of Mi, we have σ�Mi(ρi)(a, µi) equals

∑{|PrσM1‖M2
(ρ)·σ(ρ)(a, µ) | π ∈ FPathsσM1‖M2

∧ ρ�Mi=ρi ∧ µ�Mi=µi|}
Pr

σ�Mi
Mi

(ρi)

In the above definition, the projected adversary σ�Mi on component Mi assigns non-

zero probabilities to the action-distribution pair (a, µi) followed the finite path ρi, which

equals to the corresponding probabilities mass on M1‖M2 dividing the probability of

path ρi on Mi under the adversary σ�Mi .

68

4. Learning Assumptions for Asynchronous Probabilistic Systems

detect

0.8 s
1

s
0

s
3

0.2

warn

off

s
2

shutdown

a a a

a

Figure 4.3: PA M1[α] for M1 in Figure 4.1 and α = {a}

Example 4.4 Consider the PA M1‖M2 in Figure 4.2. The projection of state s0t0

onto M2 is t0. The projection of path

ρ = s0t0
detect,0.2−−−−−−→ s2t0

shutdown,0.1−−−−−−−−→ s3t3
fail,1−−−→ s3t3

onto M2 is given by ρ�M2 = t0
shutdown,0.1−−−−−−−−→ t3

fail,1−−−→ t3. Suppose σ is an adversary

of M1‖M2 such that σ(ρ)(fail, µ) = 1, then σ�M2(ρ�M2)(fail, µ′) = 1, where µ is a

distribution over the state space of M1‖M2 with µ(s3t3) = 1, and µ′ is a projection of

µ on M2 such that µ = ηs3 × µ′.

When reasoning about the behavior of multi-component system, the assumption

and guarantee may contain actions that are not present in an individual component.

The notion of alphabet extension adds self-loops labelled with all the actions from an

additional alphabet to all states of a PA M.

Definition 4.5 (Alphabet extension) For any PA M = (S, s, αM, δM, L) and set

of actions α, we extend the alphabet of M to include α, denoted as M[α] = (S, s, αM∪

α, δM[α], L) where δM[α] = δM ∪ {(s, a, ηs) | s∈S ∧ a∈(α\αM)}.

Example 4.6 Consider the PA M1 shown in Figure 4.1 and an alphabet α = {a}.

Figure 4.3 shows a new PA M1[α] as the result of alphabet extension, where self-loops

labelled with actions a are added to all states.

69

4. Learning Assumptions for Asynchronous Probabilistic Systems

Recall from Section 3.6.1 that the compositional verification of (non-probabilistic)

labelled transition systems uses assume-guarantee triples of the form 〈A〉M〈G〉, which

means that “whenever component M is part of a system satisfying the assumption A,

then the system is guaranteed to satisfy property G”. Analogously, for the compo-

sitional verification of PAs, we use probabilistic assume-guarantee triples of the form

〈A〉≥pAM〈G〉≥pG , where the componentM is a PA, and both the assumption 〈A〉≥pA
and the guarantee 〈G〉≥pG are probabilistic safety properties as defined in Section 3.3.1.

Informally, the triple means that “whenever M is part of a system satisfying A with

probability at least pA, then the system is guaranteed to satisfy G with probability at

least pG”. Formally:

Definition 4.7 (Probabilistic assume-guarantee triple for PA) Let M be a

PA, and 〈A〉≥pA, 〈G〉≥pG be a pair of probabilistic safety properties with the alpha-

bets αG ⊆ αA∪αM. Then 〈A〉≥pAM〈G〉≥pG is a probabilistic assume-guarantee triple

with the following semantics:

〈A〉≥pAM〈G〉≥pG ⇔ ∀σ∈AdvM[αA] .
(

PrσM[αA](A)≥pA =⇒ PrσM[αA](G)≥pG
)

where M[αA] is M with its alphabet extended to include αA.

Note that the alphabet extension M[αA] is necessary because the assumption and

guarantee may contain actions that are not in αM when reasoning about systems with

multiple components containing M. To check the safety property G on M[αA], we

restrict the alphabet αG ⊆ αA ∪ αM. We check whether 〈A〉≥pAM〈G〉≥pG is not true

by checking for the existence of an adversary that satisfies the assumption 〈A〉≥pA but

does not satisfy the guarantee 〈G〉≥pG .

Proposition 4.8 ([KNPQ10]) LetM be a PA, 〈A〉≥pA and 〈G〉≥pG be a pair of prob-

abilistic (regular) safety properties. Let M′ = M[αA]⊗Aerr⊗Gerr . The probabilistic

70

4. Learning Assumptions for Asynchronous Probabilistic Systems

assume-guarantee triple 〈A〉≥pAM〈G〉≥pG holds if and only if:

¬∃σ′∈AdvM′ .
(

Prσ
′
M′(2¬errA)≥pA ∧ Prσ

′
M′(3errG)>1−pG

)

where Aerr , Gerr are DFAs representing safety properties A and G respectively, and

errA, errG are accepting states in corresponding DFAs. (Note that the operator ⊗ for

composing a PA and a DFA is defined in Section 3.3.3.)

Thus, checking the satisfaction of triple 〈A〉≥pAM〈G〉≥pG reduces to the multi-

objective model checking problem (Section 3.3.3), which can be checked in time polyno-

mial in |M′| by solving an LP problem. When the assumption is absent from the triple,

denoted by 〈true〉M〈G〉≥pG , the satisfaction check reduces to verifyingM |= 〈G〉≥pG .

Recall from Section 3.3.3 that checking a probabilistic safety property 〈G〉≥pG on PA

M reduces to computing the maximum reachability probabilities on PA M⊗Gerr .

We also consider quantitative queries about the triples: 〈A〉≥pAM〈G〉IG=? and

〈A〉IA=?M〈G〉≥pG , which ask for the tightest lower-bounded interval IG ⊆ [0, 1] for

which the triple 〈A〉≥pAM〈G〉IG holds with a fixed value of pA, and the widest lower-

bounded interval IA ⊆ [0, 1] for which the triple 〈A〉IAM〈G〉≥pG holds with a fixed

value of pG, respectively. Both queries can be checked using the quantitative multi-

objective queries as described in Section 3.3.3. Intuitively, these queries enable us to

compute the strongest possible guarantee that can be obtained for some assumption

〈A〉≥pA and the weakest possible assumption (not to be confused with the notion of

“weakest assumption” in Section 3.6.1) that guarantees a particular property 〈G〉≥pG .

Note that the answer to the query 〈A〉IA=?M〈G〉≥pG can be an empty interval, i.e.

IA = ∅; this occurs when we cannot guarantee that 〈G〉≥pG holds even under the

strongest possible assumption for A.

71

4. Learning Assumptions for Asynchronous Probabilistic Systems

4.1.2 Assume-Guarantee Reasoning Rules

Based on the probabilistic assume-guarantee triples (Definition 4.7), we now present

three assume-guarantee reasoning rules for the compositional verification of systems

built from two or more PA components.

The first rule we consider is an asymmetric assume-guarantee rule (Asym) for two-

component PA systems, which is an analogue of rule (Asym-Lts) in Section 3.6.1.

Theorem 4.9 ([KNPQ10]) IfM1,M2 are PAs and 〈A〉≥pA , 〈G〉≥pG are probabilistic

safety properties such that their alphabets satisfy αA ⊆ αM1 and αG ⊆ αM2 ∪αA, then

the following proof rule holds:

〈true〉M1 〈A〉≥pA
〈A〉≥pAM2 〈G〉≥pG

〈true〉M1 ‖M2 〈G〉≥pG

(Asym)

Note that the alphabet restrictions are given by Definition 4.7. With rule (Asym) and

an appropriate assumption 〈A〉≥pA , the verification of property 〈G〉≥pG onM1‖M2 can

be done compositionally by

(1) verifying a probabilistic safety property on M1, which reduces to computing

reachability probabilities on M1 ⊗Aerr ,

(2) checking a probabilistic assume-guarantee triple on M2, which reduces to the

multi-objective model checking on M2[αA]⊗Aerr⊗Gerr .

Thus, the construction and verification of the full system M1‖M2 can be avoided. If

the size of the assumption’s DFA Aerr is much smaller than the size of the corresponding

component M1, we can expect significant gains of the verification performance.

The second rule we consider is an asymmetric assume-guarantee rule (Asym-N) for

72

4. Learning Assumptions for Asynchronous Probabilistic Systems

n-component systems, which is obtained through repeated application of rule (Asym).

Theorem 4.10 ([KNPQ10]) IfM1, . . . ,Mn are PAs and 〈A1〉≥p1 , . . . , 〈An−1〉≥pn−1 ,

〈G〉≥pG are probabilistic safety properties with their alphabets satisfying αA1 ⊆ αM1,

αA2 ⊆ αM2 ∪ αA1 , . . . , and αG ⊆ αMn ∪ αAn−1, then the following proof rule holds:

〈true〉M1 〈A1〉≥p1
〈A1〉≥p1M2 〈A2〉≥p2

. . .

〈An−1〉≥pn−1Mn 〈G〉≥pG
〈true〉M1 ‖ . . . ‖Mn 〈G〉≥pG

(Asym-N)

Similarly to rule (Asym), given appropriate assumptions 〈A1〉≥p1 , . . . , 〈An−1〉≥pn−1 , we

can use rule (Asym-N) to verify 〈G〉≥pG on the n-component system M1 ‖ . . . ‖Mn

compositionally, without constructing the full system. The compositional verification

involves one instance of the standard model checking of probabilistic safety property

〈A1〉≥p1 onM1, and (n−1) instances of multi-objective model checking for the assume-

guarantee triples on componentsMi for 2 ≤ i ≤ n. This rule is particularly useful when

the construction and verification of the full systemM1 ‖ . . . ‖Mn is not feasible due to

the large size of the model.

The third rule we consider is a circular rule (Circ). We present here a version for

two-component systems, but it is straightforward to adapt it for n-component systems.

Theorem 4.11 ([KNPQ10]) IfM1,M2 are PAs, and 〈A1〉≥p1, 〈A2〉≥p2 and 〈G〉≥pG
are probabilistic safety properties with their alphabets satisfying αA1 ⊆ αM2, αA2 ⊆

73

4. Learning Assumptions for Asynchronous Probabilistic Systems

αM1 ∪ αA1 and αG ⊆ αM2 ∪ αA2, then the following proof rule holds:

〈true〉M2 〈A1〉≥p1
〈A1〉≥p1M1 〈A2〉≥p2
〈A2〉≥p2M2 〈G〉≥pG
〈true〉M1 ‖M2 〈G〉≥pG

(Circ)

Recall that, in the asymmetric rule (Asym), only one assumption is made about com-

ponent M1; however, we may not be able to show that the assumption is true for M1

without making additional assumptions about M2, if these two components have a

“circular” dependency (i.e.M1 depends onM2 and vice versa). This limitation can be

overcome by using rule (Circ), where two assumptions 〈A1〉≥p1 and 〈A2〉≥p2 are used.

Note that this rule is very similar to rule (Asym-N) with n = 3, where the first and

the last components coincide (justifying the name “circular”).

We conclude this section by pointing out that the compositional verification frame-

work described above is incomplete, in the sense that, if a multi-component system

satisfies a certain property, there may not exist appropriate assumptions that can be

used to verify it compositionally. For frameworks in which assumptions are expressed

in the same formalism as the models, completeness can be trivially achieved by using

the component itself as the assumption in the worst-case. However, in this framework,

the formalisms of assumptions (probabilistic safety properties) and components (PAs)

are distinct; thus, the above completeness argument cannot be applied here.

4.2 Probabilistic Counterexamples for PAs

In this section, we introduce the notion of probabilistic counterexamples for model

checking PAs, based on a jointly authored paper [FKP10]. Recall that, in Section 3.4,

counterexamples for probabilistic reachability properties of DTMCs are formulated as a

74

4. Learning Assumptions for Asynchronous Probabilistic Systems

set of finite paths; in particular, the notion of smallest counterexample is characterised,

which can be generated via solving the k-shortest paths problem. In the following, we

show how these basic techniques can be extended for generating counterexamples for

probabilistic safety properties and probabilistic assume-guarantee triples of PAs.

We first consider the counterexamples for probabilistic safety properties of PAs.

Recall from Section 3.3.1 that a PAM satisfies a probabilistic safety property 〈G〉≥pG
if and only if PrσM(G)≥pG for all adversaries σ of M. So, to refute 〈G〉≥pG , we would

need to find an adversary σ ∈ AdvM for which PrσM(G)≥pG does not hold and a set C

of paths that illustrates the violation under adversary σ. Formally, a counterexample

for the violation of probabilistic safety property 〈G〉≥pG on PA M is a pair (σ,C) of

a (deterministic, finite-memory) adversary σ for M with PrσM(G) < pG, and a set C

of finite paths in PA Mσ such that Pr(C) > 1−pG and ρ�M 6|= G for all ρ ∈ C, where

ρ�M denotes the projection of a path ρ of Mσ onto M and ρ�M ∈ FPathsσM.

Such a pair (σ,C) can be obtained as follows. Recall from Section 3.3.3 that model

checking 〈G〉≥pG on PA M requires the computation of Prmin
M (G), which reduces to

computing the maximum probability of reaching an accepting state in the product PA

M⊗Gerr . The (deterministic, finite-memory) adversary σ for M is obtained directly

from the (deterministic, memoryless) adversary of M⊗Gerr , under which the required

maximum reachability probability is above 1−pG. The set of paths C is then obtained

fromMσ, which is actually a DTMC since σ is deterministic (see Section 3.2.2), by using

the counterexample generation techniques for upper bound probabilistic reachability

properties of DTMCs as described in Section 3.4. Given a counterexample (σ,C), we

can construct a fragment of the PA M, denoted Mσ,C , which is a (sub-stochastic) PA

obtained from Mσ by removing all transitions that do not appear in any path of C.

PA fragments have the following useful properties.

Proposition 4.12 ([FKP10]) For PAs M and M′, a PA fragment Mfrag of M and

a probabilistic safety property 〈G〉≥pG, we have:

75

4. Learning Assumptions for Asynchronous Probabilistic Systems

(a) M |= 〈G〉≥pG ⇒Mfrag |= 〈G〉≥pG

(b) M‖M′ |= 〈G〉≥pG ⇒Mfrag‖M′ |= 〈G〉≥pG

(c) Mfrag‖M′ 6|= 〈G〉≥pG ⇒M‖M′ 6|= 〈G〉≥pG.

The proof of the above Proposition was contributed by David Parker [FKP10].

We now consider counterexamples for probabilistic assume-guarantee triples defined

in Definition 4.7. Recall that a triple 〈A〉≥pAM〈G〉≥pG does not hold if, under some

adversary of M[αA], the assumption 〈A〉≥pA is satisfied but the guarantee 〈G〉≥pG is

refuted. We need the notion of witness: given a PAM and a probabilistic safety prop-

erty 〈A〉≥pA , a witness for M |= 〈A〉≥pA is a pair (σ,W) comprising a (deterministic,

finite-memory) adversary σ forM with PrσM(A) ≥ pA and a set W of infinite paths in

Mσ such that Pr(W) ≥ pA and π�M |= A for all π ∈ W . Then, a counterexample for

the refutation of 〈A〉≥pAM〈G〉≥pG is a tuple (σ,W,C), such that (σ,W) is a witness

for 〈A〉≥pA inM[αA] and (σ,C) is a counterexample for 〈G〉≥pG inM[αA]. To generate

a counterexample (σ,W,C): firstly, we obtain σ as an adversary on the product PA

M⊗Aerr⊗Gerr via multi-objective model checking (Proposition 4.8); then, we obtain

paths W fromM[αA]σ using the counterexample generation techniques for lower bound

probabilistic reachability properties of DTMCs (see Section 3.4); and finally, we obtain

paths C with the same procedure for generating (σ,C) as described above.

4.3 Learning Assumptions for Rule (Asym)

In this section, we present a novel approach that was first published in [FKP10] for the

automated generation of assumptions for rule (Asym) of Theorem 4.9 via algorithmic

learning. This approach requires the input of two PA components M1,M2 and a

probabilistic safety property 〈G〉≥pG . The aim is to verify whether M1‖M2 |= 〈G〉≥pG
is true by learning a probabilistic assumption 〈A〉≥pA about M1.

76

4. Learning Assumptions for Asynchronous Probabilistic Systems

The key idea is that we reduce the task of learning probabilistic assumptions 〈A〉≥pA
to the problem of learning non-probabilistic assumptions A. Recall from Theorem 4.9

that an appropriate assumption 〈A〉≥pA should satisfy both premises of rule (Asym),

i.e. 〈true〉M1 〈A〉≥pA and 〈A〉≥pAM2 〈G〉≥pG . If the former holds for a particular value

of pA, then it also holds for any lower value of pA; conversely, if the latter holds for

some pA, then it must hold for any higher value. Thus, given a regular safety property

A, we can determine a (lower) probability bound pA by finding the lowest value of

pA such that 〈A〉≥pAM2 〈G〉≥pG holds and checking if it suffices for 〈true〉M1 〈A〉≥pA .

Alternatively, we can find the highest possible value pA for 〈true〉M1 〈A〉≥pA and check

if 〈A〉≥pAM2 〈G〉≥pG holds.

We adapt the L*-based techniques of learning non-probabilistic assumptions (see

Section 3.6.1) here for learning probabilistic assumptions 〈A〉≥pA . An overview of our

approach is illustrated in Figure 4.4. Our approach builds on top of the L* algorithm

(Section 3.5.1) shown on the left-hand side, which interacts with a teacher (on the right-

hand side) through membership and equivalence queries, and generates a succession of

conjectures A. The teacher in our case is a probabilistic model checker, as opposed

to a conventional model checker. Note that our approach uses the original version of

the L* algorithm by Angluin [Ang87a] rather than the improved version by Rivest and

Schapire [RS93], because our usage is slightly non-standard, which will be explained

later.

Recall from Section 3.6.1 that a notion of weakest assumptions is defined and used

as the target language for L* when learning non-probabilistic assumptions. However, an

analogous notion does not exist in our approach because, as explained in Section 4.1.2,

the underlying compositional verification framework is incomplete, i.e. even if property

〈G〉≥pG is satisfied in the system, there may exist no appropriate assumption to verify it

compositionally. An important observation about the approach in Section 3.6.1 is that

it does not actually construct the weakest assumption in practice; instead, the aim is

77

4. Learning Assumptions for Asynchronous Probabilistic Systems

t ‖M2 |= 〈G〉≥pG
?

trace t

L* algorithm Teacher

cex.

conj.A

yes/no

Membership query

(analyse conjecture A)

M1 ‖M2 6|= 〈G〉≥pG

Try to find pA such

(i) 〈true〉M1 〈A〉≥pA
(+ counterexample)

no
yes

done?

M1 ‖M2 |= 〈G〉≥pG

(+ assump.〈A〉≥pA
)

(ii)〈A〉≥pA
M2 〈G〉≥pG

Check:

that 〈A〉≥pA
satisfies:

Property true:〈G〉≥pG

M1,M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs:

Outputs:

Property false:

(analyse trace t)

Equivalence query

tr(C)

Figure 4.4: Learning probabilistic assumptions for rule (Asym)

to either find a stronger assumption that is sufficient to verify the property or generate

a counterexample that refutes it during the learning process. Therefore, we can still

adopt a similar approach, where the feedback provided by the teacher is considered as

heuristics that guides L* towards an appropriate assumption.

Answering Membership Queries

As shown in Figure 4.4, L* asks membership queries about whether certain traces t

should be included in the assumption A being generated. Here, we use a probabilistic

model checker to simulate the teacher and check if t‖M2 |= 〈G〉≥pG is true, where t is

represented by a linear, |t|+1 state PA in which each transition has probability 1. This

criterion can be seen as an analogue of the non-probabilistic case in Section 3.6.1.

If t‖M2 6|= 〈G〉≥pG , then the teacher answers “no” to L*. Any A containing such

a trace t would cause the violation of triple 〈A〉≥pAM2 〈G〉≥pG , no matter what the

value of pA is. Thus, t should definitely be excluded from A.

On the other hand, if t‖M2 |= 〈G〉≥pG , then the teacher’s answer is “yes”. However,

this is only a heuristic. It is possible that multiple traces within an assumption which

78

4. Learning Assumptions for Asynchronous Probabilistic Systems

〈A〉IA=?M2〈G〉≥pG

L*

conjecture: A

〈true〉M1〈A〉IA Property true:

M1 ‖ M2 |= 〈G〉≥pG

cex (σ,C)

Mσ,C
1 ‖M2 |= 〈G〉≥pG

(+ assump.〈A〉IA)

Property false:

M1 ‖ M2 6|= 〈G〉≥pG
(+ cex (σ′, C ′)).

false and
cex (σ′, C ′)

true

Teacher

IA = ∅ and
cex (σ,W,C)

tr(C)

IA 6= ∅

true

false and

return

tr(C)

return

Figure 4.5: Implementation of a teacher for equivalence queries of rule (Asym)

do not violate property 〈G〉≥pG individually but, when combined, cause the violation.

We cannot tell this from the membership query that analyses a single trace t, thus we

assume that it is safe to include t in A for now. Later, when answering equivalence

queries, if t is found to be contributing to the violation, then we will remove t from A.

As we demonstrate in Section 4.5, this heuristic seems to work well in practice.

There is a possibility that the learning procedure may successively add and remove

certain trace t from A, because, as mentioned before, our approach cannot guarantee

to find a weakest assumption that may not exist. In this case, the learning procedure

halts and generates a pair of lower/upper bounds on probability Prmin
M1‖M2

(G). We will

discuss the generation of such bounds later.

Answering Equivalence Queries

Once a conjecture A is generated by L*, the teacher answers an equivalence query by

trying to determine an appropriate probability value pA such that 〈A〉≥pA satisfies both

premises of rule (Asym), i.e. 〈true〉M1 〈A〉≥pA and 〈A〉≥pAM2 〈G〉≥pG . This process

79

4. Learning Assumptions for Asynchronous Probabilistic Systems

is only briefly illustrated in Figure 4.4, but more details are revealed in Figure 4.5.

Given a conjecture A, the teacher first checks the quantitative assume-guarantee

query 〈A〉IA=?M2 〈G〉≥pG by determining the widest interval IA ⊆ [0, 1] for which

the triple is true with assumption A. Recall from Section 4.1.1 that the resulting

IA would be either ∅, or a non-empty, closed, lower-bounded interval. The former

case of IA=∅ indicates that M2 would not satisfy 〈G〉≥pG even under the probabilistic

assumption 〈A〉≥1, which means that A is too strong and we need to remove from A the

trace(s) that causes the violation of 〈G〉≥pG on M2. A probabilistic counterexample

(σ,W,C) illustrating the refutation of 〈A〉≥1M2 〈G〉≥pG is generated using techniques

in Section 4.2. Let tr(C) = {tr(ρ)�αA | ρ ∈ C} be the set of traces taken from paths in

the set C and restricted to the alphabet αA. Suppose that tr(C) only contains a single

trace t, since t corresponds to a path through M2 that cause the violation of 〈G〉≥pG ,

then any assumption A with trace t would make the triple 〈A〉≥pAM2 〈G〉≥pG false for

any value of pA. Thus, t should be removed from A. In the case that tr(C) contains

multiple traces, each trace may not cause the violation of 〈G〉≥pG on its own; however,

since they contribute to the probability mass of counterexample C, we remove all of

them from A, as mentioned in the reasoning for membership queries. Note that, in the

standard L* algorithm, only a single trace is returned as a counterexample for each

equivalence query; here we adapt L* to accept all traces of tr(C) at once, although

it is very likely that tr(C) only has a single trace by choosing C to be the smallest

counterexample (see Section 3.4).

In the latter case that the interval IA is non-empty, the teacher proceeds to check

the first premise of (Asym), i.e. it verifies whether 〈true〉M1 〈A〉IA is true. If so,

then an assumption 〈A〉IA that satisfies both premises of (Asym) has been found,

proving that M1‖M2 satisfies 〈G〉≥pG , and we can terminate the learning algorithm.

If, on the other hand, 〈true〉M1 〈A〉IA is false, then a counterexample (σ,C) showing

M1 6|= 〈A〉IA is generated as described in Section 4.2. The teacher constructs a PA

80

4. Learning Assumptions for Asynchronous Probabilistic Systems

fragment Mσ,C
1 and verifies Mσ,C

1 ‖M2 against property 〈G〉≥pG to see if (σ,C) is a

spurious counterexample on M1‖M2. If Mσ,C
1 ‖M2 6|= 〈G〉≥pG with a counterexample

(σ′, C ′), then we can conclude that M1‖M2 6|= 〈G〉≥pG based on Proposition 4.12(c)

and terminate the learning process; otherwise, (σ,C) is a spurious counterexample and

L* needs to use it to refine A. Consider as beforehand that tr(C) = {tr(ρ)�αA | ρ ∈ C}

comprises a single trace t. Since t comes from a counterexample showingM1 6|= 〈A〉≥IA ,

it is not in A. And we have t‖M2 |= 〈G〉≥pG because of Mσ,C
1 ‖M2 |= 〈G〉≥pG , thus

trace t is added to the assumption A. Similarly, as for (σ,W,C), if the set tr(C)

contains multiple traces, we return all of them to L*.

Generating Lower and Upper Bounds

Recall that, in the approach of Section 3.6.1, it is guaranteed that we find a trace illus-

trating an inconsistency between the current assumption and the weakest assumption

if a conjecture A fails an equivalence query. However, in our approach, this cannot

be guaranteed. This is because, as discussed previously, our approach is based on an

incomplete compositional verification framework and there is no equivalent notion of

weakest assumption. To address this limitation, we equip our approach with the ability

to generate a lower and upper bound on the minimum probability of M1‖M2 satisfy-

ing G. This means that, when the feedback returned by the teacher cannot help L*

to update A, we can terminate the algorithm and provide this valuable quantitative

information to the user based on the assumption A learnt so far.

Now, we describe how to compute these bounds. For any conjectured assump-

tion A, we denote by lb(A,G) and ub(A,G) the lower and upper bounds on the

(minimum) probability of satisfying the safety property G, respectively. Firstly we

compute p∗A = Prmin
M1

(A) and generate an adversary σ ∈ AdvM1 that achieves

this minimum probability. Next, we check the quantitative assume-guarantee query

〈A〉≥p∗AM〈G〉IG=? and, from the resulting interval, take lb(A,G) = min(IG). For the

81

4. Learning Assumptions for Asynchronous Probabilistic Systems

q
1

fail

q
0

fail

off

warn

shutdown

shutdown
t
0
a
0
q
0

t
1
a
1
q
0

0.1

0.9

t
2
a
1
q
0

t
2
a
2
q
0

off

t
3
a
2
q
0

t
3
a
2
q
1

fail

fail

Figure 4.6: A DFA Gerr and a product PA M2 ⊗Aerr
2 ⊗Gerr (taken from [KNPQ12])

upper bound, we compute: ub(A,G) = Prmin
Mσ

1 ‖M2
(G) using the adversary σ from above.

Correctness and termination. As discussed earlier, since the underlying composi-

tional verification framework is incomplete, we cannot guarantee that our approach will

terminate with a definitive answer showing whether M1‖M2 satisfies 〈G〉≥pG . How-

ever, when the learning gets stuck, our approach can generate lower and upper bounds

on the minimum probability of satisfying regular safety property G as an alternative

exit for the loop. If the learning approach terminates with an output claiming that

M1‖M2 |= 〈G〉≥pG is true or false, the correctness is guaranteed by rule (Asym) of

Theorem 4.9. The correctness for the provision of lower/upper bounds lb(A,G) and

ub(A,G) is shown below.

Proposition 4.13 ([FKP10]) lb(A,G) ≤ Prmin
M1‖M2

(G) ≤ ub(A,G).

Proof: For the lower bound, both M1 |= 〈A〉≥p∗A and 〈A〉≥p∗AM 〈G〉≥lb(A,G) hold by

construction. Thus, lb(A,G) ≤ Prmin
M1‖M2

(G) follows from rule (Asym).

For the upper bound, since Mσ
1 is a fragment of M1, we have Prmin

M1‖M2
(G) ≤

Prmin
Mσ

1 ‖M2
(G) = ub(A,G) based on Proposition 4.12(b). �

Example 4.14 This is a running example of learning probabilistic assumptions for

rule (Asym). Consider the pair of PAs M1,M2 shown in Section 4.1, where we want

to verify if M1‖M2 |= 〈G〉≥0.98 is true. G is a regular safety property with its corre-

sponding DFA Gerr shown in Figure 4.6 and means that “fail” should never occur.

82

4. Learning Assumptions for Asynchronous Probabilistic Systems

a
1

 warn

shutdown

a
0

shutdown

warn
a
0

warn

a
2

shutdown

a
1

 warn

shutdown

 warn

shutdown

Figure 4.7: Two learnt DFAs Aerr
1 and Aerr

2 (taken from [FKP10])

T1 ε

ε −
shutdown +

warn −
shutdown,warn +

shutdown, shutdown +

T2 ε shutdown

ε − +
shutdown + +

warn − −
warn, shutdown − −

warn,warn − −
shutdown,warn + +

shutdown, shutdown + +

Figure 4.8: Observation tables corresponding to DFAs Aerr
1 , Aerr

2 in Figure 4.7

Given alphabet αA = {warn, shutdown}, the first closed and consistent observation

table learnt by L* is T1 shown in Figure 4.8. A DFA Aerr
1 (see Figure 4.7) is built

based on T1. The teacher checks 〈A1〉I1=?M2 〈G〉≥0.98 and the result is I1 ∈ [0.8, 1],

which means that M2 satisfies 〈G〉≥0.98 under the assumption that “shutdown” should

never occur with probability at least 0.8. The teacher proceeds to check whether the

minimum probability of satisfying A1 on M1 is at least 0.8, i.e. 〈true〉M1 〈A1〉≥0.8.

But this check fails with a counterexample (σ,C) indicating that “shutdown” eventually

occurs in M1 with probability 1. Figure 4.9 shows PA Mσ
1 and PA fragment M(σ,C)

1 .

The teacher verifies M(σ,C)
1 ‖M2 |= 〈G〉≥0.98 for counterexample analysis, and the result

yields true. Thus, (σ,C) is a spurious counterexample and the trace 〈warn, shutdown〉

from tr(C) is returned to L* to refine the conjecture.

L* updates the observation table till it obtains a second closed and consistent table T2

(Figure 4.8). A new DFA Aerr
2 as shown in Figure 4.7 is constructed based on T2. Model

checking 〈A2〉I2=?M2 〈G〉≥0.98 is performed on the product PAM2⊗Aerr
2 ⊗Gerr shown

83

4. Learning Assumptions for Asynchronous Probabilistic Systems

detect 0.8 warn

shutdown

s
0
a
0

s
1
a
0

s
2
a
0

s
3
a
1off

0.2

detect 0.8 warn

shutdown

s
0
a
0

s
1
a
0

s
2
a
0

s
3
a
1

Figure 4.9: PA Mσ
1 and PA fragment M(σ,C)

1 (taken from [FKP10])

warn shutdown

s
0
a
0

s
1

s
2
a
0

a
0

s
2
a
1 s

3
a
1

detect

0.8

0.2
off

off

s
3
a
2

shutdown

Figure 4.10: Product PA M1 ⊗Aerr
2 (taken from [KNPQ12])

in Figure 4.6, yielding a result of I2 ∈ [0.8, 1]. Checking 〈true〉M1 〈A2〉≥0.8 reduces to

computing maximum probability of reaching error states on product PA M1⊗Aerr
2 . As

shown in Figure 4.10, the error state s3a2 can only be reached with probability 0.2, and

thus 〈true〉M1 〈A2〉≥0.8 holds.

Therefore, we conclude that M1‖M2 |= 〈G〉≥0.98 is true, which can be verified com-

positionally with rule (Asym) by using the probabilistic assumption 〈A2〉≥0.8.

Example 4.15 Consider two PA components M1,M2 (Figure 4.11) of a simple com-

munication channel that satisfies the safety property “input and output should be sent

in order” with probability at least 0.82, i.e. M1‖M2 |= 〈G〉≥0.82 with the corresponding

DFA Gerr shown in Figure 4.12. In the following, we show that we cannot find an

appropriate assumption to verify this property compositionally with rule (Asym), but

we can compute a pair of lower/upper bounds that restrict the probability Prmin
M1‖M2

(G).

We initialise the learning approach in Figure 4.4 and set the assumption alphabet as

αA = {output, send, ack}. L* fills the observation table with the teacher’s answers to

84

4. Learning Assumptions for Asynchronous Probabilistic Systems

send

0.8

s
1

s
0

s
3

0.2

output
s
2

ack

s
4

send

output

0.9 t
1

t
0 t

2

t
4

0.1

input

t
3

send

ackinput

Figure 4.11: Two PAs M1,M2 for Example 4.15

q
2

q
0

input

q
1

output

inputoutput

Figure 4.12: DFA Gerr for Example 4.15

membership queries, which are obtained by checking t‖M2 |= 〈G〉≥0.82 for each trace t.

The first closed and consistent observation table is T1 in Figure 4.14, which corresponds

to the DFA Aerr
1 shown in Figure 4.13. For simplicity, we denote actions by their initial

letters in the observation table. To answer the equivalence query for A1, the teacher

checks 〈A1〉I1=?M2 〈G〉≥0.82, which yields I1 = ∅. This is because there is a trace

〈send, ack〉 in A1 that will cause the violation of 〈G〉≥0.82 on M2, e.g. following the

path t0q0
input,0.9−−−−−→ t1q1

send−−−→ t2q1
ack−−→ t3q1

input−−−→ t1q2 in M2 ⊗ Gerr , the error state

t1q2 would be reached with probability 0.9. Thus, the teacher returns trace 〈send, ack〉

to L* to refine learning.

After the refinement, L* obtains a second closed and consistent observation table T2

as shown in Figure 4.14, corresponding to the DFA Aerr
2 in Figure 4.13. The equivalence

query yields an empty interval I2 for 〈A2〉I2=?M2 〈G〉≥0.82 and a counterexample trace

〈send, output, ack, output〉. This counterexample corresponds to the path t0q0
input,0.9−−−−−→

t1q1
send−−−→ t2q1

output−−−−→ t2q0
ack−−→ t3q0

output−−−−→ t3q2 in M2 ⊗ Gerr , where the error state

t3q2 is reachable with probability 0.9, and thus the property 〈G〉≥0.82 is violated.

After refinement with the counterexample trace 〈send, output, ack, output〉, L*

85

4. Learning Assumptions for Asynchronous Probabilistic Systems

a
1

ack send

output

a
0

output

ack

send

a
0

 ack
send

a
2

output

a
1

 send
ack send
 output

 ack

output

Figure 4.13: Learnt DFAs Aerr
1 , Aerr

2 for Example 4.15

T1 ε

ε −
o +

s −
a −
oo +
os +
oa +

T2 ε o

ε − +
o + +
s − −
sa + +

a − −
oo + +
os + +
oa + +
so − +
ss − −
sao + +
sas + +
saa + +

Figure 4.14: Observation tables corresponding to Aerr
1 and Aerr

2 in Figure 4.13

a
0

a
4a

1

 send

ack send
 output

 ack
output

a
2a

3
 send

 send

 ack output

 ack

output

ack send
 output

Figure 4.15: Learnt DFA Aerr for Examples 4.15 and 4.17

learns a new conjecture Aerr as shown in Figure 4.15. The quantitative query

〈A〉I=?M2 〈G〉≥0.82 yields the non-empty interval I = [0.82, 1], and the teacher contin-

ues to check the triple 〈true〉M1 〈A〉≥0.82, which is actually false due to Prmin
M1

(A) = 0.8.

The probabilistic counterexample illustrating this violation consists of the set of traces

86

4. Learning Assumptions for Asynchronous Probabilistic Systems

〈send, outputn, output〉 with n ≥ 1. L* cannot refine A with these traces because they

do not illustrate any difference between the target language and L(A), i.e. for any of

these traces t, the membership query yields t‖M2 6|= 〈G〉≥0.82, while A also rejects it.

The learning gets stuck with conjecture A. We terminate the learning and compute the

lower bound of the minimum probability of satisfying safety property G on M1‖M2 by

checking 〈A〉≥0.8M2 〈G〉IG=?, which yields 0.8. The upper bound is obtained by com-

puting Prmin
Mσ

1 ‖M2
(G), where σ is the adversary generated during the previous check for

〈true〉M1 〈A〉≥0.82, and the result is 0.82.

In conclusion, although we cannot find an appropriate assumption to verify that

M1‖M2 |= 〈G〉≥0.82 is true, we are sure that the probability Prmin
M1‖M2

(G) is in

[0.8, 0.82].

4.4 Extensions

In the previous section, we considered learning assumptions for rule (Asym) using the

L* algorithm. Here, we explore three extensions to this approach, with the hope to

learn more succinct representation of assumptions and to handle more complex systems.

First, we investigate learning assumptions using an alternative learning algorithm, the

NL* algorithm, in Section 4.4.1. Then, we generalise the assumption learning approach

for the asymmetric n-component rule (Asym-N) and the circular rule (Circ) in Sec-

tion 4.4.2 and Section 4.4.3, respectively.

4.4.1 Learning Assumptions using the NL* Algorithm

Recall that the L* algorithm (Section 3.5.1) learns a minimal DFA that accepts a regular

language, whereas the NL* algorithm (Section 3.5.1) learns a minimal residual finite-

state automaton (RFSA), which is a subclass of NFAs and can be exponentially more

succinct than the corresponding minimal DFA for the same regular language. Thus,

87

4. Learning Assumptions for Asynchronous Probabilistic Systems

we might be able to learn more succinct assumptions using NL*. Since NL* works

similarly to L*, i.e. interacting with a teacher via asking the same kind of membership

and equivalence queries, we can substitute it into the assumption learning approach

shown in Figure 4.4 straightforwardly.

Nevertheless, we need to determinise the learnt RFSAs when answering equivalence

queries in Figure 4.4, i.e. checking whether 〈true〉M1 〈A〉≥pA and 〈A〉≥pAM2 〈G〉≥pG
are true. Recall from Section 4.1.2 that, when the assumption is represented by a DFA,

verifying 〈true〉M1 〈A〉≥pA reduces to computing maximum reachability probabilities

on the product PA M1 ⊗ Aerr and checking 〈A〉≥pAM2 〈G〉≥pG reduces to the multi-

objective model checking on the product PA M2[αA]⊗Aerr⊗Gerr , where the operator

⊗ for composing a PA and a DFA is as defined in Section 3.3.3. We cannot adapt the

operator for composing a PA and a RFSA, because the nondeterminism of RFSA will

add extra nondeterministic choices in the product PA. Conventionally 1, the automata

specifications for probabilistic model checking need to be determinised [dA97]. So, we

convert the RFSAs learnt by the NL* algorithm into DFAs using the subset construction

method as mentioned in Section 3.1.

Although we will not be able to obtain more succinct assumptions because of the

determinising step, the hope is that NL* may lead to a faster learning procedure than

L*. As we demonstrate through experiments in Section 4.5, NL* does perform better

than L* in some large case studies due to the smaller size of learnt RFSAs and fewer

equivalence queries.

4.4.2 Generalisation to Rule (Asym-N)

Recall from Section 4.1.2 that we can verify a probabilistic safety property 〈G〉≥pG on

an n-component PA system M1 ‖ . . . ‖Mn compositionally with the assume-guarantee

rule (Asym-N), which requires multiple assumptions 〈A1〉≥p1 , . . . , 〈An−1〉≥pn−1 . The

1More recently, Henzinger and Piterman [HP06] show that a nondeterministic automaton is good
for solving games, and thus it may not always necessary to determinise the specification automaton.

88

4. Learning Assumptions for Asynchronous Probabilistic Systems

L*

〈true〉M1〈A1〉I1

〈A1〉I1=?M2〈A2〉I2
I1 6= ∅

I1 = ∅, cex (σ,W,C)

t ‖ M2 |= 〈A2〉I2

EQ: A1

MQ: t

yes/no

for

A1

Output: 〈true〉M1 ‖ · · · ‖ Mn〈G〉≥pG is true.

true

Mσ1,C1
1 ‖M2 |= 〈A2〉I2cex (σ1, C1)

false and

truetr(C1)

tr(C)

L*

for

A2

〈A2〉I2=?M3〈A3〉I3
I2 = ∅, cex (σ,W,C)

t ‖ M3 |= 〈A3〉I3

EQ: A2

MQ: t

yes/no

(M1‖M2)
σ2,C2‖M3 |= 〈A3〉I3

cex (σ2, C2)
false and

truetr(C2)

I2 6= ∅〈A2〉I2

L*

for

An−1

〈An−1〉In−1=?Mn〈G〉≥pG
In−1 = ∅, cex (σ,W,C)

t ‖ Mn |= 〈G〉≥pG

EQ: An−1

MQ: t

yes/no

(M1‖ · · · ‖Mn−1)σn−1,Cn−1‖Mn |= 〈G〉≥pGtruetr(Cn−1)
In−1 6= ∅

〈An−1〉In−1

· · ·

cex (σ3, C3)
false and

〈A3〉I3

· · · · · ·
cex (σn−1, Cn−1)

Output: 〈true〉M1 ‖ · · · ‖ Mn〈G〉≥pG is false.

false

tr(C)

tr(C)

Figure 4.16: Learning probabilistic assumptions for rule (Asym-N)

89

4. Learning Assumptions for Asynchronous Probabilistic Systems

idea of learning assumptions for rule (Asym-N) is inspired by [PGB+08]. To check if

system M1 ‖ . . . ‖Mn satisfies 〈G〉≥pG , we decompose it into M1‖ . . . ‖Mn−1 and Mn,

and then apply the assumption learning approach for rule (Asym) recursively. At each

recursive invocation forM1‖ . . . ‖Mj−1 andMj , we find assumption 〈Aj〉≥pj such that

the following premises are both true:

• 〈true〉M1 ‖ . . . ‖Mj−1 〈Aj〉≥pj and

• 〈Aj〉≥pjMj 〈Aj+1〉≥pj+1 .

Here 〈Aj+1〉≥pj+1 is the assumption forMj+1 and plays the role of the property for the

current recursive call.

As shown in Figure 4.16, the learning approach for rule (Asym-N) employs multiple

L* instances, one for each assumption. In the learning instance for Aj , the membership

query for a trace t is resolved by checking t‖Mj+1 |= 〈Aj+1〉Ij+1
, where 〈Aj+1〉Ij+1

is learnt through the previous recursive L* instance and Ij+1 ⊆ [0, 1] is a non-empty,

closed, lower-bounded probability interval. When j = n− 1, the property 〈Aj+1〉Ij+1
is

replaced by 〈G〉≥pG .

The equivalence query for Aj is resolved by first checking the quantitative multi-

objective query 〈Aj〉Ij=?Mj+1 〈Aj+1〉Ij+1 . If Ij = ∅, then L* must refine the conjec-

ture Aj . More specifically, as described in Section 4.3, the teacher would produce a

counterexample (σ,W,C) from the multi-objective query and return a set of traces

tr(C) = {tr(ρ)�αA | ρ ∈ C} to L*. If Ij 6= ∅, then the next recursive call for learning

assumption 〈Aj−1〉Ij−1 would be invoked, which uses 〈Aj〉Ij as the property.

Eventually, when a non-empty interval I1 is found for 〈A1〉I1=?M2 〈A2〉I2 , the

teacher checks whether 〈true〉M1 〈A1〉I1 holds. If so, then we have found a series

of assumptions 〈A1〉I1 , . . . , 〈An−1〉In−1 that make all premises of rule (Asym-N) satis-

fied. Thus, the system M1 ‖ . . . ‖Mn satisfies 〈G〉≥pG . However, if M1 6|= 〈A1〉I1 , then

the teacher would provide a counterexample (σ1, C1) illustrating the violation. We

90

4. Learning Assumptions for Asynchronous Probabilistic Systems

detect

0.8
s
1

s
0

0.2

warn

time

s
2 time

0.5

r
1

r
0

0.5

shutdown
off

r
2

Figure 4.17: PAs M1 and M2 for Example 4.16

need to perform counterexample analysis to check if (σ1, C1) is a real counterexample

for M1‖M2 6|= 〈A2〉I2 . To do so, we construct a PA fragment Mσ1,C1
1 similarly as in

Section 4.3 and check if Mσ1,C1
1 ‖M2 |= 〈A2〉I2 holds. If the model checking result is

true, then (σ1, C1) is a spurious counterexample and a set of traces tr(C1) extracted

from paths in the set C1 are returned to L* to refine the learning of A1. Otherwise,

the teacher produces a new counterexample (σ2, C2) showing that M1‖M2 6|= 〈A2〉I2
and performs counterexample analysis. The counterexample generation and analysis

procedure continues recursively until a spurious counterexample is found for the L*

instance of some assumption, or a counterexample (σn−1, Cn−1) is generated such that

(M1‖ · · · ‖Mn−1)σn−1,Cn−1‖Mn 6|= 〈G〉≥pG . In the latter case, we can conclude that the

system M1 ‖ . . . ‖Mn does not satisfy 〈G〉≥pG .

Recall from Section 4.3 that, when learning assumptions for rule (Asym), if the

conjecture A cannot be updated any more, we can generate lower/upper probability

bounds of Prmin
M1‖M2

(G) based on the computation of p∗A = Prmin
M1

(A). However, in the

case of learning for rule (Asym-N), we do not have a feasible plan for computing such

bounds. It is not efficient to compute p∗A = Prmin
M1‖...‖Mj−1

(A) directly by composing

M1‖ . . . ‖Mj−1. A preferred approach to compute this value would be in a recursive

manner, but this is not straightforward. For example, if we get stuck in the learning

of An−1 (due to In−1 = ∅), then we would want to compute the bounds and terminate

the learning; however, at this point, the learning of other assumptions has not been

invoked, so we cannot compute the value of pA∗n−1
recursively.

Example 4.16 Consider verifying the system M1‖M2‖M3 against a probabilistic

safety property 〈G〉≥0.98, where PAs M1,M2 are shown in Figure 4.17, and PA

91

4. Learning Assumptions for Asynchronous Probabilistic Systems

0.9

t
1

t
0

t
2t

3

0.1

off

warn

fail

shutdown shutdown

q
1

fail

q
0

fail

Figure 4.18: PA M3 and a DFA Gerr for Example 4.16

a
1

 warn

shutdown

a
0

shutdown

warn
a
0

warn

a
2

shutdown

a
1

 warn

shutdown

 warn

shutdown

Figure 4.19: DFAs Aerr
2′ , A

err
2 learnt by the L* instance for A2 in Example 4.16

M3 and the DFA Gerr for the safety property are shown in Figure 4.18. We show

the whole procedure of applying the approach in Figure 4.16 to perform the compo-

sitional verification and learn assumptions with alphabet αA1 = {warn, time} and

αA2 = {warn, shutdown}.

First of all, one instance of L* is initialised for learning A2. The teacher starts

with answering membership queries by checking t‖M3 |= 〈G〉≥0.98 for traces t. The

first conjecture produced by L* is the DFA Aerr
2′ shown in Figure 4.19. An equiva-

lence query is asked for it and the teacher checks the quantitative multi-objective query

〈A2′〉I2=?M3 〈G〉≥0.98, which yields a non-empty interval and results in a probabilistic

assumption 〈A2′〉≥0.8.

Now, another L* instance is invoked for learning A1. The teacher answers mem-

bership queries by checking t‖M2 |= 〈A2′〉≥0.8 and produces a conjectured DFA Aerr
1′ as

shown in Figure 4.20. The equivalence query for Aerr
1′ yields the non-empty interval

I1 = [0.8, 1] for 〈A1′〉I1=?M2 〈A2′〉≥0.8. But the triple 〈true〉M1 〈A1′〉≥0.8 is false, be-

cause there is a counterexample path s0
detect,0.8−−−−−−→ s1

warn−−−→ s2
time−−−→ s2 through M1 such

92

4. Learning Assumptions for Asynchronous Probabilistic Systems

b
1

warn

time

b
0

time

warn
b
0

warn

b
2

time

b
1

warn

time

warn

time

Figure 4.20: DFAs Aerr
1′ , A

err
1 learnt by the L* instance for A1 in Example 4.16

warn shutdown
s
0
r
0

s
1
r
0

s
2
r
0

s
2
r
2

detect

0.8
offs

2
r
1

time

0.5

0.5

Figure 4.21: PA fragment Mσ1,C1
1 ‖M2 for Example 4.16

detect shutdown
s
0
r
0 t0

0.8

off
warn

s
1
r
0 t0 s

2
r
0 t1

time

0.5
s
2
r
1 t1 s

2
r
2 t2

Figure 4.22: PA fragment (M1‖M2)σ2,C2‖M3 for Example 4.16

that the “time” action occurs with probability 0.8. A fragment PA Mσ1,C1
1 containing

this path is constructed and the teacher performs counterexample analysis by verifying

Mσ1,C1
1 ‖M2 |= 〈A2′〉≥0.8. Since the “shutdown” action occurs in Mσ1,C1

1 ‖M2 with

probability at least 0.4 (see s0r0
detect,0.8−−−−−−→ s1r0

warn−−−→ s2r0
time,0.5−−−−−→ s2r1

shutdown−−−−−−→ s2r2

in Figure 4.21), 〈A2′〉≥0.8 is violated inMσ1,C1
1 ‖M2 and a new counterexample (σ2, C2)

illustrating the violation is generated. As shown in Figure 4.22, (M1‖M2)σ2,C2‖M3

satisfies probabilistic safety property 〈G〉≥0.98 because the “fail” action never occurs.

Thus, the teacher returns to the L* instance for A2 a set of counterexample traces

tr(C2), which actually only contains a single trace 〈warn, shutdown〉.

The second conjecture learnt by the L* instance for A2 is the DFA Aerr
2 shown in

Figure 4.19, and the query 〈A2〉I2=?M3 〈G〉≥0.98 yields a valid probabilistic assumption

〈A2〉≥0.8. A new L* instance is invoked for learning A1, and the teacher answers

membership queries by checking t‖M2 |= 〈A2〉≥0.8. The first conjecture produced by

this new L* instance is the DFA Aerr
1′ in Figure 4.20, which is the same as the first

93

4. Learning Assumptions for Asynchronous Probabilistic Systems

DFA learnt by the previous L* instance for A1. The teacher answers an equivalence

query for it by first checking 〈A1′〉I1=?M2 〈A2〉≥0.8, which yields 〈A1′〉≥0.8, and then

checking 〈true〉M1 〈A1′〉≥0.8, which is false with counterexample (σ1, C1) as described

before. We can see from Figure 4.21 that Mσ1,C1
1 ‖M2 satisfies 〈A2〉≥0.8, because the

probability that “shutdown” occurs before “warn” is 0. Thus, (σ1, C1) is a spurious

counterexample and a trace 〈warn, time〉 is returned to the L* instance for A1. After

the refinement, a new conjectured DFA Aerr
1 as shown in Figure 4.20 is generated. The

teacher checks that 〈A1〉≥0.8M2 〈A2〉≥0.8 and 〈true〉M1 〈A1〉≥0.8 both hold.

Therefore, we conclude that M1‖M2‖M3 |= 〈G〉≥0.98 is true, based on the compo-

sitional verification with rule (Asym-N) and two assumptions 〈A1〉≥0.8, 〈A2〉≥0.8 (the

corresponding DFAs Aerr
1 , Aerr

2 are shown in Figure 4.20 and Figure 4.19, respectively).

4.4.3 Generalisation to Rule (Circ)

Recall from Section 4.1.2 that the assume-guarantee rule (Circ) verifies two-component

systems in a circular fashion and overcomes the limitation of rule (Asym), which may

not be applicable for systems that exhibit circular dependency between components.

Since rule (Circ) has a similar format to rule (Asym-N), it turns out that learning

assumptions for rule (Circ) can be treated as a special case of learning for (Asym-N)

with n = 3 (see Figure 4.16).

In Example 4.15, we show that an appropriate assumption cannot be found for rule

rule (Asym) to verify thatM1‖M2 |= 〈G〉≥0.82 is true. This problem can be solved via

learning assumptions for rule (Circ), which we demonstrate in the following example.

Example 4.17 Consider PAsM1,M2 shown in Figure 4.11 and the DFA Gerr shown

in Figure 4.12; we want to verifyM1‖M2 |= 〈G〉≥0.82 compositionally with rule (Circ).

More specifically, we adapt the assumption learning approach illustrated in Figure 4.16

to learn two probabilistic assumptions 〈A〉≥p, 〈A′〉≥p′ such that the following are all true:

94

4. Learning Assumptions for Asynchronous Probabilistic Systems

b
1

send

input

b
0

send

input

Figure 4.23: The DFA for assumption A′ in Example 4.17

(i) 〈true〉M2 〈A′〉≥p′,

(ii) 〈A′〉≥p′M1 〈A〉≥p,

(iii) 〈A〉≥pM2 〈G〉≥pG.

We first initialise one instance of L* to learn A, and set the alphabet αA =

{output, send, ack}. The membership queries for traces t are answered by checking

whether t‖M2 |= 〈G〉≥0.82 is true. L* proposes conjectures based on closed and con-

sistent observation tables and asks quantitative queries 〈A〉I=?M2 〈G〉≥pG until a con-

jecture is learnt with a non-empty interval I. The procedure is exactly the same as

in Example 4.15, and eventually a probabilistic assumption 〈A〉≥0.82 is learnt with the

corresponding DFA Aerr shown in Figure 4.15.

Now, instead of checking the satisfaction of 〈true〉M1 〈A〉≥0.82 as in Figure 4.15,

we involve another L* instance for learning A′ with alphabet αA′ = {input, send}.

The membership queries are answered by checking t‖M1 |= 〈A〉≥0.82. And L* learns

a DFA for assumption A′ as shown in Figure 4.23. The teacher answers equivalence

query for A′ by first checking 〈A′〉I′=?M1 〈A〉≥0.82, which yields the non-empty interval

I ′ = [0.1, 1], and then verifying 〈true〉M2 〈A′〉≥0.1, which turns out to be also true.

Thus, we can verify that M1‖M2 |= 〈G〉≥0.82 is true, by using rule (Circ) and two

assumptions 〈A〉≥0.82, 〈A′〉≥0.1 whose corresponding DFAs are shown in Figure 4.15 and

Figure 4.23, respectively.

95

4. Learning Assumptions for Asynchronous Probabilistic Systems

4.5 Implementation and Case studies

We have built a prototype tool that implements the fully-automated learning-based

compositional verification approach proposed in this chapter, targeting three differ-

ent assume-guarantee rules (Asym), (Asym-N) and (Circ). Our prototype uses the

libalf learning library [BKK+10] for the implementation of the L* and NL* learn-

ing algorithms. It also employs the probabilistic model checker PRISM [KNP11]

to act as the teacher to answer membership and equivalence queries for the learn-

ing process. To generate probabilistic counterexamples for model checking, we first

build adversaries during model checking with PRISM (sparse engine), and then use

CARMEL (http://www.isi.edu/licensed-sw/carmel/), which implements Eppstein’s al-

gorithm [Epp98] for finding k-shortest paths. We have applied our prototype tool to a

set of benchmark case studies and run experiments on a 2.80GHz PC with 32GB RAM

running 64-bit Fedora. We describe these case studies briefly below. See Appendix C

for detailed models and properties in the PRISM modelling language.

Client-Server Model. This case study is a variant of the client-server model from

[PGB+08]. It models a server and N clients. The server can grant or deny a client’s

request for using a common resource; once a client receives permission to access the

resource, it can either use it or cancel the reservation. Failures might occur with certain

probability in one or multiple clients, causing the violation of the mutual exclusion

property (i.e. conflict in using resources between clients). In the experiments for rule

(Asym), we model the server as a PA componentM1 and the interleaved composition

of N clients as the other PA component M2; for rule (Asym-N), we model the server

as a PA M1 and each client as an individual PA Mi for 2 ≤ i ≤ N + 1. In all cases,

we verify whether the composed system satisfies the mutual exclusion property with

certain minimum probability.

96

4. Learning Assumptions for Asynchronous Probabilistic Systems

Randomised Consensus Algorithm. This case study is based on Aspnes & Her-

lihy’s randomised consensus algorithm [AH90] and modelled in [KNS01]. It models N

distributed processes trying to reach consensus and employs, at each round, a shared

coin protocol parameterised by K. We apply the assumption learning approach for

rule (Asym) to this case study and verify the minimum probability of consensus being

reached within R rounds, where the system is decomposed into two PA components:

M1 for the coin protocol and M2 for the interleaving of N processes.

Sensor Network. This case study is first presented in [FKP10]. It models a network

of N sensors, which are sending data to a processor through a channel. The network

might crash if some data packets are lost. We decompose the system into two PA

components for using rule (Asym): M1, modelling the asynchronous composition of

sensors and the channel, and M2, modelling the processor. We check the minimum

probability that the network never crashes.

Mars Exploration Rovers (mer). This case study is modified from a module of

the flight software for JPL’s Mars Exploration Rovers, which was studied as a non-

probabilistic model in [PG06]. The module is a resource arbiter that grants and re-

scinds access rights of R shared resources to N user threads as required. Each user

thread models a different application on the rover, e.g. imaging, driving and commu-

nicating with earth. We adapt the module to a probabilistic model by adding the

possibility of faulty behaviour, e.g. due to the message lost when the arbiter grants an

access for a user thread. When experimenting with rule (Asym), we decompose the

system into two PA components: M1 for the arbiter and M2 for the join of N user

threads; when learning for rule (Asym), we model the arbiter and each user thread

as an individual PA component. We verify the minimum probability of the mutual

exclusion property that “the arbiter would never grant permissions for communication

and driving simultaneously” holds.

97

4. Learning Assumptions for Asynchronous Probabilistic Systems
C

as
e

st
u

d
y

[p
ar

am
et

er
s]

C
om

p
on

en
t

C
om

p
os

it
io

n
al

C
om

p
os

it
io

n
al

N
o
n

-
si

ze
s

(L
*)

(N
L

*)
co

m
p

.

|M
2
⊗
G

er
r
|
|M

1
|

|A
|

M
Q

E
Q

T
im

e
|A
|

M
Q

E
Q

T
im

e
T

im
e

cl
ie

n
t-

se
rv

er
(1

fa
il

u
re

)
[N

]

3
81

16
5

99
3

5
.4

6
22

3
4

6
.9

0
.0

2
5

61
3

36
7

46
5

5
1
9
.8

8
88

4
5

2
4
.3

0
.0

4
7

4,
73

3
64

9
1,

29
5

7
48

3.
1

10
1,

97
5

5
4
0
2
.7

0
.0

8

cl
ie

n
t-

se
rv

er
(N

fa
il

u
re

s)
[N

]

3
22

9
16

5
99

3
6
.3

6
19

2
3

7
.2

0
.0

4
4

1,
12

1
25

6
23

6
4

2
5
.2

7
50

7
4

3
1
.9

0
.1

2
5

5,
39

7
36

7
46

5
5

1
9
0
.8

8
95

7
5

20
0
.4

0
.2

8

co
n

se
n

su
s

[N
R
K

]

2
3

20
39

1
3,

21
7

6
14

9
5

25
.6

7
16

1
3

1
4
.7

1
0
4
.2

2
4

4
57

3
43

1,
64

9
12

2,
11

7
8

41
5.

1
12

1,
37

2
5

1
0
1
.2

2
.5

9
3

3
20

8,
84

3
38

,1
93

11
47

1
6

43
8.

6
15

1,
23

1
5

4
0
9
.7

>
2
4
h

se
n

so
r

n
et

w
o
rk

[N
]

1
42

72
3

17
2

3
.2

4
31

2
3
.6

0
.0

3
2

42
1,

18
4

3
17

2
3
.7

4
31

2
4
.0

0
.2

5
3

42
10

,6
62

3
17

2
4
.5

4
31

2
4
.8

2
.0

1

m
er

[N
R

]

2
2

96
1

85
4

11
3

3
8
.3

7
1,

10
7

5
2
7
.2

0
.0

9
2

5
5,

77
6

42
7,

36
3

4
11

3
3

2
9
.6

7
1,

25
7

5
15

1
.6

1
.9

6
3

2
16

,7
59

17
1

4
17

3
3

2
1
0
.5

–
–

–
m

em
-o

u
t

0
.4

2

F
ig

u
re

4.
24

:
P

er
fo

rm
an

ce
of

th
e

le
ar

n
in

g-
b

as
ed

co
m

p
os

it
io

n
al

ve
ri

fi
ca

ti
on

u
si

n
g

ru
le

(A
sy

m
)

C
as

e
st

u
d

y
C

om
p

on
en

t
si

ze
s

(A
sy

m
)

(A
sy

m
-N

)
N

o
n

-c
o
m

p
.

[p
ar

am
et

er
s]

|M
2
⊗
G

er
r
|

|M
1
|

|A
|

T
im

e
|A
|

T
im

e
T

im
e

cl
ie

n
t-

se
rv

er
(N

fa
il

u
re

s)
[N

]
6

25
,8

01
49

–
m

em
-o

u
t

8
38

.7
0
.7

7
12

3,
05

3
64

–
m

em
-o

u
t

24
16

1.
2

1
.7

m
er

[N
R

]

3
5

22
4,

97
4

1,
94

9,
54

1
–

m
em

-o
u

t
4

2
9
.4

4
8
.2

4
5

7,
94

9,
99

2
6,

48
5,

60
3

–
m

em
-o

u
t

4
1
2
0
.6

m
em

-o
u

t
5

5
26

5,
55

9,
72

2
17

,5
79

,1
31

–
m

em
-o

u
t

4
3
,8

7
6
.3

m
em

-o
u

t

F
ig

u
re

4.
25

:
P

er
fo

rm
an

ce
of

th
e

le
ar

n
in

g-
b

as
ed

co
m

p
os

it
io

n
al

ve
ri

fi
ca

ti
on

u
si

n
g

ru
le

(A
sy

m
-N

)

98

4. Learning Assumptions for Asynchronous Probabilistic Systems

Results

Figure 4.24 compares the performance of our L*-based and NL*-based compositional

verification approach for rule (Asym), with the non-compositional verification using

PRISM (sparse engine). For each case study, we report the “Component sizes”, i.e. the

number of states of product PA M2 ⊗ Gerr and PA M1. We also report the size |A|

of learnt assumptions: in the L*-based method, this means the number of states of the

learnt DFAs, while, in the NL*-based methods, this means the size of DFAs that are

obtained by converting the learnt RFSAs via subset construction. The performance

of different methods is measured in terms of the total run time (in seconds), and the

number of membership queries (MQ) and equivalence queries (EQ) needed for learning.

We observe that both L*-based and NL*-based methods successfully learned correct

assumptions that are much more compact than components in almost all cases. For

example, in the consensus (2,4,4) model, the learnt assumption A has only 12 states

while the corresponding component M1 has 431,649 states; in the mer (2,5) model,

the component size is 427, 363 and the L*-based method learns an assumption with

|A| = 4. This kind of reduction is quite significant, demonstrating that our approach

can be used to generate succinct assumptions for the compositional verification of large

systems with rule (Asym).

We also observe that the L*-based method generally performs better than the NL*-

based method; however, on several of the larger case studies (e.g. the consensus mod-

els), NL* has better performance because it requires fewer equivalence queries. Note

that NL* often needs a larger number of membership queries than L*, but answer-

ing membership queries is less costly than answering equivalence queries which require

performing the multi-objective model checking.

The primary focus of our current research is on the feasibility of learning appro-

priate assumptions automatically and on the quality of learnt assumptions (e.g. their

size). Thus, we are not particularly interested in comparing the total run time of our

99

4. Learning Assumptions for Asynchronous Probabilistic Systems

prototype tool with the non-compositional verification using PRISM, which is a state-

of-the-art symbolic probabilistic model checker with highly optimised performance.

Nevertheless, it is worth noting that compositional verification is actually faster than

non-compositional verification in two of the consensus models (2,3,20) and (3,3,20).

In the latter case, PRISM cannot finish the non-compositional verification within 24

hours, but our prototype tool can verify the property compositionally within less than

7 minutes.

When we scale up the case studies, some of the models become so large that de-

composing the system into two components is not good enough and the compositional

verification with rule (Asym) runs out of memory. Thus, we decompose the system

into multiple smaller components and apply the compositional verification with rule

(Asym-N). Figure 4.25 shows the performance of our approach for learning-based com-

positional verification using rule (Asym-N) on two case studies: the client-server model

with N clients exhibiting the potential of failures, and the Mars exploration rover (mer).

In all cases, we report the component sizes in terms of PAsM2⊗Gerr andM1 for rule

(Asym). For the use of rule (Asym-N), we decomposeM2 further into separate client

(for client-server) or user thread (for mer) models. We also report the largest size |A|

of a series of assumptions learnt by rule (Asym-N), and the total run time in seconds.

We do not include a benchmark example rule (Circ), which is a special case of rule

(Asym-N).

The experimental results demonstrate that we can successfully learn small assump-

tions and perform compositional verification using rule (Asym-N) for models which

are beyond the scalability of rule (Asym). Moreover, in two cases of mer (4,5) and

(5,5), where the non-compositional verification is not feasible, we can still verify the

models using our learning-based compositional verification with rule (Asym-N). Note

that the compositional verification for mer (5,5) runs for more than 1 hour, because

the model is quite huge. Indeed, the component M1 has about 17.5 million states and

100

4. Learning Assumptions for Asynchronous Probabilistic Systems

M2 ⊗ Gerr has more than 265 million states. So, it takes a long time to perform the

model checking for answering membership and equivalence queries, even though the

learnt assumptions are very small (with a maximum of 4 states).

We observe from Figures 4.24 and 4.25 that non-compositional verification using

PRISM is generally faster than compositional verification, this is because PRISM is a

highly optimized tool based on the symbolic data structure of MTBDDs and performs

particularly well for small to medium sized models. On the other hand, compositional

verification requires iterations of model checking for answering membership and equiv-

alence queries, its performance is relatively slow (but mostly still managed to complete

within 1-2 minutes). The advantage of composition verification is more obvious when

it comes to lager models, such as consensus models (2,3,20) and (3,3,20), and mer (4,5)

and (5,5), where non-compositional verification is significantly slower or even not fea-

sible. Since most real-world applications employ ultra-large models, we would expect

the compositional verification to be extremely useful for such applications.

4.6 Summary and Discussion

In this chapter, we have presented a fully-automated approach for learning probabilistic

assumptions for the compositional verification of systems composed of PAs. In this

assume-guarantee framework, the formats of assumptions and guarantees are the same.

Since we aim to verify probabilistic safety properties, the assumptions are in the format

represented by a DFA plus a lower probability bound 1. Our approach can handle

three different assume-guarantee rules: an asymmetric rule (Asym) for two-component

systems, an asymmetric rule (Asym-N) for n-component systems, and a circular rule

(Circ). These three rules are probabilistic analogs of the most important rules in the

non-probabilistic setting [CGP03, PGB+08].

1There is a thought that, instead of restricting to lower bounds, we may find an interval for the
probability of certain regular language. However, it is not clear how such assumptions can be used in
the compositional verification framework.

101

4. Learning Assumptions for Asynchronous Probabilistic Systems

We also considered the use of two different learning methods, i.e. the L* and NL*

algorithms. We build a prototype tool that implements our approach and applied it

successfully to a set of benchmark case studies. The experimental results are very

encouraging, which demonstrated that our approach can learn significantly smaller

assumptions about large components in most cases, e.g. a 4-state assumption is learnt

for a component that has more than 17.5 million states in the mer (5,5) case shown

in Figure 4.25. Furthermore, our approach enables compositional verification for some

large models where non-compositional verification is not feasible, e.g. the consensus

(3,3,20) case in Figure 4.24 and the mer (4,5) case in Figure 4.25.

One weakness of our approach is that it is built on top of an incomplete composi-

tional framework of [KNPQ10], which means that, even if a property holds in a system,

there may not necessarily exist appropriate assumptions to verify it compositionally. As

described in Section 4.3, we equip our assumption learning approach for rule (Asym)

with the ability to generate a pair of lower/upper bounds on the minimum probability

of the system M1‖M2 satisfying the regular safety property G. Another solution for

solving this problem is to develop a complete compositional verification framework that

uses richer classes of probabilistic assumptions, which we will explore in Chapter 5.

As mentioned in Section 4.5, our current focus is on the feasibility of learning as-

sumptions rather than optimising perormance of our prototype tool. However, there

are a few thoughts that might help to optimise our approach. The first idea is to adapt

the alphabet refinement technique [PGB+08]. Currently, we set a fixed alphabet a

priori for learning, which is usually the interface alphabet αA = αM1 ∩ (αM2 ∪ αG).

By determining a reduced alphabet, we might be able to learn a smaller assumption

and improve the total run time. The second idea is to use a symbolic BDD-based im-

plementation of the L* learning algorithm [NMA08]. The efficiency of BDD operations

might help to optimise our prototype. So far, we have only considered the verification

of systems against probabilistic safety properties. It may be possible to extend our as-

102

4. Learning Assumptions for Asynchronous Probabilistic Systems

sumption learning approach to the assume-guarantee rules in [FKN+11] for ω-regular

properties and expected reward properties.

103

4. Learning Assumptions for Asynchronous Probabilistic Systems

104

Chapter 5

Learning Assumptions for

Synchronous Probabilistic

Systems

Recall that, in Chapter 4, we proposed an approach to learn assumptions represented

as probabilistic safety properties for the compositional verification of systems com-

posed of PAs. Probabilistic safety properties have a limited expressiveness to capture

the behaviour of probabilistic systems. Indeed, the underlying assume-guarantee rules

used in Chapter 4 are incomplete, because the components modelled as PAs cannot be

interchanged with assumptions formalised as probabilistic safety properties.

In this chapter, we present a new probabilistic assume-guarantee verification frame-

work that uses a more expressive class of assumptions represented as Rabin probabilis-

tic automata (RPAs), which capture trace probabilities of system components. It is

well-known that developing compositional verification methods on top of trace-based

equivalence relations for nondeterministic probabilistic systems (e.g. PAs) is difficult

[Seg95]. Therefore, we restrict our work in this chapter to purely probabilistic systems.

105

5. Learning Assumptions for Synchronous Probabilistic Systems

We consider discrete-time Markov chains (DTMCs) built from components modelled

as probabilistic I/O systems (PIOSs), which extend DTMCs with output actions and

(nondeterministic) input actions, using a synchronous parallel operator. The relation

between components and corresponding assumptions is captured by (weak) language

inclusion, which abstracts away the unobservable behaviour of components to produce

smaller assumptions.

In the remainder of this chapter, we first propose an asymmetric assume-guarantee

rule (Asym-Pios) for verifying probabilistic safety properties on DTMCs composed of

two PIOS components in Section 5.1. We give a semi-algorithm in Section 5.2 to check

language inclusion between RPAs, which is an undecidable problem [BC01, MO05].

Next, we present a novel L*-style learning method for RPAs in Section 5.3. Then in

Section 5.4, we build a fully-automated implementation of the assume-guarantee rule

(Asym-Pios), in which the assumptions are learnt automatically as RPAs. We report

on experimental results of our prototype implementation for a selection of benchmark

case studies in Section 5.5, and summarise contributions of this chapter in Section 5.6.

The work presented in this Chapter was first published in a jointly authored paper

[FHKP11a]. It is extended here with corrections, detailed proofs, running examples,

and experimental results. Some of the notations have been modified for consistency of

the thesis. See Section 1.3 for credits of this chapter.

5.1 Compositional Verification for PIOSs

In this section, we define a compositional verification framework for fully probabilistic

systems composed of PIOSs based on a new assume-guarantee rule (Asym-Pios), in

which assumptions are represented by RPAs. We first introduce the formalisms of

PIOSs in Section 5.1.1 and RPAs in Section 5.1.2. Then, we propose the assume-

guarantee rule (Asym-Pios) in Section 5.1.3.

106

5. Learning Assumptions for Synchronous Probabilistic Systems

5.1.1 Probabilistic I/O Systems

In the following, we introduce probabilistic I/O system (PIOSs), which generalise

DTMCs (defined in Section 3.2.1) by distinguishing between different types (e.g. input,

output) of actions. An individual PIOS component can respond to nondeterministic

input actions issued by other components, and the synchronous composition of two

PIOSs yields a fully probabilistic DTMC system. Note that, in this chapter, we allow

sub-distributions in DTMCs and omit the atomic proposition labelling function L.

Definition 5.1 (PIOS) A probabilistic I/O system (PIOS) is a tuple M =

(S, s, α, δ), where S is a finite set of states, s ∈ S is an initial state, α is an alphabet

of action labels, and δ : S × (α ∪ {τ})→ SDist(S) is a transition function satisfying:

• α is partitioned into three disjoint sets of input, output and hidden actions,

denoted by αI , αO and αH , respectively; input actions αI are further partitioned

into m disjoint bundles αI,i (1 ≤ i ≤ m) for some m;

• for each state s, the set of enabled actions A(s)
def
= {a ∈ α | δ(s, a) is defined}

satisfies either |A(s)| = 1 if A(s) ∈ αO ∪αH ∪{τ}, or A(s) = αI,i for some input

action bundle αI,i.

Transitions and paths of PIOSs are defined similarly as for DTMCs. From any state

in a PIOS, there is either a single outgoing transition labelled with an output, hidden

or τ action, or k transitions that correspond to certain bundle αI,i comprising k input

actions. Intuitively, each bundle αI,i represents a set of possible input actions that can

be communicated from other components. The nondeterministic behaviour of a PIOS

is resolved by responding to such input actions. We denote a transition labelled with an

input (resp. output) action a as s
a?−→ µ (resp. s

a!−→ µ), where s ∈ S and µ ∈ SDist(S).

We call the set of input and output actions αI ∪ αO external actions. We write s 6→ if

107

5. Learning Assumptions for Synchronous Probabilistic Systems

no action is enabled in a state s, i.e. A(s) = ∅. A PIOS can be considered a DTMC, if

|A(s)| ≤ 1 for any state s.

Typically, we need the notion of adversaries to reason about models exhibiting

both probabilistic and nondeterministic behaviour (e.g. PAs in Section 3.2.2). For

PIOSs, however, following a sequence of actions w = a1 . . . an dictates a unique ad-

versary; this is because PIOSs only have nondeterminism on input actions, and, in

each execution step, at most one input action from a bundle would be trigged by

the external environment. Given a finite path ρ = s0
a0−→ s1 · · ·

an−1−−−→ sn in M,

the path probability is given by PrM(ρ) =
∏n−1
i=0 δ(si, ai)(si+1). Let act(ρ) denote

the sequence of actions a0 . . . an−1 obtained from ρ. The probability of a particu-

lar sequence of actions w ∈ (α ∪ {τ})∗ being observed in PIOS M is well-defined:

PrM(w) =
∑

act(ρ)=w PrM(ρ). Let st : (α ∪ {τ})∗α → α∗ be the function that re-

moves all τs from a finite word with a non-τ ending, and define the (weak) probability

of accepting a τ -free word w̄ ∈ α∗ in M as Prw
M(w̄) =

∑
w̄=st(w) PrM(w) for all

w ∈ (α ∪ {τ})∗α. Note that Prw
M(w̄) is a well-defined probability value, because all

the corresponding paths of words w ∈ (α ∪ {τ})∗α with st(w) = w̄ belong to the same

probability space.

Example 5.2 Figure 5.1 shows a pair of PIOSs M1 and M2. M1 is a data commu-

nicator that can either “receive” or “send” data depending on a probabilistic choice.

When M1 is ready to receive data, it outputs a “ready!” signal to the data genera-

tor M2. On the other hand, if M1 chooses to send data, then a failure would oc-

cur and a “fail!” signal would be sent out. There is an internal initialisation step

labelled by “init” in M2 that, with probability 0.8, it waits for signals from M1;

otherwise, it just starts to send the sequence of data packets immediately, which is

modelled by the alternating actions d0 and d1 . Note that input/output actions for

M1,M2 are labelled with ?/! in the figure; all other actions are hidden. Each PIOS

has a single input action bundle: αI,11 = {d0 , d1}, αI,12 = {ready , fail}. A path

108

5. Learning Assumptions for Synchronous Probabilistic Systems

s
0

ready!

0.9

0.1

s
1

s
2

fail!

s
3

s
4

receive

send

choose

d1?

d0?

s
5

s
6

d1? d0?
s
7

off

t
2t

0

t
3

d1!

ready?

fail?

d0!
0.8

0.2

t
1

init

Figure 5.1: A pair of PIOSs M1 and M2 (taken from [FHKP11a])

ρ = t0
init,0.8−−−−→ t1

ready?,1−−−−−→ t2
d0!,1−−−→ t3

d1!,1−−−→ t2 through M2 corresponds to a word

w = 〈init, ready?, d0!, d1!〉, whose probability is given by PrM2(w) = 0.8.

Next, we define synchronous parallel composition of PIOSs. For simplicity, we limit

our attention to a binary parallel operator, which matches the assume-guarantee rule

used in this chapter. However, it should be possible to adapt the operator for composing

multiple PIOSs. Given two PIOSs M1, M2 with alphabets α1, α2, we say that M1

and M2 are composable if αI1 = αO2 , αO1 = αI2 and αH1 ∩ αH2 = ∅. Let ⊥ denote an idle

action, and ∗ be a binary operator joining two actions into a combined action, e.g. a ∗ b

means that actions a and b occur simultaneously.

Definition 5.3 (Parallel composition of PIOSs) The synchronous parallel com-

position of two composable PIOSsMi = (Si, si, αi, δi) for i=1, 2 is given byM1‖M2 =

(S1×S2, (s1, s2), α, δ), where the alphabet is α = αI1 ∪ αO1 ∪
(
(αH1 ∪ {⊥}) ∗ (αH2 ∪ {⊥})

)
and the transition relation δ is defined such that (s1, s2)

γ−→ µ1 × µ2 if and only if one

of the following holds:

• s1
a−→ µ1, s2

a−→ µ2, and γ = a

• s1
b1−→ µ1, s2

b2−→ µ2, and γ = b1 ∗ b2

• s1
b1−→ µ1, s2

a−→ (or s2 6→), µ2 = ηs2, and γ = b1 ∗ ⊥

• s1
a−→ (or s1 6→), s2

b2−→ µ2, µ1 = ηs1, and γ = ⊥ ∗ b2

109

5. Learning Assumptions for Synchronous Probabilistic Systems

for any a ∈ αI1 ∪ αO1 , b1 ∈ αH1 ∪ {τ} and b2 ∈ αH2 ∪ {τ}.

Note that, in the above definition, the ∗ operator is lifted for the set (αH1 ∪{⊥})∗(αH2 ∪

{⊥}). We distinguish the following cases for the transition relation:

(1) if actions of both transitions in M1 and M2 are external actions and they are

matching (e.g. a ∈ αI1 and a ∈ αO2), then they will be performed simultaneously;

(2) if both actions are hidden or τ actions, say b1 ∈ αH1 ∪ {τ} and b2 ∈ αH2 ∪ {τ},

then they will be carried out by a combined action b1 ∗ b2 simultaneously;

(3) if the transition of one component is labelled with an external action a (or no

action is enabled in the start state), and the other component’s transition is

labelled with b, which is a hidden or τ action, then a will wait (or equivalently

perform an idle action ⊥) and a combined action ⊥ ∗ b will be executed.

We show by the following lemma that the synchronous parallel composition of two

PIOSs M1‖M2 results in a DTMC.

Lemma 5.4 Given two composable PIOSs M1 and M2, their synchronous parallel

composition product M1‖M2 is a DTMC.

Proof: Based on Definition 5.3, we distinguish three cases for the states in M1‖M2.

1. (s1, s2)
a−→ where a ∈ αI1 ∪ αO1 : one of the states s1 and s2 may have multiple

input actions while the other state only has one output action; thus, there is only

matching action enabled in the product state (s1, s2).

2. (s1, s2)
b1∗b2−−−→ where b1 ∈ αH1 ∪ {τ} and b2 ∈ αH2 ∪ {τ}: since each of the states

s1, s2 has exactly one hidden or τ action enabled, there is only one available

combined action in state (s1, s2).

110

5. Learning Assumptions for Synchronous Probabilistic Systems

3. (s1, s2)
b1∗⊥−−−→ or (s1, s2)

⊥∗b2−−−→: if state si performs an action bi ∈ αHi ∪ {τ} and

the other state has one or more enabled external actions (or no action enabled

at all), then the product state (s1, s2) would take a combined action joined by bi

and the idle action ⊥.

For any state, there is at most one enabled action. Thus, M1‖M2 is a DTMC. �

5.1.2 Rabin Probabilistic Automata

The model of Rabin probabilistic automata (RPAs) was originally proposed by Rabin

[Rab63], also called probabilistic automata in some literature; however, we avoid this

term to prevent confusion with the identically named model by Segala [Seg95], which

is also used in this thesis (see Section 3.2.2 and Chapter 4).

Definition 5.5 (RPA) A Rabin probabilistic automaton (RPA) is a tuple A =

(S, s, α,P), where S is a finite set of states, s ∈ S is an initial state, α is an al-

phabet, and P : α → (S × S → [0, 1]) is a transition function mapping actions to

probability matrices such that
∑

s′∈S P[a](s, s′) ∈ [0, 1] for all a ∈ α and s ∈ S.

Note that the above definition is slightly non-standard. Firstly, we allow∑
s′∈S P[a](s, s′) ∈ [0, 1], i.e. rows of matrices P[a] can sum to less than 1. This is

based on the understanding that some action may not be enabled in a state or may

lead to sub-distributions. We can always translate a RPA defined in this manner to the

classical definition by adding a (non-accepting) sink state and additional transitions

to make the probabilistic distributions full. Secondly, we omit the accepting condition

of states, effectively making all states accepting; because we restrict our attention to

RPAs that correspond to executions of probabilistic models.

A run of a finite word w ∈ α∗ on a RPA A is a finite sequence s0
a0−→ s1 · · ·

an−1−−−→ sn,

where w = a0a1 · · · an−1 and s0 = s. The probability of accepting w in A is given

111

5. Learning Assumptions for Synchronous Probabilistic Systems

by PrA(w) = ~ιP[w]~κ, where ~ι is a 0-1 row vector indexed by states S with ~ι (s) = 1

if s = s and ~ι (s) = 0 otherwise, ~κ is a column vector over S containing all 1s, and

P[w] = P[a1]P[a2] · · ·P[an] is obtained from the multiplication of transition matrices.

Intuitively, PrA(w) is determined by tracing path(s) through A that correspond to w,

with P[ai](s, s
′) giving the probability of moving from state s to s′ when reading action

ai for i ∈ N.

RPAs are a generalisation of finite-state automata (Definition 3.1). Indeed, a finite-

state automaton A = (S, s, α, δ, F) can be considered as a RPA with (possibly) non-

accepting states, where P[a](s, s′) = 1 if δ(s, a) is defined and P[a](s, s′) = 0 otherwise;

and the probability PrA(w) of accepting a finite word w in a finite-state automaton

A is either 1 or 0. The languages accepted by RPAs are called stochastic languages,

which include regular languages (i.e. accepted by finite-state automata) as a subset. In

the following, we generalise the notion of language inclusion/equivalence of finite-state

automata (see Section 3.1) to RPAs, which will be used later to establish the relation

between a PIOS and its assumption.

Definition 5.6 (Language inclusion/equivalence of RPAs) Given two RPAs A1

and A2 with the same alphabet α, we say A1 and A2 are related by (strong) language

inclusion (resp. language equivalence), denoted A1 v A2 (resp. A1 ≡ A2), if for every

word w ∈ α∗, PrA1(w) ≤ PrA2(w) (resp. PrA1(w) = PrA2(w)).

The problem of checking language equivalence for RPAs is decidable in polynomial

time (see e.g. [Sch61, Tze92b, DHR08, KMO+11]). However, checking language inclu-

sion for RPAs is undecidable [BC01, MO05], because one can reduce the undecidable

nonemptiness with threshold problem [Paz71] to it. Later, in Section 5.2, we propose a

semi-algorithm to check language inclusion for RPAs; and in Section 5.3, we develop a

new L*-style learning algorithm which learns a RPA A for a target stochastic language

L such that L(A) = L.

112

5. Learning Assumptions for Synchronous Probabilistic Systems

5.1.3 Assume-Guarantee Reasoning Rule (Asym-Pios)

Before we present an assume-guarantee rule for the compositional verification of PIOSs,

we first formulate a notion of assumptions about PIOSs.

Definition 5.7 (Assumption RPA) Let M be a PIOS with alphabet α = αI]αO]

αH and input action bundles αI =
⊎m
i=1 α

I,i. An assumption A about M is a RPA

A = (S, s, α,P) satisfying, for each state s ∈ S,

• either all or none of the actions in a bundle αI,i (1 ≤ i ≤ m) are enabled in s;

• pmax(s) ∈ [0, 1], where:

pmax(s)
def
=

∑
a∈αO∪αH

∑
s′∈S

P[a](s, s′) +

m∑
i=1

pmax
i (s)

with pmax
i (s)

def
= maxa∈αI,i

∑
s′∈S P[a](s, s′).

Intuitively, an assumption about a PIOS is a RPA in which all states are accepting

and, for any state, the sum of all its outgoing transition probabilities by output or

hidden actions, together with the maximum outgoing probability sums among all the

input actions in each bundle, yields at most 1. These characterisations are due to the

fact that we are using a specific class of RPAs to capture the abstract behaviour (i.e.

trace probabilities) of PIOSs. For simplicity, in the above definition we require that

assumption A contains all actions a ∈ α from PIOS M. As we will show later, to

obtain smaller assumptions, we can actually rename all hidden actions αH of M to τ ;

and thus, the assumption would only include external actions αI ∪ αO of M.

The relation between a PIOS and its RPA assumption is formalised by the notion

of weak language inclusion (it is a weak relation because of the ignorance of τ action).

Definition 5.8 (Weak language inclusion/equivalence) Given a PIOS M with

alphabet α and an assumption A about M, we say that M and A are related by

113

5. Learning Assumptions for Synchronous Probabilistic Systems

weak language inclusion (resp. equivalence), denoted M vw A (resp. M ≡w A), if

Prw
M(w) ≤ PrA(w) (resp. Prw

M(w) = PrA(w)) for every word w ∈ α∗.

The problem of checking whether a RPA A is a valid assumption about a PIOSM,

i.e. whether M vw A is true, can be reduced to checking (strong) language inclusion

between two RPAs. The reduction is formalised by the following proposition.

Proposition 5.9 Let M = (S, s, α, δ) be a PIOS and A be an assumption about M.

We denote by rpa(M) the (straightforward) translation of M to a RPA, defined as

(S, s, α ∪ {τ},P), where P[a](s, s′) = δ(s, a)(s′) for a ∈ α ∪ {τ}. Then, letting Aτ

denote the RPA derived from A by adding τ to its alphabet and a probability 1 τ -loop

to every state, we have that: Mvw A ⇐⇒ rpa(M) v Aτ .

Proof: For each word w in M, the following holds:

PrM(w)
(1)

≤ Prw
M(st(w))

(2)

≤ PrA(st(w))
(3)
= PrAτ (st(w))

(4)
= PrAτ (w),

where (1) holds because Prw
M(st(w)) =

∑
w′ PrM(w′) for W = {w′ | st(w′) = st(w)}

and w ∈ W; (2) is given by the condition that M vw A (see Definition 5.8); (3)

is true because adding τ -loop to every state with probability 1 does not change

the probability of accepting τ -free words; (4) is true because every τ in Aτ is a

self-loop with probability 1. It is also clear that PrM(w) = Pr rpa(A)(w). The above

(in)equalities hold from both directions, thus Mvw A if and only if rpa(M) v Aτ . �

For the purpose of compositional verification (which will be explained later), we

also need to perform the conversion in the other direction, i.e. from an assumption A

to a (weak) language equivalent PIOS, denoted by pios(A).

Definition 5.10 (Assumption-to-PIOS conversion) Given an assumption A =

(S, s, α,P) with the action partition α = (
⊎m
i=1 α

I,i)] αO] αH , its conversion to

114

5. Learning Assumptions for Synchronous Probabilistic Systems

PIOS is given by pios(A) = (S′, s, α, δ), where the states set S′ = S] {sa|s ∈ S, a ∈

αH ∪ αO}] {si|s ∈ S, 1≤i≤m} and the transition relation δ are constructed such that,

for any transition s
a−→ s′ in A,

• if a ∈ αO ∪ αH , then δ(s, τ)(sa) = p
pmax(s) and δ(sa, a)(s′) = pmax(s);

• if a ∈ αI,i (for 1≤i≤m), then δ(s, τ)(si) =
pmax
i (s)
pmax(s) and δ(si, a)(s′) = p·pmax(s)

pmax
i (s) .

where p = P[a](s, s′), and pmax(s), pmax
i (s) are defined as in Definition 5.7.

Intuitively, an assumption may have a mixture of input, output and hidden actions

enabled in the same state. It can be converted into a (weak) language equivalent PIOS

(see Definition 5.1), in which a state has either a single outgoing transition labelled by

an output or hidden action, or a bundle of transitions with input actions, by adding

extra states and τ transitions. We show below that pios(A) is well-defined.

Proposition 5.11 Given an assumption A = (S, s, α,P) and action partition α =

(
⊎m
i=1 α

I,i)] αO] αH , the conversion pios(A) = (S′, s, α, δ) is a well-defined PIOS.

Proof: With the given action partition, we need to prove that, for any state s in pios(A),

(1) if A(s) ∈ αO ∪ αH ∪ {τ}, then |A(s)| = 1;

(2) if A(s) contains some input actions from a bundle αI,i, then A(s) = αI,i;

where A(s) is the set of enabled actions in state s.

We first consider the case (1) for all τ , output and hidden actions. Given that the

assumption A does not have any τ -transition, by construction, if a state s in pios(A)

contains a τ action, then it will be the unique enabled action in that state. The

transition δ(s, τ)(sa) is well-defined, because the newly created state sa is unique for

an output or hidden action a ∈ αO ∪ αH , and p
pmax(s) is a probability due to p ∈ [0, 1],

pmax(s) ∈ [0, 1] and p ≤ pmax(s). By construction, the transition from any state sa to

115

5. Learning Assumptions for Synchronous Probabilistic Systems

q
0

ready!

0.9

0.1

q
1

q
2

fail!

d1?
d0?

fail!

q
0

ready!

0.9

0.1

q
0

q
0

fail!

q
1

q
2

d1?
d0?

fail!

τ

r

f

Figure 5.2: RPA A and its PIOS conversion pios(A) (taken from [FHKP11a])

s′ is unique for any output or hidden action a, so that δ(sa, a)(s′) is well-defined with

probability pmax(s) ∈ [0, 1].

Now we consider the case (2) for input actions. Since there is at most one input

action bundle αI,i enabled for any state in A, the newly created state si in pios(A)

is unique. Thus, the transition δ(s, τ)(si) is well-defined and
pmax
i (s)
pmax(s) is a probability.

For any state si, the transition to s′ with action a is unique by construction; hence

δ(si, a)(s′) is well-defined and p·pmax(s)
pmax
i (s) is a probability. Since the input actions in a

bundle will be enabled in an all-or-none fashion (Definition 5.1), we have A(s) = αI,i

if some input action bundle αI,i is enabled in state s of pios(A).

All in all, we have proved that pios(A) is a well-defined PIOS.

�

Example 5.12 Figure 5.2 shows a valid assumption A about PIOS M1 (Figure 5.1),

i.e. M1 vw A, and the converted PIOS pios(A). In A, state q0 has two output actions

“ready!” and “fail!” leading to respective sub-distributions. A is converted into a PIOS

pios(A) by adding two states qready0 and qfail0 (abbreviated to qr0 and qf0), which are linked

to the initial state q0 through a distribution labelled with τ .

Now, we present a new assume-guarantee reasoning rule for verifying a probabilistic

safety property 〈G〉≥p on a DTMCM1‖M2 composed of a pair of PIOSs. For simplicity,

we assume that the property 〈G〉≥p refers only to the input/output actions ofM1 and

M2; we also rename all hidden actions ofM1 andM2 as τ actions, which affects neither

116

5. Learning Assumptions for Synchronous Probabilistic Systems

the structure nor the transition probabilities of M1‖M2. To establish the assume-

guarantee reasoning rule, we use assume-guarantee triples in the form of 〈A〉M〈G〉≥p,

meaning that “whenever component M is part of a system satisfying the assumption

A, then the system is guaranteed to satisfy 〈G〉≥p”. Formally:

Definition 5.13 (Probabilistic assume-guarantee triple for PIOS) If M is a

PIOS with alphabet α, A is an assumption aboutM, and 〈G〉≥p is a probabilistic safety

property, then 〈A〉M〈G〉≥p is an assume-guarantee triple with the following meaning:

〈A〉M〈G〉≥p ⇐⇒ ∀M′. (M′ vw A =⇒ M′‖M |= 〈G〉≥p)

where M′ represents a PIOS that is composable with M.

Based on the following proposition, we can check the satisfaction of 〈A〉M〈G〉≥p by

first converting assumption A into pios(A) and then using standard model checking

techniques for DTMCs (see Section 3.3.2).

Proposition 5.14 〈A〉M〈G〉≥p holds if and only if pios(A)‖M|= 〈G〉≥p.

Proof: See Appendix A. �

Theorem 5.15 Suppose that M1, M2 are two PIOSs, A is an assumption about M1,

and 〈G〉≥p is a probabilistic safety property 〈G〉≥p. Then the following proof rule holds:

M1 vw A
〈A〉M2 〈G〉≥p
M1‖M2 |= 〈G〉≥p

(Asym-Pios)

Proof: The result follows directly from Definition 5.13. �

117

5. Learning Assumptions for Synchronous Probabilistic Systems

0.02

τ*init

q0 t0

ready

fail

d1

d0

q
0

f
t1

rq0 t2

rq0 t1

q
0

f
t2

q2 t1

q1 t2 q1 t3

fail

0.72

0.18

0.08

q
1

fail

q
0

fail

Figure 5.3: pios(A)‖M2 and a DFA Gerr for Example 5.16

Therefore, the verification of a probabilistic safety property 〈G〉≥p onM1‖M2 can

be decomposed into two separate problems with an appropriate assumption A about

M1: (1) checking if there is a weak language inclusion relation between M1 and A,

which reduces to (strong) language inclusion on RPAs (Proposition 5.9); (2) checking if

〈A〉M2 〈G〉≥p holds, which can be done by constructing the DTMC pios(A)‖M2 and

verifying 〈G〉≥p on pios(A)‖M2 (Proposition 5.13).

The compositional verification framework based on rule (Asym-Pios) is complete

in the sense that, if M1‖M2 |= 〈G〉≥p is true, we can always find an assumption A to

verify it by simply taking A to be rpa(M1) in the worst case.

Example 5.16 Consider the pair of PIOSs M1,M2 shown in Figure 5.1 and a prob-

abilistic safety property 〈G〉≥0.9 with the DFA Gerr shown in Figure 5.3, which means

that with probability at least 0.9 “fail” never occurs. We use rule (Asym-Pios) to

verify M1‖M2 |= 〈G〉≥0.9 compositionally with the assumption A shown in Figure 5.2.

From Example 5.12, we know that the first premise of rule (Asym-Pios) is true, i.e.

M1 vw A. We still need to check the second premise 〈A〉M2 〈G〉≥0.9, which re-

duces to checking pios(A)‖M2 |= 〈G〉≥0.9. Observe from Figure 5.1 that “fail” occurs

in pios(A)‖M2 with probability 0.08, thus 〈G〉≥0.9 is satisfied. Since both premises of

rule (Asym-Pios) are true, we conclude that M1‖M2 |= 〈G〉≥0.9 holds.

118

5. Learning Assumptions for Synchronous Probabilistic Systems

5.2 Checking Language Inclusion for RPAs

Recall from the previous section that checking the first premise of assume-guarantee rule

(Asym-Pios), i.e. M1 vw A, reduces to checking language inclusion for RPAs, which

is an undecidable problem. Inspired by the algorithm of deciding language equivalence

for RPAs [Tze92b], we now propose a method to check if two RPAs A1 and A2 are

related by language inclusion (i.e. A1 v A2). Our method is a semi -algorithm in the

sense that, termination is not guaranteed if A1 v A2 is true; however, if A1 v A2

does not hold, the algorithm will terminate and produce a lexicographically minimal

counterexample word wc illustrating that PrA1(wc) > PrA2(wc).

Given a pair of RPAs Ai=(Si, si, α,Pi) for i = 1, 2, we first define vectors ~ιi, ~κi as

in Section 5.1.2. More specifically, ~ιi is a 0-1 row vector indexed over Si where ~ιi(s) = 1

if s = si and ~ιi(s) = 0 otherwise; and ~κi is a column vector over Si containing all

1s. Similarly to the language equivalence decision algorithm in [Tze92b], our method

proceeds by expanding a tree. We denote each node of the tree as (~υ1, ~υ2, w), where

~υi = ~ιiPi[w] is a vector storing probabilities of reaching each state through tracing

word w in Ai for i = 1, 2. Thus, the probability of accepting a word w in RPA Ai can

be obtained as PrAi(w) = ~υi~κi.

As shown in Algorithm 6, we expand the tree in breadth-first order and keep track

of the tree nodes by using a queue. During the tree expansion, we also maintain a set

V of non-leaf nodes. Initially, both queue and V only contain the root node (~ι1,~ι2, ε),

where ε is the empty word. If queue is not empty, we take the head node (~υ1, ~υ2, w) and

consider each of its children nodes (~υ ′1, ~υ
′
2, w

′), where ~υ ′1 = ~υ1P1[a], ~υ ′2 = ~υ2P2[a] and

w′ = wa for all a ∈ α (Line 2-5). If there is a node (~υ ′1, ~υ
′
2, w

′) satisfing ~υ ′1~κ1 > ~υ ′2~κ2,

then we can conclude that A1 v A2 does not hold and terminate the semi-algorithm

with a counterexample word wc = w′ (Line 6-7). Otherwise, we need to check if the

node (~υ ′1, ~υ
′
2, w

′) can be pruned (i.e. making it a leaf node) by using the following two

119

5. Learning Assumptions for Synchronous Probabilistic Systems

Algorithm 6 Semi-algorithm of checking language inclusion for RPAs

Input: A pair of RPAs Ai=(Si, si, α,Pi) for i = 1, 2
Output: true if A1 v A2, or a counterexample wc ∈ α∗ otherwise

1: queue := {(~ι1,~ι2, ε)}, V := {(~ι1,~ι2, ε)}
2: while queue is not empty do
3: remove (~υ1, ~υ2, w) from the head of queue
4: for each a ∈ α do
5: ~υ ′1 := ~υ1P1[a], ~υ ′2 := ~υ2P2[a], w′ := wa
6: if ~υ ′1~κ1 > ~υ ′2~κ2 then
7: return wc = w′

8: else if (~υ ′1, ~υ
′
2, w

′) does not satisfy either (C1) or (C2) then
9: add (~υ ′1, ~υ

′
2, w

′) to the tail of queue,
10: V = V ∪ {(~υ ′1, ~υ ′2, w′)}
11: end if
12: end for
13: end while
14: return true

pruning criteria:

(C1) ~υ ′1~κ1 = 0.

(C2) There exists a set of non-negative rational numbers λi (for 0 ≤ i < |V |), each

corresponding to a node (~υ1,i, ~υ2,i, wi) ∈ V such that,

~υ ′1 ≤

∑
0≤i<|V |

λi~υ1,i

~υ ′2 ≥
∑

0≤i<|V |

λi~υ2,i

where ≤ and ≥ denote pointwise comparisons between vectors.

In practice, (C2) can be easily checked using an SMT solver. If node (~υ ′1, ~υ
′
2, w

′)

satisfies either of these two criteria, then it can be pruned as a leaf node; otherwise, we

append it to the tail of queue and also add it to the non-leaf nodes set V (Line 9-10).

The semi-algorithm terminates if no counterexample word can be found when queue

becomes empty, concluding that A1 v A2.

120

5. Learning Assumptions for Synchronous Probabilistic Systems

s0 a b

s2

s1
0.1

0.9
t0 a

b
t1

0.1

0.9

Figure 5.4: A pair of RPAs A1,A2 for Example 5.17

The essential difference between our method and the language equivalence decision

algorithm [Tze92b] concerns the pruning criteria. For checking language equivalence,

the set of non-leaf nodes can be maintained by calculating the span of the vector space.

However, for checking language inclusion, we have to restrict the coefficients of linear

combinations of vectors to be non-negative (as stated in (C2)) to prevent the flip of

inequality signs.

Example 5.17 Consider the pair of RPAs A1,A2 shown in Figure 5.4; we apply Al-

gorithm 6 to check if A1 v A2. For A1, we have ~ι1 = [1, 0, 0], ~κ1 = [1, 1, 1]′ and

P1[a] =

0 0.1 0.9

0 0 0

0 0 0

 P1[b] =

0 0 0

0 1 0

0 0 0

For A2, we have ~ι2 = [1, 0], ~κ2 = [1, 1]′ and

P2[a] =

0.9 0.1

0 0

 P2[b] =

0 0

0 1

Starting with the root node (~ι1,~ι2, ε), we expand the tree with a node for word “a”,

where ~υ1[a] = ~ι1P1[a] = [0, 0.1, 0.9] and ~υ2[a] = ~ι2P2[a] = [0.9, 0.1]. Since ~υ1[a]~κ1 =

~υ2[a]~κ2 = 1, and the node does not satisfy (C1) or (C2), we add it as a non-leaf node to

set V and also append it to the tail of queue. Next, we consider the node for word “b”,

where ~υ1[b] = ~ι1P1[b] = [0, 0, 0] and ~υ2[b] = ~ι2P2[b] = [0, 0]; this node satisfies (C1)

121

5. Learning Assumptions for Synchronous Probabilistic Systems

a

ϵ

b

aa ab

aba abb

w ~υ1 ~υ2 pruned?

ε [1, 0, 0] [1, 0] -
a [0, 0.1, 0.9] [0.9, 0.1] -
b [0, 0, 0] [0, 0] (C1)
aa [0, 0, 0] [0.81, 0.09] (C1)
ab [0, 0.1, 0] [0, 0.1] -
aba [0, 0, 0] [0, 0] (C1)
abb [0, 0.1, 0] [0, 0.1] (C2)

Figure 5.5: Tree nodes for Example 5.17

since ~υ1[b]~κ1 = 0, so we prune it as a leaf node. The complete process of expanding

tree and pruning nodes is shown in Figure 5.5. Note that the node associated with word

“abb” is pruned because it satisfies (C2) with

~υ ′1[abb] ≤ 0 · ~υ ′1[ε] + 0 · ~υ ′1[a] + 1 · ~υ ′1[ab]

~υ ′2[abb] ≥ 0 · ~υ ′2[ε] + 0 · ~υ ′2[a] + 1 · ~υ ′2[ab]

The queue is now empty. Thus, we terminate the algorithm and conclude that the

language inclusion A1 v A2 is true.

Correctness and termination. We show that the output of Algorithm 6 is correct

when it terminates. On one hand, if the output is a counterexample word wc ∈ α∗, then,

based on Line 5-7, PrA1(wc) = ~ι1P1[wc]~κ1 = ~υ ′1~κ1 > ~υ ′2~κ2 = ~ι2P2[wc]~κ2 = PrA2(wc).

Thus, according to Definition 5.6, A1 v A2 does not hold.

On the other hand, if the output is true, we prove that PrA1(w) ≤ PrA2(w) for any

word w ∈ α∗. We distinguish the following three cases:

1. For any non-leaf node (~υ1, ~υ2, w) ∈ V , based on Line 10, it is guaranteed that

PrA1(w) = ~υ1~κ1 ≤ ~υ2~κ2 = PrA2(w).

2. For any leaf node (~υ1, ~υ2, w) satisfying (C1), we have PrA1(w) = ~υ1~κ1 = 0. Thus,

PrA1(w) ≤ PrA2(w) for any probability value PrA2(w). This result also extends

122

5. Learning Assumptions for Synchronous Probabilistic Systems

to any word ŵ = wu with a suffix u ∈ α∗, because PrA1(ŵ) = ~υ1P[u]~κ1 = 0.

3. For any leaf node (~υ1, ~υ2, w) satisfying (C2), we prove that PrA1(w) ≤ PrA2(w)

by Lemma 5.18. For any finite word ŵ = wu with a suffix u ∈ α∗, we prove in

Lemma 5.19 that its corresponding node (~υ1P[u], ~υ2P[u], wu) also satisfies (C2).

Thus, we have PrA1(ŵ) ≤ PrA2(ŵ).

Therefore, when Algorithm 6 outputs true, A1 v A2 holds.

Lemma 5.18 If a node (~υ1, ~υ2, w) satisfies (C2), then PrA1(w) ≤ PrA2(w).

Proof: Based on (C2), we have

PrA1(w) = ~υ1~κ1 ≤
∑

0≤i<|V |

λi~υ1,i~κ1 =
∑

0≤i<|V |

λiPrA1(wi),

and

PrA2(w) = ~υ2~κ2 ≥
∑

0≤i<|V |

λi~υ2,i~κ2 =
∑

0≤i<|V |

λiPrA2(wi),

where (~υ1,i, ~υ2,i, wi) ∈ V . Given that PrA1(wi) ≤ PrA2(wi) for all 0 ≤ i < |V |, thus

PrA1(w) ≤
∑

0≤i<|V |

λiPrA1(wi) ≤
∑

0≤i<|V |

λiPrA2(wi) ≤ PrA2(w).

�

Lemma 5.19 When Algorithm 6 terminates with true, if a node (~υ1, ~υ2, w) satisfies

(C2), then (~υ1P1[u], ~υ2P2[u], wu) also satisfies (C2) for any u ∈ α∗.

Proof: Let V = {(~υ1,i, ~υ2,i, wi)} be the set of non-leaf nodes. When Algorithm 6

terminates with true, any child of a non-leaf node is either a non-leaf node, or a leaf

node satisfying (C1) or (C2). If the child is a non-leaf node then it satisfies (C2),

123

5. Learning Assumptions for Synchronous Probabilistic Systems

because we can always find a set of non-negative rational numbers for it (by letting the

number corresponding to the node be 1 and others be 0). If the child node satisfies

(C1), then it also satisfies (C2) with the set of rational coefficients as all 0s. Thus, any

child of a non-leaf node (~υ1,i, ~υ2,i, wi) satisfies (C2); that is, for any a ∈ α, there exist

a set of non-negative rational numbers ξij such that

~υ1,iP1[a] ≤

∑
0≤j<|V |

ξij~υ1,j

~υ2,iP2[a] ≥
∑

0≤j<|V |

ξij~υ2,j

(†1)

We are about to prove by induction on the length of |u| that (~υ1P1[u], ~υ2P2[u], wu)

satisfies (C2) for any u ∈ α∗.

Base case: |u| = 0, it is known that (~υ1, ~υ2, w) satisfies (C2).

Induction step: |u| ≥ 1. Suppose that (~υ1P1[u], ~υ2P2[u], wu) satisfies (C2) for some

finite word u. Then, there exist a set of rational numbers λi such that

~υ1P1[u] ≤

∑
0≤i<|V |

λi~υ1,i

~υ2P2[u] ≥
∑

0≤i<|V |

λi~υ2,i

(†2)

For any a ∈ α, we have

~υ1P1[ua] = ~υ1P1[u]P1[a]

(†2)

≤
∑

0≤i<|V |

λi~υ1,iP1[a]

(†1)

≤
∑

0≤i<|V |

λi
∑

0≤j<|V |

ξij~υ1,j

=
∑

0≤j<|V |

(∑
0≤i<|V |

λiξij
)
~υ1,j

124

5. Learning Assumptions for Synchronous Probabilistic Systems

Let ζj =
∑

0≤i<|V | λiξij , which is a set of nonnegative rational numbers. We get

~υ1P1[ua] ≤
∑

0≤i<|V |

ζj~υ1,j

Symmetrically, we can deduce that

~υ2P2[ua] ≥
∑

0≤i<|V |

ζj~υ2,j

Therefore, (~υ1P1[ua], ~υ2P2[ua], wua) satisfies (C2) for all a ∈ α.

�

Now, we discuss the termination of Algorithm 6. If A1 v A2 does not hold, then, by

Definition 5.6, there must exist at least one word wc such that PrA1(wc) > PrA2(wc).

We can always reach node (~υ1, ~υ2, wc) by expanding the tree, and hence terminate

the algorithm (Line 7). Moreover, since we traverse the tree following a breadth-first

fashion, wc is the lexicographically minimum counterexample word. On the other hand,

if A1 v A2 is true, then termination is not guaranteed (which is acceptable because

of the undecidability of the underlying problem). Potentially, we may keep discovering

nodes that do not satisfy either (C1) or (C2), and add them to queue (Line 8-9); thus,

queue may never be empty and Algorithm 6 will not terminate.

5.3 L*-style Learning for RPAs

Recall from Section 5.1 that we represent assumptions about PIOSs with a specific class

of RPAs in which all states are accepting. To enable the automated generation of such

assumptions, we propose an active learning algorithm that learns RPAs (with all states

accepting) for a target stochastic language (corresponding to the trace probabilities

of PIOSs). Our method is inspired by [BV96] for learning multiplicity automata and

125

5. Learning Assumptions for Synchronous Probabilistic Systems

Algorithm 7 L*-style learning algorithm for RPAs

Input: alphabet α, a teacher who knows the target stochastic language L
Output: RPA A

1: initialise (U, V, T): let U = V = {ε}, ask membership queries and fill T (w) for all
words w ∈ (U ∪ U · α) · V

2: repeat
3: while (U, V, T) is not RPA-closed or not RPA-consistent do

4: if (U, V, T) is not RPA-closed then
5: find u ∈ U, a ∈ α that make (U, V, T) not RPA-closed,
6: add ua to U ,
7: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
8: end if
9: if (U, V, T) is not RPA-consistent then

10: find a ∈ α, v ∈ V that make (U, V, T) not RPA-consistent,
11: add av to V ,
12: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
13: end if
14: end while
15: construct a conjectured RPA A and ask an equivalence query
16: if a counterexample c is provided then
17: add c and all its prefixes to U ,
18: extend T for all words w ∈ (U ∪ U · α) · V using membership queries
19: else
20: the correct RPA A has been learnt such that L(A) = L
21: end if
22: until L(A) = L
23: return A

works in a similar style to the L* algorithm described in Section 3.5.1. It constructs an

observation table (of acceptance probabilities for each finite word) and asks a teacher

two types of queries: membership queries about the probability of certain finite words in

the target stochastic language; and equivalence queries regarding whether a conjectured

RPA accepts exactly the target language.

Algorithm 7 shows the details of our method. Similarly to the L* algorithm, it

builds an observation table (U, V, T), where U is a prefix-closed set of finite words, V is

a suffix-closed set of finite words, and T : ((U ∪U ·α) ·V)→ [0, 1] is a function mapping

finite words to probabilities. The rows of the observation table (U, V, T) are labelled

126

5. Learning Assumptions for Synchronous Probabilistic Systems

by elements in the prefix set (U ∪ U ·α) and the columns are labelled by elements in

the suffix set V . Each entry at row u and column v in the table has a value T (uv),

corresponding to the probability of accepting word uv in the target stochastic language.

Recall that, in the L* algorithm, T (uv) is a binary result indicating whether or not a

word is accepted by the target regular language. For each u ∈ (U ∪ U ·α), we define a

row vector ~υ[u] of length |V | such that ~υ[u](v) = T (uv). As we will show later, each

state in the learnt RPA corresponds to at least one row vector ~υ[u].

Recall that L* maintains a closed and consistent observation table. Analogously,

we define the notions of RPA-closed and RPA-consistent below. Note that the notions

used in L* can be considered as a special case of our definitions, where the observation

table is filled with 1s and 0s only.

Definition 5.20 (RPA-closed) Observation table (U, V, T) is RPA-closed if, for any

u ∈ U, a ∈ α, there exists a set of non-negative rational numbers λi such that

~υ[ua] =
∑
ui∈U

λi~υ[ui].

Intuitively, an observation table is RPA-closed if any row vector ~υ[ua] can be repre-

sented as a conical combination of vectors in the set {~υ[u] |u ∈ U}. Note that we restrict

the linear coefficients to be non-negative, because they are related to transition prob-

abilities in the learnt RPA, which we will show later. In [BV96], a similar condition

without this restriction is used for learning multiplicity automata, where transitions

labelled with negative numbers are allowed.

Definition 5.21 (RPA-consistent) Observation table (U, V, T) is RPA-consistent if,

given any rational number ξi,

∑
ui∈U

ξi~υ[ui] = ~0 =⇒ (∀a ∈ α.)
∑
ui∈U

ξi~υ[uia] = ~0.

127

5. Learning Assumptions for Synchronous Probabilistic Systems

The intuition is that each row vector in the observation table corresponds to a RPA

state, and the linear dependencies between vectors (states) should be consistent after

taking a transition with action a.

As shown in Algorithm 7, the observation table is initialised with U = V = {ε}.

We assume T (ε) = 1, since all states of the learnt RPA are accepting. The algorithm

keeps filling entries of the observation table (U, V, T) by asking membership queries

and maintaining the RPA-closed and RPA-consistent conditions. If it finds a pair of

u ∈ U, a ∈ α which make (U, V, T) not RPA-closed, i.e. not satisfying the condition in

Definition 5.20, it adds the word ua to the prefix set U ; similarly, if it finds a pair of

a ∈ α, v ∈ V that make (U, V, T) not RPA-consistent, i.e. violating the condition in

Definition 5.21, it adds the word av to the suffix set V . Once (U, V, T) satisfies both

conditions, the algorithm constructs a RPA A and asks an equivalence query for it. If

the teacher answers “yes”, then the algorithm terminates and outputs A; otherwise,

the teacher provides a counterexample word c indicating that the target language L

accepts c with a different probability from PrA(c). In the latter case, the algorithm

adds c and all its prefixes to U , and continues to update the observation table.

Now we describe how to construct a RPA A = (S, s, α,P, F) based on a RPA-

closed and RPA-consistent observation table (U, V, T). Firstly, we determine a minimal

set U ′ ⊆ U such that, for all u ∈ U , the vector ~υ[u] can be represented as a conical

combination of vectors in the set {~υ[u′] |u′ ∈ U ′}. The states set S of RPA A is fixed

by U ′, in the sense that there is a one-to-one mapping between state s ∈ S and vector

~υ[u′] for u′ ∈ U ′. The initial state s corresponds to vector ~υ[ε]. The transition matrix

P[a] for a ∈ α is given by

P[a](i, j) = λj ·
T (uj)

T (ui)

where the set of non-negative rational numbers λj are obtained by solving the following

128

5. Learning Assumptions for Synchronous Probabilistic Systems

linear equation:

~υ[uia] =
∑
uj∈U ′

λj~υ[uj]

The set F of accepting states is defined for row vectors with ~υ[u](ε) 6= 0.

Lemma 5.22 Suppose (U, V, T) is a RPA-closed and RPA-consistent observation table.

The conjecture A = (S, s, α,P, F) based on (U, V, T) is a well-defined RPA with all

states accepting and satisfies PrA(uv) = T (uv) for all u ∈ (U ∪ U ·α), v ∈ V .

Proof: We first show that A = (S, s, α,P, F) is a well-defined RPA. The states set S

is well-defined because (U, V, T) is RPA-closed and, based on Definition 5.20, we can

always find such a conical set U ′. Since T (ε) = 1, the vector ~υ[ε] is an extreme point

in the conical hull and will always be included in the set U ′; hence, the initial state

s is well-defined. Now we show that the transition matrices P are well-defined, i.e. ,∑
j P[a](i, j) ∈ [0, 1] for all a ∈ α. We have

∑
j

P[a](i, j)
(†1)
=
∑
j

λj ·
T (uj)

T (ui)

(†2)
=
∑
j

λj ·
~υ[uj](ε)

~υ[ui](ε)

(†3)
=

~υ[uia](ε)

~υ[ui](ε)

(†4)
=

T (uia)

T (ui)

(†5)
∈ [0, 1]

(†1) and (†3) are by definition of P[a](i, j). (†2) and (†4) are due to T (u) = ~υ[u](ε) for

any word u. Finally, (†5) is because the probability of accepting word uia should be

no more than accepting its prefix ui. The set of accepting states is well-defined with

F = S. This is because, for any non-empty word u, if ~υ[u](ε) = 0 then ~υ[u] = ~0 (i.e. if

T (u) = 0 then T (uv) = 0 with any suffix v), which always satisfies Definition 5.20 and

hence u would never be added into U .

129

5. Learning Assumptions for Synchronous Probabilistic Systems

In the following, we show that PrA(uv) = T (uv) for all u ∈ (U ∪ U ·α) and v ∈ V .

PrA(uv)
(‡1)
= ~ιP(uv)~κ

(‡2)
=
∑
j

P(uv)[0, j]

(‡3)
=
∑
j

∑
k

P(u)[0, k]P(v)[k, j]

(‡4)
=
∑
j

∑
k

λu0,k
T (uk)

T (ε)
λvk,j

T (uj)

T (uk)

(‡5)
=
∑
k

λu0,k
(∑

j

λvk,jT (uj)
)

(‡6)
=
∑
k

λu0,kT (uk · v)
(‡7)
= T (ε · uv) = T (uv).

(‡1) is by definition of PrA(uv). (‡2) is because we assume ~ι = [1, 0, · · · , 0] for sim-

plicity, and ~κ is a column vector of 1s given that all states of A are accepting. (‡3)

is due to matrix multiplication. (‡4) is by definition of transition matrices P[u] and

P[v]. (‡5) is because T (ε) = 1. (‡6) and (‡7) are due to ~υ[uk · v] =
∑

j λ
v
k,j~υ[uj], and

~υ(u) =
∑

k λ
u
0,k~υ(uk), respectively.

�

Correctness and termination. When Algorithm 7 terminates, its output is correct

because the result of equivalence query guarantees that L(A) = L (Line 20), i.e. the

learnt RPA A accepts the target stochastic language L.

Nevertheless, we don’t know whether Algorithm 7 terminates. The basis of the

termination proof for the L* algorithm [Ang87a] is that, for any regular language, there

exists a unique minimal accepting DFA. But an analogous property does not exist for

arbitrary stochastic language and RPAs. According to [BV96], a smallest multiplicity

automaton (i.e. weighted automaton with rational transition weights) can be learnt for

a given stochastic language. However, converting a multiplicity automaton to a RPA

with all states accepting is not always possible.

130

5. Learning Assumptions for Synchronous Probabilistic Systems

PrwM1
(w)?

word w

Learner Teacher

cex.wc

conj.A

prob.pw

Membership query

(analyse conjecture A)

M1 ‖M2 6|= 〈G〉≥p(i) M1 vw A
(+ counterexample)

no
yes

done? M1 ‖M2 |= 〈G〉≥p
(+ assump.A)

(ii) 〈A〉M2 〈G〉≥p

Compute:

Check if A satisfies:

Property true:
〈G〉≥p
M1,M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs: Outputs:

Property false:

(analyse word w)

Equivalence query

Figure 5.6: Learning probabilistic assumptions for rule (Asym-Pios)

5.4 Learning Assumptions for Rule (Asym-Pios)

We build a fully-automated implementation of the (complete) compositional verification

framework proposed in Section 5.1, which aims to verify (or refute) M1 ‖M2 |= 〈G〉≥p
for two PIOSs M1,M2 and a probabilistic safety property 〈G〉≥p. This is done using

assume-guarantee rule (Asym-Pios) (Theorem 5.15) with the required RPA assump-

tion A about component M1 being generated through learning.

Figure 5.6 summarises the overall structure of our approach: the left-hand side

shows a learner, which is the active learning algorithm for RPAs proposed in Section 5.3;

and the right-hand side shows a teacher who answers membership and equivalence

queries asked by the learner. This structure is very similar to the approach presented in

Section 4.3, where the L* algorithm is employed to learn assumptions for rule (Asym).

However, here we use a completely different learner and teacher.

To answer membership queries (i.e. the probability of accepting a certain finite word

w in the assumption A), we use a probabilistic model checker to simulate the teacher,

which computes Prw
M1

(w). Based on Definition 5.8, to satisfy the first premise of rule

(Asym-Pios), i.e. M1 vw A, we need to have Prw
M1

(w) ≤ PrA(w) for all w ∈ α∗.

131

5. Learning Assumptions for Synchronous Probabilistic Systems

Thus, we can use the value of Prw
M1

(w) as the weakest answer to membership queries.

Answering equivalence queries (i.e. whether a conjectured RPA A is an appropri-

ate assumption for rule (Asym-Pios)) involves two steps, each of which corresponds

to a premise of rule (Asym-Pios). Firstly, to check if M1 vw A is true, based on

Proposition 5.9, we reduce the problem to checking language inclusion between two

RPAs rpa(M1) and Aτ , and then applying the semi-algorithm proposed in Section 5.2.

Secondly, to check whether the assume-guarantee triple 〈A〉M2 〈G〉≥p holds, based on

Proposition 5.14, we verify pios(A) ‖M2 |= 〈G〉≥p instead, by using standard techniques

of model checking probabilistic safety properties on DTMCs (see Section 3.3.2).

If both premises are true, we can conclude that M1 ‖M2 satisfies property 〈G〉≥p
and A is an appropriate assumption to verify it with rule (Asym-Pios). However,

if any premise fails, the teacher needs to return a counterexample word wc to the

learning algorithm. If the first premise M1 vw A fails, we can obtain a coun-

terexample word wc from the (weak) language inclusion check as described in Sec-

tion 5.2 such that Prw
M1

(wc) > PrA(wc). If the second premise 〈A〉M2 〈G〉≥p fails,

i.e. pios(A) ‖M2 6|= 〈G〉≥p, a probabilistic counterexample C containing a set of finite

paths is generated using the counterexample generation techniques for DTMCs (see

Section 3.4). Given a path ρ ∈ C, we can obtain a τ -free word w̄ = tr(ρ�pios(A)) in A,

which may correspond to a set of words Wρ = {w | st(w) = w̄} in M1; thus, based on

C, we can construct a (small) fragment of M1, denoted MC
1 , by removing transitions

in M1 that do not appear in any path corresponding to word w ∈Wρ for all ρ ∈ C. If

MC
1 ‖M2 6|= 〈G〉≥p, then we conclude thatM1‖M2 6|= 〈G〉≥p and terminate the learning.

Otherwise, C is a spurious counterexample, i.e. Prw
M1

(wc) < PrA(wc) for some word wc

in A that corresponds to a path ρ ∈ C, so the teacher returns wc as a counterexample

to the learning algorithm to refine A.

Correctness and termination. When the learning loop terminates, the correctness

of outputM1‖M2 |= 〈G〉≥p orM1‖M2 6|= 〈G〉≥p is guaranteed by the assume-guarantee

132

5. Learning Assumptions for Synchronous Probabilistic Systems

q
0

ready!
0.9

0.1
fail!

q
0

ready!0.9

0.1 fail!

q
1

fail!

Figure 5.7: Two learnt RPAs A1,A2 for Example 5.23

rule (Asym-Pios). However, since this approach is driven by the RPA learning algo-

rithm of Section 5.3 whose termination we cannot prove due to the learnability of

stochastic languages, we cannot guarantee that the loop always terminates. Moreover,

this approach uses the semi-algorithm of Section 5.2 to perform weak language inclusion

checks, which also does not guarantee termination.

T1 ε

ε 1

fail! 0.1
ready! 0.9

d0? 0
d1? 0

T2 ε

ε 1
fail! 0.1

fail!, fail! 0.1

ready! 0.9
d0? 0
d1? 0

fail!, ready! 0
fail!, d0? 0
fail!, d1? 0

fail!, fail!, fail! 0.1
fail!, fail!, ready! 0

fail!, fail!, d0? 0
fail!, fail!, d1? 0

Figure 5.8: Observation tables corresponding to RPAs A1,A2 in Figure 5.7

Example 5.23 Consider the compositional verification of M1‖M2 |= 〈G〉≥0.9 shown

in Example 5.16. We show the process of learning an assumption A to verify the above

specification using the learning approach in Figure 5.6.

Given an alphabet αA = {fail!, ready!, d0?, d1?}, the first RPA-closed and RPA-

consistent observation table obtained by the RPA learning algorithm (Section 5.3) is

T1 shown in Figure 5.8. Each entry of T1 is filled with the probability of accept-

ing the corresponding τ -free word in M1. A conjectured RPA A1 is built from T1,

133

5. Learning Assumptions for Synchronous Probabilistic Systems

shown in Figure 5.7, and an equivalence query is asked for it. The teacher pro-

vides a counterexample word c1 = 〈fail!, fail!〉 indicating that M1 6vw A1, because

Prw
M1

(c1) = 0.1 > 0.01 = PrA1(c1).

The learning algorithm updates the observation table by adding c1 and its prefix to

U . A second RPA-closed and RPA-consistent observation table is obtained as T2 in

Figure 5.8, which corresponds to A2 shown in Figure 5.7. This time the teacher finds

a counterexample c2 = 〈ready!, d0?〉, because Prw
M1

(c2) = 0.9 > 0 = PrA2(c2).

The learning algorithm continues to update the observation table with c2. A new

RPA is built, which corresponds to A in Figure 5.2. As described in Example 5.16, A is

a good assumption that can be used in rule (Asym-Pios) to verify M1‖M2 |= 〈G〉≥0.9

compositionally. Thus, the learning loop terminates.

5.5 Implementation and Case Studies

We have built a prototype tool which implements the fully-automated compositional

verification and assumption generation approach described in Section 5.4. The tool also

implements the semi-algorithm for checking language inclusion for RPAs (Section 5.2)

and the L*-style active learning algorithm for RPAs (Section 5.3). Our prototype uses

the probabilistic model checker PRISM [KNP11] to answer membership queries and

check probabilistic assume-guarantee triples (Definition 5.13) during the assumption

learning procedure. It also uses the SMT solver Yices 2 (http://yices.csl.sri.com/) to

solve the linear arithmetic problems that arise in the language inclusion check and in

RPA learning. Experiments were run on a 2.80GHz PC with 32GB RAM running

64-bit Fedora for the following benchmark case studies.

Contract Signing (egl). This case study is modified from the contract signing pro-

tocol of Even, Goldreich and Lempel [EGL85]. It considers the problem of exchanging

data fairly between two parties A and B over a network, i.e. if A has received all data

134

5. Learning Assumptions for Synchronous Probabilistic Systems

from B, then B should be able to obtain all data from A regardless of A’s action, and

vice versa. A trusted third party named counter is involved in the communication

between A and B, facilitating the simultaneity of data exchange. In this case study, we

focus on the scenario when two parties are exchanging N pairs of secrets and each secret

contains L bits. The data exchange involves two phases: in the first phase, the parties

use oblivious transfer to probabilistically reveal one secret from each pair; then, in the

second phase, they release all secrets bit by bit. A party is considered committed if the

opponent knows both secrets in at least one pair. To enable compositional verification

using assume-guarantee rule (Asym-Pios), we model the behaviour of the counter as

a PIOS M1 and the behaviour of parties A, B together as the other PIOS M2. We

ask for the maximum probability that “A is committed while B is not”.

Bounded Retransmission Protocol (brp). Originally proposed by Helmink, Sell-

ink and Vaandrager [HSV94], this protocol aims to communicate messages over unre-

liable channels. It sends a file in N chunks, but allows only a bounded (Max) number

of retransmissions of each chunk. We developed two case studies based on it. The first

one, labelled as brp-1 in Figure 5.9, models the sender module as a PIOS M1 and the

receiver as the other PIOSM2. The second one, labelled as brp-2, models the receiver

as M1 and the sender as M2. In both cases, we verify the maximum probability of

violating the safety property that “no more than one file should be sent”.

Client-Server Model (cs). This case study is a variant of the model from [PGB+08]),

where a server is managing the resources for N clients. Each of the clients may request

the use of a certain resource, and the server would grant the request if the resource

is available, and would deny it if some other client is currently using the resource.

However, with a small probability, the server may behave incorrectly and cause the

resource conflict between clients. We model the server as a PIOS M1 and the clients

organised via a round robin scheduling as the other PIOSM2. We check the probability

135

5. Learning Assumptions for Synchronous Probabilistic Systems

of the mutual exclusion property being violated.

Results

Figure 5.9 shows the experimental results. For each case study, we report the number

of states of components |M1| and |M2 ⊗ Gerr |, the size of learning assumption |A|

and converted PIOS pios(A). To illustrate the efficiency of our assumption learning

approach, we also show the number of requested equivalence queries, |EQ|, which cor-

responds to the number of iterations in the learning loop (Figure 5.6). Finally, we

compare the model checking results and total run-time of our learning-based composi-

tional verification approach with the non-compositional verification by PRISM (using

the sparse engine).

We can see from Figure 5.9 that, in all but one case, our approach successfully learns

assumptions that are considerably smaller than the components (even after converting

to PIOSs). We also observe that the model checking results obtained from the compo-

sitional verification are identical to the non-compositional verification. The above two

insights illustrate that our approach has the advantage of learning assumptions of good

quality (i.e. compact representation and sufficient for model checking).

However, in the brp-2 (4,4) model, the learning loop does not terminate. Investiga-

tions show that this is due to round-off errors in the numerical computation performed

by PRISM being converted to rationals for the SMT solver. We plan to investigate the

use of arbitrary precision arithmetic (i.e. the precision of numbers’ digits are limited

only by the available memory of the host system) to alleviate this problem. Currently

our implementation is a prototype and (unsurprisingly) results in slower run-times than

non-compositional verification using (highly-optimised) PRISM.

136

5. Learning Assumptions for Synchronous Probabilistic Systems

C
as

e
st

u
d

y
C

om
p

on
en

t
si

ze
s

C
om

p
os

it
io

n
al

N
on

-c
om

p
o
si

ti
o
n

a
l

[p
ar

am
et

er
s]

|M
2
⊗
G

er
r
|
|M

1
|
|A
|
|p
io
s(
A

)|
|E
Q
|

R
es

u
lt

T
im

e
(s

)
R

es
u

lt
T

im
e

(s
)

eg
l

[N
L

]

5
8

1,
27

4,
64

1
36

1
2
0

31
5

0.
38

67
18

29
.7

0.
38

67
18

2
.4

7
6

8
8,

26
5,

62
5

43
3

2
4

37
5

0.
51

46
48

39
.8

0.
51

46
48

5
.3

9
7

8
48

,3
99

,8
49

50
5

2
8

43
5

0.
01

53
80

58
.6

0.
01

53
80

5
.5

8
8

2
31

,5
73

,1
61

19
3

3
2

49
5

0.
50

38
45

67
.6

0.
50

38
45

4
.2

4

br
p
-1

[N
M

a
x

]

16
5

64
2

19
1

2
3

2
1.

12
1E

-8
1.

3
1.

12
1E

-8
0
.5

0
32

5
1,

28
2

19
1

2
3

2
2.

24
1E

-8
1.

5
2.

24
1E

-8
0
.9

2
64

5
2,

56
2

19
1

2
3

2
4.

48
2E

-8
1.

6
4.

48
2E

-8
1
.7

9

br
p
-2

[N
M

a
x

]

2
2

76
4

50
1
9

25
9

1.
79

2E
-2

55
.5

1.
79

2E
-2

0
.0

4
2

3
76

4
63

3
9

57
7

3.
74

0E
-3

17
2.

2
3.

74
0E

-3
0
.0

5
4

4
76

4
14

6
-

-
-

-
-

1.
55

6E
-3

0
.1

7

cl
ie

n
t-

se
rv

er
[N

]

2
72

27
4

1
7

17
10

0.
07

99
99

61
.1

0.
07

99
99

0
.0

1
9

3
37

2
41

6
3
1

31
14

0.
07

99
99

32
5.

9
0.

07
99

99
0
.1

1
8

4
1,

72
8

56
2

4
9

49
37

0.
07

99
99

3,
15

5.
5

0.
07

99
99

0
.2

4
7

F
ig

u
re

5.
9:

P
er

fo
rm

an
ce

of
th

e
le

ar
n

in
g-

b
as

ed
co

m
p

os
it

io
n

al
ve

ri
fi

ca
ti

on
u

si
n

g
ru

le
(A

sy
m
-P

io
s)

137

5. Learning Assumptions for Synchronous Probabilistic Systems

5.6 Summary and Discussion

In this chapter, we presented a novel (complete) assume-guarantee framework in which

system components are modelled as probabilistic I/O systems (PIOSs) and assump-

tions are Rabin probabilistic automata (RPAs). We also developed new techniques for

checking RPA language inclusion and learning RPAs from stochastic languages, which

enable a fully-automated approach of learning assumptions and performing composi-

tional verification based on the proposed assume-guarantee framework. A prototype

tool is implemented and experiments on a set of benchmark case studies show that our

approach is capable of learning assumptions that are compact yet still sufficient for

producing exact model checking results.

A weakness of our approach is that it may not terminate, which is due to the semi-

algorithm for checking language inclusion of RPAs and the (non-terminating) active

learning algorithm for RPAs. In future, we may investigate the termination conditions

for these algorithms to address this weakness. One possibility is to learn multiplic-

ity automata instead of RPAs as assumptions. Given a stochastic language, there is

a polynomial algorithm [BV96] to learn a smallest multiplicity automata using mem-

bership and equivalence queries. However, more investigations are needed to establish

the connection between a PIOS component and a multiplicity automaton assumption

whose transition weights may be negative rational numbers.

The approach presented in this chapter is methodologically similar to the approach

proposed in Chapter 4, in the sense that they both learn assumptions via member-

ship and equivalence queries. However, they contrast each other in a few technical

aspects. Firstly, they are based on different assume-guarantee frameworks, one is for

asynchronous systems while the other is for synchronous systems. Secondly, they adopt

different learning algorithms and their learnt assumptions are in different formats (DFA

vs. RPA). Thirdly, their implementation of the teacher for answering membership and

138

5. Learning Assumptions for Synchronous Probabilistic Systems

equivalence queries are also different: the approach in Chapter 4 uses a model checker

as a teacher, while the approach in this chapter requires the language inclusion check.

139

5. Learning Assumptions for Synchronous Probabilistic Systems

140

Chapter 6

Learning Implicit Assumptions

Motivated by the work of [CCF+10], which learns assumptions encoded implicitly

as Boolean functions for non-probabilistic compositional verification, we develop a

novel approach for learning implicit assumptions for probabilistic systems modelled

as DTMCs and present the approach in this chapter.

Similarly to [CCF+10], we use the CDNF algorithm [Bsh95] to automatically learn

assumptions represented as Boolean functions. The target function of the learning

algorithm is a DTMC system component represented as a Boolean formula over a set

of variables encoding its state space and transition probabilities. In order to obtain more

succinct assumptions about DTMC components, we need to abstract the behaviour of

components by reducing the number of states or transitions. Recall from Section 3.5.3

that the CDNF algorithm learns a representation of the target function in conjunctive

disjunctive normal form (CDNF) over the same set of Boolean variables. Thus, the

learnt assumption would not result in a reduction in the size of the state space. The

idea is that, instead, we will be able to obtain a succinct representation. We propose

to represent assumptions as IDTMCs, whose transition probabilities are unspecified

but assumed to lie within an interval (see Section 3.2.3), to abstract the behaviour

of component DTMCs. A new (complete) assume-guarantee rule (Asym-Idtmc) is

141

6. Learning Implicit Assumptions

developed for the compositional verification.

For the remainder of this chapter, we first describe how to encode DTMCs and

IDTMCs as Boolean functions in Section 6.1. Then we present the new assume-

guarantee rule (Asym-Idtmc) in Section 6.2, which verifies probabilistic safety prop-

erties on two-component systems built from DTMCs using synchronous parallel com-

position, with assumptions represented as IDTMCs. In Section 6.3, we develop novel

techniques, which include a new value iteration/adversary generation algorithm and

a symbolic variant of the algorithm based on MTBDDs, to compute the (maximum)

reachability probability of IDTMCs that arise as a synchronous parallel composition

product of an IDTMC and a DTMC as defined in Section 6.2. Note that, in [CCF+10],

a similar reachability analysis for (non-probabilistic) transition systems represented as

Boolean functions is done by using SAT-based model checking. However, SAT-based

model checking for probabilistic systems are still in early stages of development, per-

forming poorly compared to MTBDDs (see e.g. [TF11]). Thus, we convert Boolean

representations of DTMCs/IDTMCs to MTBDDs, which enable the reuse of mature

symbolic implementation techniques for probabilistic model checking. In Section 6.4,

we build a fully-automated assumption generation framework for the assume-guarantee

rule (Asym-Idtmc), using the CDNF algorithm to learn assumptions automatically.

In Section 6.5, we present the experimental results of our prototype implementation

on several case studies. Lastly, we summarise the strengths and weaknesses of our

approach in Section 6.6. See Section 1.3 for credits of this chapter.

6.1 Implicit Encoding of Probabilistic Models

In this section, we describe how to encode DTMCs and IDTMCs in the form of multi-

terminal binary decision diagrams (MTBDDs) and Boolean functions.

142

6. Learning Implicit Assumptions

6.1.1 Encoding Models as MTBDDs

In this following, we give an overview of MTBDDs and describe how they can be used

to represent probabilistic models such as DTMCs and IDTMCs.

Introduction to MTBDDs

MTBDDs are symbolic data structures first proposed in [CFM+93] as a generalisation

of binary decision diagrams (BDDs) [Bry92], and later widely used for symbolic im-

plementation of probabilistic model checking techniques [Par02, KNP04]. Similarly to

BDDs, an MTBDD M is a rooted, directed acyclic graph with its vertex set partitioned

into non-terminal and terminal vertices (also called nodes). A non-terminal node m is

labelled by a variable var(m) ∈ {x1, . . . , xn} where x1 < · · · < xn is a set of distinct,

totally ordered, Boolean variables. Each non-terminal node has exactly two children

nodes, denoted then(m) and else(m). A terminal node m is labelled by a real number

val(m) and has no children. The Boolean variable ordering < is imposed onto the

graph by requiring that a child m′ of a non-terminal node m is either terminal, or is

non-terminal and satisfies var(m) < var(m′).

An MTBDD M represents a function fM(x1, . . . , xn) : Bn → R, the value of which

is determined by traversing M from the root node and following the edge of each non-

terminal node m to then(m) (resp. else(m)) if var(m) is 1 (resp. 0) until reaching

a terminal node and obtaining its labelled value. Note that BDDs are in fact a spe-

cial case of MTBDDs whose terminal nodes are labelled by 1 or 0. MTBDDs can

provide compact storage for real-valued functions because they are stored in reduced

form. If nodes m and m′ are identical (i.e. , var(m) = var(m′), then(m) = then(m′)

and else(m) = else(m′)), then only one copy is stored. Furthermore, if a node m sat-

isfies then(m) = else(m), it is removed and any incoming edges are redirected to its

unique child. With a fixed ordering of Boolean variables, there is a canonical MTBDD

representing a given function.

143

6. Learning Implicit Assumptions

The MTBDD size (number of nodes) is extremely sensitive to the ordering of its

Boolean variables, which has a direct effect on both the storage requirements and the

time needed to perform operations. In the worst case, the MTBDD size could be

exponential in the number of variables and deriving the optimal ordering for a given

MTBDD is an NP-complete problem (which follows from NP-hardness of the same

problem on BDDs [Bry92]). However, in practice, MTBDDs could be very efficient by

applying heuristics to minimise the graph size (see e.g. [Par02]).

MTBDD representation of probabilistic models

In [CFM+93] it is shown how to encode real-valued vectors and matrices. Consider

a real-valued vector v of length 2n; we can think of it as a mapping from indices

{1, . . . , 2n} to the reals R. Given an encoding of {1, . . . , 2n} in terms of Boolean

variables {x1, . . . , xn}, we can represent v by an MTBDD M over {x1, . . . , xn}. Sim-

ilarly, a square matrix M of size 2n by 2n can be considered as a mapping from

{1, . . . , 2n} × {1, . . . , 2n} to R. Using Boolean variables {x1, . . . , xn} to range over row

indices and variables {y1, . . . , yn} to range over column indices, M can be represented by

an MTBDD over {x1, . . . , xn, y1, . . . , yn} with an ordering of x1 < y1 < x2 < · · · xn < yn.

Note that the row and column variables are ordered alternately; this is a well-known

heuristic to reduce the size of MTBDDs.

Recall from Section 3.2 that DTMCs can be represented by transition probabili-

ties matrices P, and hence it is straightforward to encode DTMCs as MTBDDs. For

IDTMCs, which are given by pairs of matrices Pl and Pu for the lower/upper tran-

sition probability bounds, we could encode them as a pair of MTBDDs Ml and Mu,

representing Pl and Pu respectively.

Example 6.1 Figure 6.1 shows an MTBDD M representing the transition matrix P of

the DTMC introduced in Figure 3.2. The non-terminal nodes of M are drawn as circles

and arranged in horizontal levels, with their associated Boolean variables displayed at

144

6. Learning Implicit Assumptions

M

1 0.6 0.4

x1

y1

x2

y2

x1 y1 x2 y2 fM Entry in P

0 0 0 1 0.4 (0, 1) = 0.4
0 1 0 0 0.6 (0, 2) = 0.6
0 1 1 0 1 (1, 2) = 1
1 1 0 0 1 (2, 2) = 1

Figure 6.1: An MTBDD M representing the transition matrix P in Figure 3.2

the left end of each level. From each non-terminal node m, two edges are directed to its

children: a solid line for then(m) and a dashed line for else(m). Terminal nodes are

drawn as squares at the bottom, and are labelled with their value val(m). The terminal

node with value 0 and any edges which lead directly to it are omitted here for clarity.

In this example, we encode the 3× 3 matrix P representing integers in binary (i.e.

, 0 → 00, 1 → 01, 2 → 10) with two row variables (x1, x2) and two column variables

(y1, y2). The table on the right illustrates the encoding details. Each valuation over

{x1, y1, x2, y2} in the table represents a non-zero entry in the matrix P. Consider, for

example, the valuation fM(0, 0, 0, 1) = 0.4. In this case, x1 = 0 and x2 = 0, so the row

index is 0. Similarly, y1 = 0 and y2 = 1, giving a column index of 1. This corresponds

to the matrix entry (0, 1) = 0.4.

The transition matrices of DTMCs and IDTMCs are indexed by states. So we would

need an efficient scheme to encode the model’s state space into MTBDD variables. One

approach is to assign each state a unique integer and then use the standard binary

encoding for integers as described in the previous example. However, in practice, we

adopt a more efficient encoding approach [Par02], which is not only fast but can also lead

to very compact MTBDD structures. This approach targets models described using

the PRISM language, in which a model’s state space is defined by a number of integer-

145

6. Learning Implicit Assumptions

valued PRISM variables. Each PRISM variable is then encoded with its own set of

MTBDD variables. The close correspondence between PRISM and MTBDD variables

helps to preserve the regularity of model structure in the high-level description, which

could be reflected in an increasing number of shared nodes in the low-level MTBDD

representation and, hence, a smaller size of MTBDD. As mentioned before, the MTBDD

size is also very sensitive to the ordering of its variables. In [Par02], several effective

variable ordering heuristics to minimise MTBDD size are discussed, for example, placing

closely related MTBDD variables as near to each other as possible.

6.1.2 Encoding Models as Boolean Functions

In the non-probabilistic setting, Boolean encoding of transition systems are popular and

used, for example, in SAT-based model checking [McM03, CCF+10]. However, these

encoding methods cannot be directly applied to probabilistic models such as DTMCs

and IDTMCs, because they do not handle the encoding of transition probabilities. In

this section, we propose a novel scheme to encode IDTMCs as Boolean functions. The

same scheme can be applied to encode DTMCs as well, by treating them as a special

case of IDTMCs.

We encode the transition relation of an IDTMC as a disjunction over a set of

transition formulae, with each formula corresponding to a transition between two states.

Suppose there is transition in an IDTMC from state s to state s′ with the transition

probability bounds [Pl(s, s′),Pu(s, s′)]; we represent the transition with the formula:

x(s) ∧ y(s′) ∧ (p ≥ Pl(s, s′)) ∧ (p ≤ Pu(s, s′))

where x(s) and y(s′) are the encoding of states s and s′ over Boolean variable sets x

(for start states) and y (for end states) respectively, and p is a real variable whose value

is bounded by a pair of predicates: p ≥ Pl(s, s′) and p ≤ Pu(s, s′). Note that DTMCs

146

6. Learning Implicit Assumptions

can be considered as a special case of IDTMCs, where the transition probability matrix

P = Pl = Pu. Thus, to encode a transition of a DTMC we only need to replace

Pl(s, s′) and Pu(s, s′) in the above formula with P(s, s′), which is then equivalent to

x(s) ∧ y(s′) ∧ (p = P(s, s′)).

Since the transition relation formulae obtained above contain a mixture of Boolean

and real variables, we reduce them into pure Boolean functions by using the eager

encoding approach [SSB02]. This reduction includes two steps: firstly, new Boolean

variables are introduced to encode predicates containing the real variable p; secondly,

constraints on these newly added variables are imposed to preserve the transitivity of

the original predicates. We use two sets of Boolean variables, denoted el and eu, to

encode predicates of the form p ≥ Pl(s, s′) and p ≤ Pu(s, s′) respectively. The size

of set el and eu is determined by the number of real values Pl(s, s′) and Pu(s, s′) in

the IDTMC. After replacing predicates in the original formula with the corresponding

variables in el and eu, we also need to impose transitivity constraints on these variables.

For each pair of variables el and eu taken from el and eu, if the corresponding Pl(s, s′) ≤

Pu(s, s′), we add the constraint (el ∨ eu) to the formulae with conjunction; otherwise,

a constraint ¬(el ∧ eu) would be conjuncted. For example, if el represents p ≥ 0.8 and

eu represents p ≤ 0.5, then the constraint ¬(el ∧ eu) is added because a real variable p

should not be defined as greater than 0.8 and less than 0.5 simultaneously.

Definition 6.2 (Boolean representation of IDTMCs) An IDTMC I is repre-

sented as a pair of Boolean functions B(I) = (ι(x), δ(x,y, el, eu)), where ι(x) is the

initial state predicate in the form of a conjunction of literals over the set of Boolean

variables x encoding states, and δ(x,y, el, eu) represents the transition relation with

Boolean variable sets x, y encoding states and el, eu encoding predicates for the lower

and upper bounds of transition probabilities, repectively.

Note that δ(x,y, el, eu) does not correspond to arbitrary Boolean functions, since it has

147

6. Learning Implicit Assumptions

x1 x2 y1 y2 Probability Bounds in I
0 0 0 1 [0,1]
0 0 1 0 [0,1]
0 1 1 0 [1,1]
1 0 1 0 [1,1]

Boolean Variable Predicate

el1 p ≥ 0

el2 p ≥ 1
eu1 p ≤ 0
eu2 p ≤ 1

Figure 6.2: Boolean Encoding Scheme for the IDTMC I in Figure 3.4

to satisfy the eager encoding constraints over variables el and eu as mentioned above.

Example 6.3 We encode the IDTMC I shown in Figure 3.4 as a pair of Boolean

functions B(I) = (ι(x), δ(x,y, el, eu)). The initial predicate ι(x) = ¬x1 ∧ ¬x2 is the

encoding of initial state s0 over variables x = {x1,x2}. The left table of Figure 6.2

displays the encoding of start/end states for all four non-empty transitions of I and

their associated probability bounds; the right table shows a mapping between Boolean

variables and real value predicates. The transition relation of I is encoded as:

δ(x,y, el, eu) = ((¬x1 ∧ ¬x2 ∧ ¬y1 ∧ y2 ∧ el1 ∧ eu2)

∨(¬x1 ∧ ¬x2 ∧ y1 ∧ ¬y2 ∧ el1 ∧ eu2)

∨(¬x1 ∧ x2 ∧ y1 ∧ ¬y2 ∧ el2 ∧ eu2)

∨(x1 ∧ ¬x2 ∧ y1 ∧ ¬y2 ∧ el2 ∧ eu2))

∧(el1 ∨ eu1) ∧ (el1 ∨ eu2) ∧ ¬(el2 ∧ eu1) ∧ (el2 ∨ eu2)

where the first four lines show a disjunction set of transition formulae and the last

line conjuncts constraints on Boolean variables which are used to encode predicates for

probability bounds. Note that empty transitions with probability bound [0, 0] are omitted

here for clarity of presentation. In practice, we encode all transitions including empty

tranisitions to obtain the complete transition relation.

6.1.3 Conversion between MTBDDs and Boolean functions

We can convert the MTBDD representation of an IDTMC into a Boolean function

B(I) = (ι(x), δ(x,y, el, eu)) by first converting the MTBDDs into lower/upper transi-

148

6. Learning Implicit Assumptions

tion probability matrices Pl,Pu, and then applying the encoding scheme described in

Section 6.1.2.

The conversion from Boolean encoding B(I) = (ι(x), δ(x,y, el, eu)) to MTBDDs

is as follows. The initial predicate ι(x) can be straightforwardly converted to a BDD

over Boolean variables x by preserving all the ∨ and ∧ relations between variables.

The transition relation δ(x,y, el, eu) is translated into a pair of MTBDDs Ml, Mu

over Boolean variables x and y, such that fMl(x,y) = P(el), fMu(x,y) = P(eu), where

P(el) and P(eu) represent the lower/upper probability bounds of the original predicates

encoded by el and eu.

6.2 Compositional Verification for DTMCs

In this section, we present a new assume-guarantee rule (Asym-Idtmc) for verify-

ing two-component DTMC systems against probabilistic safety properties, with the

assumptions captured by IDTMCs.

6.2.1 Refinement between DTMCs and IDTMCs

Firstly, we define a refinement relation between DTMCs and IDTMCs to indicate the

correspondence between components and assumptions.

Definition 6.4 (Refinement relation) A DTMC D = (S, s,P, L) refines an

IDTMC I = (S, s,Pl,Pu, L), denoted D � I, if Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′) for

all states s, s′ ∈ S.

Example 6.5 Consider the DTMC D1 shown in Figure 6.3 and the IDTMC I shown

in Figure 6.4. They have identical initial state s0 and labelling function L over the same

state space {s0, s1, s2}. In addition, the transition probability between any two states in

D1 lies within the corresponding transition probability interval in I. For example, the

149

6. Learning Implicit Assumptions

transition probability between s0 and s1 in D1 is 0.4, which falls into the interval [0, 1]

labelled with the transition between s0 and s1 in I. Thus, we have D1 � I.

We can infer the refinement relation between a DTMC and an IDTMC based on

their Boolean encodings with the following propsition.

Proposition 6.6 Given the Boolean encodings of a DTMC D and an IDTMC I over

the same sets of variables, denoted as B(D) = (ιD(x), δD(x,y, el, eu)) and B(I) =

(ιI(x), δI(x,y, e
l, eu)), if ∀x. ιD(x) ⇐⇒ ιI(x) and ∀x,y, el, eu. δD(x,y, el, eu) =⇒

δI(x,y, e
l, eu), then D � I.

Proof: Suppose the initial state of D is s, then ιD(xs) = true where xs is the boolean

encoding of s over variables x. Since ∀x. ιD(x) ⇐⇒ ιI(x), we have ιI(xs) = true and

therefore s is also the initial state of I.

For any transition in D between states s and s′ with probability p = P(s, s′), there

is a set of valuations xs,ys′ , e
l
p, e

u
p ensuring that δD(xs,ys′ , e

l
p, e

u
p) = true, where xs, ys′

are the Boolean encoding of states s and s′ over variables x and y respectively, and elp,

eup is a set of valuations over Boolean variables el, eu which ensure the variables encoding

the predicates p ≥ P(s, s′) and p ≤ P(s, s′) are true. Since δD(x,y, el, eu) =⇒

δI(x,y, e
l, eu), we have δI(xs,ys′ , e

l
p, e

u
p) = true, and hence, for any transition between

states s and s′ in I, we must have Pl(s, s′) ≤ P(s, s′) and Pu(s, s′) ≥ P(s, s′), based

on the eager encoding constraints (see Section 6.1).

Therefore, D � I. �

6.2.2 Synchronous Parallel Composition for DTMCs/IDTMCs

Secondly, we discuss the parallel composition between two DTMC components, and

between an IDTMC assumption and a DTMC component.

150

6. Learning Implicit Assumptions

s0

0.4

s1 s2

1

1

0.6

{}

{} {a}

t0

0.2

t1 t2

1

0.8

1

{}

{b} {}

s0t0

0.12

11

0.32

s1t1 s1t2 s2t2
1 1

0.08 0.48

{}

{b} {a,b} {} {a}

s2t1

Figure 6.3: Two DTMCs D1, D2 and their parallel composition product D1‖D2

Definition 6.7 (Parallel composition of DTMCs) The (synchronous) parallel

composition product of two DTMCs Di = (Si, si,Pi, Li) for i = 1, 2 is given by a DTMC

D1‖D2 = (S1 × S2, (s1, s2),P, L), where P((s1, s2), (s′1, s
′
2)) = P1(s1, s

′
1) · P2(s2, s

′
2)

and L((s1, s2)) = L(s1) ∪ L(s2) for any s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2.

Example 6.8 Figure 6.3 shows two DTMCs D1, D2 and their synchronous par-

allel composition product D1‖D2. The state space of the DTMC D1‖D2 is over

{s0, s1, s2}×{t0, t1, t2}, and the initial state is (s0, t0), abbreviated as s0t0 in the graph.

The transition probabilities in D1‖D2 are given by the multiplication of components’

transition probabilities. For example, P((s0, t0), (s1, t2)) = P1(s0, s1) · P2(t0, t2) =

0.4 · 0.8 = 0.32. The labelling function of each product state is defined as a union

of sets of atomic propositions attached to the corresponding component states, e.g.

L(s2t1) = L1(s2) ∪ L2(t1) = {a, b}. The probability of reaching the target state s2t1

from the initial state s0t0 is 0.2 (obtained by summing up the path probabilities of

s0t0
0.12−−→ s2t1 and s0t0

0.08−−→ s1t1
1−→ s2t1).

Straightforwardly, the synchronous parallel composition between an IDTMC I =

(SI , sI ,P
l
I ,P

u
I , LI) and a DTMC D = (SD, sD,PD, LD) may be defined as an IDTMC

I‖sD = (SI × SD, (sI , sD),Pl,Pu, L), where Pl((s, t), (s′, t′)) = Pl
I(s, s

′) · PD(t, t′),

Pu((s, t), (s′, t′)) = Pu
I (s, s′) · PD(t, t′) and L((s, t)) = L(s) ∪ L(t) for any s, s′ ∈ SI

and t, t′ ∈ SD. However, the IMDP semantics of IDTMCs (Definition 3.8) is not closed

under this style of synchronous parallel composition, i.e. the IMDP dI‖sDemay contain

151

6. Learning Implicit Assumptions

s0

[0,1]

s1 s2

[0,1]

[1,1]

[1,1]

{}

{} {a}

t0

0.2

t1 t2

1

0.8

1

{}

{b} {}

s0t0

s1t1 s1t2 s2t2

[0,0.2]

[0,0.2] [0,0.8]

[0,0.8]

[1,1]

[1,1]

[1,1]

[1,1]

{}

{b} {a,b}

{}

{a}

s2t1

Figure 6.4: An IDTMC I, a DTMC D2, and their synchronous product I‖sD2

distributions that cannot be obtained as a product of distributions from the IMDP dIe

and the DTMC D. We illustrate this by the following example.

Example 6.9 Figure 6.4 shows an IDTMC I = (SI , sI ,P
l
I ,P

u
I , LI), a DTMC D2 =

(SD2 , sD2 ,PD2 , LD2), and their synchronous product IDTMC I‖sD2. The transition

relation of the IMDP dI‖sD2e gives

δ(s0t0) = {µ ∈ Dist(SI × SD2) | ∀s ∈ SI , t ∈ SD2 . Pl(s0t0, st) ≤ µ(st) ≤ Pu(s0t0, st)}.

Thus, dI‖sD2e contains a distribution µ in state s0t0 such that µ(s1t1) = µ(s2t1) = 0.2,

µ(s1t2) = 0.6 and µ(s2t2) = 0. If we project µ onto the state s0 of I, then we have

µ′(s1) =
µ(s1t1)

P(t0, t1)
=

0.2

0.2
= 1, µ′(s2) =

µ(s2t1)

P(t0, t1)
=

0.2

0.2
= 1.

Apparently, µ′ is not a distribution since it sums up to more than 1, and hence cannot

be in the IMDP dIe.

In the following, we define a new parallel operator for composing an IDTMC I and

a DTMC D, which is closed under the IMDP semantics by construction.

Definition 6.10 (Parallel composition of an IDTMC and a DTMC) Given

an IDTMC I = (SI , sI ,P
l
I ,P

u
I , LI) and a DTMC D = (SD, sD,PD, LD), their

synchronous parallel composition product is an IDTMC I‖D which defines an IMDP

dI‖De = (SI × SD, (sI , sD), δ, L) such that, for all states (s, t) ∈ SI × SD, the

152

6. Learning Implicit Assumptions

transition relation is δ((s, t)) = {µ ∈ Dist(SI × SD) |µ = µI × µD where µI ∈

Dist(SI),P
l
I(s, s

′) ≤ µI(s′) ≤ Pu
I(s, s

′) and µD(t′) = PD(t, t′) for all s′ ∈ SI , t′ ∈ SD},

and the labelling function is L((s, t)) = LI(s) ∪ LD(t).

The idea is that the available distributions between any two states in the product

IDTMC I‖D should be restricted as a product of distributions between the correspond-

ing states in the component IDTMC I and DTMC D. To resolve the nondeterminism

of I‖D, the external environment picks a distribution µ at an execution step in state

(s, t) ∈ SI × SD such that µ = µI × µD, where µI is nondeterministically chosen from

the available distributions in state s of IDTMC I and µD is the distribution in state

t of DTMC D. Note that, in a system where the two components I and D are not

independent from each other, the nondeterministic choice of µI in I might be affected

by D, i.e. for two states (s, t1), (s, t2) in I‖D who share the same projected state s in

I, different µI might be chosen due to the difference between states t1 and t2 in D.

The IMDP dI‖De can be treated as a standard MDP (with action labels omitted);

so, here we reuse the notions of paths, adversaries and probabilistic measures defined

in Section 3.2.2. Given a finite path ρ = (s0, t0)
µ0−→(s1, t1)

µ1−→· · · µn−1−−−→(sn, tn) through

dI‖De, we define the projection of ρ onto IMDP dIe as ρ′ = s0
µ′0−→s1

µ′1−→· · ·
µ′n−1−−−→sn

where, for all i ∈ N, si ∈ SI , ti ∈ SD, and µi = µ′i × µ′′i with µ′′i representing the

distribution in state ti of DTMC D. We show by the following lemma that the IMDP

semantics of IDTMCs is closed under the synchronous parallel operator defined above.

Lemma 6.11 Given an IDTMC I and a DTMC D, there is a one-to-one correspon-

dence between adversary σ of IMDP dI‖De and adversary σI of IMDP dIe such that,

for any finite path ρ ∈ FPathsdI‖De ending in state (sn, tn), we have σ(ρ) = σI(ρ
′)×µ,

where ρ′ is a projection of ρ onto dIe and µ is the distribution in state tn of D.

Proof: Given a finite path ρ = (s0, t0)
µ0−→(s1, t1)

µ1−→· · · µn−1−−−→(sn, tn) under adversary σ

of dI‖De, we have σ(ρ) ∈ δ((sn, tn)) where δ is the transition relation of dI‖De. Based

153

6. Learning Implicit Assumptions

on Definition 6.10 and Definition 3.8, we have σ(ρ) = µ′ × µ, where µ′ ∈ δ′(sn) with δ′

representing the transition relation of dIe, and µ the DTMC distribution in state tn of

D. Let ρ′ = s0
µ′0−→s1

µ′1−→· · ·
µ′n−1−−−→sn be the projection of path ρ on dIe. We can always

construct an adversary σI of dIe such that σI(ρ
′) = µ′. Thus, σ(ρ) = σI(ρ

′) × µ.

Similarly, we can construct a corresponding adversary σ of dI‖De given an adversary

σI of dIe. Therefore, there exists a one-to-one correspondence between adversaries of

dI‖De and dIe. �

Example 6.12 Figure 6.5 gives the synchronous parallel composition product I‖D2

of the IDTMC I and the DTMC D2 shown in Figure 6.4 (the labelling of states is

omitted for clarity). To illustrate how to resolve the nondeterminism of I‖D2, we draw

the transition between any two states (s, t) and (s′, t′) in I‖D2 as two parts linked by a

black node, where the first part is labelled with a probability interval [Pl
I(s, s

′),Pu
I(s, s

′)]

and the second part is labelled with probability PD2(t, t′). For example, the transition

from state s0t0 to state s1t2 is labelled with, firstly, [Pl
I(s0, s1),Pu

I (s0, s1)] = [0, 1], and

secondly, PD(t0, t2) = 0.8. To resolve the nondeterminism in the initial state s0t0 of

I‖D2, the external environment picks a distribution µ = µI × µD2 where

µI(s0) = 0

0 ≤ µI(s1) ≤ 1

0 ≤ µI(s2) ≤ 1∑
0≤i≤2 µI(si) = 1

and µD2(t0) = 0, µD2(t1) = 0.2 and µD2(t2) = 0.8. For instance, by determining µI

as µI(s0) = µI(s1) = 0 and µI(s2) = 1, we can obtain the maximum probability of

reaching state s2t1 from the initial state s0t0 in I‖D2 as 0.2.

154

6. Learning Implicit Assumptions

s0t0

s1t1 s1t2 s2t2

[0,1] [0,1]

0.2 0.8 0.2 0.8

[1,1]
[1,1] [1,1]

1

11

[1,1] 1

s2t1

Figure 6.5: The synchronous parallel composition I‖D2 (for I and D2 in Figure 6.4)

6.2.3 Assume-Guarantee Reasoning Rule (Asym-Idtmc)

The following lemma shows that the refinement relation between a DTMC and an

IDTMC is preserved under the synchronous parallel composition.

Lemma 6.13 If a DTMC D1 refines an IDTMC I (i.e. D1 � I), then D1‖D2 refines

I‖D2 (i.e. D1‖D2 � I‖D2), where D2 is a DTMC.

Proof: Suppose that Di = (Si, si,Pi, Li) for i = 1, 2. Since D1 � I, we have I =

(S1, s1,P
l
I ,P

u
I , L1) based on Definition 6.4, where Pl

I(s1, s
′
1) ≤ P1(s1, s

′
1) ≤ Pu

I(s1, s
′
1)

for any states s1, s
′
1 ∈ S1. Based on Definition 6.7 and Definition 6.10, we know that

D1‖D2 and I‖D2 have the same state space S1 × S2, initial state (s1, s2) and labelling

function L, where L((s1, s2)) = L1(s1) ∪ L2(s2) for any s1 ∈ S1, s2 ∈ S2.

The transition matrix P of DTMC D1‖D2 is determined based on Definition 6.7

such that P((s1, s2), (s′1, s
′
2)) = P1(s1, s

′
1) · P2(s2, s

′
2) for any states s1, s

′
1 ∈ S1 and

s2, s
′
2 ∈ S2. Thus, we have

Pl
I(s1, s

′
1) ·P2(s2, s

′
2) ≤ P((s1, s2), (s′1, s

′
2)) ≤ Pu

I(s1, s
′
1) ·P2(s2, s

′
2).

From Definition 6.10, the transition probability between two states (s1, s2) and (s′1, s
′
2)

in I‖D2 is restricted by the interval [Pl
I(s1, s

′
1) · P2(s2, s

′
2),Pu

I(s1, s
′
1) · P2(s2, s

′
2)].

155

6. Learning Implicit Assumptions

Therefore, by Definition 6.4, we have D1‖D2 � I‖D2. �

It is proved in [CSH08] that an IDTMC satisfies an LTL specification ψ if and only if

its corresponding IMDP satisfies ψ. Therefore, to check a probabilistic safety property

P≥ p[ψ] on I‖D, we only need to check P≥ p[ψ] on the IMDP dI‖De, where standard

model checking techniques for MDPs can be applied (see e.g. Section 3.3.3).

Lemma 6.14 Given two DTMCs D1,D2 and an IDTMC I, if D1‖D2 � I‖D2 and

I‖D2 |= P≥ p[ψ], where P≥ p[ψ] is a probabilistic safety property, then D1‖D2 |= P≥ p[ψ].

Proof: Given that D1‖D2 � I‖D2, based on Definition 6.4 and Definition 6.10, we have

µ ∈ δ((s, t)) for all states (s, t) in D1‖D2, where µ is the state distribution in D1‖D2

and δ is the transition relation of dI‖D2e. Thus, we can construct an adversary σ′

of dI‖D2e such that it always chooses the corresponding state distribution in D1‖D2.

The behaviour of IMDP dI‖D2e under adversary σ′ is purely probabilistic and could

be mimicked by the DTMC D1‖D2, so that we have Prσ
′

dI‖D2e(ψ) = PrD1‖D2
(ψ).

Since I‖D2 |= P≥ p[ψ], the IMDP dI‖D2e satisfies P≥ p[ψ]; that is, PrσdI‖D2e(ψ) ≥ p

for all adversaries σ ∈ Adv dI‖D2e. Therefore, PrD1‖D2
(ψ) ≥ p and D1‖D2 |= P≥ p[ψ].

�

Theorem 6.15 Given two DTMCs D1, D2, an IDTMC I and a probabilistic safety

property P≥ p[ψ], the following assume-guarantee reasoning rule holds:

D1 � I
I‖D2 |= P≥ p[ψ]

D1‖D2 |= P≥ p[ψ]

(Asym-Idtmc)

156

6. Learning Implicit Assumptions

Proof: It follows easily from Lemma 6.13 and Lemma 6.14. �

Thus, with an appropriate assumption I, the verification of P≥ p[ψ] on D1‖D2 can

be decomposed into two sub-problems: (1) checking if DTMC D1 refines IDTMC I,

which can be done via checking two implications of Boolean formulae with a SAT

solver (Proposition 6.6); (2) checking if I‖D2 |= P≥ p[ψ] holds, which reduces to the

problem of computing reachability probabilities in IDTMCs and we will discuss it in

Section 6.3. This compositional verification framework is complete in the sense that,

if D1‖D2 |= P≥ p[ψ] is true, we can always find an assumption I to prove it with rule

(Asym-Idtmc), because we can use D1 itself as the assumption.

Example 6.16 Consider the DTMCs D1, D2 shown in Figure 6.3 and the IDTMC I

shown in Figure 6.4. We want to verify whether D1‖D2 satisfies the probabilistic safety

property P≥ 0.75[2 (¬s2t1)], i.e. the probability of never reaching a bad state s2t1 should

be at least 0.75. We have shown that D1 � I in Example 6.5, and, from Example 6.12,

we know that the maximum probability of reaching state s2t1 from the initial state s0t0

in I‖D2 is 0.2, so that I‖D2 |= P≥ 0.75[2 (¬s2t1)] holds. Both premises of rule (Asym-

Idtmc) are true, and thus D1‖D2 |= P≥ 0.75[2 (¬s2t1)].

6.3 Reachability Analysis of IDTMCs

Recall from the previous section that, for model checking safety properties on IDTMCs,

it is sufficient to verify its corresponding IMDPs by applying standard techniques for

MDPs (see Section 3.3.3), where verifying probabilistic safety properties reduces to

computing reachability probabilities. However, as IMDPs may have an exponential

number of distributions in each state, the scalability of this method is quite limited.

An alternative approach was proposed by [KKLW12], which, rather than unfolding all

available distributions of IMDPs, resolves the nondeterminism of IDTMCs by analysing

157

6. Learning Implicit Assumptions

Algorithm 8 Value iteration/adversary generation for Prmax
I‖D,s(reachs(T))

Input: IDTMC I, DTMC D, target states T and convergence criterion ε
Output: solution vector ~v, optimal adversary σ

1: ~v(s) := 1 if s ∈ T and ~v(s) := 0 otherwise, for each s ∈ SI × SD
2: σ[i][j] := 0, for all 0 ≤ i < |SI × SD| and 0 ≤ j < |SI × SD|
3: δ := 1
4: while δ > ε do
5: A := detAdv(I,D, ~v)
6: ~v ′ := A · ~v
7: for all 0 ≤ k < |SI × SD| do

8: δ = maxk(~v
′(k)− ~v(k))

9: if ~v ′(k) > ~v(k) then

10: σ[k][:] = A[k][:]
11: end if
12: end for
13: ~v = ~v ′

14: end while
15: return ~v, σ

the outgoing transition intervals of each state and determining an optimal distribution.

This approach is a value iteration method: it approximates (unbounded) reachability

probabilities by computing the probability of reaching target states within n steps.

This method cannot be applied directly on I‖D, which is a product IDTMC com-

posed from an IDTMC I and a DTMC D using our newly defined synchronous parallel

operator (see Definition 6.10), because the available distributions in I‖D are restricted.

In this section, we adapt the value iteration algorithm for computing the (maximum)

reachability probabilities of product IDTMCs I‖D. We also develop a symbolic variant

of our proposed algorithm based on MTBDDs.

6.3.1 The Value Iteration Algorithm

We present (Algorithm 8) a value iteration algorithm for computing (approxima-

tions of) maximum probabilities Prmax
I‖D,s(reachs(T)) of reaching a set of target states

T from state s in I‖D. The algorithm requires as input the component IDTMC I and

158

6. Learning Implicit Assumptions

DTMC D, the target states set T ⊆ SI ×SD, and a convergence criterion ε. It outputs

a solution vector ~v storing the values of Prmax
I‖D,s(reachs(T)), and an optimal adversary

σ that achieves these maximum probabilities.

The solution vector is initialised such that, for each state s ∈ SI × SD, ~v(s) = 1

if s ∈ T and ~v(s) = 0 otherwise. The optimal adversary σ is initialised as an all-

zero matrix of size |SI × SD| × |SI × SD|. Line 3-14 of Algorithm 8 illustrates the

procedure of value iteration. The iteration step n is not decided in advance; rather,

it is determined on-the-fly by checking if the convergence of the solution vector drops

below the specified criterion ε (see Line 4 and 8). In each iteration step, an adversary A

over the state space SI×SD is determined by the function detAdv(I,D, ~v) as described

in Algorithm 9. The solution vector is updated through a matrix-vector multiplication

~v ′ = A ·~v. The maximum difference of elements between ~v ′ and ~v is obtained in Line 8,

which is compared with the convergence criterion ε in Line 4 to control the while loop.

Line 9-11 considers the optimal adversary σ, which is updated only if the reachability

probability of a particular state sk is strictly improved; that is, if ~v ′(k) > ~v(k), then the

matrix values of row σ[k][:] will be replaced by the values of A[k][:], which represents

the probabilistic distribution of state sk in A.

Now we describe the details of function detAdv(I,D, ~v) as shown in Algorithm 9.

Recall from Definition 6.10 that a distribution µ in state (sI , sD) of I‖D should be

restricted as µ = µI × µD, where µI is an available distribution in state sI of IDTMC

I and µD is the distribution in state sD of DTMC D. Accordingly, we take a two-step

approach to determine an adversary A of I‖D in each iteration step with function

detAdv(I,D, ~v): firstly, for each state (sI , sD) of I‖D, a distribution µI is chosen

from the available distributions in state sI of IDTMC I and stored in a matrix AI

of size |SI × SD| × |SI |; secondly, the matrix entries of A are computed through the

multiplication of corresponding entries in AI and the transition matrix PD of DTMC

D. Note that, if components I and D are acting independently (i.e. the choices of µI

159

6. Learning Implicit Assumptions

Algorithm 9 Function detAdv(I,D, ~v) used in Algorithm 8

Input: IDTMC I, DTMC D, and solution vector ~v
Output: adversary A, to be used in Line 6 of Algorithm 8

1: A[i][j] := 0, for all 0 ≤ i < |SI × SD| and 0 ≤ j < |SI × SD|
2: AI [i][j] := 0, dec[i][j] := false, for all 0 ≤ i < |SI × SD| and 0 ≤ j < |SI |
3: put indices of elements of ~v in queue q with a descending order
4: while q is not empty do
5: n = q.pophead()
6: get the projecting indices nI and nD of n on SI and SD, respectively
7: for all 0 ≤ m < |SI × SD| do
8: get the projecting indices mI and mD of m on SI and SD, respectively
9: if dec[m][nI] == false then

10: sum :=
∑

i AI [m][i], dec[m][nI] = true
11: if sum == 1 then
12: AI [m][nI] = 0
13: else
14: low := 0
15: for all 0 ≤ j < |SI | do
16: if dec[m][j] == false then
17: low = low + Pl

I [mI][j]
18: end if
19: end for
20: limit = 1− sum− low
21: AI [m][nI] = min{limit, Pu

I [mI][nI]}
22: end if
23: end if
24: A[m][n] = AI [m][nI] ·PD[mD][nD]
25: end for
26: end while
27: return A

are not influenced by D), it would be sufficient to set the size of matrix AI as |SI |×|SI |.

Initially, the adversaries A and AI are set as all-zero matrices. We use a Boolean

matrix dec to record whether elements of AI have been decided, and the entries of dec

are all initialised as false. To achieve the maximum reachability probabilities, when

making the nondeterministic choices of probabilistic distributions we consider states

s = (sI , sD) with higher solution vector values ~v(s) in priority order, and ensure that

transition probabilities leading to such states are assigned values as high as possible.

160

6. Learning Implicit Assumptions

s0t0

s1t1 s2t1
s3t1

[0.1,0.5] [0,0.2]

1 1 1

[0.1,0.4]

Figure 6.6: The behaviour of state s0t0 in an example IDTMC I‖D

This intuition is illustrated in Example 6.17. The detailed algorithm procedures are

described in the following.

As shown in Line 3-5 of Algorithm 9, the elements of ~v are sorted in a descending

order with their indices n stored in a queue q. The values of the nth column in A,

representing the transition probabilities leading to a state sn ∈ SI ×SD, would then be

fixed following the sequence of queue q. In Line 6, a pair of projecting indices nI and

nD are obtained by projecting the state sn onto SI and SD, respectively. Line 7-25 is

a for loop over the row index m of matrix A. Similarly, a pair of projecting indices mI

and mD are obtained. Line 9-23 describes how to determine the value of AI [m][nI] if

it has not been decided. If a full distribution has already been assigned for state sm,

then AI [m][nI] would be assigned with zero (Line 11-12); otherwise, AI [m][nI] would

either be a limit value that it could take in the probabilistic distribution, or the upper

bound Pu
I [mI][nI] specified in I (Line 21-22). Once AI [m][nI] is fixed, the value of

A[m][n] is computed as the multiplication of AI [m][nI] and PD[mD][nD] (Line 25).

Example 6.17 Suppose that, at iteration step n, we obtain the solution vector ~v =

[0.2, 1, 0.6, 0.9] for states {s0t0, s1t1, s2t1, s3t1} of the IDTMC I‖D in Figure 6.6. To

determine the distribution for state s0t0, we consider its successor states in the order

of s1t1, s3t1, s2t1 based on the descending order of their corresponding values in the

solution vector ~v. Firstly, we take the maximal value 0.5 of the interval [0.1, 0.5] leading

to s1t1. The next successor state is s3t1, and we can still take its upper bound 0.2 from

161

6. Learning Implicit Assumptions

the interval [0, 0.2], since the distribution has total mass less than one. However, for

state s2t1, we cannot take the the upper bound 0.4 of the interval [0.1, 0.4], because the

distribution has already assigned probability 0.5 + 0.2 = 0.7 to other transitions, and

thus the maximum probability we can assign here is 1− 0.7 = 0.3.

Complexity. The complexity of function detAdv(I,D, ~v) as shown in Algorithm 9 is

O(|SI × SD|2 · |SI |), because the algorithm loops through every entry of the adversary

matrix A which has a size of |SI × SD| × |SI × SD| and, when determining the value

for each entry of A, corresponding values in AI are summed up over the column of size

|SI |. In each iteration of Algorithm 8, the function detAdv(I,D, ~v) would be applied

once only; therefore, the complexity of Algorithm 8 is O(n · |SI × SD|2 · |SI |) where n

is the iteration step.

Correctness and termination. There are two key ideas behind this value iteration

algorithm. Firstly, in each iteration step, the nondeterminism of I‖D is resolved by an

adversary A, which is determined by constructing an adversary AI based on I; the cor-

rectness of this idea follows from Definition 6.10 and Lemma 6.11. Secondly, to ensure

the maximum probability of reaching target states, we assign transition probabilities to

states with higher solution vector values in priority order; the correctness of this idea

has been proved in [KKLW12]. The algorithm termination is guaranteed, because an

explicit convergence criterion ε is imposed to stop the value iteration.

6.3.2 The MTBDD-based Value Iteration Algorithm

We optimise Algorithm 8 and present its symbolic variant based on the data struc-

ture of MTBDDs (introduced in Section 6.1.1). As shown in Algorithm 10, the input

of this algorithm includes a pair of MTBDDs low and up representing the matrices

of lower and upper bounds, respectively, of transition probabilities of IDTMC I, an

MTBDD dtmc for the transition probability matrix of DTMC D, a BDD target for the

162

6. Learning Implicit Assumptions

Algorithm 10 Symbolic (MTBDD-based) variant of Algorithm 8

Input: low, up, dtmc, target, and convergence criterion ε
Output: sol, advmax

1: sol := target
2: advmax := Const(0)
3: δ := 1
4: while δ > ε do
5: advI := Const(0)
6: visited := Const(0)
7: tmp := Apply(+, sol,Const(1))
8: ps := FindMax(tmp)
9: while ps ≥ 1 do

10: max := Threshold(tmp,=, ps)

11: visited = Apply(∨, visited,max)
12: sum := Abstract(+, y, advI)
13: dist := Threshold(sum, <, 1)
14: if dist 6= Const(0) then
15: lowno := Abstract(+, y,Apply(∧, low,Not(visited)))
16: limits := Apply(−,Const(1),Apply(+, sum, lowno))
17: up1 := Apply(∧, up,max)
18: low1 := Apply(∧, low,max)
19: ups := Abstract(+, y, up1)
20: lows := Abstract(+, y, low1)
21: diff := Apply(−, up1, low1)
22: norm := Apply(÷,Apply(−, limits, lows),Apply(−, ups, lows))
23: limit := Apply(+, low1,Apply(×, norm, diff))
24: sign := Threshold(Apply(−, limits, ups),≤, 0)
25: value := Apply(+,Apply(∧, limit, sign),Apply(∧, up1,Not(sign)))
26: new := Apply(+,Apply(∧, value, dist),Apply(∧,Const(0),Not(dist)))

27: advI = Apply(+, addI , new)
28: end if
29: tmp = Apply(−, tmp,Apply(×,max,Const(ps)))
30: ps = FindMax(tmp)
31: end while
32: adv := Apply(×, advI , dtmc)
33: sol′ := Apply(×, adv, sol)
34: improve := Apply(−, sol′, sol)
35: δ = FindMax(improve)
36: index := Threshold(improve, >, 0)
37: advmax = Apply(+,Apply(∧, adv, index),Apply(∧, advmax,Not(index)))
38: sol = sol′

39: end while
40: return sol, advmax

163

6. Learning Implicit Assumptions

target states, and a convergence criterion ε. It outputs two MTBDDs: sol, the solution

vector storing maximum probabilities of reaching target states from each state in I‖D,

and advmax, the optimal adversary. The meaning of basic BDD/MTBDD operations

used in this algorithm, e.g. Const, FindMax, Threshold, Apply and Abstract,

are summarised in Appendix B.

Algorithm 10 implements the value iteration and adversary generation procedures

described in Algorithm 8 using MTBDD operations. Both algorithms determine the

adversary for I‖D following the descending order of solution vector values. The only

difference is that, when there are multiple elements in the solution vector sharing the

same value, Algorithm 8 would consider them one by one in arbitrary order, while

Algorithm 10 processes them simultaneously to take advantage of the symbolic features

of MTBDDs. Line 10-28 of Algorithm 10 illustrates how to assign transition probability

values for such a group of successor states max at the same time. The basic idea is

to treat such states as a set, with their upper and lower probability bounds summed

into ups and lows. The maximum value allocated to them is limits as computed in Line

16. If ups is smaller than limits, then the states would just take the upper probability

bounds; otherwise, each state would take a limit value such that

limit = low + (up− low) · limits − lows

ups − lows

Actually, other schemes of assigning the limit value may also be feasible, as long as the

values of limit sum up to limits over all states max, and low ≤ limit ≤ up.

Example 6.18 Let us again consider the IDTMC I‖D shown in Figure 6.6. Suppose

that the solution vector is ~v = [0.2, 1, 0.6, 0.6] in some iteration step, corresponding to

states {s0t0, s1t1, s2t1, s3t1}. To resolve the nondeterministic behaviour of state s0t0,

we first assign the maximal possible probability 0.5 to the outgoing transition to state

s1t1, since it has the highest value in the solution vector. Then we consider states s2t1

164

6. Learning Implicit Assumptions

and s3t1 as a set and assign transition probabilities for them simultaneously, because

they share the same solution vector value 0.6. The transition probabilities from state

s0t0 to s2t1 and s3t1 can be any rational values satisfying the following conditions:

0.1 ≤ x ≤ 0.4

0 ≤ y ≤ 0.2

x+ y ≤ 0.5

where x and y are the transition probabilities to states s2t1 and s3t1, respectively. The

scheme used in Algorithm 10 would assign x = 0.1 + (0.4 − 0.1) · 0.5−0.1
0.6−0.1 = 0.34 and

y = 0 + (0.2− 0) · 0.5−0.1
0.6−0.1 = 0.16, which apparently satisfy the above conditions.

6.4 Learning Assumptions for Rule (Asym-Idtmc)

In this section, we present a fully-automated approach for verifying probabilistic safety

properties against systems composed from DTMCs, based on the assume-guarantee rule

(Asym-Idtmc) proposed in Section 6.2 (Theorem 6.15). In particular, this approach

uses the CDNF learning algorithm described in Section 3.5.3 to automatically learn

assumptions as IDTMCs, which are represented symbolically as Boolean functions and

translated to MTBDDs.

Figure 6.7 shows the overall structure of our approach. Given two DTMCs D1,D2

and a probabilistic safety property P≥ p[ψ], we aim to verify whether D1‖D2 |= P≥ p[ψ]

is true. If the property holds, then an IDTMC assumption I would be generated;

otherwise, a counterexample would be provided to illustrate the violation. We use the

CDNF learning algorithm to automatically learn assumptions. Recall that the Boolean

representation of IDTMC I is B(I) = (ι(x), δ(x,y, el, eu)), containing two Boolean

functions: ι(x), representing the initial predicate, and δ(x,y, el, eu), representing the

transition relation (see Definition 6.2). Therefore, two instances of the CDNF learning

165

6. Learning Implicit Assumptions

ιD1
(ν) = true?

val.ν

Teacher

cex.νc

conj.I

y/n

Membership query

(analyse conjecture I)

D1 ‖D2 6|= P≥ p[ψ](i) D1 � I
(+ counterexample)

D1 ‖D2 |= P≥ p[ψ]
(+ assumption I)

(ii) I ‖D2 |= P≥ p[ψ]

Check if I satisfies:

Property true:

P≥ p[ψ]
D1,D2

Inputs:

Outputs:

Property false:

(analyse valuation ν)

Equivalence query

of ι(x)

Learning
The CDNF

or δD1
(ν) = true?

δ(x,y, el, eu)

Learning of

The CDNF

Learner

val.ν

y/n

cex.νc

Figure 6.7: Learning probabilistic assumptions for rule (Asym-Idtmc)

algorithm are utilised in our approach, one for each Boolean function.

The membership queries (i.e. whether a valuation ν over a set of Boolean variables is

true for the target function) are answered through checking the corresponding functions

of DTMC D1. Based on Proposition 6.6, in order to satisfy D1 � I, i.e. the first premise

of rule (Asym-Idtmc), any true valuation of the Boolean function ιD1 (resp. δD1) should

also be true for function ι (resp. δ). Therefore, the teacher answers yes to membership

queries ι(ν) (resp. δ(ν)) if valuation ν is true for the Boolean function ιD1 (resp. δD1),

and answers no otherwise. The teacher employs a SAT solver to check these queries.

When answering equivalence queries, the teacher considers conjectures proposed

by the two CDNF learning instances for functions ι(x) and δ(x,y, el, eu) jointly as

a Boolean representation for IDTMC I such that B(I) = (ι(x), δ(x,y, el, eu)). The

teacher answers yes to an equivalence query, if both premises of rule (Asym-Idtmc),

i.e. D1 � I and I‖D2 |= P≥ p[ψ], are satisfied. Otherwise, the teacher either finds

a counterexample illustrating the violation of property P≥ p[ψ] on D1‖D2, or obtains

valuation νc from a spurious counterexample c to refine the conjectures. We explain

the details in the following.

Recall from Proposition 6.6 that D1 � I holds if ∀x. ιD1(x) ⇐⇒ ι(x) and

166

6. Learning Implicit Assumptions

∀x,y, el, eu. δD1(x,y, el, eu) =⇒ δ(x,y, el, eu). Thus, the teacher examines these

two implication formulae separately with a SAT solver, and returns any false valuation

νc to the corresponding CDNF learning instance as a counterexample to refine the

conjecture. If no false valuation can be found, then D1 � I is true and the teacher

proceeds to check the second premise I‖D2 |= P≥ p[ψ]. Because the SAT-based methods

for probabilistic model checking show poor performance (see e.g. [TF11]), the teacher

checks I‖D2 |= P≥ p[ψ] by first converting the Boolean functions of I to MTBDDs

(see Section 6.1.3) and then applying the MTBDD-based model checking techniques

for IDTMCs as described in Section 6.3.

Note that the CDNF learning algorithm learns arbitrary Boolean functions and the

learnt function δ(x,y, el, eu) may not correspond to a valid IDTMC transition relation;

that is, the transition probability interval between two states may break into fragments.

For example, given a target transition relation function δD1 = x∧y∧ el1 ∧ eu1 , where el1

and eu1 correspond to the predicates p ≥ 0.4 and p ≤ 0.4 respectively, a learnt function is

δ = x∧y∧ (el2 ∨ eu1) with el2
def
= p ≥ 0.5 such that the condition δD1 =⇒ δ is satisfied;

however, δ is not a valid transition between states s(x) and s(y) of an IDTMC I,

because its corresponding transition probability interval has a gap, i.e. p ∈ [0, 0.4] or

p ∈ [0.5, 1]. We solve this problem by applying a filter so that, for each transition

between any two states of I, we only keep the interval in which the corresponding

transition probability of D1 lies and filter out other redundant intervals. For the above

example, since the corresponding transition probability in D1 is 0.4, we would keep the

interval [0, 0.4] and filter out [0.5, 1]. Since the teacher guarantees that δD1 =⇒ δ, for

each transition, the learnt function δ must contain at least one interval in which the

transition probability of D1 lies. Therefore, we can always apply the filter to the learnt

Boolean functions and obtain MTBDDs for the valid IDTMC I so that D1 � I.

Recall from Section 6.2 that, to verify I‖D2 |= P≥ p[ψ], it is sufficient to check the

probabilistic safety property P≥ p[ψ] on the IMDP dI‖D2e using standard model check-

167

6. Learning Implicit Assumptions

ing techniques for MDPs (see Section 3.3.3), which reduces the problem to computing

the maximum reachability probabilities and can be solved by using the MTBDD-based

value iteration algorithm (e.g. Algorithm 10 in Section 6.3). If the model checking of

I‖D2 |= P≥ p[ψ] yields true, then the teacher can conclude that D1‖D2 |= P≥ p[ψ] is

true because both premises of rule (Asym-Idtmc) have been satisfied. Otherwise, a

probabilistic counterexample c illustrating the violation of P≥ p[ψ] on I‖D2 would be

found based on the optimal adversary σ generated by Algorithm 10. The behaviour of

I‖D2 under the adversary σ is purely probabilistic and can be captured by a DTMC,

therefore finding the probabilistic counterexample c reduces to generating counterex-

amples for the upper bound reachability problem of DTMCs, which has been described

in Section 3.4 (here we implement the techniques based on MTBDDs for consistency).

By projecting the state space of c onto DTMC D1 and keeping only the transitions

between projected states, we can obtain a (small) fragment Dc1 of D1. If P≥ p[ψ] is vio-

lated on Dc1‖D2, then the teacher can conclude that D1‖D2 6|= P≥ p[ψ] and the learning

terminates; otherwise, c is a spurious counterexample and the learnt conjecture needs to

be updated. Recall from Section 3.5.3 that the CDNF learning algorithm only accepts

a valuation over a set of Boolean variables of the target function as a counterexample.

For the transition relation function δ(x,y, el, eu), a valuation corresponds to a single

transition between two states in the conjectured IDTMC.

There are two heuristics to obtain such a transition from the conjecture and trans-

late it into a valuation νc to refine the learning. One heuristic is to project the optimal

adversary σ onto the state space of D1, and then find a projected transition which has

the maximum (positive) difference of transition probability compared to its counterpart

in D1. The other heuristic is to analyse the individual paths of the probabilistic coun-

terexample c following the descending order of path probabilities: given a path of c, we

project it onto the state space of D1 and compare the probabilities of projected tran-

sitions with the corresponding transitions in D1, until a transition with the maximum

168

6. Learning Implicit Assumptions

0.2

s = 0

r = 0

0.8

1.0

1.0

1/3

1/3

1/3

s = 1

r = 0

s = 2

r = 0

s = 2

r = 1

s = 3

r = 0

t = 0

t = r

1.0

1.0

Figure 6.8: Two DTMCs D1 and D2 for Example 6.19

Predicate Encoding Predicate Encoding Predicate Encoding

s = 0 ¬x1¬x2 or ¬y1¬y2 p ≥ 0 el1 p ≤ 0 eu1
s = 1 ¬x1x2 or ¬y1y2 p ≥ 0.2 el2 p ≤ 0.2 eu2
s = 2 x1¬x2 or y1¬y2 p ≥ 1/3 el3 p ≤ 1/3 eu3
s = 3 x1x2 or y1y2 p ≥ 0.8 el4 p ≤ 0.8 eu4
r = 0 ¬x3 or ¬y3 p ≥ 1 el5 p ≤ 1 eu5
r = 1 x3 or y3 - - - -

Figure 6.9: Boolean Encoding Scheme for DTMC D1 in Figure 6.8

positive probability difference over the path is found; and if no transition probability

in the projected path is greater than its counterpart in D1, the search continues to the

next path.

Example 6.19 Figure 6.8 shows two DTMCs D1 and D2 whose states are annotated

by the values of integer variables s, r and t. Note that the behaviour of D2 is influenced

by D1, since t = r and the value of r changes alongside the moves in D1. We want to

verify whether the system D1‖D2 satisfies the safety property ψ = 2¬(t = 1), i.e. the

value of t should never be 1, with probability at least 0.6.

We follow the approach illustrated in Figure 6.7 and start two instances of the CDNF

learning algorithm to learn the initial predicate and transition relation of assumption

B(I) = (ι(x), δ(x,y, el, eu)). The target is the Boolean representation of D1 encoded

with the scheme shown in Figure 6.9, where the Boolean variables x = {x1,x2,x3}

(resp. y = {y1,y2,y3}) encode the values of s and r of the start (resp. end) states

of transitions, and the Boolean variable sets el, eu encode lower and upper probability

bounds, respectively. The initial predicate of D1 is ιD1(x) = ¬x1 ∧ ¬x2 ∧ ¬x3, cor-

169

6. Learning Implicit Assumptions

 20

 21

 22

 23

 24

 25

 DD

0.21 0.3333330.8

Figure 6.10: The MTBDD of DTMC D1 for Example 6.19

responding to the state where s = 0 and r = 0. The translation relation of D1 is a

Boolean function δD1(x,y, el, eu) converted from the MTBDD shown in Figure 6.10

(the conversion method is described in Section 6.1.3), where the MTBDD variable in-

dices {20, . . . , 25} correspond to the set of Boolean variables {x1,y1,x2,y2,x3,y3}.

By asking membership queries and checking if any conjectured function ι(x) satisfies

∀x. ιD1(x) ⇐⇒ ι(x), the CDNF learning instance for the initial predicate determines

that ι(x) = ιD1(x) = ¬x1 ∧ ¬x2 ∧ ¬x3. The CDNF learning instance for the transition

relation proposes a first hypothesised function as δ1(x,y, el, eu) = true. It is obvious that

δD1(x,y, el, eu) =⇒ true holds for any valuation over Boolean variables x,y, el, eu.

Thus, we have D1 � I1, where I1 is an IDTMC with B(I1) = (ι(x), true) corresponding

to a full graph over the state space of D1 (i.e. there is a transition with probability

interval [0, 1] between any two states). Model checking I1‖D2 |= P≥ 0.6[2¬(t = 1)] yields

a counterexample path: (s = 0, r = 0, t = 0)
[0,1]−−→ (s = 0, r = 1, t = 1), which

170

6. Learning Implicit Assumptions

 20

 21

 22

 23

 24

 25

 DD

0.333333 1

 20

 21

 22

 23

 24

 25

 DD

0.21

Figure 6.11: The lower/upper MTBDDs of IDTMC I for Example 6.19

shows that an error state annotated with t = 1 can be reached from the initial state

with maximum probability 1. By projecting this path onto the state space of D1 and

encoding the projected transition over Boolean variables {x,y, el, eu}, we can obtain a

counterexample valuation νc to refine the CNDF learning of the transition relation.

After a few iterations of checking membership and equivalence queries, and refining

conjectures with counterexample valuations, eventually the transition relation is learnt:

δ(x,y, el, eu) = (((eu2 ∧ ¬el2 ∧ eu1) ∨ (el3 ∧ ¬y3 ∧ y2) ∨ (el3 ∧ x3 ∧ y2)

∨(eu2 ∧ ¬y3 ∧ x2 ∧ y1) ∨ (eu2 ∧ x3 ∧ x2 ∧ y1) ∨ (el3 ∧ ¬y3 ∧ y1)

∨(el3 ∧ x3 ∧ y1) ∨ (el5 ∧ ¬eu4 ∧ el4 ∧ ¬eu3 ∧ el3 ∧ y1 ∧ x1))

∧((¬el2 ∧ eu1) ∨ (¬eu2 ∧ el3 ∧ ¬x2 ∧ ¬x1) ∨ (¬x1)

∨(el5 ∧ ¬eu4 ∧ el4 ∧ ¬eu2 ∧ ¬eu3 ∧ el3 ∧ y3 ∧ ¬x2)

∨(el5 ∧ ¬eu4 ∧ el4 ∧ ¬eu2 ∧ ¬eu3 ∧ el3 ∧ y2))),

171

6. Learning Implicit Assumptions

which can be converted into a pair of MTBDDs as shown in Figure 6.11, representing

the lower and upper transition probability bound matrices of an IDTMC I. The teacher

checks that D1 � I, because ∀x. ιD1(x) ⇐⇒ ι(x) and ∀x,y, el, eu. δD1(x,y, el, eu) =⇒

δ(x,y, el, eu). Also I‖D2 |= P≥ 0.6[2¬(t = 1)], since any state annotated with t = 1 can

be reached from the initial state of I‖D2 with probability at most 0.3999. Thus, we

can conclude that D1‖D2 satisfies the probabilistic safety property P≥ 0.6[2¬(t = 1)] by

using the IDTMC I as an assumption in the assume-guarantee rule (Asym-Idtmc).

We observe that, in this example, the learnt assumption I has a more compact

MTBDD representation (Figure 6.11) than the target component D1 (Figure 6.10).

Indeed, the number of nodes for the lower (resp. upper) MTBDD of I is 18 (resp.

19), while the number of MTBDD nodes of D1 is 27. The assumption I also has

a more succinct Boolean representation than D1, in terms of the number of CNF

clauses of the transition relation function (57 vs. 211). It takes overall 74 membership

queries and 16 equivalence queries (13 times of checking D1 � I and thrice checking

I‖D2 |= P≥ 0.6[2¬(t = 1)]) to learn the correct assumption I.

6.5 Implementation and Case Studies

We have built a prototype tool that implements our fully-automated learning-based

compositional verification approach described in Section 6.4. Our prototype uses

the Boolean fUnction Learning Library (http://code.google.com/p/project-bull) for the

implementation of CDNF learning algorithm. It also uses the SAT solver SAT4J

(http://www.sat4j.org) to check the satisfaction of Boolean formulae for membership

queries and part of the equivalence queries (i.e. checking the refinement relation

D1 � I). The other part of equivalence queries (i.e. verifying whether I‖D2 |= P≥ p[ψ]

holds) are answered using our own MTBDD-based implementation of Algorithm 10 in

Section 6.3, which is built on top of the JDD library in the PRISM package [KNP11].

172

6. Learning Implicit Assumptions

Our prototype also uses PRISM to export MTBDD representation of models as the

input of our eager encoding implementation. We have applied the prototype tool to

several benchmark case studies, which are described briefly below (also see Appendix E

for detailed models and properties in the PRISM modelling language). The experiments

were run on a 2.80GHz PC with 32GB RAM running 64-bit Fedora.

Contract Signing (egl). This case study is based on the contract signing protocol

of Even, Goldreich and Lempel [EGL85], where two parties are exchanging N pairs of

secrets and each secret contains L bits. We have used the same case study in Chapter 5,

where the components are modelled as PIOSs and composed in a synchronous fashion.

We adapt the models such that components are communicated through shared variables

rather than synchronising actions, because we do not consider the encoding of actions

in this chapter. Similarly to Chapter 5, we are interested in verifying the maximum

probability that “party A is committed while party B is not”. We decompose the

system into two DTMCs: D1 for the counter and D2 for both parties. Assumptions are

learnt about D1.

Client-Server Model. This case study is modified from the client-server model used

in Chapter 4, where N clients request resources from a server and one client may

behave wrongly with certain probability, causing the violation of a mutual exclusion

property. We adapt the server model as a DTMC D1, and model the clients who are

organised via a round robin schedule as another DTMC D2. Both DTMCs communicate

via shared variables instead of actions. We verify the maximum probability that the

mutual exclusion property is violated.

Results

Figure 6.12 shows the experimental results. For each model, we first report the number

of Boolean variables (Var), the number of membership queries (MQ), and the number of

173

6. Learning Implicit Assumptions

equivalence queries (EQ) used in the CDNF learning algorithm. Then, we compare the

MTBDD size (number of nodes) between the learnt assumption I and the component

DTMC D1, with I l, Iu representing the lower/upper MTBDDs for I. We also compare

the Boolean function size of I and D1 in terms of their CNF clause numbers (converted

through the Tseitin transformation [Tse83]). Finally, we report the results and the total

run-time of our learning-based compositional verification approach. For comparison, we

also include the result and run-time of the non-compositional verification using PRISM

(MTBDD engine).

We observe that, in all cases, our approach can learn assumptions that are signifi-

cantly smaller than the component in terms of the Boolean formulae size (CNF clauses.)

The succinct Boolean representation of assumptions may suggest more efficiency in

model checking. However, since the SAT-based model checking for probabilistic safety

properties is currently not feasible in practice, this potential gain is not reflected in

our experiments. We would hope to achieve such improvement in future, with the

advancement of SAT-based techniques for probabilistic model checking.

We also observe that the MTBDD representations of assumptions, which are con-

verted from learnt Boolean formulae, are roughly the same size as components. Indeed,

Figure 6.12 shows that the upper bound MTBDDs Iu are generally smaller than the

MTBDD of the corresponding component D1, while the lower bound MTBDDs I l are

slightly larger. However, we should note that, when we perform symbolic model check-

ing of I‖D2 |= P≥ p[ψ] using Algorithm 10, MTBDDs Iu, I l are not directly used for

matrix-vector multiplication, which has a key impact on the efficiency; rather, the algo-

rithm only uses Iu, I l as a reference to look up values when building the adversary for

each iteration. By contrast, the MTBDD of D1 is used for the matrix-vector multiplica-

tion in the non-compositional verification D1‖D2 |= P≥ p[ψ]. Therefore, the comparison

between MTBDD sizes of Iu, I l and D1 does not have a direct implication on model

checking efficiency.

174

6. Learning Implicit Assumptions

Recall from Section 6.4 that there are two heuristics for finding a single transition

from a probabilistic counterexample to refine the CDNF learning. One is by searching

the entire optimal adversary (adv), and the other is by analysing the individual paths

in the probabilistic counterexample (path). We have implemented both heuristics and

compare their performance in Figure 6.12. It seems that the (adv) heuristic performs

better than the (path) heuristic in all egl cases, with fewer queries used in the learning,

smaller size of learnt assumptions (in terms of CNF clauses) and better total run-time.

But in the client-server cases the results are the other way around. Thus, it is not

conclusive which heuristic is better in general.

Finally, we should note that the approximate model checking results produced by

our approach are very close to those of the non-compositional verification. In all the

egl cases, the results are exactly the same; and in the client-server cases, the results

are close enough considering the precision of floating-numbers. We do not compare

the run-time of our prototype tool with the highly-optimised PRISM, since we are

more interested to investigate the feasibility of learning good quality assumptions. The

performance of our tool may be improved by optimisations such as using the policy

iteration algorithm rather than the value iteration method for model checking.

175

6. Learning Implicit Assumptions

C
as

e
st

u
d

y
L

ea
rn

in
g

re
la

te
d

M
T

B
D

D
n

o
d

es
C

N
F

cl
au

se
s

C
om

p
os

it
io

n
al

N
on

-c
om

p
o
si

ti
o
n

a
l

[p
ar

am
et

er
s]

V
ar

M
Q

E
Q

Il
Iu

D 1
I

D 1
R

es
u

lt
T

im
e

(s
)

R
es

u
lt

T
im

e
(s

)

eg
l

(a
d

v
)

[N
L

]

5
2

30
20

7
24

24
3

2
3
1

23
7

2
0
2

25
,6

37
0.

51
56

7.
6

0.
51

56
0
.1

5
6

32
15

9
19

25
9

2
4
7

25
3

1
5
4

60
,0

17
0.

51
56

19
.7

0.
51

56
0
.4

10
4

34
50

2
46

27
1

2
5
9

26
5

4
9
7

85
,1

81
0.

5
29

5.
4

0.
5

1
.7

10
8

36
72

5
63

28
2

2
7
0

27
6

7
2
0

15
3,

44
9

0.
5

99
7.

9
0.

5
7
.9

15
2

32
31

9
33

26
3

2
5
1

25
7

3
1
4

76
,3

49
0.

5
1,

76
1.

9
0.

5
1
.6

eg
l

(p
at

h
)

[N
L

]

5
2

30
67

5
69

28
5

2
3
1

23
7

6
5
6

25
,6

37
0.

51
56

15
.1

0.
51

56
0
.1

5
6

32
78

0
71

30
1

2
4
7

25
3

7
6
1

60
,0

17
0.

51
56

45
.9

0.
51

56
0
.4

10
4

34
1,

21
1

10
9

31
3

2
5
9

26
5

1
,1

9
2

85
,1

81
0.

5
34

2.
5

0.
5

1
.7

10
8

36
79

7
71

32
4

2
7
0

27
6

7
7
8

15
3,

44
9

0.
5

10
00

.2
0.

5
7
.9

15
2

32
1,

02
0

92
30

5
2
5
1

25
7

1
,0

0
1

76
,3

49
0.

5
1,

80
2.

4
0.

5
1
.6

cl
ie

n
t-

se
rv

er
(a

d
v
)

[N
]

4
36

95
5

75
51

6
3
7
0

41
3

8
0
4

16
,9

39
0.

00
37

9.
3

0.
00

38
0
.0

2
5

39
1,

15
5

88
64

7
4
4
7

50
4

9
5
8

29
,0

35
0.

00
17

19
.5

0.
00

17
0
.0

4
6

41
1,

22
3

88
73

8
5
0
6

56
7

9
6
4

35
,9

77
8.

18
E

-4
25

.2
8.

19
E

-4
0
.0

5
7

43
1,

12
7

84
82

4
5
6
0

63
1

9
2
0

48
,3

61
3.

91
E

-4
33

.2
3.

99
E

-4
0
.0

7
8

47
1,

23
7

96
95

3
6
6
5

74
2

1
,0

4
7

50
,1

79
1.

95
E

04
40

.1
1.

97
E

-4
0
.1

2

cl
ie

n
t-

se
rv

er
(p

at
h

)
[N

]

4
36

69
1

60
48

5
3
7
0

41
3

6
2
4

16
,9

39
0.

00
37

7.
1

0.
00

38
0
.0

2
5

39
73

0
62

59
5

4
4
7

50
4

6
6
1

29
,0

35
0.

00
17

12
.9

0.
00

17
0
.0

4
6

41
69

7
62

67
8

5
0
6

56
7

6
6
1

35
,9

77
8.

18
E

-4
15

.8
8.

19
E

-4
0
.0

5
7

43
82

1
68

75
0

5
6
0

63
1

7
5
7

48
,3

61
3.

91
E

-4
25

.2
3.

99
E

-4
0
.0

7
8

47
1,

04
1

87
88

0
6
6
5

74
2

9
9
5

50
,1

79
1.

95
E

-4
33

.9
1.

97
E

-4
0
.1

2

F
ig

u
re

6.
12

:
P

er
fo

rm
an

ce
of

th
e

le
ar

n
in

g-
b

as
ed

co
m

p
os

it
io

n
al

ve
ri

fi
ca

ti
on

u
si

n
g

ru
le

(A
sy

m
-I
d
t
m
c

)

176

6. Learning Implicit Assumptions

6.6 Summary and Discussion

In this chapter, we presented a novel (complete) assume-guarantee rule (Asym-Idtmc)

for the compositional verification of DTMCs, where the assumptions are captured by

IDTMCs. This rule is based on a new parallel operator that we defined for composing

a DTMC and an IDTMC, which preserves the compositionality of IMDP semantics for

IDTMCs. We also proposed a new value iteration algorithm for computing the maxi-

mum reachability probabilities on IDTMCs that are composed using our new parallel

operator. A symbolic variant of this algorithm is also developed based on the data

structure of MTBDDs. We built a fully-automated implementation of the proposed

compositional verification framework, which uses the CDNF learning algorithm to au-

tomatically learn assumptions encoded in Boolean formulae. Experimental results on

large case studies show that our approach can learn succint assumptions that enable

the compositional verification of DTMCs using rule (Asym-Idtmc).

A disadvantage of our approach is that we have to convert the learnt assump-

tions represented in Boolean formulae into MTBDDs for the purpose of probabilistic

model checking, which affects the performance of our approach. Ideally, we should be

able to perform the model checking with Boolean functions directly, as in [CCF+10]

for non-probabilistic models. However, as mentioned before, SAT-based probabilistic

model checking is still in early stages of development and not feasible for our approach

currently. We hope the techniques will be improved in future.

A potential extension of our approach is to consider probabilistic systems that

exhibit nondeterministic behaviour, e.g. those modelled in PAs (or MDPs). Recall from

Section 6.1.2 that we have only considered the Boolean encoding of system states and

transition probabilities. It is straightforward to encode transition actions as Boolean

variables. Thus, we can represent PAs are Boolean formulae. The assumptions about

PAs can be captured by some interval variant of PAs, e.g. the abstract probabilistic

177

6. Learning Implicit Assumptions

automata [KKLW12]. We would need to develop a new assume-guarantee rule, which

is left for future work.

178

Chapter 7

Conclusions

In this thesis, we aimed to address the problem of automatically learning assumptions

for compositional verification of probabilistic systems. Compositional verification via

assume-guarantee reasoning is a very promising solution to improve the scalability of

model checking techniques, and thus can be used to extend the applicability of these

techniques to broader classes of real-life systems. However, the conventional assume-

guarantee verification techniques require non-trivial human effort to find appropriate

assumptions. The research presented in this thesis develops, for the first time, fully-

automated approaches for generating assumptions and performing compositional verifi-

cation for various probabilistic systems. The applicability of the proposed approaches is

evaluated on a range of benchmark case studies with prototype implementations. The

encouraging experimental results demonstrate that the work presented in this thesis

is helpful for scaling up probabilistic model checking techniques. The major contri-

butions of this thesis are novel approaches for learning assumptions for three different

compositional verification frameworks, presented in Chapters 4, 5 and 6, respectively.

We draw conclusions about each approach as follows.

The approach in Chapter 4 targets systems composed of PAs and builds on top of

the compositional verification framework proposed in [KNPQ10]. It learns assumptions

179

7. Conclusions

represented as probabilistic safety properties using the L* (or NL*) learning algorithm

and multi-objective model checking. It can handle three different assume-guarantee

rules, (Asym), (Asym-N) and (Circ), which are probabilistic analogs of the most

important rules in the non-probabilistic setting. Experimental results show that this

approach has the advantage of learning assumptions that are sufficient for verification

and still significantly smaller than the corresponding system components. For example,

an assumption with 4 states is successfully learnt for a component that has about 17.5

millions states in one case. There are also two large cases where the non-compositional

verification is not feasible due to the size of models, but the compositional verification

using our approach still works. One disadvantage is due to the incompleteness of

the underlying assume-guarantee rules, i.e. it is not always possible to find a suitable

assumption to prove the assume-guarantee rules.

The approach in Chapter 5 targets systems whose components are modelled as

PIOSs and, when composed in a synchronous fashion, result in a DTMC. A new (com-

plete) assume-guarantee rule (Asym-Pios) is proposed in this chapter, for verifying

such systems against probabilistic safety properties compositionally, using a richer

class of assumptions represented as RPAs. To build a fully-automated implementa-

tion of this compositional verification framework, a (semi-)algorithm for checking the

language inclusion of RPAs and an L*-style learning algorithm for RPAs are developed.

A prototype tool is implemented for this approach and applied to a set of benchmark

case studies. Experiments show that this approach can be used to learn small assump-

tions about large components. A weakness is that we cannot guarantee termination,

because the problems of checking the language inclusion of RPAs and learning RPAs

are undeciable.

The approach in Chapter 6 targets purely probabilistic systems modelled as DTMCs

and learns implicit assumptions encoded as Boolean formulae using the CDNF learning

algorithm. A novel (complete) assume-guarantee rule (Asym-Idtmc) is proposed, in

180

7. Conclusions

which the assumptions are represented as IDTMCs, based on a new parallel opera-

tor for composing DTMCs and IDTMCs. A fully-automated implementation of this

approach is developed, which also includes a symbolic (MTBDD-based) value itera-

tion algorithm for verifying the probabilistic reachability of IDTMCs. Experiments on

large case studies show that this approach can successfully learn small assumptions for

the compositional verification using rule (Asym-Idtmc). A drawback is the inconve-

nience of converting assumptions between Boolean formulae and MTBDDs, because it

is not practical to verify probabilistic safety properties on IDTMCs encoded in Boolean

formulae directly.

In summary, this thesis presents novel approaches that are pioneering work for au-

tomatically learning probabilistic assumptions of good quality (i.e. small and sufficient

for verification), enabling the fully-automated compositional verification of probabilistic

systems, and thus improving the scalability of probabilistic model checking.

Future Work

The research presented in this thesis can be further optimised and extended in many

directions. First, we can address the weaknesses of current approaches and optimise

their performance. For instance, we can adapt the alphabet refinement techniques

[PGB+08] and use the BDD-based symbolic variant of the L* algorithm [NMA08] to

optimise the assumption learning approach proposed in Chapter 4; we can characterise

the termination conditions for the language inclusion and RPA learning algorithms in

Chapter 5; and we can explore the use of policy iteration instead of value iteration for

the model checking algorithms in Chapter 6.

Secondly, we can investigate the application of our approaches to more case studies.

For example, [CKJ12] presents a case study of verifying probabilistic safety proper-

ties in cloud computing environment using the compositional verification framework of

[KNPQ10], but the assumptions in this work are derived manually. It might be possible

181

7. Conclusions

to apply the approach proposed in Chapter 4 to this case study.

Moreover, we can generalise the current approaches and develop further extensions.

We briefly discuss a few potential extensions below:

• The work in this thesis only considers the compositional verification of proba-

bilistic safety properties. In future, we may generalise the assumption learning

approach for the compositional verification of ω-regular properties and expected

reward properties. A good starting point is to consider the assume-guarantee

rules proposed in [FKN+11] and the learning approaches in [FCC+08, CG10].

• The models considered in this thesis are all discrete time. It may be possible

to extend our approaches for continuous-time models such as continuous-time

Markov chains and probabilistic timed automata. Some recent work [LAD+11,

LLS+12] has been devoted to studying the automated assumption generation for

timed systems in the non-probabilistic setting. It might be possible to adapt

them for probabilistic timed systems.

• We may extend the approach in Chapter 6 of learning implicit assumptions for

the compositional verification of nondeterministic systems modelled as PAs. This

would require consideration of the Boolean encoding of transition actions. We

can also replace the CDNF learning algorithm used in Chapter 6 with alternative

algorithms [CW12] that learn Boolean formulae incrementally (i.e. the number of

Boolean variables is not fixed).

182

Appendix A

Proofs for Chapter 5

The following proofs first appeared in the jointly authored technical report [FHKP11b],

contributed by Tingting Han. Notations are modified here for consistency of the thesis.

Proposition 5.14. The triple 〈A〉M〈G〉≥p given in Definition 5.13 holds if and only

if pios(A)‖M|= 〈G〉≥p.

The proof of Proposition 5.14 follows directly from Lemma A.1 and Lemma A.2.

Lemma A.1 SupposeM1,M2 are a pair of PIOSs and A is an assumption aboutM1

such that M1 vw A, then M1‖M2 vw pios(A)‖M2.

Proof: Given any finite word w inM1‖M2, w can be uniquely mapped back ontoM1

andM2, as w1 = w�M1 and w2 = w�M2 , by sequentially taking the synchronous actions

and their respective hidden actions (if not ⊥). We write w = w1‖w2 for simplicity. For

a word in a composed model, since only input/output actions are visible and all the

other actions are τ actions (recall that all hidden actions are renamed to τ), it is easy

to see that given a τ -free word w̄ ∈ α∗, we have w̄ = w̄1‖w̄2, where w̄1 and w̄2 are

τ -free words in M1 and M2, respectively.

Given a (finite) path ρ inM1‖M2 with act(ρ) = w, then ρ can be decomposed into

ρ1 in M1 with act(ρ1) = w1, and ρ2 in M2 with act(ρ2) = w2. We write ρ = ρ1‖ρ2

for simplicity. The probability of the composed path is PrM1‖M2
(ρ1‖ρ2) = PrM1(ρ1) ·

PrM2(ρ2). Since M1 vw A, we have that PrM1(st(w1)) ≤ PrA(st(w1)), which means

that ∑
act(ρ1)=st(w1)

PrM1(ρ1) ≤
∑

act(ρ′1)=st(w1)

PrA(ρ′1). (†)

183

A. Proofs for Chapter 5

where ρ′1 is a finite path in A. For any τ -free word w̄ in M1‖M2, we have

PrM1‖M2
(w̄)

= PrM1‖M2
(w̄1‖w̄2)

=
∑

st(w′)=w̄1‖w̄2

∑
act(ρ1‖ρ2)=w′

PrM1‖M2
(ρ1‖ρ2)

=
∑

st(w′)=w̄1‖w̄2

∑
act(ρ1‖ρ2)=w′

PrM1(ρ1) · PrM2(ρ2)

=
∑

st(w′)=w̄1‖w̄2,w′=ρ1‖ρ2

∑
act(ρ2)=w̄2

∑
act(ρ1)=w̄1

PrM1(ρ1) · PrM2(ρ2)

=
∑

st(w′)=w̄1‖w̄2,w′=ρ1‖ρ2

∑
act(ρ2)=w̄2

PrM1(w̄1) · PrM2(ρ2)

(†)
≤

∑
st(w′)=w̄1‖w̄2,w′=ρ1‖ρ2

∑
act(ρ2)=w̄2

Prpios(A)(w̄1) · PrM2(ρ2)

=
∑

st(w′)=w̄1‖w̄2,w′=ρ1‖ρ2

∑
act(ρ2)=st(w2)

∑
act(ρ′1)=st(w1)

Prpios(A)(ρ
′
1) · PrM2(ρ2)

= Prpios(A)‖M2
(w̄1‖w̄2)

= Prpios(A)‖M2
(w̄)

Therefore, M1‖M2 vw pios(A)‖M2. �

Lemma A.2 Suppose that M1‖M2 vw pios(A)‖M2 and pios(A)‖M2 |= 〈G〉≥p, then

M1‖M2 |= 〈G〉≥p.

Proof: Based on Lemma 5.4, M1‖M2 and pios(A)‖M2 are both DTMCs. Let

D=M1‖M2 and D′=pios(A)‖M2. Since D′ |= 〈G〉≥p, recall from Section 3.3.2 that

PrD′(G) = 1− PrD′⊗Gerr (3err ′) ≥ p, where err ′ represents the set of accepting paths

in the product DTMC of D′ and DFA Gerr . Since D vw D′ and there is no probability

in DFA Gerr , we have D ⊗Gerr vw D′ ⊗Gerr . Thus

PrD(G) = 1− PrD⊗Gerr (3err) ≥ 1− PrD′⊗Gerr (3err ′) ≥ p.

Therefore, M1‖M2 |= 〈G〉≥p. �

184

Appendix B

Basic MTBDD Operations

The followings are all of the basic BDD and MTBDD operations as described in [Par02].

We treat BDDs simply as a special case of MTBDDs. In the following, we assume that

M, M1 and M2 are MTBDDs over the set of variables x = (x1, . . . , xn).

• Const(c), where c ∈ R, creates a new MTBDD with the constant value c, i.e. a

single terminal m, with val(m) = c.

• Apply(op,M1,M2), where op is a binary operation over the reals (e.g. +, −, ×,

÷, min, max, etc.), returns the MTBDD representing the function fM1 op fM2 .

If M1 and M2 are BDDs, op can also be a Boolean operation (∧, ∨, =⇒ , etc.).

For clarity, we allow Apply operations to be expressed in infix notation, e.g.

M1 ×M2 = Apply(×,M1,M2) and M1 ∧M2 = Apply(∧,M1,M2).

• Not(M), where M is a BDD, returns the BDD representing the function ¬ fM.

As above, we may abbreviate Not(M) to ¬M.

• Abs(M) returns the MTBDD representing the function |fM|, giving the absolute

value of the original one.

• Threshold(M, ./, c), where ./ is a relational operator (<, >, ≤, ≥, etc.) and

c ∈ R, returns the BDD M′ with fM′ equal to 1 if fM ./ c and 0 otherwise.

• FindMin(M) returns the real constant equal to the minimum value of fM.

• FindMax(M) returns the real constant equal to the maximum value of fM.

• Abstract(op, x,M), where op is a commutative and associative binary opera-

tion over the reals, returns the result of abstracting all the variables in x from

185

B. Basic MTBDD Operations

M by applying op over all possible values taken by the variables. For exam-

ple, Abstract(+, (x1),M) would give the MTBDD representing the function

fM|x1=0
+ fM|x1=1

and Abstract(×, (x1, x2),M) would give the MTBDD repre-

senting the function fM|x1=0,x2=0
× fM|x1=0,x2=1

× fM|x1=1,x2=0
× fM|x1=1,x2=1

. In the

latter, M|x1=b1,x2=b2 is equivalent to (M|x1=b1)|x2=b2 .

• ThereExists(x,M), where M is a BDD, is equivalent to Abstract(∨, x,M).

• ForAll(x,M), where M is a BDD, is equivalent to Abstract(∧, x,M).

• ReplaceVars(M, x, y), where y = (y1, . . . , yn), returns the MTBDD M′ over

variables y with fM′(b1, . . . , bn) = fM(b1, . . . , bn) for all (b1, . . . , bn) ∈ Bn.

186

Appendix C

Case Studies for Chapter 4

The followings are detailed models of case studies in Section 4.5, described in the PRISM

modelling language, which are adapted from the benchmark case studies on the PRISM

website (http://www.prismmodelchecker.org/). We only show the largest example of

each case study. All models are verified against property: 1− Pmax =?[3“err”].

Client-Server (1 failure) with N = 7

mdp

module server

s:[0..3];

i:[0..7];

j:[0..7];

// initial cancel loops

[client1–cancel] s=0 → true;

[client2–cancel] s=0 → true;

[client3–cancel] s=0 → true;

[client4–cancel] s=0 → true;

[client5–cancel] s=0 → true;

[client6–cancel] s=0 → true;

[client7–cancel] s=0 → true;

// client i request/grant/cancel

[client1–request] s=0 → (s’=1) & (i’=1);

[client1–grant] s=1 & i=1 → (s’=2);

[client1–cancel] s=2 & i=1 → (s’=0) & (i’=0);

187

C. Case Studies for Chapter 4

[client2–request] s=0 → (s’=1) & (i’=2);

[client2–grant] s=1 & i=2 → (s’=2);

[client2–cancel] s=2 & i=2 → (s’=0) & (i’=0);

[client3–request] s=0 → (s’=1) & (i’=3);

[client3–grant] s=1 & i=3 → (s’=2);

[client3–cancel] s=2 & i=3 → (s’=0) & (i’=0);

[client4–request] s=0 → (s’=1) & (i’=4);

[client4–grant] s=1 & i=4 → (s’=2);

[client4–cancel] s=2 & i=4 → (s’=0) & (i’=0);

[client5–request] s=0 → (s’=1) & (i’=5);

[client5–grant] s=1 & i=5 → (s’=2);

[client5–cancel] s=2 & i=5 → (s’=0) & (i’=0);

[client6–request] s=0 → (s’=1) & (i’=6);

[client6–grant] s=1 & i=6 → (s’=2);

[client6–cancel] s=2 & i=6 → (s’=0) & (i’=0);

[client7–request] s=0 → (s’=1) & (i’=7);

[client7–grant] s=1 & i=7 → (s’=2);

[client7–cancel] s=2 & i=7 → (s’=0) & (i’=0);

// deny other requests when serving

[client1–request] s=2 → (s’=3) & (j’=1);

[client1–deny] s=3 & j=1 → (s’=2) & (j’=0);

[client2–request] s=2 → (s’=3) & (j’=2);

[client2–deny] s=3 & j=2 → (s’=2) & (j’=0);

[client3–request] s=2 → (s’=3) & (j’=3);

[client3–deny] s=3 & j=3 → (s’=2) & (j’=0);

[client4–request] s=2 → (s’=3) & (j’=4);

[client4–deny] s=3 & j=4 → (s’=2) & (j’=0);

[client5–request] s=2 → (s’=3) & (j’=5);

[client5–deny] s=3 & j=5 → (s’=2) & (j’=0);

[client6–request] s=2 → (s’=3) & (j’=6);

[client6–deny] s=3 & j=6 → (s’=2) & (j’=0);

[client7–request] s=2 → (s’=3) & (j’=7);

[client7–deny] s=3 & j=7 → (s’=2) & (j’=0);

// cancel loops when serving

[client1–cancel] s=2 & i!=1 → true;

[client2–cancel] s=2 & i!=2 → true;

[client3–cancel] s=2 & i!=3 → true;

[client4–cancel] s=2 & i!=4 → true;

[client5–cancel] s=2 & i!=5 → true;

[client6–cancel] s=2 & i!=6 → true;

[client7–cancel] s=2 & i!=7 → true;

endmodule

188

C. Case Studies for Chapter 4

// 1-p is probability of initial error occuring

const double p=0.9;

module client1

c1:[-1..4];

[] c1=-1 → p:(c1’=0)+(1-p):(c1’=3); [client1–request] c1=0 → (c1’=1);

[client1–deny] c1=1 → (c1’=0);

[client1–grant] c1=1 → (c1’=2);

[client1–useResource] c1=2 → (c1’=2);

[client1–cancel] c1=2 → (c1’=0);

[client1–cancel] c1=3 → (c1’=1);

endmodule

module client2

c2:[0..2];

[client2–request] c2=0 → (c2’=1);

[client2–deny] c2=1 → (c2’=0);

[client2–grant] c2=1 → (c2’=2);

[client2–useResource] c2=2 → (c2’=2);

[client2–cancel] c2=2 → (c2’=0);

endmodule

module client3= client2[c2=c3, client2–request=client3–request, client2–deny=client3–deny, client2–

grant=client3–grant, client2–useResource=client3–useResource, client2–cancel=client3–cancel]

endmodule

module client4= client2[c2=c4, client2–request=client4–request, client2–deny=client4–deny, client2–

grant=client4–grant, client2–useResource=client4–useResource, client2–cancel=client4–cancel]

endmodule

module client5= client2[c2=c5, client2–request=client5–request, client2–deny=client5–deny, client2–

grant=client5–grant, client2–useResource=client5–useResource, client2–cancel=client5–cancel]

endmodule

module client6= client2[c2=c6, client2–request=client6–request, client2–deny=client6–deny, client2–

grant=client6–grant, client2–useResource=client6–useResource, client2–cancel=client6–cancel]

endmodule

module client7= client2[c2=c7, client2–request=client7–request, client2–deny=client7–deny, client2–

grant=client7–grant, client2–useResource=client7–useResource, client2–cancel=client7–cancel]

endmodule

module exclusion

e:[0..3];

189

C. Case Studies for Chapter 4

k:[0..7];

[client1–grant] e=0 → (e’=1) & (k’=1);

[client1–cancel] e=1 & k=1 → (e’=0) & (k’=0);

[client2–grant] e=0 → (e’=1) & (k’=2);

[client2–cancel] e=1 & k=2 → (e’=0) & (k’=0);

[client3–grant] e=0 → (e’=1) & (k’=3);

[client3–cancel] e=1 & k=3 → (e’=0) & (k’=0);

[client4–grant] e=0 → (e’=1) & (k’=4);

[client4–cancel] e=1 & k=4 → (e’=0) & (k’=0);

[client5–grant] e=0 → (e’=1) & (k’=5);

[client5–cancel] e=1 & k=5 → (e’=0) & (k’=0);

[client6–grant] e=0 → (e’=1) & (k’=6);

[client6–cancel] e=1 & k=6 → (e’=0) & (k’=0);

[client7–grant] e=0 → (e’=1) & (k’=7);

[client7–cancel] e=1 & k=7 → (e’=0) & (k’=0);

[client1–cancel] e=0 → (e’=2) & (k’=0);

[client2–cancel] e=0 → (e’=2) & (k’=0);

[client3–cancel] e=0 → (e’=2) & (k’=0);

[client4–cancel] e=0 → (e’=2) & (k’=0);

[client5–cancel] e=0 → (e’=2) & (k’=0);

[client6–cancel] e=0 → (e’=2) & (k’=0);

[client7–cancel] e=0 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=2 → (e’=2) & (k’=0);

190

C. Case Studies for Chapter 4

[client1–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=5 → (e’=2) & (k’=0);

191

C. Case Studies for Chapter 4

[client7–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client1–grant] e=2 → true;

[client1–cancel] e=2 → true;

[client2–grant] e=2 → true;

[client2–cancel] e=2 → true;

[client3–grant] e=2 → true;

[client3–cancel] e=2 → true;

[client4–grant] e=2 → true;

[client4–cancel] e=2 → true;

[client5–grant] e=2 → true;

[client5–cancel] e=2 → true;

[client6–grant] e=2 → true;

[client6–cancel] e=2 → true;

[client7–grant] e=2 → true;

[client7–cancel] e=2 → true;

endmodule

192

C. Case Studies for Chapter 4

label “err”= e=2;

Client-Server (N failures) with N = 7

mdp

module server

s:[0..3];

i:[0..7];

j:[0..7];

// initial cancel loops

[client1–cancel] s=0 → true;

[client2–cancel] s=0 → true;

[client3–cancel] s=0 → true;

[client4–cancel] s=0 → true;

[client5–cancel] s=0 → true;

[client6–cancel] s=0 → true;

[client7–cancel] s=0 → true;

// client i request/grant/cancel

[client1–request] s=0 → (s’=1) & (i’=1);

[client1–grant] s=1 & i=1 → (s’=2);

[client1–cancel] s=2 & i=1 → (s’=0) & (i’=0);

[client2–request] s=0 → (s’=1) & (i’=2);

[client2–grant] s=1 & i=2 → (s’=2);

[client2–cancel] s=2 & i=2 → (s’=0) & (i’=0);

[client3–request] s=0 → (s’=1) & (i’=3);

[client3–grant] s=1 & i=3 → (s’=2);

[client3–cancel] s=2 & i=3 → (s’=0) & (i’=0);

[client4–request] s=0 → (s’=1) & (i’=4);

[client4–grant] s=1 & i=4 → (s’=2);

[client4–cancel] s=2 & i=4 → (s’=0) & (i’=0);

[client5–request] s=0 → (s’=1) & (i’=5);

[client5–grant] s=1 & i=5 → (s’=2);

[client5–cancel] s=2 & i=5 → (s’=0) & (i’=0);

[client6–request] s=0 → (s’=1) & (i’=6);

[client6–grant] s=1 & i=6 → (s’=2);

[client6–cancel] s=2 & i=6 → (s’=0) & (i’=0);

[client7–request] s=0 → (s’=1) & (i’=7);

[client7–grant] s=1 & i=7 → (s’=2);

193

C. Case Studies for Chapter 4

[client7–cancel] s=2 & i=7 → (s’=0) & (i’=0);

// deny other requests when serving

[client1–request] s=2 → (s’=3) & (j’=1);

[client1–deny] s=3 & j=1 → (s’=2) & (j’=0);

[client2–request] s=2 → (s’=3) & (j’=2);

[client2–deny] s=3 & j=2 → (s’=2) & (j’=0);

[client3–request] s=2 → (s’=3) & (j’=3);

[client3–deny] s=3 & j=3 → (s’=2) & (j’=0);

[client4–request] s=2 → (s’=3) & (j’=4);

[client4–deny] s=3 & j=4 → (s’=2) & (j’=0);

[client5–request] s=2 → (s’=3) & (j’=5);

[client5–deny] s=3 & j=5 → (s’=2) & (j’=0);

[client6–request] s=2 → (s’=3) & (j’=6);

[client6–deny] s=3 & j=6 → (s’=2) & (j’=0);

[client7–request] s=2 → (s’=3) & (j’=7);

[client7–deny] s=3 & j=7 → (s’=2) & (j’=0);

// cancel loops when serving

[client1–cancel] s=2 & i!=1 → true;

[client2–cancel] s=2 & i!=2 → true;

[client3–cancel] s=2 & i!=3 → true;

[client4–cancel] s=2 & i!=4 → true;

[client5–cancel] s=2 & i!=5 → true;

[client6–cancel] s=2 & i!=6 → true;

[client7–cancel] s=2 & i!=7 → true;

endmodule

// 1-p is probability of initial error occuring

const double p=0.9;

module client1

c1:[-1..4];

[] c1=-1 → p:(c1’=0)+(1-p):(c1’=3); [client1–request] c1=0 → (c1’=1);

[client1–deny] c1=1 → (c1’=0);

[client1–grant] c1=1 → (c1’=2);

[client1–useResource] c1=2 → (c1’=2);

[client1–cancel] c1=2 → (c1’=0);

[client1–cancel] c1=3 → (c1’=1);

endmodule

module client2= client1[c1=c2, client1–request=client2–request, client1–deny=client2–deny, client1–

grant=client2–grant, client1–useResource=client2–useResource, client1–cancel=client2–cancel]

endmodule

194

C. Case Studies for Chapter 4

module client3= client1[c1=c3, client1–request=client3–request, client1–deny=client3–deny, client1–

grant=client3–grant, client1–useResource=client3–useResource, client1–cancel=client3–cancel]

endmodule

module client4= client1[c1=c4, client1–request=client4–request, client1–deny=client4–deny, client1–

grant=client4–grant, client1–useResource=client4–useResource, client1–cancel=client4–cancel]

endmodule

module client5= client1[c1=c5, client1–request=client5–request, client1–deny=client5–deny, client1–

grant=client5–grant, client1–useResource=client5–useResource, client1–cancel=client5–cancel]

endmodule

module client6= client1[c1=c6, client1–request=client6–request, client1–deny=client6–deny, client1–

grant=client6–grant, client1–useResource=client6–useResource, client1–cancel=client6–cancel]

endmodule

module client7= client1[c1=c7, client1–request=client7–request, client1–deny=client7–deny, client1–

grant=client7–grant, client1–useResource=client7–useResource, client1–cancel=client7–cancel]

endmodule

module exclusion

e:[0..3];

k:[0..7];

[client1–grant] e=0 → (e’=1) & (k’=1);

[client1–cancel] e=1 & k=1 → (e’=0) & (k’=0);

[client2–grant] e=0 → (e’=1) & (k’=2);

[client2–cancel] e=1 & k=2 → (e’=0) & (k’=0);

[client3–grant] e=0 → (e’=1) & (k’=3);

[client3–cancel] e=1 & k=3 → (e’=0) & (k’=0);

[client4–grant] e=0 → (e’=1) & (k’=4);

[client4–cancel] e=1 & k=4 → (e’=0) & (k’=0);

[client5–grant] e=0 → (e’=1) & (k’=5);

[client5–cancel] e=1 & k=5 → (e’=0) & (k’=0);

[client6–grant] e=0 → (e’=1) & (k’=6);

[client6–cancel] e=1 & k=6 → (e’=0) & (k’=0);

[client7–grant] e=0 → (e’=1) & (k’=7);

[client7–cancel] e=1 & k=7 → (e’=0) & (k’=0);

[client1–cancel] e=0 → (e’=2) & (k’=0);

[client2–cancel] e=0 → (e’=2) & (k’=0);

[client3–cancel] e=0 → (e’=2) & (k’=0);

[client4–cancel] e=0 → (e’=2) & (k’=0);

[client5–cancel] e=0 → (e’=2) & (k’=0);

[client6–cancel] e=0 → (e’=2) & (k’=0);

[client7–cancel] e=0 → (e’=2) & (k’=0);

195

C. Case Studies for Chapter 4

[client1–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=4 → (e’=2) & (k’=0);

196

C. Case Studies for Chapter 4

[client5–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=5 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=5 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=6 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client7–cancel] e=1 & k=6 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client5–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client6–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client7–grant] e=1 & k=7 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=7 → (e’=2) & (k’=0);

197

C. Case Studies for Chapter 4

[client3–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client5–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client6–cancel] e=1 & k=7 → (e’=2) & (k’=0);

[client1–grant] e=2 → true;

[client1–cancel] e=2 → true;

[client2–grant] e=2 → true;

[client2–cancel] e=2 → true;

[client3–grant] e=2 → true;

[client3–cancel] e=2 → true;

[client4–grant] e=2 → true;

[client4–cancel] e=2 → true;

[client5–grant] e=2 → true;

[client5–cancel] e=2 → true;

[client6–grant] e=2 → true;

[client6–cancel] e=2 → true;

[client7–grant] e=2 → true;

[client7–cancel] e=2 → true;

endmodule

label “err”= e=2;

Randomised Consensus with N = 3, R = 3, K = 20

mdp

// constants for the shared coin

const int N=3;

const int K=20;

const int range = 2*(K+1)*N;

const int counter–init = (K+1)*N;

const int left = N;

const int right= 2*(K+1)*N -N;

// shared coins for round 1 and 2

global counter1 : [0..range] init counter–init;

global counter2 : [0..range] init counter–init;

module r1–coin1

r1–start1 : bool; // when protocol is initialised

r1–pc1 : [0..3]; // program counter: 0 - flip, 1 - write, 2 - check, 3 - finished

198

C. Case Studies for Chapter 4

r1–coin1 : [0..1]; // local coin

// start coin protocol for process 1

[coin1–s1–start] !r1–start1 → (r1–start1’=true);

// flip coin

[] r1–start1 & (r1–pc1=0) → 0.5 : (r1–coin1’=0) & (r1–pc1’=1)

+ 0.5 : (r1–coin1’=1) & (r1–pc1’=1);

// write tails -1 (reset coin to add regularity)

[] r1–start1 & (r1–pc1=1) & (r1–coin1=0) & (counter1>0) → (counter1’=counter1-1)

& (r1–pc1’=2) & (r1–coin1’=0);

// write heads +1 (reset coin to add regularity)

[] r1–start1 & (r1–pc1=1) & (r1–coin1=1) & (counter1< range) → (counter1’=counter1+1)

& (r1–pc1’=2) & (r1–coin1’=0);

// decide tails

[coin1–s1–p1] r1–start1 & (r1–pc1=2) & (counter1<=left) → (r1–pc1’=3) & (r1–coin1’=0);

// decide heads

[coin1–s1–p2] r1–start1 & (r1–pc1=2) & (counter1>=right) → (r1–pc1’=3) & (r1–coin1’=1);

// flip again

[] r1–start1 & (r1–pc1=2) & (counter1¿left) & (counter1¡right) → (r1–pc1’=0);

endmodule

module r1–coin2 = r1–coin1[r1–start1=r1–start2,r1–pc1=r1–pc2,r1–coin1=r1–coin2,coin1–s1–

start=coin1–s2–start,coin1–s1–p1=coin1–s2–p1,coin1–s1–p2=coin1–s2–p2,counter1=counter1]

endmodule

module r1–coin3 = r1–coin1[r1–start1=r1–start3,r1–pc1=r1–pc3,r1–coin1=r1–coin3,coin1–s1–

start=coin1–s3–start,coin1–s1–p1=coin1–s3–p1,coin1–s1–p2=coin1–s3–p2,counter1=counter1]

endmodule

const int MAX=3;

formula leaders–agree1 = (p1=1 | r1<max(r1,r2,r3)) & (p2=1 | r2<max(r1,r2,r3)) & (p3=1 |
r3<max(r1,r2,r3));

formula leaders–agree2 = (p1=2 | r1<max(r1,r2,r3)) & (p2=2 | r2<max(r1,r2,r3)) & (p3=2 |
r3<max(r1,r2,r3));

formula decide1 = leaders–agree1 & (p1=1 | r1<max(r1,r2,r3)-1) & (p2=1 | r2<max(r1,r2,r3)-1) &

(p3=1 | r3<max(r1,r2,r3)-1);

formula decide2 = leaders–agree2 & (p1=2 | r1<max(r1,r2,r3)-1) & (p2=2 | r2<max(r1,r2,r3)-1) &

(p3=2 | r3<max(r1,r2,r3)-1);

module process1

s1 : [0..5]; // local state

// 0 initialise/read registers

// 1 finish reading registers (make a decision)

// 1 warn of change

// 2 enter shared coin protocol

199

C. Case Studies for Chapter 4

// 4 finished

// 5 error (reached max round and cannot decide)

r1 : [0..MAX]; // round of the process

p1 : [0..2]; // preference (0 corresponds to null)

// nondeterministic choice as to initial preference

[] s1=0 & r1=0 → (p1’=1) & (r1’=1);

[] s1=0 & r1=0 → (p1’=2) & (r1’=1);

// read registers (currently does nothing because read vs from other processes

[] s1=0 & r1>0 & r1<=MAX → (s1’=1);

// make a decision

[] s1=1 & decide1 → (s1’=4) & (p1’=1);

[] s1=1 & decide2 → (s1’=4) & (p1’=2);

[] s1=1 & r1<MAX & leaders–agree1 & !decide1 → (s1’=0) & (p1’=1) & (r1’=r1+1);

[] s1=1 & r1<MAX & leaders–agree2 & !decide2 → (s1’=0) & (p1’=2) & (r1’=r1+1);

[] s1=1 & r1<MAX & !(leaders–agree1 — leaders–agree2) → (s1’=2) & (p1’=0);

[] s1=1 & r1=MAX & !(decide1 — decide2) → (s1’=5);

// run out of rounds so error // enter the coin procotol for the current round

[coin1–s1–start] s1=2 & r1=1 → (s1’=3);

[coin2–s1–start] s1=2 & r1=2 → (s1’=3);

// get response from the coin protocol

[coin1–s1–p1] s1=3 & r1=1 → (s1’=0) & (p1’=1) & (r1’=r1+1);

[coin1–s1–p2] s1=3 & r1=1 → (s1’=0) & (p1’=2) & (r1’=r1+1);

[coin2–s1–p1] s1=3 & r1=2 → (s1’=0) & (p1’=1) & (r1’=r1+1);

[coin2–s1–p2] s1=3 & r1=2 → (s1’=0) & (p1’=2) & (r1’=r1+1);

// done so loop

[done] s1=4 → true;

[fail] s1=5 → true;

endmodule

module process2 = process1[s1=s2,p1=p2,p2=p3,p3=p1,r1=r2,r2=r3,r3=r1,coin1–s1–start=coin1–

s2–start,coin2–s1–start=coin2–s2–start,coin1–s1–p1=coin1–s2–p1,coin2–s1–p1=coin2–s2–p1,coin1–s1–

p2=coin1–s2–p2,coin2–s1–p2=coin2–s2–p2]

endmodule

module process3 = process1[s1=s3,p1=p3,p2=p1,p3=p2,r1=r3,r2=r1,r3=r2,coin1–s1–start=coin1–

s3–start,coin2–s1–start=coin2–s3–start,coin1–s1–p1=coin1–s3–p1,coin2–s1–p1=coin2–s3–p1,coin1–s1–

p2=coin1–s3–p2,coin2–s1–p2=coin2–s3–p2]

endmodule

module failure

z : [0..1] init 0;

[fail] z=0 → (z’=1);

[fail] z=1 → true;

200

C. Case Studies for Chapter 4

endmodule

label “err” = z=1;

Sensor Network with N = 3

mdp

// probability of successful send (from channel to processor)

const double p–succ = 0.8;

// probability of successful receive of noack (from channel to sensor)

const double p–succ1 = 1;

module sensor1

y1 : [0..6] init 0; // local state

msg1 : [1..3] init 1; // message code: 1=data, 2=alert, 3=stop

// send data packets (msg=1)

[s1–to–c] y1=0 → (y1’=1);

[ack1] y1=1 → (y1’=0);

[noack1] y1=1 → (y1’=0);

// detect a problem and start to send warning/error messages

[detect1] y1=0 → (y1’=2) & (msg1’=2);

// send warning message

[s1–to–c] y1=2 → (y1’=3);

[ack1] y1=3 → (y1’=4) & (msg1’=3);

[noack1] y1=3 → p–succ1:(y1’=2) + (1-p–succ1):(y1’=4) & (msg1’=3);

// send error message

[s1–to–c] y1=4 → (y1’=5);

[ack1] y1=5 → (y1’=6);

[noack1] y1=5 → p–succ1:(y1’=4) + (1-p–succ1):(y1’=6);

// stop (after error)

[] y1=6 → true;

endmodule

module sensor2 = sensor1 [y1=y2, msg1=msg2, detect1=detect2, s1–to–c=s2–to–c, ack1=ack2,

noack1=noack2]

endmodule

module sensor3 = sensor1 [y1=y3, msg1=msg3, detect1=detect3, s1–to–c=s3–to–c, ack1=ack3,

noack1=noack3]

endmodule

201

C. Case Studies for Chapter 4

module channel

// local state: 0=IDLE, 1=STORE, 2=SEND

c : [0..3] init 0;

// who is currently sending to the channel

who: [1..3];

// what message is currently being sent onwards

what: [0..3];

// buffer of messages to be sent

// (see sensor for message codes)

cb1 : [0..3];

cb2 : [0..3];

// buffer size

cbs : [0..2];

// IDLE: either...

// receive incoming message

[s1–to–c] c=0 → (c’=1) & (who’=1);

[s2–to–c] c=0 → (c’=1) & (who’=2);

[s3–to–c] c=0 → (c’=1) & (who’=3);

// or choose to process next message in buffer

[process] c=0 & cbs¿0 → (c’=2);

// STORE: send ack and then store in buffer

[ack1] c=1 & who=1 & cbs=0 → (c’=0)&(cb1’=msg1)&(cbs’=1);

[ack1] c=1 & who=1 & cbs=1 → (c’=0)&(cb2’=msg1)&(cbs’=2);

[noack1] c=1 & who=1 & cbs=2 → (c’=0);

[ack2] c=1 & who=2 & cbs=0 → (c’=0)&(cb1’=msg2)&(cbs’=1);

[ack2] c=1 & who=2 & cbs=1 → (c’=0)&(cb2’=msg2)&(cbs’=2);

[noack2] c=1 & who=2 & cbs=2 → (c’=0);

[ack3] c=1 & who=3 & cbs=0 → (c’=0)&(cb1’=msg3)&(cbs’=1);

[ack3] c=1 & who=3 & cbs=1 → (c’=0)&(cb2’=msg3)&(cbs’=2);

[noack3] c=1 & who=3 & cbs=2 → (c’=0);

// SEND: send next message in buffer

// first step of send (extraction from buffer, possible fail)

[extract] c=2 & cbs=1 → p–succ:(c’=3)&(what’=cb1)&(cbs’=0)&(cb1’=0)

+ (1-p–succ):(c’=0)&(cbs’=0)&(cb1’=0);

[extract] c=2 & cbs=2 → p–succ:(c’=3)&(what’=cb1)&(cbs’=1)&(cb1’=cb2)&(cb2’=0)

+ (1-p–succ):(c’=0)&(cbs’=1)&(cb1’=cb2)&(cb2’=0);

// second step of send (actual communication)

[data] c=3 & what=1 → (c’=0);

[alert] c=3 & what=2 → (c’=0);

[stop] c=3 & what=3 → (c’=0);

endmodule

202

C. Case Studies for Chapter 4

const double p–chunk = 0.01;

const int K = 10; // number of chunks of data

// processor receiving data from sensors

module proc

x : [0..2] init 0; // local state

count : [0..10] init 0; // number of chunks to process

// receive (K chunks of) data

[data] x=0 → (count’=K);

// process one chunk of data

[work] x=0 & count>0 → (count’=count-1);

// receive alert, discard unprocessed data

[alert] x=0 → (count’=0);

// receive stop signal (probability of crash depends on number of remaining chunks)

[stop] x=0 → (1-count*p–chunk):(x’=1) + (count*p–chunk):(x’=2);

// stopped

[done] x=1 → true;

// crashed

[crash] x=2 → true;

endmodule

module failure

z : [0..1] init 0;

[crash] z=0 → (z’=1);

[crash] z=1 → true;

endmodule

label “err” = z=1;

Mars Exploration Rovers with N = 5, R = 5

mdp

const double p=0.9;

const int n=1;

module arbiter

s:[-1..5] init 0;

r:[0..5] init 0;

203

C. Case Studies for Chapter 4

k:[0..n] init 0;

commUser:[0..5] init 0;

driveUser:[0..5] init 0;

panCamUser:[0..5] init 0;

armUser:[0..5] init 0;

ratUser:[0..5] init 0;

gc: bool init false; // grant comm

dc: bool init false; // deny comm

gd: bool init false; // grant drive

dd: bool init false; // deny drive

ga: bool init false; // grant arm

da: bool init false; // deny arm

gr: bool init false; // grant rat

dr: bool init false; // deny rat

gp: bool init false; // grant PanCam

dp: bool init false; // deny PanCam

// request comm

[u1–request–comm] s=0 & commUser=0 & driveUser=0 → (s’=1) & (gc’=true);

[u1–request–comm] s=0 & commUser! =0 → (s’=1) & (dc’=true);

[u1–request–comm] s=0 & commUser=0 & driveUser! =0 & k<n → p:(s’=1)

& (r’=driveUser) & (k’=k+1)+(1-p):(s’=-1) & (gc’=true) & (k’=k+1);

[u1–request–comm] s=0 & commUser=0 & driveUser! =0 & k=n → (s’=1) & (r’=driveUser);

[u1–grant–comm] s=1 & commUser=0 & driveUser=0 & gc & !gd → (s’=0)

& (commUser’=1) & (gc’=false);

[u1–grant–comm] s=-1 & gc → (s’=0) & (commUser’=1) & (gc’=false);

[u1–deny–comm] s=1 & dc → (s’=0) & (dc’=false);

[] s=1 → true;

[u2–request–comm] s=0 & commUser=0 & driveUser=0 → (s’=2) & (gc’=true);

[u2–request–comm] s=0 & commUser! =0 → (s’=2) & (dc’=true);

[u2–request–comm] s=0 & commUser=0 & driveUser! =0 → (s’=2) & (r’=driveUser);

[u2–grant–comm] s=2 & commUser=0 & driveUser=0 & gc & !gd → (s’=0)

& (commUser’=2) & (gc’=false);

[u2–deny–comm] s=2 & dc → (s’=0) & (dc’=false);

[] s=2 → true;

[u3–request–comm] s=0 & commUser=0 & driveUser=0 → (s’=3) & (gc’=true);

[u3–request–comm] s=0 & commUser! =0 → (s’=3) & (dc’=true);

[u3–request–comm] s=0 & commUser=0 & driveUser! =0 → (s’=3) & (r’=driveUser);

[u3–grant–comm] s=3 & commUser=0 & driveUser=0 & gc & !gd → (s’=0)

& (commUser’=3) & (gc’=false);

204

C. Case Studies for Chapter 4

[u3–deny–comm] s=3 & dc → (s’=0) & (dc’=false);

[] s=3 → true;

[u4–request–comm] s=0 & commUser=0 & driveUser=0 → (s’=4) & (gc’=true);

[u4–request–comm] s=0 & commUser! =0 → (s’=4) & (dc’=true);

[u4–request–comm] s=0 & commUser=0 & driveUser! =0 → (s’=4) & (r’=driveUser);

[u4–grant–comm] s=4 & commUser=0 & driveUser=0 & gc & !gd → (s’=0)

& (commUser’=4) & (gc’=false);

[u4–deny–comm] s=4 & dc → (s’=0) & (dc’=false);

[] s=4 → true;

[u5–request–comm] s=0 & commUser=0 & driveUser=0 → (s’=5) & (gc’=true);

[u5–request–comm] s=0 & commUser! =0 → (s’=5) & (dc’=true);

[u5–request–comm] s=0 & commUser=0 & driveUser! =0 → (s’=5) & (r’=driveUser);

[u5–grant–comm] s=5 & commUser=0 & driveUser=0 & gc & !gd → (s’=0)

& (commUser’=5) & (gc’=false);

[u5–deny–comm] s=5 & dc → (s’=0) & (dc’=false);

[] s=5 → true;

// rescind drive

[u1–rescind–drive] r=1 & driveUser=1 → (r’=0) & (gc’=true);

[u2–rescind–drive] r=2 & driveUser=2 → (r’=0) & (gc’=true);

[u3–rescind–drive] r=3 & driveUser=3 → (r’=0) & (gc’=true);

[u4–rescind–drive] r=4 & driveUser=4 → (r’=0) & (gc’=true);

[u5–rescind–drive] r=5 & driveUser=5 → (r’=0) & (gc’=true);

[] r! =0 & driveUser=0 → (r’=0) & (gc’=true);

// request drive

[u1–request–drive] s=0 & commUser=0 & driveUser=0 → (s’=1) & (gd’=true);

[u1–grant–drive] s=1 & driveUser=0 & gd → (s’=0) & (driveUser’=1) & (gd’=false);

[u1–request–drive] s=0 & (commUser! =0 — driveUser! =0) → (s’=1) & (dd’=true);

[u1–deny–drive] s=1 & dd → (s’=0) & (dd’=false);

[u2–request–drive] s=0 & commUser=0 & driveUser=0 → (s’=2) & (gd’=true);

[u2–grant–drive] s=2 & driveUser=0 & gd → (s’=0) & (driveUser’=2) & (gd’=false);

[u2–request–drive] s=0 & (commUser! =0 — driveUser! =0) → (s’=2) & (dd’=true);

[u2–deny–drive] s=2 & dd → (s’=0) & (dd’=false);

[u3–request–drive] s=0 & commUser=0 & driveUser=0 → (s’=3) & (gd’=true);

[u3–grant–drive] s=3 & driveUser=0 & gd → (s’=0) & (driveUser’=3) & (gd’=false);

[u3–request–drive] s=0 & (commUser! =0 — driveUser! =0) → (s’=3) & (dd’=true);

[u3–deny–drive] s=3 & dd → (s’=0) & (dd’=false);

[u4–request–drive] s=0 & commUser=0 & driveUser=0 → (s’=4) & (gd’=true);

205

C. Case Studies for Chapter 4

[u4–grant–drive] s=4 & driveUser=0 & gd → (s’=0) & (driveUser’=4) & (gd’=false);

[u4–request–drive] s=0 & (commUser! =0 — driveUser! =0) → (s’=4) & (dd’=true);

[u4–deny–drive] s=4 & dd → (s’=0) & (dd’=false);

[u5–request–drive] s=0 & commUser=0 & driveUser=0 → (s’=5) & (gd’=true);

[u5–grant–drive] s=5 & driveUser=0 & gd → (s’=0) & (driveUser’=5) & (gd’=false);

[u5–request–drive] s=0 & (commUser! =0 — driveUser! =0) → (s’=5) & (dd’=true);

[u5–deny–drive] s=5 & dd → (s’=0) & (dd’=false);

// request arm

[u1–request–arm] s=0 & armUser=0 & ratUser=0 & panCamUser=0 → (s’=1) & (ga’=true);

[u1–grant–arm] s=1 & armUser=0 & ga → (s’=0) & (armUser’=1);

[u1–request–arm] s=0 & (armUser! =0 — ratUser! =0 — panCamUser! =0)→ (s’=1) & (da’=true);

[u1–deny–arm] s=1 & da → (s’=0) & (da’=false);

[u2–request–arm] s=0 & armUser=0 & ratUser=0 & panCamUser=0 → (s’=2) & (ga’=true);

[u2–grant–arm] s=2 & armUser=0 & ga → (s’=0) & (armUser’=2);

[u2–request–arm] s=0 & (armUser! =0 — ratUser! =0 — panCamUser! =0)→ (s’=2) & (da’=true);

[u2–deny–arm] s=2 & da → (s’=0) & (da’=false);

[u3–request–arm] s=0 & armUser=0 & ratUser=0 & panCamUser=0 → (s’=3) & (ga’=true);

[u3–grant–arm] s=3 & armUser=0 & ga → (s’=0) & (armUser’=3);

[u3–request–arm] s=0 & (armUser! =0 — ratUser! =0 — panCamUser! =0)→ (s’=3) & (da’=true);

[u3–deny–arm] s=3 & da → (s’=0) & (da’=false);

[u4–request–arm] s=0 & armUser=0 & ratUser=0 & panCamUser=0 → (s’=4) & (ga’=true);

[u4–grant–arm] s=4 & armUser=0 & ga → (s’=0) & (armUser’=4);

[u4–request–arm] s=0 & (armUser! =0 — ratUser! =0 — panCamUser! =0)→ (s’=4) & (da’=true);

[u4–deny–arm] s=4 & da → (s’=0) & (da’=false);

[u5–request–arm] s=0 & armUser=0 & ratUser=0 & panCamUser=0 → (s’=5) & (ga’=true);

[u5–grant–arm] s=5 & armUser=0 & ga → (s’=0) & (armUser’=5);

[u5–request–arm] s=0 & (armUser! =0 — ratUser! =0 — panCamUser! =0)→ (s’=5) & (da’=true);

[u5–deny–arm] s=5 & da → (s’=0) & (da’=false);

// request rat

[u1–request–rat] s=0 & commUser! =0 & armUser=0 & ratUser=0 → (s’=1) & (gr’=true);

[u1–grant–rat] s=1 & ratUser=0 & gr → (s’=0) & (ratUser’=1);

[u1–request–rat] s=0 & (commUser=0 — armUser! =0 — ratUser! =0) → (s’=1) & (dr’=true);

[u1–deny–rat] s=1 & dr → (s’=0) & (dr’=false);

[u2–request–rat] s=0 & commUser! =0 & armUser=0 & ratUser=0 → (s’=2) & (gr’=true);

[u2–grant–rat] s=2 & ratUser=0 & gr → (s’=0) & (ratUser’=2);

[u2–request–rat] s=0 & (commUser=0 — armUser! =0 — ratUser! =0) → (s’=2) & (dr’=true);

206

C. Case Studies for Chapter 4

[u2–deny–rat] s=2 & dr → (s’=0) & (dr’=false);

[u3–request–rat] s=0 & commUser! =0 & armUser=0 & ratUser=0 → (s’=3) & (gr’=true);

[u3–grant–rat] s=3 & ratUser=0 & gr → (s’=0) & (ratUser’=3);

[u3–request–rat] s=0 & (commUser=0 — armUser! =0 — ratUser! =0) → (s’=3) & (dr’=true);

[u3–deny–rat] s=3 & dr → (s’=0) & (dr’=false);

[u4–request–rat] s=0 & commUser! =0 & armUser=0 & ratUser=0 → (s’=4) & (gr’=true);

[u4–grant–rat] s=4 & ratUser=0 & gr → (s’=0) & (ratUser’=4);

[u4–request–rat] s=0 & (commUser=0 — armUser! =0 — ratUser! =0) → (s’=4) & (dr’=true);

[u4–deny–rat] s=4 & dr → (s’=0) & (dr’=false);

[u5–request–rat] s=0 & commUser! =0 & armUser=0 & ratUser=0 → (s’=5) & (gr’=true);

[u5–grant–rat] s=5 & ratUser=0 & gr → (s’=0) & (ratUser’=5);

[u5–request–rat] s=0 & (commUser=0 — armUser! =0 — ratUser! =0) → (s’=5) & (dr’=true);

[u5–deny–rat] s=5 & dr → (s’=0) & (dr’=false);

// request PamCam

[u1–request–pancam] s=0 & panCamUser=0 & armUser=0 → (s’=1) & (gp’=true);

[u1–grant–pancam] s=1 & panCamUser=0 & gp → (s’=0) & (panCamUser’=1) & (gp’=false);

[u1–request–pancam] s=0 & (panCamUser! =0 — armUser! =0) → (s’=1) & (dp’=true);

[u1–deny–pancam] s=1 & dp → (s’=0) & (dp’=false);

[u2–request–pancam] s=0 & panCamUser=0 & armUser=0 → (s’=2) & (gp’=true);

[u2–grant–pancam] s=2 & panCamUser=0 & gp → (s’=0) & (panCamUser’=2) & (gp’=false);

[u2–request–pancam] s=0 & (panCamUser! =0 — armUser! =0) → (s’=2) & (dp’=true);

[u2–deny–pancam] s=2 & dp → (s’=0) & (dp’=false);

[u3–request–pancam] s=0 & panCamUser=0 & armUser=0 → (s’=3) & (gp’=true);

[u3–grant–pancam] s=3 & panCamUser=0 & gp → (s’=0) & (panCamUser’=3) & (gp’=false);

[u3–request–pancam] s=0 & (panCamUser! =0 — armUser! =0) → (s’=3) & (dp’=true);

[u3–deny–pancam] s=3 & dp → (s’=0) & (dp’=false);

[u4–request–pancam] s=0 & panCamUser=0 & armUser=0 → (s’=4) & (gp’=true);

[u4–grant–pancam] s=4 & panCamUser=0 & gp → (s’=0) & (panCamUser’=4) & (gp’=false);

[u4–request–pancam] s=0 & (panCamUser! =0 — armUser! =0) → (s’=4) & (dp’=true);

[u4–deny–pancam] s=4 & dp → (s’=0) & (dp’=false);

[u5–request–pancam] s=0 & panCamUser=0 & armUser=0 → (s’=5) & (gp’=true);

[u5–grant–pancam] s=5 & panCamUser=0 & gp → (s’=0) & (panCamUser’=5) & (gp’=false);

[u5–request–pancam] s=0 & (panCamUser! =0 — armUser! =0) → (s’=5) & (dp’=true);

[u5–deny–pancam] s=5 & dp → (s’=0) & (dp’=false);

// cancel comm

207

C. Case Studies for Chapter 4

[u1–cancel–comm] commUser=1 → (commUser’=0);

[u2–cancel–comm] commUser=2 → (commUser’=0);

[u3–cancel–comm] commUser=3 → (commUser’=0);

[u4–cancel–comm] commUser=4 → (commUser’=0);

[u5–cancel–comm] commUser=5 → (commUser’=0);

// cancel drive

[u1–cancel–drive] driveUser=1 → (driveUser’=0);

[u2–cancel–drive] driveUser=2 → (driveUser’=0);

[u3–cancel–drive] driveUser=3 → (driveUser’=0);

[u4–cancel–drive] driveUser=4 → (driveUser’=0);

[u5–cancel–drive] driveUser=5 → (driveUser’=0);

// cancel arm

[u1–cancel–arm] armUser=1 → (armUser’=0);

[u2–cancel–arm] armUser=2 → (armUser’=0);

[u3–cancel–arm] armUser=3 → (armUser’=0);

[u4–cancel–arm] armUser=4 → (armUser’=0);

[u5–cancel–arm] armUser=5 → (armUser’=0);

// cancel rat

[u1–cancel–rat] ratUser=1 → (ratUser’=0);

[u2–cancel–rat] ratUser=2 → (ratUser’=0);

[u3–cancel–rat] ratUser=3 → (ratUser’=0);

[u4–cancel–rat] ratUser=4 → (ratUser’=0);

[u5–cancel–rat] ratUser=5 → (ratUser’=0);

// cancel PanCam

[u1–cancel–pancam] panCamUser=1 → (panCamUser’=0);

[u2–cancel–pancam] panCamUser=2 → (panCamUser’=0);

[u3–cancel–pancam] panCamUser=3 → (panCamUser’=0);

[u4–cancel–pancam] panCamUser=4 → (panCamUser’=0);

[u5–cancel–pancam] panCamUser=5 → (panCamUser’=0);

endmodule

module user2 = user1 [s1=s2, r1=r2, rescind1=rescind2, u1–request–comm=u2–request–comm,

u1–request–drive=u2–request–drive, u1–request–pancam=u2–request–pancam, u1–request–arm=u2–

request–arm, u1–request–rat=u2–request–rat, u1–grant–comm=u2–grant–comm, u1–grant–drive=u2–

grant–drive, u1–grant–pancam=u2–grant–pancam, u1–grant–arm=u2–grant–arm, u1–grant–rat=u2–

grant–rat, u1–deny–comm=u2–deny–comm, u1–deny–drive=u2–deny–drive, u1–deny–pancam=u2–

deny–pancam, u1–deny–arm=u2–deny–arm, u1–deny–rat=u2–deny–rat, u1–rescind–comm=u2–

rescind–comm, u1–rescind–drive=u2–rescind–drive, u1–rescind–pancam=u2–rescind–pancam, u1–

rescind–arm=u2–rescind–arm, u1–rescind–rat=u2–rescind–rat, u1–cancel–comm=u2–cancel–comm,

u1–cancel–drive=u2–cancel–drive, u1–cancel–pancam=u2–cancel–pancam, u1–cancel–arm=u2–cancel–

208

C. Case Studies for Chapter 4

arm, u1–cancel–rat=u2–cancel–rat]

endmodule

module user3 = user1 [s1=s3, r1=r3, rescind1=rescind3, u1–request–comm=u3–request–comm,

u1–request–drive=u3–request–drive, u1–request–pancam=u3–request–pancam, u1–request–arm=u3–

request–arm, u1–request–rat=u3–request–rat, u1–grant–comm=u3–grant–comm, u1–grant–drive=u3–

grant–drive, u1–grant–pancam=u3–grant–pancam, u1–grant–arm=u3–grant–arm, u1–grant–rat=u3–

grant–rat, u1–deny–comm=u3–deny–comm, u1–deny–drive=u3–deny–drive, u1–deny–pancam=u3–

deny–pancam, u1–deny–arm=u3–deny–arm, u1–deny–rat=u3–deny–rat, u1–rescind–comm=u3–

rescind–comm, u1–rescind–drive=u3–rescind–drive, u1–rescind–pancam=u3–rescind–pancam, u1–

rescind–arm=u3–rescind–arm, u1–rescind–rat=u3–rescind–rat, u1–cancel–comm=u3–cancel–comm,

u1–cancel–drive=u3–cancel–drive, u1–cancel–pancam=u3–cancel–pancam, u1–cancel–arm=u3–cancel–

arm, u1–cancel–rat=u3–cancel–rat]

endmodule

module user4 = user1 [s1=s4, r1=r4, rescind1=rescind4, u1–request–comm=u4–request–comm,

u1–request–drive=u4–request–drive, u1–request–pancam=u4–request–pancam, u1–request–arm=u4–

request–arm, u1–request–rat=u4–request–rat, u1–grant–comm=u4–grant–comm, u1–grant–drive=u4–

grant–drive, u1–grant–pancam=u4–grant–pancam, u1–grant–arm=u4–grant–arm, u1–grant–rat=u4–

grant–rat, u1–deny–comm=u4–deny–comm, u1–deny–drive=u4–deny–drive, u1–deny–pancam=u4–

deny–pancam, u1–deny–arm=u4–deny–arm, u1–deny–rat=u4–deny–rat, u1–rescind–comm=u4–

rescind–comm, u1–rescind–drive=u4–rescind–drive, u1–rescind–pancam=u4–rescind–pancam, u1–

rescind–arm=u4–rescind–arm, u1–rescind–rat=u4–rescind–rat, u1–cancel–comm=u4–cancel–comm,

u1–cancel–drive=u4–cancel–drive, u1–cancel–pancam=u4–cancel–pancam, u1–cancel–arm=u4–cancel–

arm, u1–cancel–rat=u4–cancel–rat]

endmodule

module user5 = user1 [s1=s5, r1=r5, rescind1=rescind5, u1–request–comm=u5–request–comm,

u1–request–drive=u5–request–drive, u1–request–pancam=u5–request–pancam, u1–request–arm=u5–

request–arm, u1–request–rat=u5–request–rat, u1–grant–comm=u5–grant–comm, u1–grant–drive=u5–

grant–drive, u1–grant–pancam=u5–grant–pancam, u1–grant–arm=u5–grant–arm, u1–grant–rat=u5–

grant–rat, u1–deny–comm=u5–deny–comm, u1–deny–drive=u5–deny–drive, u1–deny–pancam=u5–

deny–pancam, u1–deny–arm=u5–deny–arm, u1–deny–rat=u5–deny–rat, u1–rescind–comm=u5–

rescind–comm, u1–rescind–drive=u5–rescind–drive, u1–rescind–pancam=u5–rescind–pancam, u1–

rescind–arm=u5–rescind–arm, u1–rescind–rat=u5–rescind–rat, u1–cancel–comm=u5–cancel–comm,

u1–cancel–drive=u5–cancel–drive, u1–cancel–pancam=u5–cancel–pancam, u1–cancel–arm=u5–cancel–

arm, u1–cancel–rat=u5–cancel–rat]

endmodule

module property

e:[0..3] init 0;

u:[0..5] init 0;

[u1–grant–comm] e=0 → (e’=1) & (u’=1);

[u1–grant–drive] e=0 → (e’=2) & (u’=1);

209

C. Case Studies for Chapter 4

[u1–cancel–comm] e=0 → true;

[u1–cancel–drive] e=0 → true;

[u2–grant–comm] e=0 → (e’=1) & (u’=2);

[u2–grant–drive] e=0 → (e’=2) & (u’=2);

[u2–cancel–comm] e=0 → true;

[u2–cancel–drive] e=0 → true;

[u3–grant–comm] e=0 → (e’=1) & (u’=3);

[u3–grant–drive] e=0 → (e’=2) & (u’=3);

[u3–cancel–comm] e=0 → true;

[u3–cancel–drive] e=0 → true;

[u4–grant–comm] e=0 → (e’=1) & (u’=4);

[u4–grant–drive] e=0 → (e’=2) & (u’=4);

[u4–cancel–comm] e=0 → true;

[u4–cancel–drive] e=0 → true;

[u5–grant–comm] e=0 → (e’=1) & (u’=5);

[u5–grant–drive] e=0 → (e’=2) & (u’=5);

[u5–cancel–comm] e=0 → true;

[u5–cancel–drive] e=0 → true;

[u1–cancel–comm] e=1 & u=1 → (e’=0);

[u1–grant–drive] e=1 → (e’=3);

[u1–cancel–drive] e=1 → true;

[u1–grant–comm] e=1 → true;

[u2–cancel–comm] e=1 & u=2 → (e’=0);

[u2–grant–drive] e=1 → (e’=3);

[u2–cancel–drive] e=1 → true;

[u2–grant–comm] e=1 → true;

[u3–cancel–comm] e=1 & u=3 → (e’=0);

[u3–grant–drive] e=1 → (e’=3);

[u3–cancel–drive] e=1 → true;

[u3–grant–comm] e=1 → true;

[u4–cancel–comm] e=1 & u=4 → (e’=0);

[u4–grant–drive] e=1 → (e’=3);

[u4–cancel–drive] e=1 → true;

[u4–grant–comm] e=1 → true;

[u5–cancel–comm] e=1 & u=5 → (e’=0);

[u5–grant–drive] e=1 → (e’=3);

[u5–cancel–drive] e=1 → true;

[u5–grant–comm] e=1 → true;

[u1–cancel–drive] e=2 & u=1 → (e’=0);

[u1–grant–comm] e=2 → (e’=3);

[u1–cancel–comm] e=2 → true;

[u1–grant–drive] e=2 → true;

210

C. Case Studies for Chapter 4

[u2–cancel–drive] e=2 & u=2 → (e’=0);

[u2–grant–comm] e=2 → (e’=3);

[u2–cancel–comm] e=2 → true;

[u2–grant–drive] e=2 → true;

[u3–cancel–drive] e=2 & u=3 → (e’=0);

[u3–grant–comm] e=2 → (e’=3);

[u3–cancel–comm] e=2 → true;

[u3–grant–drive] e=2 → true;

[u4–cancel–drive] e=2 & u=4 → (e’=0);

[u4–grant–comm] e=2 → (e’=3);

[u4–cancel–comm] e=2 → true;

[u4–grant–drive] e=2 → true;

[u5–cancel–drive] e=2 & u=5 → (e’=0);

[u5–grant–comm] e=2 → (e’=3);

[u5–cancel–comm] e=2 → true;

[u5–grant–drive] e=2 → true;

[u1–grant–comm] e=3 → true;

[u1–grant–drive] e=3 → true;

[u1–cancel–comm] e=3 → true;

[u1–cancel–drive] e=3 → true;

[u2–grant–comm] e=3 → true;

[u2–grant–drive] e=3 → true;

[u2–cancel–comm] e=3 → true;

[u2–cancel–drive] e=3 → true;

[u3–grant–comm] e=3 → true;

[u3–grant–drive] e=3 → true;

[u3–cancel–comm] e=3 → true;

[u3–cancel–drive] e=3 → true;

[u4–grant–comm] e=3 → true;

[u4–grant–drive] e=3 → true;

[u4–cancel–comm] e=3 → true;

[u4–cancel–drive] e=3 → true;

[u5–grant–comm] e=3 → true;

[u5–grant–drive] e=3 → true;

[u5–cancel–comm] e=3 → true;

[u5–cancel–drive] e=3 → true;

endmodule

label “err” = z=3;

211

C. Case Studies for Chapter 4

212

Appendix D

Case Studies for Chapter 5

The followings are detailed models of case studies in Section 5.5, described in the

PRISM modelling language, which are adapted from the benchmark case studies on

the PRISM website (http://www.prismmodelchecker.org/). We only show the largest

example of each case study. All models are verified against property: P =?[3“err”].

Contract Signing (EGL) with N = 7, L = 8

dtmc

const int N=7; // number of pairs of secrets the party sends

const int L=8; // number of bits in each secret

module counter

b : [1..L]; // counter for current bit to be send (used in phases 2 and 3)

n : [0..max(N-1,1)]; // counter as parties send N messages in a row

phase : [0..5];// phase of the protocol

party : [1..2]; // which party moves

coin : [0..1];

// 1 first phase of the protocol (sending messages of the form OT(.,.,.,.)

// 2 and 3 - second phase of the protocol (sending secretes 1..n and n+1..2n respectively)

// 4 finished the protocol

// // FIRST PHASE

[] phase=0 → 0.5:(coin’=0)&(phase’=1) + 0.5:(coin’=1)&(phase’=1);

[receiveB0] phase=1 & party=1 & coin=0 → (party’=2)&(phase’=0);

[receiveB1] phase=1 & party=1 & coin=1 → (party’=2)&(phase’=0);

[receiveA0] phase=1 & party=2 & coin=0 & n<N-1 → (party’=1)&(phase’=0) & (n’=n+1);

[receiveA1] phase=1 & party=2 & coin=1 & n<N-1 → (party’=1)&(phase’=0) & (n’=n+1);

213

D. Case Studies for Chapter 5

[receiveA0] phase=1 & party=2 & coin=0 & n=N-1 → (party’=1) & (phase’=2) & (n’=0);

[receiveA1] phase=1 & party=2 & coin=1 & n=N-1 → (party’=1) & (phase’=2) & (n’=0);

// SECOND AND THIRD PHASES

[receiveB] ((phase)¿=(2)&(phase)<=(3))& party=1 & n=0→ (party’=2);

[receiveA] ((phase)¿=(2)&(phase)<=(3))& party=2 & n<N-1→ (n’=n+1);

[receiveA] ((phase)¿=(2)&(phase)<=(3))& party=2 & n=N-1 → (party’=1) & (n’=1);

[receiveB] ((phase)¿=(2)&(phase)<=(3))& party=1 & n<N-1 & n¿0 → (n’=n+1);

[receiveB] ((phase)¿=(2)&(phase)<=(3))& party=1 & n=N-1 & b<L → (party’=1)

& (n’=0) & (b’=b+1);

[receiveB] phase=2 & party=1 & n=N-1 & b=L → (phase’=3) & (party’=1) & (n’=0) & (b’=1);

[receiveB] phase=3 & party=1 & n=N-1 & b=L → (phase’=4);

// FINISHED

[] phase=4 → (phase’=4);

endmodule

module partyA

// bi the number of bits of B’s ith secret A knows

// (keep pairs of secrets together to give a more structured model)

b0 : [0..L]; b20 : [0..L];

b1 : [0..L]; b21 : [0..L];

b2 : [0..L]; b22 : [0..L];

b3 : [0..L]; b23 : [0..L];

b4 : [0..L]; b24 : [0..L];

b5 : [0..L]; b25 : [0..L];

b6 : [0..L]; b26 : [0..L];

nA : [0..max(N-1,1)]; // counter as parties send N messages in a row

phaseA : [1..5]; // phase of the protocol

// first step (get either secret i or (N-1)+i with equal probability)

[receiveA0] phaseA=1 & nA=0 → (b0’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=0 → (b20’=L) & (nA’=nA+1);

[receiveA0] phaseA=1 & nA=1 → (b1’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=1 → (b21’=L) & (nA’=nA+1);

[receiveA0] phaseA=1 & nA=2 → (b2’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=2 → (b22’=L) & (nA’=nA+1);

[receiveA0] phaseA=1 & nA=3 → (b3’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=3 → (b23’=L) & (nA’=nA+1);

[receiveA0] phaseA=1 & nA=4 → (b4’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=4 → (b24’=L) & (nA’=nA+1);

[receiveA0] phaseA=1 & nA=5 → (b5’=L) & (nA’=nA+1);

[receiveA1] phaseA=1 & nA=5 → (b25’=L) & (nA’=nA+1);

214

D. Case Studies for Chapter 5

[receiveA0] phaseA=1 & nA=6 → (b6’=L) & (phaseA’=2) & (nA’=0);

[receiveA1] phaseA=1 & nA=6 → (b26’=L) & (phaseA’=2) & (nA’=0);

// second step (secrets 0,...,N-1)

[receiveA] phaseA=2 & nA=0 → (b0’=min(b0+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=1 → (b1’=min(b1+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=2 → (b2’=min(b2+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=3 → (b3’=min(b3+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=4 → (b4’=min(b4+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=5 → (b5’=min(b5+1,L)) & (nA’=nA+1);

[receiveA] phaseA=2 & nA=6 → (b6’=min(b6+1,L)) & (nA’=1);

// second step (secrets N,...,2N-1)

[receiveA] phaseA=3 & nA=0 → (b20’=min(b20+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=1 → (b21’=min(b21+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=2 → (b22’=min(b22+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=3 → (b23’=min(b23+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=4 → (b24’=min(b24+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=5 → (b25’=min(b25+1,L)) & (nA’=nA+1);

[receiveA] phaseA=3 & nA=6 → (b26’=min(b26+1,L)) & (nA’=1);

endmodule

module partyB=partyA [b0=a0, b1=a1, b2=a2, b3=a3, b4=a4, b5=a5, b6=a6, b20=a20, b21=a21,

b22=a22, b23=a23, b24=a24, b25=a25, b26=a26, receiveA=receiveB, receiveA0=receiveB0, re-

ceiveA1=receiveB1, phaseA=phaseB, nA=nB]

endmodule

formula kB = ((a0=L & a20=L) | (a1=L & a21=L) | (a2=L & a22=L) | (a3=L & a23=L) |
(a4=L & a24=L) | (a5=L & a25=L)x | (a6=L & a26=L));

formula kA = ((b0=L & b20=L) | (b1=L & b21=L) | (b2=L & b22=L) | (b3=L & b23=L) | (b4=L

& b24=L) | (b5=L & b25=L) | (b6=L & b26=L));

label “err”= !kA&kB;

Contract Signing (EGL) with N = 7, L = 8

dtmc

const int N=64; // number of chunks

const int MAX=5; // maximum number of retransmissions

const double p = 0.98;

const double q = 0.99;

215

D. Case Studies for Chapter 5

module receiver

r : [0..5]; // 0: new file, 1: fst safe, 2: frame received, 3: frame reported, 4: idle, 5: resync

rrep : [0..4]; // 0: bottom, 1: fst, 2: inc, 3: ok, 4: nok

fr : bool;

lr : bool;

br : bool;

r–ab : bool;

l : [0..2];

recv : bool;

// new file

[SyncWait1] (r=0) → (r’=0);

[SyncWait0] (r=0) → (r’=0);

[aG000] (r=0) → (r’=1) & (fr’=false) & (lr’=false) & (br’=false);

[aG001] (r=0) → (r’=1) & (fr’=false) & (lr’=false) & (br’=true);

[aG011] (r=0) → (r’=1) & (fr’=false) & (lr’=true) & (br’=true);

[aG100] (r=0) → (r’=1) & (fr’=true) & (lr’=false) & (br’=false);

// fst safe frame

[] (r=1) → (r’=2) & (r–ab’=br);

// frame received

[] (r=2) & (r–ab=br) & (fr=true) & (lr=false) → (r’=3) & (rrep’=1);

[] (r=2) & (r–ab=br) & (fr=false) & (lr=false) → (r’=3) & (rrep’=2);

[] (r=2) & (r–ab=br) & (fr=false) & (lr=true) → (r’=3) & (rrep’=3);

[aA] (r=2) & (l=0) & !(r–ab=br) → q : (r’=4) & (l’=1) + (1-q) : (r’=4) & (l’=2);

// frame reported

[aA] (r=3) & (l=0) → q : (r’=4) & (r–ab’=!r–ab) & (l’=1)

+ (1-q) : (r’=4) & (r–ab’=!r–ab) & (l’=2);

// sending

[aB] (r=4) & (l=1) → (l’=0);

// lost

[TO–Ack] (r=4) & (l=2) → (l’=0);

// idle

[aG000] (r=4) & (l=0) → (r’=2) & (fr’=false) & (lr’=false) & (br’=false);

[aG001] (r=4) & (l=0) → (r’=2) & (fr’=false) & (lr’=false) & (br’=true);

[aG011] (r=4) & (l=0) → (r’=2) & (fr’=false) & (lr’=true) & (br’=true);

[aG100] (r=4) & (l=0) → (r’=2) & (fr’=true) & (lr’=false) & (br’=false);

[SyncWait1] (r=4) & (l=0) → (r’=5);

[SyncWait0] (r=4) & (l=0) → (r’=5) & (rrep’=4);

// resync

[SyncWait1] (r=5) → (r’=0) & (rrep’=0);

[SyncWait0] (r=5) → (r’=0) & (rrep’=0);

216

D. Case Studies for Chapter 5

endmodule

module sender

s : [0..7];

// 0: idle,1: next frame, 2: wait ack, 3: retransmit, 4: success, 5: error, 6: wait sync

srep : [0..3];

// 0: bottom, 1: not ok (nok), 2: do not know (dk), 3: ok (ok)

nrtr : [0..MAX];

i : [0..N];

bs : bool;

s–ab : bool;

fs : bool;

ls : bool;

k : [0..2];

// idle

[NewFile] (s=0) → (s’=1) & (i’=1) & (srep’=0);

// next frame

[aF] (s=1) & (k=0)→ p : (s’=2) & (k’=1) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s–ab) & (nrtr’=0)

+(1-p) : (s’=2) & (k’=2) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s–ab) & (nrtr’=0);

// sending

[aG000] (s=2) & (k=1) & (fs=false) & (ls=false) & (bs=false) → (k’=0);

[aG001] (s=2) & (k=1) & (fs=false) & (ls=false) & (bs=true) → (k’=0);

[aG010] (s=2) & (k=1) & (fs=false) & (ls=true) & (bs=false) → (k’=0);

[aG011] (s=2) & (k=1) & (fs=false) & (ls=true) & (bs=true) → (k’=0);

[aG100] (s=2) & (k=1) & (fs=true) & (ls=false) & (bs=false) → (k’=0);

[aG101] (s=2) & (k=1) & (fs=true) & (ls=false) & (bs=true) → (k’=0);

[aG110] (s=2) & (k=1) & (fs=true) & (ls=true) & (bs=false) → (k’=0);

[aG111] (s=2) & (k=1) & (fs=true) & (ls=true) & (bs=true) → (k’=0);

// lost

[TO–Msg] (s=2) & (k=2) → (s’=3) & (k’=0);

// wait ack

[aB] (s=2) & (k=0) → (s’=4) & (s–ab’=!s–ab);

[TO–Ack] (s=2) & (k=0) → (s’=3);

// retransmit

[aF] (s=3) & (nrtr¡MAX) & (k=0) → p : (s’=2) & (k’=1) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s–

ab) & (nrtr’=nrtr+1)

+(1-p) : (s’=2) & (k’=2) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s–ab) & (nrtr’=nrtr+1);

[] (s=3) & (nrtr=MAX) & (i¡N) → (s’=5) & (srep’=1);

[] (s=3) & (nrtr=MAX) & (i=N) → (s’=5) & (srep’=2);

// success

[] (s=4) & (i¡N) → (s’=1) & (i’=i+1);

[] (s=4) & (i=N) → (s’=0) & (srep’=3);

// error

217

D. Case Studies for Chapter 5

[SyncWait1] (s=5) & (ls=true) → (s’=6);

[SyncWait0] (s=5) & (ls=false) → (s’=6);

[error] s=6 → (s’=7);

// wait sync

[SyncWait1] (s=7) & (ls=true) → (s’=0) & (s–ab’=false);

[SyncWait0] (s=7) & (ls=false) → (s’=0) & (s–ab’=false);

endmodule

module error

T : bool;

g :[0..1];

[NewFile] (T=false) → (T’=true);

[error] g=0 → (g’=1);

endmodule

label “err”= g=1;

Client-Server with N = 4

dtmc

const int N=4;

const int maxr=128;

const double p=0.8;

const double q=0.9;

module server

s:[-1..3] init -1;

i:[0..4];

j:[0..4];

n:[0..N*maxr];

counter : bool init false;

broken1 : bool init true;

broken2 : bool init false;

broken3 : bool init false;

broken4 : bool init false;

[] s=-1&!counter → p:(s’=0) + (1-p):(counter’=true);

[idle] counter & (n<N*maxr-1) → (n’=n+1);

[reset] counter & (n=N*maxr) → (n’=0);

218

D. Case Studies for Chapter 5

// initial cancel loops

[client1–cancel] s=0 → true;

[client2–cancel] s=0 → true;

[client3–cancel] s=0 → true;

[client4–cancel] s=0 → true;

// client i request/grant/cancel

[client1–request] s=0 → (s’=1) & (i’=1);

[client1–grant] s=1 & i=1 → (s’=2);

[client1–cancel] s=2 & i=1 → (s’=0) & (i’=0);

[client2–request] s=0 → (s’=1) & (i’=2);

[client2–grant] s=1 & i=2 → (s’=2);

[client2–cancel] s=2 & i=2 → (s’=0) & (i’=0);

[client3–request] s=0 → (s’=1) & (i’=3);

[client3–grant] s=1 & i=3 → (s’=2);

[client3–cancel] s=2 & i=3 → (s’=0) & (i’=0);

[client4–request] s=0 → (s’=1) & (i’=4);

[client4–grant] s=1 & i=4 → (s’=2);

[client4–cancel] s=2 & i=4 → (s’=0) & (i’=0);

// deny other requests when serving

[client1–request] s=2&broken1 → q:(s’=3) & (j’=1)&(broken1’=false)

+ (1-q):(s’=1)&(i’=1)&(broken1’=false);

[client1–request] s=2&!broken1 → (s’=3) & (j’=1);

[client1–deny] s=3 & j=1 → (s’=2) & (j’=0);

[client2–request] s=2&broken2 → q:(s’=3) & (j’=2)&(broken2’=false)

+ (1-q):(s’=1)&(i’=2)&(broken2’=false);

[client2–request] s=2&!broken2 → (s’=3) & (j’=2);

[client2–deny] s=3 & j=2 → (s’=2) & (j’=0);

[client3–request] s=2&broken3 → q:(s’=3) & (j’=3)&(broken3’=false)

+ (1-q):(s’=1)&(i’=3)&(broken3’=false);

[client3–request] s=2&!broken3 → (s’=3) & (j’=3);

[client3–deny] s=3 & j=3 → (s’=2) & (j’=0);

[client4–request] s=2&broken4 → q:(s’=3) & (j’=4)&(broken4’=false)

+ (1-q):(s’=1)&(i’=4)&(broken4’=false);

[client4–request] s=2&!broken4 → (s’=3) & (j’=4);

[client4–deny] s=3 & j=4 → (s’=2) & (j’=0);

// cancel loops when serving

[client1–cancel] s=2 & i!=1 → true;

[client2–cancel] s=2 & i!=2 → true;

[client3–cancel] s=2 & i!=3 → true;

[client4–cancel] s=2 & i!=4 → true;

endmodule

219

D. Case Studies for Chapter 5

module sched

turn : [1..4] init 1;

// outputs

[client1–request] turn=1 → (turn’=1);

[client1–wait] turn=1 → (turn’=2);

[client1–deny] turn=1 → (turn’=2);

[client1–grant] turn=1 → (turn’=2);

[client1–useResource] turn=1 → (turn’=2);

[client1–cancel] turn=1 → (turn’=2);

// outputs

[client2–request] turn=2 → (turn’=2);

[client2–wait] turn=2 → (turn’=3);

[client2–deny] turn=2 → (turn’=3);

[client2–grant] turn=2 → (turn’=3);

[client2–useResource] turn=2 → (turn’=3);

[client2–cancel] turn=2 → (turn’=3);

// outputs

[client3–request] turn=3 → (turn’=3);

[client3–wait] turn=3 → (turn’=4);

[client3–deny] turn=3 → (turn’=4);

[client3–grant] turn=3 → (turn’=4);

[client3–useResource] turn=3 → (turn’=4);

[client3–cancel] turn=3 → (turn’=4);

[client4–request] turn=4 → (turn’=4);

[client4–wait] turn=4 → (turn’=1);

[client4–deny] turn=4 → (turn’=1);

[client4–grant] turn=4 → (turn’=1);

[client4–useResource] turn=4 → (turn’=1);

[client4–cancel] turn=4 → (turn’=1);

endmodule

module client1

c1:[-1..4] init -1;

[client1–wait] c1=-1 → 0.5:(c1’=-1) + 0.5:(c1’=0);

[client1–request] c1=0 → (c1’=1);

[client1–deny] c1=1 → (c1’=-1);

[client1–grant] c1=1 → (c1’=2);

[client1–useResource] c1=2 → 0.5:(c1’=2) + 0.5:(c1’=3);

[client1–cancel] c1=3 → (c1’=-1);

220

D. Case Studies for Chapter 5

endmodule

module client2 = client1[c1=c2, client1–wait=client2–wait, client1–request=client2–request, client1–

deny=client2–deny, client1–grant=client2–grant, client1–useResource=client2–useResource, client1–

cancel=client2–cancel]

endmodule

module client3 = client1[c1=c3, client1–wait=client3–wait, client1–request=client3–request, client1–

deny=client3–deny, client1–grant=client3–grant, client1–useResource=client3–useResource, client1–

cancel=client3–cancel]

endmodule

module client4 = client1[c1=c4, client1–wait=client4–wait, client1–request=client4–request, client1–

deny=client4–deny, client1–grant=client4–grant, client1–useResource=client4–useResource, client1–

cancel=client4–cancel]

endmodule

module exclusion

e:[0..3];

k:[0..4];

[client1–grant] e=0 → (e’=1) & (k’=1);

[client1–cancel] e=1 & k=1 → (e’=0) & (k’=0);

[client2–grant] e=0 → (e’=1) & (k’=2);

[client2–cancel] e=1 & k=2 → (e’=0) & (k’=0);

[client3–grant] e=0 → (e’=1) & (k’=3);

[client3–cancel] e=1 & k=3 → (e’=0) & (k’=0);

[client4–grant] e=0 → (e’=1) & (k’=4);

[client4–cancel] e=1 & k=4 → (e’=0) & (k’=0);

[client1–cancel] e=0 → (e’=2) & (k’=0);

[client2–cancel] e=0 → (e’=2) & (k’=0);

[client3–cancel] e=0 → (e’=2) & (k’=0);

[client4–cancel] e=0 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=1 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=1 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=2 → (e’=2) & (k’=0);

221

D. Case Studies for Chapter 5

[client4–grant] e=1 & k=2 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=2 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=3 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client4–cancel] e=1 & k=3 → (e’=2) & (k’=0);

[client1–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client2–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client3–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client4–grant] e=1 & k=4 → (e’=2) & (k’=0);

[client1–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client2–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client3–cancel] e=1 & k=4 → (e’=2) & (k’=0);

[client1–grant] e=2 → true;

[client1–cancel] e=2 → true;

[client2–grant] e=2 → true;

[client2–cancel] e=2 → true;

[client3–grant] e=2 → true;

[client3–cancel] e=2 → true;

[client4–grant] e=2 → true;

[client4–cancel] e=2 → true;

endmodule

label “err”= e=2;

222

Appendix E

Case Studies for Chapter 6

The followings are detailed models of case studies in Section 6.5, described in the

PRISM modelling language, which are adapted from the benchmark case studies on

the PRISM website (http://www.prismmodelchecker.org/). We only show the largest

example of each case study. All models are verified against property: P =?[3“err”].

Contract Signing (EGL) with N = 10, L = 8

dtmc

const int N=10; // number of pairs of secrets the party sends

const int L=8; // number of bits in each secret

const int receiveA0=1;

const int receiveA1=2;

const int receiveB0=3;

const int receiveB1=4;

const int receiveA=5;

const int receiveB=6;

init

b=1 & n=0 & phase=0 & party=1 & action=0 & b0=0 & b1=0 & b2=0 & b3=0 & b4=0 & b5=0 &

b6=0 & b7=0 & b8=0 & b9=0 & b20=0 & b21=0 & b22=0 & b23=0 & b24=0 & b25=0 & b26=0 &

b27=0 & b28=0 & b29=0 & a0=0 & a1=0 & a2=0 & a3=0 & a4=0 & a5=0 & a6=0 & a7=0 & a8=0

& a9=0 & a20=0 & a21=0 & a22=0 & a23=0 & a24=0 & a25=0 & a26=0 & a27=0 & a28=0 & a29=0

endinit

module counter

b : [1..L+1]; // counter for current bit to be send (used in phases 2 and 3)

223

E. Case Studies for Chapter 6

n : [0..max(N-1,1)]; // counter as parties send N messages in a row

phase : [0..4]; // phase of the protocol

// 1 first phase of the protocol (sending messages of the form OT(.,.,.,.)

// 2 and 3 - second phase of the protocol (sending secretes 1..n and n+1..2n respectively)

// 4 finished the protocol

party : [1..2]; // which party moves

action : [0..6];

// FIRST PHASE

[sync] phase=0 & party=1 → 0.5:(phase’=1)&(action’=receiveB0)

+ 0.5:(phase’=1)&(action’=receiveB1);

[sync] phase=0 & party=2 → 0.5:(phase’=1)&(action’=receiveA0)

+ 0.5:(phase’=1)&(action’=receiveA1);

[sync] action=receiveB0 & phase=1 & party=1 → (phase’=0) & (party’=2);

[sync] action=receiveB1 & phase=1 & party=1 → (phase’=0) & (party’=2);

[sync] action=receiveA0 & phase=1 & party=2 & n<N-1→ (phase’=0) & (party’=1) & (n’=n+1);

[sync] action=receiveA1 & phase=1 & party=2 & n<N-1→ (phase’=0) & (party’=1) & (n’=n+1);

[sync] action=receiveA0 & phase=1 & party=2 & n=N-1 → (phase’=2) & (party’=1)

& (n’=0) & (action’=receiveB);

[sync] action=receiveA1 & phase=1 & party=2 & n=N-1 → (phase’=2) & (party’=1)

& (n’=0) & (action’=receiveB);

// SECOND AND THIRD PHASES

[sync] action=receiveB & ((phase)>=(2)&(phase)<=(3))& party=1 & n=0 → (party’=2)

& (action’=receiveA);

[sync] action=receiveA & ((phase)>=(2)&(phase)<=(3))& party=2 & n<N-1 → (n’=n+1);

[sync] action=receiveA & ((phase)>=(2)&(phase)<=(3))& party=2 & n=N-1 → (party’=1)

& (n’=1) & (action’=receiveB);

[sync] action=receiveB & ((phase)>=(2)&(phase)<=(3))& party=1

& n>0&n<N-1 → (n’=n+1);

[sync] action=receiveB & ((phase)>=(2)&(phase)<=(3))& party=1

& n=N-1 & b<L → (party’=1) & (n’=0) & (b’=b+1);

[sync] action=receiveB & phase=2 & party=1 & n=N-1 & b=L → (phase’=3)

& (party’=1) & (n’=0) & (b’=1);

[sync] action=receiveB & phase=3 & party=1 & n=N-1 & b=L → (phase’=4);

// FINISHED

[sync] phase=4 → (phase’=4);

endmodule

module partyAB

// bi the number of bits of B’s ith secret A knows

// (keep pairs of secrets together to give a more structured model)

b0 : [0..L]; b20 : [0..L];

224

E. Case Studies for Chapter 6

b1 : [0..L]; b21 : [0..L];

b2 : [0..L]; b22 : [0..L];

b3 : [0..L]; b23 : [0..L];

b4 : [0..L]; b24 : [0..L];

b5 : [0..L]; b25 : [0..L];

b6 : [0..L]; b26 : [0..L];

b7 : [0..L]; b27 : [0..L];

b8 : [0..L]; b28 : [0..L];

b9 : [0..L]; b29 : [0..L];

// bi the number of bits of A’s ith secret B knows

// (keep pairs of secrets together to give a more structured model)

a0 : [0..L]; a20 : [0..L];

a1 : [0..L]; a21 : [0..L];

a2 : [0..L]; a22 : [0..L];

a3 : [0..L]; a23 : [0..L];

a4 : [0..L]; a24 : [0..L];

a5 : [0..L]; a25 : [0..L];

a6 : [0..L]; a26 : [0..L];

a7 : [0..L]; a27 : [0..L];

a8 : [0..L]; a28 : [0..L];

a9 : [0..L]; a29 : [0..L];

[sync] phase=0 → true;

// FIRST PHASE

[sync] action=receiveA0 & phase=1 & n=0 → (b0’=L);

[sync] action=receiveA0 & phase=1 & n=1 → (b1’=L);

[sync] action=receiveA0 & phase=1 & n=2 → (b2’=L);

[sync] action=receiveA0 & phase=1 & n=3 → (b3’=L);

[sync] action=receiveA0 & phase=1 & n=4 → (b4’=L);

[sync] action=receiveA0 & phase=1 & n=5 → (b5’=L);

[sync] action=receiveA0 & phase=1 & n=6 → (b6’=L);

[sync] action=receiveA0 & phase=1 & n=7 → (b7’=L);

[sync] action=receiveA0 & phase=1 & n=8 → (b8’=L);

[sync] action=receiveA0 & phase=1 & n=9 → (b9’=L);

[sync] action=receiveA1 & phase=1 & n=0 → (b20’=L);

[sync] action=receiveA1 & phase=1 & n=1 → (b21’=L);

[sync] action=receiveA1 & phase=1 & n=2 → (b22’=L);

[sync] action=receiveA1 & phase=1 & n=3 → (b23’=L);

[sync] action=receiveA1 & phase=1 & n=4 → (b24’=L);

[sync] action=receiveA1 & phase=1 & n=5 → (b25’=L);

[sync] action=receiveA1 & phase=1 & n=6 → (b26’=L);

[sync] action=receiveA1 & phase=1 & n=7 → (b27’=L);

225

E. Case Studies for Chapter 6

[sync] action=receiveA1 & phase=1 & n=8 → (b28’=L);

[sync] action=receiveA1 & phase=1 & n=9 → (b29’=L);

[sync] action=receiveB0 & phase=1 & n=0 → (a0’=L);

[sync] action=receiveB0 & phase=1 & n=1 → (a1’=L);

[sync] action=receiveB0 & phase=1 & n=2 → (a2’=L);

[sync] action=receiveB0 & phase=1 & n=3 → (a3’=L);

[sync] action=receiveB0 & phase=1 & n=4 → (a4’=L);

[sync] action=receiveB0 & phase=1 & n=5 → (a5’=L);

[sync] action=receiveB0 & phase=1 & n=6 → (a6’=L);

[sync] action=receiveB0 & phase=1 & n=7 → (a7’=L);

[sync] action=receiveB0 & phase=1 & n=8 → (a8’=L);

[sync] action=receiveB0 & phase=1 & n=9 → (a9’=L);

[sync] action=receiveB1 & phase=1 & n=0 → (a20’=L);

[sync] action=receiveB1 & phase=1 & n=1 → (a21’=L);

[sync] action=receiveB1 & phase=1 & n=2 → (a22’=L);

[sync] action=receiveB1 & phase=1 & n=3 → (a23’=L);

[sync] action=receiveB1 & phase=1 & n=4 → (a24’=L);

[sync] action=receiveB1 & phase=1 & n=5 → (a25’=L);

[sync] action=receiveB1 & phase=1 & n=6 → (a26’=L);

[sync] action=receiveB1 & phase=1 & n=7 → (a27’=L);

[sync] action=receiveB1 & phase=1 & n=8 → (a28’=L);

[sync] action=receiveB1 & phase=1 & n=9 → (a29’=L);

// SECOND AND THIRD PHASE

[sync] action=receiveA & phase=2 & n=0 → (b0’=min(b0+1,L));

[sync] action=receiveA & phase=2 & n=1 → (b1’=min(b1+1,L));

[sync] action=receiveA & phase=2 & n=2 → (b2’=min(b2+1,L));

[sync] action=receiveA & phase=2 & n=3 → (b3’=min(b3+1,L));

[sync] action=receiveA & phase=2 & n=4 → (b4’=min(b4+1,L));

[sync] action=receiveA & phase=2 & n=5 → (b5’=min(b5+1,L));

[sync] action=receiveA & phase=2 & n=6 → (b6’=min(b6+1,L));

[sync] action=receiveA & phase=2 & n=7 → (b7’=min(b7+1,L));

[sync] action=receiveA & phase=2 & n=8 → (b8’=min(b8+1,L));

[sync] action=receiveA & phase=2 & n=9 → (b9’=min(b9+1,L));

[sync] action=receiveA & phase=3 & n=0 → (b20’=min(b20+1,L));

[sync] action=receiveA & phase=3 & n=1 → (b21’=min(b21+1,L));

[sync] action=receiveA & phase=3 & n=2 → (b22’=min(b22+1,L));

[sync] action=receiveA & phase=3 & n=3 → (b23’=min(b23+1,L));

[sync] action=receiveA & phase=3 & n=4 → (b24’=min(b24+1,L));

[sync] action=receiveA & phase=3 & n=5 → (b25’=min(b25+1,L));

[sync] action=receiveA & phase=3 & n=6 → (b26’=min(b26+1,L));

226

E. Case Studies for Chapter 6

[sync] action=receiveA & phase=3 & n=7 → (b27’=min(b27+1,L));

[sync] action=receiveA & phase=3 & n=8 → (b28’=min(b28+1,L));

[sync] action=receiveA & phase=3 & n=9 → (b29’=min(b29+1,L));

[sync] action=receiveB & phase=2 & n=0 → (a0’=min(a0+1,L));

[sync] action=receiveB & phase=2 & n=1 → (a1’=min(a1+1,L));

[sync] action=receiveB & phase=2 & n=2 → (a2’=min(a2+1,L));

[sync] action=receiveB & phase=2 & n=3 → (a3’=min(a3+1,L));

[sync] action=receiveB & phase=2 & n=4 → (a4’=min(a4+1,L));

[sync] action=receiveB & phase=2 & n=5 → (a5’=min(a5+1,L));

[sync] action=receiveB & phase=2 & n=6 → (a6’=min(a6+1,L));

[sync] action=receiveB & phase=2 & n=7 → (a7’=min(a7+1,L));

[sync] action=receiveB & phase=2 & n=8 → (a8’=min(a8+1,L));

[sync] action=receiveB & phase=2 & n=9 → (a9’=min(a9+1,L));

[sync] action=receiveB & phase=3 & n=0 → (a20’=min(a20+1,L));

[sync] action=receiveB & phase=3 & n=1 → (a21’=min(a21+1,L));

[sync] action=receiveB & phase=3 & n=2 → (a22’=min(a22+1,L));

[sync] action=receiveB & phase=3 & n=3 → (a23’=min(a23+1,L));

[sync] action=receiveB & phase=3 & n=4 → (a24’=min(a24+1,L));

[sync] action=receiveB & phase=3 & n=5 → (a25’=min(a25+1,L));

[sync] action=receiveB & phase=3 & n=6 → (a26’=min(a26+1,L));

[sync] action=receiveB & phase=3 & n=7 → (a27’=min(a27+1,L));

[sync] action=receiveB & phase=3 & n=8 → (a28’=min(a28+1,L));

[sync] action=receiveB & phase=3 & n=9 → (a29’=min(a29+1,L));

[sync] phase=4 → true;

endmodule

formula kB = ((a0=L & a20=L) | (a1=L & a21=L) | (a2=L & a22=L) | (a3=L & a23=L) | (a4=L

& a24=L) | (a5=L & a25=L) | (a6=L & a26=L) | (a7=L & a27=L) | (a8=L & a28=L) | (a9=L &

a29=L));

formula kA = ((b0=L & b20=L) | (b1=L & b21=L) | (b2=L & b22=L) | (b3=L & b23=L) | (b4=L

& b24=L) | (b5=L & b25=L) | (b6=L & b26=L) | (b7=L & b27=L) | (b8=L & b28=L) | (b9=L &

b29=L));

label “err”= !kA&kB;

Client-Server with N = 8

dtmc

227

E. Case Studies for Chapter 6

// client actions

const int wait=0;

const int request=1;

const int cancel=2;

const int useResource=3;

//server feedbacks

const int client1–deny=1;

const int client1–grant=2;

const int client2–deny=3;

const int client2–grant=4;

const int client3–deny=5;

const int client3–grant=6;

const int client4–deny=7;

const int client4–grant=8;

const int client5–deny=9;

const int client5–grant=10;

const int client6–deny=11;

const int client6–grant=12;

const int client7–deny=13;

const int client7–grant=14;

const int client8–deny=15;

const int client8–grant=16;

init

s=0 & feedback=0 & broken=true & error=false & turn=1 & c1=-1 & action1=0 & c2=-1 & action2=0

& c3=-1 & action3=0 & c4=-1 & action4=0 & c5=-1 & action5=0 & c6=-1 & action6=0 & c7=-1 &

action7=0 & c8=-1 & action8=0

endinit

module server

s:[0..3];

feedback:[0..16];

broken: bool;

error: bool;

[sync] (action1=wait|action1=useResource) & turn=1 → true;

[sync] (action2=wait|action2=useResource) & turn=2 → true;

[sync] (action3=wait|action3=useResource) & turn=3 → true;

[sync] (action4=wait|action4=useResource) & turn=4 → true;

[sync] (action5=wait|action5=useResource) & turn=5 → true;

[sync] (action6=wait|action6=useResource) & turn=6 → true;

[sync] (action7=wait|action7=useResource) & turn=7 → true;

[sync] (action8=wait|action8=useResource) & turn=8 → true;

228

E. Case Studies for Chapter 6

// client i request/grant/cancel

[sync] action1=request & turn=1 & s=0 → (s’=1) & (feedback’=client1–grant);

[sync] feedback=client1–grant & turn=1 & s=1 → (s’=2);

[sync] action1=cancel & turn=1 & s=2 → (s’=0);

[sync] action2=request & turn=2 & s=0 → (s’=1) & (feedback’=client2–grant);

[sync] feedback=client2–grant & turn=2 & s=1 → (s’=2);

[sync] action2=cancel & turn=2 & s=2 → (s’=0);

[sync] action3=request & turn=3 & s=0 → (s’=1) & (feedback’=client3–grant);

[sync] feedback=client3–grant & turn=3 & s=1 → (s’=2);

[sync] action3=cancel & turn=3 & s=2 → (s’=0);

[sync] action4=request & turn=4 & s=0 → (s’=1) & (feedback’=client4–grant);

[sync] feedback=client4–grant & turn=4 & s=1 → (s’=2);

[sync] action4=cancel & turn=4 & s=2 → (s’=0);

[sync] action5=request & turn=5 & s=0 → (s’=1) & (feedback’=client5–grant);

[sync] feedback=client5–grant & turn=5 & s=1 → (s’=2);

[sync] action5=cancel & turn=5 & s=2 → (s’=0);

[sync] action6=request & turn=6 & s=0 → (s’=1) & (feedback’=client6–grant);

[sync] feedback=client6–grant & turn=6 & s=1 → (s’=2);

[sync] action6=cancel & turn=6 & s=2 → (s’=0);

[sync] action7=request & turn=7 & s=0 → (s’=1) & (feedback’=client7–grant);

[sync] feedback=client7–grant & turn=7 & s=1 → (s’=2);

[sync] action7=cancel & turn=7 & s=2 → (s’=0);

[sync] action8=request & turn=8 & s=0 → (s’=1) & (feedback’=client8–grant);

[sync] feedback=client8–grant & turn=8 & s=1 → (s’=2);

[sync] action8=cancel & turn=8 & s=2 → (s’=0);

// deny other requests when serving

[sync] action1=request & turn=1 & s=2 & broken → 0.9:(s’=3) & (broken’=false) & (feedback’=

client1–deny) + 0.1:(s’=1) & (broken’=false) & (feedback’=client1–grant) & (error’=true);

[sync] action1=request & turn=1 & s=2 & !broken → (s’=3) & (feedback’=client1–deny);

[sync] feedback=client1–deny & turn=1 & s=3 → (s’=2);

[sync] action2=request & turn=2 & s=2 → (s’=3) & (feedback’=client2–deny);

[sync] feedback=client2–deny & turn=2 & s=3 → (s’=2);

[sync] action3=request & turn=3 & s=2 → (s’=3) & (feedback’=client3–deny);

[sync] feedback=client3–deny & turn=3 & s=3 → (s’=2);

[sync] action4=request & turn=4 & s=2 → (s’=3) & (feedback’=client4–deny);

[sync] feedback=client4–deny & turn=4 & s=3 → (s’=2);

[sync] action5=request & turn=5 & s=2 → (s’=3) & (feedback’=client5–deny);

[sync] feedback=client5–deny & turn=5 & s=3 → (s’=2);

[sync] action6=request & turn=6 & s=2 → (s’=3) & (feedback’=client6–deny);

[sync] feedback=client6–deny & turn=6 & s=3 → (s’=2);

[sync] action7=request & turn=7 & s=2 → (s’=3) & (feedback’=client7–deny);

[sync] feedback=client7–deny & turn=7 & s=3 → (s’=2);

229

E. Case Studies for Chapter 6

[sync] action8=request & turn=8 & s=2 → (s’=3) & (feedback’=client8–deny);

[sync] feedback=client8–deny & turn=8 & s=3 → (s’=2);

endmodule

module sched–client

turn: [1..8];

c1:[-1..4];

action1: [0..3];

c2:[-1..4];

action2: [0..3];

c3:[-1..4];

action3: [0..3];

c4:[-1..4];

action4: [0..3];

c5:[-1..4];

action5: [0..3];

c6:[-1..4];

action6: [0..3];

c7:[-1..4];

action7: [0..3];

c8:[-1..4];

action8: [0..3];

[sync] action1=wait & c1=-1 & turn=1 → 0.5:(c1’=-1) & (turn’=2)

+ 0.5:(c1’=0) & (turn’=2) & (action1’=request);

[sync] action1=request & c1=0 & turn=1 → (c1’=1);

[sync] feedback=client1–deny & c1=1 & turn=1 → (c1’=-1) & (turn’=2) & (action1’=wait);

[sync] feedback=client1–grant & c1=1 & turn=1→ (c1’=2) & (turn’=2) & (action1’=useResource);

[sync] action1=useResource & c1=2 & turn=1 → 0.5:(c1’=2) & (turn’=2)

+ 0.5:(c1’=3) & (turn’=2) & (action1’=cancel);

[sync] action1=cancel & c1=3 & turn=1 → (c1’=-1) & (turn’=2) & (action1’=wait);

[sync] action2=wait & c2=-1 & turn=2 → 0.5:(c2’=-1) & (turn’=3)

+ 0.5:(c2’=0) & (turn’=3) & (action2’=request);

[sync] action2=request & c2=0 & turn=2 → (c1’=1);

[sync] feedback=client2–deny & c2=1 & turn=2 → (c2’=-1) & (turn’=3) & (action2’=wait);

[sync] feedback=client2–grant & c2=1 & turn=2→ (c2’=2) & (turn’=3) & (action2’=useResource);

[sync] action2=useResource & c2=2 & turn=2 → 0.5:(c2’=2) & (turn’=3)

+ 0.5:(c2’=3) & (turn’=3) & (action2’=cancel);

[sync] action2=cancel & c2=3 & turn=2 → (c2’=-1) & (turn’=3) & (action2’=wait);

[sync] action3=wait & c3=-1 & turn=3 → 0.5:(c3’=-1) & (turn’=4)

+ 0.5:(c3’=0) & (turn’=4) & (action3’=request);

[sync] action3=request & c3=0 & turn=3 → (c1’=1);

[sync] feedback=client3–deny & c3=1 & turn=3 → (c3’=-1) & (turn’=4) & (action3’=wait);

[sync] feedback=client3–grant & c3=1 & turn=3→ (c3’=2) & (turn’=4) & (action3’=useResource);

230

E. Case Studies for Chapter 6

[sync] action3=useResource & c3=2 & turn=3 → 0.5:(c3’=2) & (turn’=4)

+ 0.5:(c3’=3) & (turn’=4) & (action3’=cancel);

[sync] action3=cancel & c3=3 & turn=3 → (c3’=-1) & (turn’=4) & (action3’=wait);

[sync] action4=wait & c4=-1 & turn=4 → 0.5:(c4’=-1) & (turn’=5)

+ 0.5:(c4’=0) & (turn’=5) & (action4’=request);

[sync] action4=request & c4=0 & turn=4 → (c1’=1);

[sync] feedback=client4–deny & c4=1 & turn=4 → (c4’=-1) & (turn’=5) & (action4’=wait);

[sync] feedback=client4–grant & c4=1 & turn=4→ (c4’=2) & (turn’=5) & (action4’=useResource);

[sync] action4=useResource & c4=2 & turn=4 → 0.5:(c4’=2) & (turn’=5)

+ 0.5:(c4’=3) & (turn’=5) & (action4’=cancel);

[sync] action4=cancel & c4=3 & turn=4 → (c4’=-1) & (turn’=5) & (action4’=wait);

[sync] action5=wait & c5=-1 & turn=5 → 0.5:(c5’=-1) & (turn’=6)

+ 0.5:(c5’=0) & (turn’=6) & (action5’=request);

[sync] action5=request & c5=0 & turn=5 → (c1’=1);

[sync] feedback=client5–deny & c5=1 & turn=5 → (c5’=-1) & (turn’=6) & (action5’=wait);

[sync] feedback=client5–grant & c5=1 & turn=5→ (c5’=2) & (turn’=6) & (action5’=useResource);

[sync] action5=useResource & c5=2 & turn=5 → 0.5:(c5’=2) & (turn’=6)

+ 0.5:(c5’=3) & (turn’=6) & (action5’=cancel);

[sync] action5=cancel & c5=3 & turn=5 → (c5’=-1) & (turn’=6) & (action5’=wait);

[sync] action6=wait & c6=-1 & turn=6 → 0.5:(c6’=-1) & (turn’=7)

+ 0.5:(c6’=0) & (turn’=7) & (action6’=request);

[sync] action6=request & c6=0 & turn=6 → (c1’=1);

[sync] feedback=client6–deny & c6=1 & turn=6 → (c6’=-1) & (turn’=7) & (action6’=wait);

[sync] feedback=client6–grant & c6=1 & turn=6→ (c6’=2) & (turn’=7) & (action6’=useResource);

[sync] action6=useResource & c6=2 & turn=6 → 0.5:(c6’=2) & (turn’=7)

+ 0.5:(c6’=3) & (turn’=7) & (action6’=cancel);

[sync] action6=cancel & c6=3 & turn=6 → (c6’=-1) & (turn’=7) & (action6’=wait);

[sync] action7=wait & c7=-1 & turn=7 → 0.5:(c7’=-1) & (turn’=8)

+ 0.5:(c7’=0) & (turn’=8) & (action7’=request);

[sync] action7=request & c7=0 & turn=7 → (c1’=1);

[sync] feedback=client7–deny & c7=1 & turn=7 → (c7’=-1) & (turn’=8) & (action7’=wait);

[sync] feedback=client7–grant & c7=1 & turn=7→ (c7’=2) & (turn’=8) & (action7’=useResource);

[sync] action7=useResource & c7=2 & turn=7 → 0.5:(c7’=2) & (turn’=8)

+ 0.5:(c7’=3) & (turn’=8) & (action7’=cancel);

[sync] action7=cancel & c7=3 & turn=7 → (c7’=-1) & (turn’=8) & (action7’=wait);

[sync] action8=wait & c8=-1 & turn=8 → 0.5:(c8’=-1) & (turn’=1)

+ 0.5:(c8’=0) & (turn’=1) & (action8’=request);

[sync] action8=request & c8=0 & turn=8 → (c8’=1);

[sync] feedback=client8–deny & c8=1 & turn=8 → (c8’=-1) & (turn’=1) & (action8’=wait);

[sync] feedback=client8–grant & c8=1 & turn=8→ (c8’=2) & (turn’=1) & (action8’=useResource);

[sync] action8=useResource & c8=2 & turn=8 → 0.5:(c8’=2) & (turn’=1)

+ 0.5:(c8’=3) & (turn’=1) & (action8’=cancel);

[sync] action8=cancel & c8=3 & turn=8 → (c8’=-1) & (turn’=1) & (action8’=wait);

endmodule

231

E. Case Studies for Chapter 6

label “err”= error;

232

Bibliography

[ABL02] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifica-

tions. In POPL, pages 4–16, 2002. 19

[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared mem-

ory. Journal of Algorithms, 15(1):441–460, 1990. 97

[AHP92] H. Aizenstein, L. Hellerstein, and L. Pitt. Read-thrice dnf is hard to

learn with membership and equivalence queries. Foundations of Computer

Science, IEEE Annual Symposium on, 0:523–532, 1992. 16

[AK91] Dana Angluin and Michael Kharitonov. When won’t membership queries

help? In Proceedings of the twenty-third annual ACM symposium on The-

ory of computing, STOC ’91, pages 444–454, New York, NY, USA, 1991.

ACM. 16

[AL10] Husain Aljazzar and Stefan Leue. Directed explicit state-space search in

the generation of counterexamples for stochastic model checking. IEEE

Trans. Software Eng., 36(1):37–60, 2010. 13

[ALFLS11] Husain Aljazzar, Florian Leitner-Fischer, Stefan Leue, and Dimitar Sime-

onov. Dipro - a tool for probabilistic counterexample generation. In SPIN,

pages 183–187, 2011. 14

[Ang87a] Dana Angluin. Learning regular sets from queries and counterexamples.

Inform. and Comput., 75(2):87–106, 1987. vii, 4, 15, 46, 47, 48, 77, 130

[Ang87b] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–

342, 1987. 16

[AP92] Howard Aizenstein and Leonard Pitt. Exact learning of read-k disjoint dnf

and not-so-disjoint dnf. In COLT, pages 71–76, 1992. 16

233

BIBLIOGRAPHY

[AvMN05] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis

of interface specifications for java classes. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’05, pages 98–109, New York, NY, USA, 2005. ACM. 19

[BC01] Vincent Blondel and Vincent Canterini. Undecidable problems for prob-

abilistic automata of fixed dimension. Theory of Computing Systems,

36:231–245, 2001. 106, 112

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.

Symbolic model checking: 1020 states and beyond. In Proc. 5th Annual

IEEE Symposium on Logic in Computer Science (LICS’90), pages 428–

439. IEEE Computer Society Press, 1990. 8

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeter-

ministic systems. In Proc. FSTTCS’95, volume 1026 of LNCS. Springer,

1995. 9

[BF72] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state ma-

chines from samples of their behavior. IEEE Trans. Computers, C-21:592–

597, 1972. 15

[BGP03] Howard Barringer, Dimitra Giannakopoulou, and Corina S. Pasareanu.

Proof rules for automated compositional verification through learning. In

Proc. SAVCBS Workshop, pages 14–21, 2003. 17

[BHKL09] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.

Angluin-style learning of NFA. In 21st International Joint Conference on

Artifical Intelligence (IJCAI’09), July 2009. vii, 4, 15, 18, 51, 53, 54

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.

MIT Press, 2008. 21, 30, 35, 36, 37, 39

[BKK+10] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. Pieg-

don. libalf: The automata learning framework. In Proc. CAV’10, LNCS.

Springer, 2010. To appear. 96

[BLW13] Michael Benedikt, Rastislav Lenhardt, and James Worrell. Ltl model

checking of interval markov chains. In TACAS, 2013. To appear. 10

234

BIBLIOGRAPHY

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom

to cause: localizing errors in counterexample traces. SIGPLAN Not.,

38(1):97–105, January 2003. 13

[BP95] Bard Bloom and Robert Paige. Transformational design and implemen-

tation of a new efficient solution to the ready simulation problem. Sci.

Comput. Program., 24(3):189–220, 1995. 12

[BR92] Avrim Blum and Steven Rudich. Fast learning of k-term dnf formulas with

queries. In STOC, pages 382–389, 1992. 16

[Bru04] Stefan D. Bruda. Preorder relations. In Manfred Broy, Bengt Jonsson,

Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors,

Model-Based Testing of Reactive Systems, Advanced Lectures [The volume

is the outcome of a research seminar that was held in Schloss Dagstuhl in

January 2004], volume 3472 of Lecture Notes in Computer Science, pages

117–149. Springer, 2004. 11

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-

decision diagrams. ACM Comput. Surv., 24(3):293–318, 1992. 11, 143,

144

[Bsh95] Nader H. Bshouty. Exact learning boolean functions via the monotone

theory. INFORMATION AND COMPUTATION, 123:146–153, 1995. vii,

5, 16, 18, 55, 56, 58, 141

[BV96] Francesco Bergadano and Stefano Varricchio. Learning behaviors of au-

tomata from multiplicity and equivalence queries. SIAM J. Comput.,

25(6):1268–1280, 1996. 16, 125, 127, 130, 138

[BWB+11] Bettina Braitling, Ralf Wimmer, Bernd Becker, Nils Jansen, and Erika

Ábrahám. Counterexample generation for markov chains using smt-based

bounded model checking. In Proceedings of the joint 13th IFIP WG 6.1

and 30th IFIP WG 6.1 international conference on Formal techniques for

distributed systems, FMOODS’11/FORTE’11, pages 75–89, Berlin, Heidel-

berg, 2011. Springer-Verlag. 14

[CB06] F. Ciesinski and C. Baier. Liquor: A tool for qualitative and quantitative

linear time analysis of reactive systems. In Proc. 3rd International Con-

235

BIBLIOGRAPHY

ference on Quantitative Evaluation of Systems (QEST’06), pages 131–132.

IEEE CS Press, 2006. 10

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. In Formal Methods in System

Design, page 2001. Kluwer Academic Publishers, 2001. 8

[CCF+10] Yu-Fang Chen, Edmund M. Clarke, Azadeh Farzan, Ming-Hsien Tsai, Yih-

Kuen Tsay, and Bow-Yaw Wang. Automated assume-guarantee reasoning

through implicit learning. In Proc. Computer Aided Verification (CAV’10),

pages 511–526, 2010. 2, 18, 59, 62, 63, 141, 142, 146, 177

[CDL+11] Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L.

Pedersen, and Andrzej Wasowski. Constraint markov chains. Theor. Com-

put. Sci., 412(34):4373–4404, 2011. 10

[CE81] E. Clarke and A. Emerson. Design and synthesis of synchronization skele-

tons using branching time temporal logic. In Proc. Workshop on Logic of

Programs, volume 131 of LNCS. Springer, 1981. 8

[CFC+09] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and

Bow-Yaw Wang. Learning minimal separating dfa’s for compositional ver-

ification. In TACAS, pages 31–45, 2009. 18

[CFM+93] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao.

Multi-terminal binary decision diagrams: An efficient data structure for

matrix representation. In Proc. International Workshop on Logic Synthesis

(IWLS’93), pages 1–15, 1993. Also available in Formal Methods in System

Design, 10(2/3):149–169, 1997. 143, 144

[CG10] S. Chaki and A. Gurfinkel. Automated assume-guarantee reasoning for

omega-regular systems and specifications. In Proc. NFM’10, pages 57–66,

2010. 182

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided abstraction refinement. In CAV, pages

154–169, 2000. 8

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.

Learning assumptions for compositional verification. In TACAS, pages

331–346, 2003. 2, 17, 18, 59, 60, 66, 101

236

BIBLIOGRAPHY

[CHK13] Taolue Chen, Tingting Han, and Marta Kwiatkowska. On the complexity

of model checking interval-valued discrete time markov chains. Information

Processing Letters, 2013. accepted. 10, 29

[CJR11] Radu Calinescu, Kenneth Johnson, and Yasmin Rafiq. Using observation

ageing to improve markovian model learning in qos engineering. In Pro-

ceedings of the second joint WOSP/SIPEW international conference on

Performance engineering, ICPE ’11, pages 505–510, New York, NY, USA,

2011. ACM. 19

[CKJ12] Radu Calinescu, Shinji Kikuchi, and Kenneth Johnson. Compositional

reverification of probabilistic safety properties for large-scale complex it

systems. In Monterey Workshop, pages 303–329, 2012. 1, 181

[CLSV04] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched probabilistic

I/O automata. In Proc. ICTAC’04, volume 3407 of LNCS. Springer, 2004.

13

[CMJ+12] Yingke Chen, Hua Mao, Manfred Jaeger, Thomas Dyhre Nielsen,

Kim Guldstrand Larsen, and Brian Nielsen. Learning markov models for

stationary system behaviors. In NASA Formal Methods, pages 216–230,

2012. 19

[CO94] Rafael C. Carrasco and José Oncina. Learning stochastic regular grammars

by means of a state merging method. In ICGI ’94: Proceedings of the Sec-

ond International Colloquium on Grammatical Inference and Applications,

pages 139–152, London, UK, 1994. Springer-Verlag. 16

[CS07] Sagar Chaki and Ofer Strichman. Optimized l*-based assume-guarantee

reasoning. In TACAS, pages 276–291, 2007. 18

[CSH08] Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-

checking omega-regular properties of interval markov chains. In FoSSaCS,

pages 302–317, 2008. 10, 156

[CW12] Yu-Fang Chen and Bow-Yaw Wang. Learning boolean functions incremen-

tally. In CAV, pages 55–70, 2012. 17, 182

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite

state probabilistic programs. In Proc. 29th Annual Symposium on Foun-

237

BIBLIOGRAPHY

dations of Computer Science (FOCS’88), pages 338–345. IEEE Computer

Society Press, 1988. 9, 35

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and reg-

ular events. In Proc. ICALP’90, volume 443 of LNCS. Springer, 1990. 9,

38

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic ver-

ification. Journal of the ACM, 42(4):857–907, 1995. 9

[dA97] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,

Stanford University, 1997. 38, 88

[dAHJ01] L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for prob-

abilistic systems. In Proc. CONCUR’01, volume 2154 of LNCS. Springer,

2001. 13

[dAHM00] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Detecting

errors before reaching them. In CAV, pages 186–201, 2000. 13

[DHR08] Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equiva-

lence of labeled Markov chains. Int. J. Found. Comput. Sci., 19(3):549–563,

2008. 112

[Dij59] Edsger. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959. 44

[DKN+10] M. Duflot, M. Kwiatkowska, G. Norman, D. Parker, S. Peyronnet, C. Pi-

caronny, and J. Sproston. FMICS Handbook on Industrial Critical Sys-

tems, chapter Practical Applications of Probabilistic Model Checking to

Communication Protocols, pages 133–150. IEEE Computer Society Press,

2010. 1

[dlH97] Colin de la Higuera. Characteristic sets for polynomial grammatical infer-

ence. Machine Learning, 27(2):125–138, 1997. 14

[dlH10] C. de la Higuera. Grammatical Inference: Learning Automata and Gram-

mars. Cambridge University Press, 2010. 14

[dlHO04] Colin de la Higuera and José Oncina. Learning stochastic finite automata.

In ICGI, pages 175–186, 2004. 16

238

BIBLIOGRAPHY

[DLL+11] Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and

Andrzej Wasowski. Decision problems for interval markov chains. In LATA,

pages 274–285, 2011. 12

[DLT02] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state

automata. Fundam. Inform., 51(4):339–368, 2002. 51

[DLT04] François Denis, Aurélien Lemay, and Alain Terlutte. Learning regular

languages using rfsas. Theor. Comput. Sci., 313(2):267–294, 2004. 15, 51

[EDK89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional Model Check-

ing. In Proceedings of Fourth Annual Symposium on Logic in Computer

Science, pages 353–361, Washington D.C., 1989. IEEE Computer Society

Press. 12

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing

contracts. Communications of the ACM, 28(6):637–647, 1985. 134, 173

[EKVY07] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-

objective model checking of Markov decision processes. In Proc.

TACAS’07, volume 4424 of LNCS. Springer, 2007. 9, 13, 42

[Epp98] David Eppstein. Finding the k shortest paths. SIAM J. Computing,

28(2):652–673, 1998. 44, 96

[FCC+08] A. Farzan, Y.-F. Chen, E. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending

automated compositional verification to the full class of omega-regular lan-

guages. In Proc. TACAS’08, volume 4963 of LNCS, pages 2–17. Springer,

2008. 182

[FHKP11a] L. Feng, T. Han, M. Kwiatkowska, and D. Parker. Learning-based com-

positional verification for synchronous probabilistic systems. In Proc. 9th

International Symposium on Automated Technology for Verification and

Analysis (ATVA’11), volume 6996 of LNCS, pages 511–521. Springer, 2011.

vi, 6, 16, 18, 106, 109, 116

[FHKP11b] L. Feng, T. Han, M. Kwiatkowska, and D. Parker. Learning-based composi-

tional verification for synchronous probabilistic systems. Technical Report

RR-11-05, Department of Computer Science, University of Oxford, 2011.

6, 183

239

BIBLIOGRAPHY

[FHPW10] Harald Fecher, Michael Huth, Nir Piterman, and Daniel Wagner. Pctl

model checking of markov chains: Truth and falsity as winning strategies

in games. Perform. Eval., 67(9):858–872, 2010. 14

[FKN+11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and

Hongyang Qu. Quantitative multi-objective verification for probabilistic

systems. In TACAS, pages 112–127, 2011. 13, 42, 103, 182

[FKNP11] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated ver-

ification techniques for probabilistic systems. In M. Bernardo and V. Is-

sarny, editors, Formal Methods for Eternal Networked Software Systems

(SFM’11), volume 6659 of LNCS, pages 53–113. Springer, 2011. 21, 30, 41

[FKP10] L. Feng, M. Kwiatkowska, and D. Parker. Compositional verification of

probabilistic systems using learning. In Proc. 7th International Conference

on Quantitative Evaluation of SysTems (QEST’10), pages 133–142. IEEE

CS Press, 2010. v, 2, 5, 6, 18, 19, 66, 74, 75, 76, 82, 83, 84, 97

[FKP11] L. Feng, M. Kwiatkowska, and D. Parker. Automated learning of prob-

abilistic assumptions for compositional reasoning. In D. Giannakopoulou

and F. Orejas, editors, Proc. 14th International Conference on Fundamen-

tal Approaches to Software Engineering (FASE’11), volume 6603 of LNCS,

pages 2–17. Springer, 2011. 5, 6, 18, 19, 66

[GDK+12] Khalil Ghorbal, Parasara Sridhar Duggirala, Vineet Kahlon, Franjo

Ivanc̆ić, and Aarti Gupta. Efficient probabilistic model checking of systems

with ranged probabilities. In 6th International Workshop on Reachability

Problems (RP), Bordeaux, France, 2012. 10

[GGP07] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Pasareanu.

Refining interface alphabets for compositional verification. In TACAS,

pages 292–307, 2007. 17

[GL94] Orna Grumberg and David E. Long. Model checking and modular verifi-

cation. ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994. 12

[Gol67] E. Gold. Language identification in the limit. Information and Control,

10(5):447–474, May 1967. 14

[Gol78] E. M. Gold. Complexity of automaton identification from given data.

Information and Control, 37:302–320, 1978. 14

240

BIBLIOGRAPHY

[GPY02] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model check-

ing. In TACAS, pages 357–370, 2002. 19

[GS08] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifications.

In ICSE ’08: Proceedings of the 30th international conference on Software

engineering, pages 51–60, New York, NY, USA, 2008. ACM. 19

[GSS10] Michael Günther, Johann Schuster, and Markus Siegle. Symbolic calcula-

tion of k-shortest paths and related measures with the stochastic process

algebra tool caspa. In Proceedings of the First Workshop on DYnamic As-

pects in DEpendability Models for Fault-Tolerant Systems, DYADEM-FTS

’10, pages 13–18, New York, NY, USA, 2010. ACM. 44

[Har98] D.J. Hartfiel. Markov Set-Chains. Springer-Verlag, Berlin, 1998. 10

[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Com-

puting simulations on finite and infinite graphs. In FOCS, pages 453–462.

IEEE Computer Society Press, 1995. 12

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and proba-

bility. Formal Aspects of Computing, 6(5):512–535, 1994. 9

[HKD09] Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterex-

ample generation in probabilistic model checking. IEEE Transactions on

Software Engineering, 35(2):241–257, 2009. 13, 43

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, August 1978. 11

[HP06] Thomas A. Henzinger and Nir Piterman. Solving games without deter-

minization. In CSL, pages 395–410, 2006. 88

[HS94] D.J. Hartfiel and E. Seneta. On the theory of markov set-chains. Advances

in Applied Probability, 26(4):947964, 1994. 10

[HSV94] L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link

protocol. In H. Barendregt and T. Nipkow, editors, Proc. International

Workshop on Types for Proofs and Programs (TYPES’93), volume 806 of

LNCS, pages 127–165. Springer, 1994. 135

[JJ99] J.Magee and J.Kramer. Concurrency: State Models and Jave Programs.

John Wiley and Sons, 1999. 61

241

BIBLIOGRAPHY

[JKWY10] Yungbum Jung, Soonho Kong, Bow-Yaw Wang, and Kwangkeun Yi. Deriv-

ing invariants by algorithmic learning, decision procedures, and predicate

abstraction. In VMCAI, pages 180–196, 2010. 20

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement

of probabilistic processes. In LICS, pages 266–277, 1991. 10, 12, 28

[JLWY11] Yungbum Jung, Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi. Pred-

icate generation for learning-based quantifier-free loop invariant inference.

In TACAS, pages 205–219, 2011. 20

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP

Congress, pages 321–332, 1983. 12

[JRS04] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and free will in error

traces. Int. J. Softw. Tools Technol. Transf., 6(2):102–116, August 2004.

13

[KKLW12] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf.

Three-valued abstraction for probabilistic systems. J. Log. Algebr. Pro-

gram., 81(4):356–389, 2012. 10, 157, 162, 178

[KMO+11] Stefan Kiefer, Andrzej S. Murawski, Joel Ouaknine, Björn Wachter, and

James Worrell. Language equivalence for probabilistic automata. In Proc.

CAV’11, 2011. To appear. 112

[KNP04] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model

checking with PRISM: A hybrid approach. International Journal on Soft-

ware Tools for Technology Transfer (STTT), 6(2):128–142, 2004. 11, 143

[KNP10] M. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology,

chapter Probabilistic Model Checking for Systems Biology, pages 31–59.

Jones and Bartlett, 2010. 1

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0:

Verification of probabilistic real-time systems. In CAV, pages 585–591,

2011. 10, 96, 134, 172

[KNPQ10] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee

verification for probabilistic systems. In J. Esparza and R. Majumdar,

editors, Proc. 16th International Conference on Tools and Algorithms for

242

BIBLIOGRAPHY

the Construction and Analysis of Systems (TACAS’10), volume 6105 of

LNCS, pages 23–37. Springer, 2010. v, 2, 4, 5, 13, 28, 42, 65, 66, 67, 70,

72, 73, 102, 179, 181

[KNPQ12] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Compositional prob-

abilistic verification through multi-objective model checking. Information

and Computation, 2012. submitted. v, 68, 82, 84

[KNS01] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification

of a randomized distributed consensus protocol using Cadence SMV and

PRISM. In G. Berry, H. Comon, and A. Finkel, editors, Proc. 13th In-

ternational Conference on Computer Aided Verification (CAV’01), volume

2102 of LNCS, pages 194–206. Springer, 2001. 97

[KPC12a] Anvesh Komuravelli, Corina S. Pasareanu, and Edmund M. Clarke.

Assume-guarantee abstraction refinement for probabilistic systems. In

CAV, pages 310–326, 2012. 18, 19

[KPC12b] Anvesh Komuravelli, Corina S. Pasareanu, and Edmund M. Clarke. Learn-

ing probabilistic systems from tree samples. In LICS, pages 441–450, 2012.

18

[KSK76] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp. Denumerable

Markov chains. Springer-Verlag, New York :, 2d. ed. edition, 1976. 25

[KU02] Igor Kozine and Lev V. Utkin. Interval-valued finite markov chains. Reli-

able Computing, 8(2):97–113, 2002. 10, 28

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Her-

manns, and David N. Jansen. The ins and outs of the probabilistic model

checker mrmc. In QEST, pages 167–176, 2009. 10

[LAD+11] Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu.

An efficient algorithm for learning event-recording automata. In ATVA,

pages 463–472, 2011. 18, 182

[LLS+12] Shang-Wei Lin, Yang Liu, Jun Sun, Jin Song Dong, and Étienne André.

Automatic compositional verification of timed systems. In FM, pages 272–

276, 2012. 18, 182

243

BIBLIOGRAPHY

[LPC+12] M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design

and analysis of DNA strand displacement devices using probabilistic model

checking. Journal of the Royal Society Interface, 9(72):1470–1485, 2012. 1

[LWY12] Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi. Termination analysis

with algorithmic learning. In CAV, pages 88–104, 2012. 20

[MCJ+11] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G.

Larsen, and Brian Nielsen. Learning probabilistic automata for model

checking. In QEST, pages 111–120, 2011. 16, 19

[McM03] Kenneth L. McMillan. Interpolation and sat-based model checking. In

Proc. Computer Aided Verification (CAV’03), pages 1–13, 2003. 63, 146

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In

IJCAI, pages 481–489, 1971. 12

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980. 12

[MJ12] Hua Mao and Manfred Jaeger. Learning and model-checking networks of

i/o automata. Journal of Machine Learning Research - Proceedings Track,

25:285–300, 2012. 19

[MO05] Andrzej Murawski and Joël Ouaknine. On probabilistic program equiv-

alence and refinement. In Proc. CONCUR’05, volume 3653 of LNCS,

volume 3653 of LNCS. Springer, 2005. 106, 112

[NMA08] Wonhong Nam, P. Madhusudan, and Rajeev Alur. Automatic symbolic

compositional verification by learning assumptions. Formal Methods in

System Design, 32(3):207–234, 2008. 18, 102, 181

[OG92] J. Oncina and P. Garcia. Inferring regular languages in polynomial update

time. In Pattern Recognition and Image Analysis, pages 49–61, 1992. 15

[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic

Systems. PhD thesis, University of Birmingham, 2002. 9, 11, 143, 144,

145, 146, 185

[Paz71] Azaria Paz. Introduction to probabilistic automata (Computer science and

applied mathematics). Academic Press, Inc., Orlando, FL, USA, 1971. 112

244

BIBLIOGRAPHY

[PG06] Corina S. Pasareanu and Dimitra Giannakopoulou. Towards a composi-

tional spin. In SPIN, pages 234–251, 2006. 17, 97

[PGB+08] C. Pasareanu, D. Giannakopoulou, M. Bobaru, J. Cobleigh, and H. Bar-

ringer. Learning to divide and conquer: Applying the L* algorithm to

automate assume-guarantee reasoning. FMSD, 32(3):175–205, 2008. 2, 17,

61, 66, 90, 96, 101, 102, 135, 181

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium

on Foundations of Computer Science (FOCS’77), pages 46–57, 1977. 31

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about

programs. Logics and models of concurrent systems, pages 123–144, 1985.

12

[Put94] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley and Sons, 1994. 9

[PVY99] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking.

In FORTE, pages 225–240, 1999. 19

[QS82] J. Queille and J. Sifakis. Specification and verification of concurrent sys-

tems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,

Proc. 5th International Symposium on Programming, volume 137 of LNCS,

pages 337–351. Springer, 1982. 8

[Rab63] M. Rabin. Probabilistic automata. Information and Control, 6:230–245,

1963. 16, 26, 111

[RS59] M. O. Rabin and D. Scott. Finite automata and their decision problems.

IBM J. Res. Dev., 3(2):114–125, April 1959. 23

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata

using homing sequences. Inf. Comput., 103(2):299–347, 1993. vii, 15, 17,

46, 49, 50, 77

[Sch61] Marcel Paul Schützenberger. On the definition of a family of automata.

Information and Control, 4(2-3):245–270, 1961. 112

[Seg95] R. Segala. Modelling and Verification of Randomized Distributed Real Time

Systems. PhD thesis, Massachusetts Institute of Technology, 1995. 9, 12,

26, 67, 105, 111

245

BIBLIOGRAPHY

[SL95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic pro-

cesses. Nordic Journal of Computing, 2(2), 1995. 12

[SSB02] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding sepa-

ration formulas with sat. In Proc. Computer Aided Verification (CAV’02),

pages 209–222, 2002. 147

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning continuous

time markov chains from sample executions. In QEST, pages 146–155,

2004. 19

[SVA06] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking

markov chains in the presence of uncertainties. In TACAS, pages 394–

410, 2006. 10

[TF11] Tino Teige and Martin Fränzle. Generalized craig interpolation for stochas-

tic boolean satisfiability problems. In TACAS, pages 158–172, 2011. 142,

167

[Tse83] G. S. Tseitin. On the complexity of derivation in propositional calculus. In

J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Clas-

sical Papers on Computational Logic 1967-1970, pages 466–483. Springer,

Berlin, Heidelberg, 1983. 174

[Tze92a] Wen-Guey Tzeng. Learning probabilistic automata and markov chains via

queries. Machine Learning, 8(2):151–166, 1992. 16

[Tze92b] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of

probabilistic automata. SIAM J. Comput., 21(2):216–227, 1992. 112, 119,

121

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–

1142, 1984. 14

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite

state programs. In Proceedings of the 26th Annual Symposium on Foun-

dations of Computer Science, SFCS ’85, pages 327–338, Washington, DC,

USA, 1985. IEEE Computer Society. 8

[vG90] Rob J. van Glabbeek. The linear time-branching time spectrum (extended

abstract). In CONCUR, pages 278–297, 1990. 12

246

BIBLIOGRAPHY

[vG93] Rob J. van Glabbeek. The linear time - branching time spectrum ii. In

CONCUR, pages 66–81, 1993. 12

[Zha09] Lijun Zhang. Decision Algorithms for Probabilistic Simulation. PhD thesis,

Saarland University, 2009. 12

247

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline and Contributions
	1.3 Other Publications and Credits

	2 Review of Related Work
	2.1 Model Checking
	2.1.1 Property Checking
	2.1.2 Preorder and Equivalence Relations
	2.1.3 Compositional Verification
	2.1.4 Counterexample Generation

	2.2 Learning
	2.2.1 Learning Finite-State Automata
	2.2.2 Learning Probabilistic Automata
	2.2.3 Learning Boolean Functions

	2.3 Using Learning in Model Checking
	2.3.1 Learning Assumptions for Compositional Verification
	2.3.2 Other Applications

	3 Preliminaries
	3.1 Formal Languages and Finite-State Automata
	3.2 Probabilistic Models
	3.2.1 Discrete-Time Markov Chains
	3.2.2 Probabilistic Automata
	3.2.3 Interval Discrete-Time Markov Chains

	3.3 Probabilistic Model Checking
	3.3.1 Specifying Properties
	3.3.2 Model Checking for DTMCs
	3.3.3 Model Checking for PAs

	3.4 Probabilistic Counterexamples
	3.5 Learning Algorithms
	3.5.1 The L* Algorithm
	3.5.2 The NL* Algorithm
	3.5.3 The CDNF Algorithm

	3.6 Learning Non-Probabilistic Assumptions
	3.6.1 Learning assumptions using the L* Algorithm
	3.6.2 Learning assumptions using the CDNF Algorithm

	4 Learning Assumptions for Asynchronous Probabilistic Systems
	4.1 Compositional Verification for PAs
	4.1.1 Concepts for Compositional Reasoning about PAs
	4.1.2 Assume-Guarantee Reasoning Rules

	4.2 Probabilistic Counterexamples for PAs
	4.3 Learning Assumptions for Rule (Asym)
	4.4 Extensions
	4.4.1 Learning Assumptions using the NL* Algorithm
	4.4.2 Generalisation to Rule (Asym-N)
	4.4.3 Generalisation to Rule (Circ)

	4.5 Implementation and Case studies
	4.6 Summary and Discussion

	5 Learning Assumptions for Synchronous Probabilistic Systems
	5.1 Compositional Verification for PIOSs
	5.1.1 Probabilistic I/O Systems
	5.1.2 Rabin Probabilistic Automata
	5.1.3 Assume-Guarantee Reasoning Rule (Asym-Pios)

	5.2 Checking Language Inclusion for RPAs
	5.3 L*-style Learning for RPAs
	5.4 Learning Assumptions for Rule (Asym-Pios)
	5.5 Implementation and Case Studies
	5.6 Summary and Discussion

	6 Learning Implicit Assumptions
	6.1 Implicit Encoding of Probabilistic Models
	6.1.1 Encoding Models as MTBDDs
	6.1.2 Encoding Models as Boolean Functions
	6.1.3 Conversion between MTBDDs and Boolean functions

	6.2 Compositional Verification for DTMCs
	6.2.1 Refinement between DTMCs and IDTMCs
	6.2.2 Synchronous Parallel Composition for DTMCs/IDTMCs
	6.2.3 Assume-Guarantee Reasoning Rule (Asym-Idtmc)

	6.3 Reachability Analysis of IDTMCs
	6.3.1 The Value Iteration Algorithm
	6.3.2 The MTBDD-based Value Iteration Algorithm

	6.4 Learning Assumptions for Rule (Asym-Idtmc)
	6.5 Implementation and Case Studies
	6.6 Summary and Discussion

	7 Conclusions
	A Proofs for Chapter 5
	B Basic MTBDD Operations
	C Case Studies for Chapter 4
	D Case Studies for Chapter 5
	E Case Studies for Chapter 6

