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Abstract

Probability features increasingly often in software and
hardware systems: it is used in distributed co-ordination
and routing problems, to model fault-tolerance and per-
formance, and to provide adaptive resource management
strategies. Probabilistic model checkingis an automatic
procedure for establishing if a desired property holds in a
probabilistic model, aimed at verifying probabilistic spec-
ifications such as “leader election is eventually resolved
with probability 1”, “the chance of shutdown occurring is
at most 0.01%”, and “the probability that a message will
be delivered within 30ms is at least 0.75”. A probabilis-
tic model checker calculates theprobabilityof a given tem-
poral logic property being satisfied, as opposed to valid-
ity. In contrast to conventional model checkers, which rely
on reachability analysis of the underlying transition system
graph, probabilistic model checking additionally involves
numerical solutions of linear equations and linear program-
ming problems. This paper reports our experience with
implementing PRISM (www.cs.bham.ac.uk/˜dxp/
prism/ ), a Probabilistic Symbolic Model Checker, demon-
strates its usefulness in analysing real-world probabilistic
protocols, and outlines future challenges for this research
direction.

1. Introduction

Probabilistic modelling is widely used in the design and
analysis of computer systems, and has been rapidly gaining
in importance in recent years. In distributed co-ordination
algorithms, electronic coin tossing and randomness are used
as symmetry breakers in order to derive efficient algo-
rithms, see e.g. randomised mutual exclusion [55, 54], ran-
domised consensus [4, 16], root contention in IEEE 1394
FireWire, random back-off schemes in IEEE 802.11 and
BlueTooth, dynamic routing in telephone networks [34] and
self-stabilisation [30]. Probability is also used to quantify
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unreliable or unpredictable behaviour, for example in fault-
tolerant systems, communication protocols and computer
networks, where properties such as component failure and
packet loss can be described probabilistically. Tradition-
ally, it has also been used as a tool to analyse system perfor-
mance, where typically queuing theory is applied to obtain
estimates of measures such as throughput and mean waiting
time.

Probabilistic model checkingis an automatic procedure
for establishing if a desired property holds in a probabilistic
system model. Conventional model checkers input a de-
scription of a model, representing a state-transition system,
and a specification, typically a formula in some temporal
logic, and return “yes” or “no”, indicating whether or not
the model satisfies the specification. In the case of proba-
bilistic model checking, the models are probabilistic (typi-
cally variants ofMarkov chains), in the sense that they en-
code theprobability of making a transition between states
instead of simply the existence of such a transition. A prob-
ability space induced on the system behaviours enables the
calculation of likelihood of the occurrence of certain events
during the execution of the system. This in turn allows
one to makequantitativestatements about the system, in
addition to the qualitative statements made by conventional
model checking. Probabilities are captured viaprobabilistic
operatorsthat extend conventional (timed or untimed) tem-
poral logics, affording the expression of suchprobabilistic
specificationsas:

• for a randomised leader election algorithm: “leader
election is eventually resolvedwith probability1”

• for a system which can suffer failures: “the chance of
shutdown occurring isat most0.01%”

• for a multi-media protocol: “the chance of a video
frame being deliveredwithin 5ms isat least89%”

• for a wireless communication medium: “theexpected
time for delivering a data packet in the case of a colli-
sion is 16ms”

• for a battery-powered device: “in the long-run, theav-
eragepower consumption is 2.1W given the average



number of requests awaiting service is 0.5”.

Probabilistic modelling has its origins in the 1910s, when
Erlang developed stochastic capacity planning techniques
for telephone exchanges. The now established field of per-
formance evaluation aids the design and engineering pro-
cess through building a probabilistic model of the sys-
tem, typically a continuous time Markov chain (CTMC),
on which analytical, simulation-basedor numerical cal-
culations are performed to obtain the desired quantitative
measures [29]. The modelling of uncertainty due to envi-
ronmental factors has given rise to a different probabilistic
model (Markov decision processes), introduced in opera-
tions research in the 1950s as a representation for planning
and control problems solvable via Bellmann equations and
now central to automated planning in AI [13]. Although
both these fields offer a range of algorithmic techniques and
tools, albeit for different Markovian models, probabilistic
model checking combines probabilistic analysis and con-
ventional model checking in a single tool. It provides an al-
ternative to simulation and analytical approaches, with the
former often being time consuming and the latter not repre-
senting the system at the desired level of detail, while at the
same time offering the full benefit of temporal logic model
checking.

Since it was first proposed in 1981, model checking has
rapidly become established as a mainstream method to anal-
yse and debug protocols and designs, leading to the emer-
gence of academic and commercial model checking tools.
The first extension of model checking algorithms to proba-
bilistic systems was proposed in the 1980s [27, 59], origi-
nally focussing onqualitativeprobabilistic temporal prop-
erties (i.e. those satisfied with probability 1 or 0) but later
also introducingquantitative properties [18]. However,
work on implementation and tools did not begin until re-
cently [25, 28], when the field of model checking matured.
Probabilistic model checking draws on conventional model
checking, since it relies on reachability analysis of the un-
derlying transition system, but must also entail the calcula-
tion of the actual likelihoods through appropriate numerical
methods such as those employed in performance analysis
tools.

In this paper we give an overview of formalisms and
techniques employed in probabilistic model checking as
implemented in the Probabilistic Symbolic Model Checker
(PRISM) [41, 1]. We begin by introducing four probabilis-
tic models, discrete time Markov chains, Markov decision
processes, continuous time Markov chains and probabilis-
tic timed automata. We give the probabilistic specification
languages (the logics PCTL, CSL and PTCTL) and outline
the corresponding model checking methods that have been
implemented in the PRISM tool. Finally, we discuss four
real-world examples analysed with PRISM: the Crowds
anonymity protocol [56], randomised consensus [43], dy-

namic power management [51] and IEEE 1394 FireWire
root contention [47, 21]. We finish with a statement of chal-
lenges and open problems that remain in the area.

2 Notation and Preliminaries

Let Ω be asample set, the set of possible outcomes of an
experiment. A subset ofΩ is called anevent. For example,
the experiment of tossing a coin infinitely often has as sam-
ple set the set of infinitesequencesof Heads and Tails and
as events “the first is Heads”, “eventually Tails”.

The following serves as useful intuition of the probabil-
ity space constructions that follow.(Ω, F ) is said to be a
sample spaceif F is a σ-field of subsets, often built from
basic cylinders/cones(e.g. all possible extensions of a finite
sequence of coin flips) by closing w.r.t. countable unions
and complement.(Ω, F, Pr) is aprobability spaceif Pr is
a probability measure, i.e.0 6 Pr[A] 6 1 for all A ∈ F ;
Pr[∅] = 0, Pr[Ω] = 1, andPr[

⋃∞
k=1 Ak] = Σ∞k=1Pr[Ak],

Ak disjoint. Thus, the event “eventually Tails” is a disjoint
union of cones that have the first occurrence of Tails in the
n-th position, and has probability12 + 1

4 + 1
8 + .... = 1.

For a finite setS, a probability distributionon S is a
functionµ : S → [0, 1] such that

∑
t∈S µ(t) = 1.

3 Probabilistic Model Checking

We consider four types of probabilistic models, all vari-
ants of Markov chains withdiscretestates; for an approach
which deals withcontinuousstate spaces see [23]. These
are: discrete time Markov chains (which feature probabilis-
tic choice only), Markov decision processes (which feature
both non-deterministic as well as probabilistic choice), con-
tinuous time Markov chains (which model continuous time,
but no nondeterminism) and probabilistic timed automata
(which admit continuous time, probabilistic choice and non-
determinism).

3.1 Discrete time Markov chains

A (labelled)discrete time Markov chain(DTMC) D is a
tuple(S, s,P, L) where

• S is a finite set ofstates

• s is aninitial state

• P : S × S → [0, 1] is a probability matrixsuch that∑
s′∈S P(s, s′) = 1 for all s ∈ S, and

• L : S → 2AP is a labelling with atomic propositions
that are true ins.
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The matrix componentP(s, s′) gives the probability of
making a transition froms to s′. A path through a DTMC is
a (finite or infinite) sequence of statesω = s0 s1 s2 . . . with
P(si, si+1) > 0 for all i > 0. The probability matrixP
induces a probability space on the set of infinite pathsPaths

which start in the states using the cylinder construction [35]
as follows. An observation of a finite path determines a
basic event (cylinder). Lets = s0. For ω = s0s1 . . . sn,
we define the probability measurePrfin

s for theω-cylinder
by putting Prfin

s = 1 if ω consists of a single state, and
Prfin

s = P(s0, s1) ·P(s1, s2) · . . . ·P(sn−1, sn) otherwise.
This extends to a unique measurePrs.

A DTMC admitsprobabilistic choiceonly, which sub-
stantially differs from nondeterminism: the frequency of a
probabilistic edge being taken is determined by the distri-
bution, whereas nondeterministic choice is made by the en-
vironment which has complete freedom to select any of the
alternatives. Note also that there is no notion of real time,
though reasoning about discrete time is possible through
state variables keeping track of time and ‘counting’ tran-
sition steps.

PCTL model checking over DTMCs. The logic PCTL
(Probabilistic CTL) [26] replaces the existential and uni-
versal quantification of CTL with theprobabilistic operator
P∼ p(·) wherep ∈ [0, 1] is aprobability boundor threshold,
and∼ ∈ {6, <, >, >}. The syntax of state formulasφ of
PCTL is:

φ ::= true | a | φ ∧ φ | ¬φ | P∼ p(α)

whereα is a path formula (either next stateXφ or until
φ1 U φ2). The meaning of the probabilistic operator is:

s |= P∼ p(α) iff Prs{ω ∈ Paths | ω |= α}∼ p

with the remaining operators standard. The intuition is that
the probability ofα-paths is calculated and compared to the
probability bound, yielding true or false respectively. Note
that whileP>0(φ1 U φ2) equates to existential quantifi-
cation,P>1(φ1 U φ2) is a weaker analogue of universal
quantification (just consider the event of eventually tossing
Tails which has probability 1).

The PCTL model checking algorithm proceeds as for
CTL by induction onφ, successively returning the set
Sat(φ) of states satisfyingφ. The DTMC model is viewed
as the matrixP andSat(φ) as acolumn vectorbφ : S −→
{0, 1} given bybφ

s = 1 if s |= φ and 0 otherwise. Then
Sat(P∼ p(Xφ)) = {s ∈ S | xs ∼ p} wherex = P · bφ.
The corresponding vectorx for φ1Uφ2 which is compared
with the threshold∼ p is obtained as a solution of thelinear
equation systemin variables{xs | s ∈ S}:

xs =





0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S P(s, s′) · xs′ if s ∈ S?

whereSno (Syes) denote the sets ofall states that satisfy
φ1Uφ2 with probability exactly 0 (1), which can be com-
puted by ordinary fixpoint computation [19], andS? =
S \ (Sno ∪ Syes). The solution of the linear equation sys-
tems can be obtained by any direct method (e.g. Gaussian
elimination) or iterative method (e.g. Jacobi, Gauss-Seidel).

The complexity of PCTL model checking for DTMCs is
linear in the size of the formula and polynomial in the state
space.

3.2 Markov Decision Processes

Markov decision processes [13] (also known as concur-
rent Markov chains [59, 27]) are a generalisation of discrete
time Markov chains that are capable of modellingasyn-
chronous parallelcomposition of probabilistic systems. In
a Markov decision process both states and time are discrete.

A (labelled) Markov decision processM is a tuple
(S, s,Steps, L) where:

• S is a finite set of states

• s is aninitial state

• Steps is a function which assigns to each states ∈ S a
finite, non-empty setSteps(s) of probability distribu-
tionsonS, and

• L : S → 2AP is a labelling with atomic propositions
that are true ins.

The execution of an MDP proceeds through alternat-
ing of non-deterministic and probabilistic choices: when in
a particular state, the systemnondeterministicallychooses
one of possibly severalprobability distributionsover the tar-
get states. Apathω of M is a (finite or infinite) sequence
of states:

s0
µ0→ s1

µ1→ s2
µ2→ · · ·

wheresi ∈ S, µi ∈ Steps(si) andµi(si+1) > 0. The set of
infinite paths starting in a states is endowed with a proba-
bility space using an analogue of the cylinder construction.
Observe that the probability space is undefined if nondeter-
minism is present. We define anadversary(or scheduler) of
an MDPM as a functionA mapping every finite pathω of
M to a distributionA(ω) on S such thatA(ω) is enabled
in the last state ofω. The behaviour of the MDPM un-
der a given adversary can be described as a (usually infinite
state) DTMCPA whose states are the finite paths ofM and
the probability is given by the distributions selected byA:
for two finite pathsω andω′, PA(ω, ω′) = A(ω)(s) if ω′

is of the formω
A(ω)−−−→ s andPA(ω, ω′) = 0 otherwise.

Hence, we can define a probability measurePrA
s over the

set of pathsPathA
s of the adversaryA.

Probabilistic statements about MDPs typically involve
quantification over adversaries, i.e. we aim to compute the
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maximumor minimumprobability that some specified event
is observedfor all possible adversaries (or for a given class,
for example thefair adversaries). Fairness is necessary
in the context of asynchronous parallel to ensure progress
for each concurrent component whenever possible, see e.g.
[59, 12].

PCTL model checking over MDPs. The logic PCTL
(Probabilistic CTL) [14] is defined for MDPs as for
DTMCs, the difference being that the semantics is param-
eterised by a classAdv of adversaries and the probabilistic
operator contains explicit universal quantification:

s |=Adv P∼ p(α) iff PrA{ω ∈ PathA
s | ω |=Adv α}∼ p

for all adversariesA ∈ Adv

The algorithm for PCTL model checking proceeds by
induction on the structure ofφ as for DTMCs except for
probability calculation, which for∼ ∈ {>, >} reduces to
the calculation of theminimum probabilitypmin

s (the case
of ∼ ∈ {6, <} is dual, via themaximumprobability):

Sat(P∼ p(α)) = {s ∈ S | pmin
s (α)∼ p}

If α = Xφ this becomes:

pmin
s (Xφ) = minµ∈Steps(s)

[ ∑
s′∈Sat(φ) µ(s′)

]

and forα = φ1Uφ2 we have:

pmin
s =





0 if s ∈ Sno

1 if s ∈ Syes

minµ∈Steps(s)

[ ∑
s′∈S µ(s′) · pmin

s′
]

if s ∈ S?

with Syes, Sno andS? precomputed in a similar fashion to
the DTMC case via conventional fixpoint. The minimum
(maximum) probabilities can be approximated iteratively,
or alternatively arrived at by solving a linear optimisation
problem.

The computation ofpmax
s remains unchanged for PCTL

model checking with fairness [12], and forpmin
s reduces to

the calculation ofpmax
s by translating to thedual problem

[8].
The complexity of PCTL model checking for MDPs is

linear in the size of the formula and polynomial in the state
space.

PCTL admits only Boolean operators for state formulas;
a more expressive logic PCTL* [6, 14] can be formulated,
but model checking necessitates an expensive transforma-
tion of the underlying model by encoding history informa-
tion.

3.3 Continuous Time Markov Chains

Discrete time Markov chains and Markov decision pro-
cesses can modeldiscrete timeonly. Continuous time

Markov chains have (finitely many) states that are discrete,
a time parameter that ranges overR>0, but do not allow
nondeterminism. Every transition is subject to an exponen-
tially distributed random delay, and arace conditionis used
to deal with simultaneously enabled transitions.

A (labelled)continuous time Markov chain(CTMC) C is
a tuple(S, s,R, L) where

• S is a finite set ofstates

• s is aninitial state

• R : S × S → R>0 is therate matrix(note that self-
loops are allowed), and

• L : S → 2AP is a labelling with atomic propositions
that are true ins.

E(s) =
∑

s′∈S R(s, s′) denotes that the probability of
taking a transition froms within t time units equals1 −
e−E(s)·t. In cases whereR(s, s′) > 0 for more than one
states′, a racebetween the outgoing transitions froms ex-
ists. That is, the probabilityP(s, s′) of moving froms to s′

in a single step equals the probability that the delay of go-
ing from s to s′ “finishes before” the delays of any other
outgoing transition froms. This is captured by theem-
beddedDTMC, given by emb(C) = (S, s,P, L), where
P(s, s′) = R(s, s′)/E(s) if E(s) > 0, andP(s, s) = 1
andP(s, s′) = 0 for s 6= s′ if E(s) = 0.

A path in a CTMC is a non-empty sequence
s0t0s1t1s2 . . . where R(si, si+1) > 0 and ti ∈ R>0

for all i > 0. The valueti represents the amount of
time spent in the statesi. Denoting byPaths the set
of all infinite paths starting in states, we now give the
corresponding probability measurePrs [11]. If the states
s0, . . . , sn ∈ S satisfyR(si, si+1) > 0 for all 0 6 i < n
andI0, . . . , In−1 are non-empty intervals inR>0, then the
cylinder setC(s0, I0, . . . , In−1, sn) is defined to be the set
containing all pathss′0t0s

′
1t1s

′
2 . . . wheresi = s′i for i 6 n

and ti ∈ Ii for i < n. The (unique) probability measure
Prs is obtained similarly to the DTMC case by completing
the cylinders to the leastσ-algebra.

Traditionally, the analysis of (ergodic) CTMCs [58] is
based ontransient(the state of the model at a particular time
instant) andsteady-state(the state of the CTMC in the long
run) behaviour. The transient probabilityπs,t(s′) is defined
as the probability, having started in states, of being in state
s′ at time instantt. The steady-state probabilityπs(s′) is
defined aslimt→∞ πs,t(s′).

CSL model checking. The logic CSL (Continuous
Stochastic Logic) [5, 11] is based on CTL and PCTL; it
contains the probabilistic operator of PCTL evaluated with
respect topath-basedmeasures, as well as asteady-state
operator.
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The syntax for CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ | S∼ p(φ) | P∼ p(φU6t φ)

wherea ∈ AP ,∼ ∈ {<,6, >, >}, p ∈ [0, 1] andt ∈ R>0.
The meaning of the steady-state and the probability operator
is:

s |= S∼ p(φ) iff
∑

s′|=φ πs(s′) ∼ p

s |= P∼ p(φ1 U6t φ2) iff ps(φ1 U6t φ2) ∼ p

where

ps(φ1 U6t φ2) = Prs{ω ∈ Paths | ω |= φ1 U6t φ2}.
To model check theS∼ p(Φ) operator, we must com-

pute the steady-state probabilitiesπs(s′) for all statess
ands′ (this is independent of the initial states for ergodic
CTMCs, and otherwise the computation of bottom strongly
connected components must be involved). As is well known
[58], steady state probabilities can be computed by solving
the linear equation system:

π ·Q = 0 and
∑

s′∈S π(s′) = 1

where Q is the generator matrixof the CTMC given
by: Q(s, s′) = R(s, s′) if s 6= s′ and Q(s, s′) =
−∑

s′′ 6=s R(s, s′′) if s = s′. This equation can be solved in
the transposed formQT · πT = 0 using standard methods,
direct or iterative.

The case of the bounded until operatorP∼ p(φ1 U6t φ2),
which requires the probability of reaching a state satis-
fying φ2 while passing only through states satisfyingφ1

within t time units, is more involved. It proceeds by a
technique calleduniformisation, also known as Jensen’s
method, which transforms the original CTMC to auni-
formisedDTMC with matrix P (we omit the details, see
e.g. [10]), yielding an infinite summation to calculate the
vector of transient probabilitiesπs,t:

πs,t = πs,0 ·
∞∑

i=0

γi,q·t ·Pi

whereγi,q·t is the ith Poisson probability with parameter
q · t, i.e. γi,q·t = e−q·t · (q · t)i/i!. An adaptation of this
technique that is more efficient for all states [33] gives the
truncated sum:

p(φ1U6tφ2) =
Rε∑

i=Lε

(
γi,q·t · P̃i · φ2

)

whereφ2(s) equal to1 if s |= φ2 and0 otherwise,Lε and
Rε are calculated using the techniques of Fox and Glynn
andP̃ is a modified uniformised DTMC in which states sat-
isfying either¬φ1∧¬φ2 or φ2 are made absorbing. The re-
sulting vector of probabilitiesp(φ1U6tφ2) can be approxi-
mated iteratively.

The complexity of CSL model checking for CTMCs is
linear in the size of the formula, polynomial in the state
space, linear in the maximum time bound in the formula,
and linear in the largest entity in the generator matrix.

3.4 Probabilistic Timed Automata

Continuous time Markov chains do not allow nondeter-
minism which often features in real-world distributed pro-
tocols, for example random back-off schemes. To derive
an appropriate model we extend the formalism oftimed au-
tomata [3] with probabilistic choice. A timed automaton
is an automaton extended withclocks, positive real valued
variables which increase uniformly with time, and whose
nodes and edges are labelled withclock constraints, e.g.
(x > 5) ∧ (y < 1), respectively calledinvariants and
guards. The invariants dictate when the automaton may
remain in a node, letting time pass, and guards when the
corresponding edge can be taken. Transitions are instanta-
neous, and can involveclock resetsof the formx := 0.

Probabilistic Timed Automata. Let X be a finite set of
R>0-valued variables calledclocks, and letv ∈ R|X |>0 de-
note a clock valuation. We adopt the following notation for
valuations:0 ∈ R|X |>0 assigns 0 to all clocks inX , v + t de-
notesv incrementedby durationt, andv [X := 0] denotes
the clock valuation obtained fromv by resettingall of the
clocks in the setX to 0 and leaving the values of all other
clocks unchanged. Probabilistic timed automata in which
clocks can be reset according tocontinuous probability dis-
tributionsare described in [44].

Let Z be the set ofzonesoverX , that is, conjunctions
of atomic constraints of the formx ∼ c andx − y ∼ c,
with x, y ∈ X , ∼∈ {<,6, >, >}, andc ∈ N. A clock
valuationv satisfiesthe zoneζ, written v |= ζ, if and only
if ζ resolves to true after substituting each clockx ∈ X with
the corresponding clock valuev(x).

A probabilistic timed automaton(PTA) T is a tuple
(L, l̄,X , Σ, I , P) where:

• L is a finite set oflocations;

• l̄ ∈ L is theinitial location;

• Σ is a finite set oflabels;

• the functionI : L → Z is theinvariant condition;

• the finite set P⊆ L × Z × Σ × Dist(2X × L) is the
probabilistic edge relation.

An edgetakes the form of a tuple(l, g, X, l′), wherel is its
source location,g is its enabling condition, X is the set of
resetting clocks andl′ is the destination location, such that
(l, g, σ, p) ∈ P andp(X, l′) > 0.
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Semantics of PTAs. The semantics of a probabilistic
timed automaton is defined in terms of an infinite-state
Markov decision process whose states are pairs(l, v),
wherel ∈ L andv ∈ R|X |>0 such thatv |= I (l), and whose
initial state is(l̄,0). Transitions between states are prob-
abilistic. First, in the current state(l, v) there is a nonde-
terministic choice of either lettingtime passas long as the
invariantI (l) is satisfied, or making adiscrete probabilis-
tic transition according to any probabilistic edge in P from
l whose enabling conditiong is satisfied. Next, if the prob-
abilistic edge(l, g, σ, p) is chosen, then the probability of
moving to the locationl′ and resetting to 0 all clocks inX
is given byp(X, l′).

Given a probabilistic timed automatonT =
(L, l̄,X , Σ, I , P), the semanticsof T is the Act-labelled
Markov decision process[[T ]] = (S, s,Act ,Steps):

States.Let S ⊆ L× R|X |>0 such that(l, v) ∈ S if and only
if v |= I (l) ands = (l̄,0).

Actions. Let Act = R>0 ∪ Σ.

Transitions. Let Steps be the least set of probabilistic
transitions containing, for each(l, v) ∈ S:

• for eacht ∈ R>0, let (t, µ) ∈ Steps(l, v) if and
only if µ(l, v + t) = 1 andv + t′ |= I (l) for all
0 6 t′ 6 t.

• for each(l, g, σ, p) ∈ P, let(σ, µ) ∈ Steps(l, v)
if and only if v |= g and for each(l′, v ′) ∈ S:

µ(l′, v ′) =
∑

X⊆X & v ′=v [X:=0]

p(X, l′) .

Paths and Probability Space. A pathof a Markov deci-
sion process[[T ]] determined by a PTA is a non-empty finite
or infinite sequence of transitions

ω = s
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · · .

An adversaryis a functionA mapping every finite pathω to
a pair(a, µ) ∈ Act × Dist(S) such that(last(ω), a, µ) ∈
Steps. A probability measurePrA over pathsPathA of a
given adversary can again be defined following [35] as for
Markov decision processes.

Probabilistic real-time specifications. The following is
a desirable property for a probabilistic timed automaton:
“with probability 0.98 or greater, the message is correctly
deliveredwithin 5 ms, underany scheduling of nondeter-
minism”. This can be expressed in temporal logic by:

z.[P>0.98(♦(deliver ∧ z < 5))]

where♦ is a temporal modality(CTL), z.[· ∧ z < 5] is the
reset quantifier(TCTL) andP>0.98(·) is theprobabilistic
operator (PCTL). The obtained logic is known as PTCTL
(Probabilistic Timed CTL) [45] whose syntax:

φ ::= true | a | ζ | φ ∧ φ | ¬φ | z.[φ] | P∼p(φ1 U φ2)

is similar to PCTL except thatz ∈ Z, and ζ are zones
over the clocks inX ∪ Z, whereX is the set of clocks of
the automaton andZ is the set of formula clocks such that
X ∩ Z = ∅. The meaning of CTL and TCTL [3] operators
is standard, and the meaning of the probabilistic operators
is as for PCTL, though considered with the respect to the
induced probability measure on the (infinitakes the form of
a finite-state Markov decision processte state) Markov deci-
sion process. Care must be taken withtime divergence; the
interested reader is referred to [45] for more details which
have been omitted from this presentation.

Model checking for PTAs Since clocks are real-valued,
the state space of a probabilistic timed automaton is infi-
nite. However, for conventional timed automata [3] the
space of clock valuations can be partitioned into afinite
set of symbolic statescalled clock regions, each contain-
ing a finite or infinite number of valuations which satisfy
the same TCTL formulas [2]. Combined with the tran-
sitions of a timed automaton, a so calledregion graphis
obtained which takes the form of a finite-state Markov de-
cision process and therefore admits model checking using
well-established methods. In [45] it is shown that the re-
gion graph can be adapted for model checking probabilistic
timed automata against PTCTL formulas. In this case, the
region graph takes the form of a Markov decision process
over the regions. Model checking for PTCTL can be re-
duced to a translation of property to PCTL and invoking the
PCTL model checking algorithm on the induced MDP.

The region-based model construction is unfortunately
expensive, with complexity exponential in the number of
clocks and the magnitude of constants featured in the model
and formula. Alternative, forwards/backwards reachabil-
ity techniques have been formulated for conventional timed
automata, using coarser partitioning into zones. These
have been adapted to probabilistic timed automata;for-
wards probabilistic reachability[45] constructs an MDP
over zones by iterating thepost operation from the ini-
tial state, and yields themaximumreachability probability
which could behigher than that in the original PTA. Exact
probability can be obtained with the help of abackwards
probabilistic reachability, a zone-based symbolic algorithm
that iterates thepre operator from the from target set [46].
For a restricted class of probabilistic timed automata, re-
duction to integer semantics enablesexactmaximum and
minimum probabilistic reachability calculations [47].
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The continuousprobabilistic timed automata pose a
rather more difficult problem. As observed by Alur, the sub-
division into regions does not suffice to formulate a model
checking approach. In [44] an approach based onapprox-
imate model checking of such automata and finer subdi-
vision than regions is proposed, but its complexity is pro-
hibitive.

4 Implementation of Probabilistic Model
Checking

Symbolicmodel checking uses Binary-Decision Dia-
grams (BDDs) to compactly represent the state-transition
graph of the model and performs traversal via fixed point
calculation [15]. Implemented in the SMV tool [50], sym-
bolic model checking enabled industrial exploitation of ver-
ification technology for the first time, particularly in the
context of circuit design. Encouraged by the success of
symbolic model checking in the combating state-space ex-
plosion problem, we embarked on implementation of prob-
abilistic model checking techniques using Multi-Terminal
Binary Decision Diagrams (MTBDDs) [17, 7] which are ca-
pable of representing probability matrices and support ma-
trix multiplication algorithms.

4.1 Probabilistic Symbolic Model Checking

Traditionally, analysis of probabilistic systems has been
carried out using numerical methods, mainly with sparse
matrices, analytical methods or simulation. Our approach
was to tackle the large state spacessymbolically, by an
MTBDD-based representation. We have seen that prob-
abilistic model checking techniques can be reduced en-
tirely to a combination ofgraph-theoretic traversal, im-
plementable as BDD fixpoint operations, and aniterative
numerical solutionprocess for solution of linear equations,
linear programming problems and uniformisation which in-
volves matrix-by-vector multiplication. Earlier experiments
with direct solution methods were unsuccessful due to the
loss of regularity while manipulating the matrix [7]. The
first symbolic probabilistic model checking algorithm was
introduced in [9] for PCTL over DTMCs, and extended in
[22] to MDPs, where also the BDD-based precomputation
steps for probability 1/0 were introduced. Based on [10],
a CSL model checking algorithm was also implemented.
Though the first experiments enabled the compact storage
of very large state spaces for MDPs [22], it soon became
apparent that the efficiency of numerical solution of steady-
state probabilities for CTMCs lagged far behind that for
sparse matrices [32]. In [42] a hybrid data structure, a com-
bination of a modified MTBDD representation matrix with
a conventional solution method was proposed which can
perform better than the sparse matrix techniques, both in

terms of space and time; this was further improved in [53]
and the memory limitation imposed by the need to store a
conventional vector has been tackled with out-of-core tech-
niques, in combination with symbolic matrix representation
[36, 37].

4.2 The PRISM Tool

PRISM [41, 1] is a probabilistic symbolic model checker
implemented using the CUDD package [57] to obtain
BDD/MTBDD-based representation of probabilistic mod-
els. PRISM directly supports the DTMC, MDP and CTMC
models and the specification languages PCTL and CSL;
probabilistic timed automata are currently handled through
a pre-processing phase that involves the KRONOS real-time
model checker and an implementation of the forward prob-
abilistic reachability [21].

PRISM inputs a description of a system model written
in a modelling language based on Reactive Modules with
support for the main process-algebraic composition opera-
tors, and specifications in the PCTL or CSL syntax. It con-
structs a symbolic representation of the model from this de-
scription and computes the set of reachable and deadlock
states. For PCTL model checking over DTMC or MDP
models, PRISM implements the algorithms of [26, 14, 12]
(including fairness) and the subsequent improvements of
[8]. For CSL and CTMCs, methods based on [10, 33],
recently extended with random time bounds, cost/rewards
and expected time [39, 40], are used. Graph traversal is im-
plemented with BDD fixpoints, but numerical computation
can be performed using one of three different model check-
ing engines: symbolic MTBDD-based [9, 22] for both the
model and vector; sparse matrix model and full vectors; and
hybrid [42, 53] which combines symbolic model and full
vector.

PRISM is available for download from [1]. We mention
also related tools ETMCC [31] for CTMCs and RAPTURE
[20] for MDPs.

5 Case studies

PRISM has been used to build and analyse probabilis-
tic models for a large number of case studies in Birming-
ham and elsewhere, with encouraging results available at
the website [1]. We briefly describe here four illustrative
examples, one for each type of model introduced in Sec. 2.

5.1 The Crowds protocol

The Crowds protocol of Reiter and Rubin aims to ensure
anonymous Web browsing by routing communicationsran-
domlywithin a group of similar users in order to hide them.
Even if an eavesdropper observes a message being sent by
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a particular user, it can never be sure whether the user is
the actual sender, or is simply routing another user’s mes-
sage. Crowds guarantees probable innocence for a single
path: the likelihood of the sender being the originator is no
greater than to not be the originator.

The protocol model (a DTMC) was analysed in [56], see
[1] for the details, and the following disturbing conclusions
reached. It was noted that the probability of successful ob-
servation of the real sender by the adversary observed grows
for any given crowd as the number of paths increases. The
second impact of increasing crowd size is theincreased con-
fidenceof the adversary: the bigger the crowd, the more
confident the corrupt members are that, once they observed
some crowd member more than once, the observed member
is the real sender.

An analysis of probabilistic contract signing [52] also
detected flaws.

5.2 Randomized consensus

It is well known [24] that there areno symmetric solu-
tions to certain distributed systems problems in the presence
of failures; usingrandomisationensures that such solutions
exist [55]. In many such algorithms, modelling nondeter-
minism as well as probabilistic choices is essential, and
thus the models are typically Markov decision processes
(MDPs). The correctness arguments for such randomised
distributed algorithms include both non-probabilistic state-
ments, such as “no two processes are simultaneously in the
critical section”, as well as probabilistic statements such as
“termination occurs with probability 1”.

We have analysed two randomised protocols, one for
distributed consensus using shared read-write registers that
tolerates stopping failures [4] and a Byzantine agreement
ABBA (Asynchronous Binary Byzantine Agreement) of
[16]. The complexity of these algorithms resulted in large
state spaces, and so we have used the Cadence SMV tool
that supports data reduction techniques as well as proof
methods, in addition to PRISM. The results are described
in [43, 38] and [1].

5.3 Dynamic power management

Power management is receiving much attention due to
an increasing trend in the usage of portable, mobile and
hand-held electronic devices. These devices usually run on
batteries and any savings in power usage translate to ex-
tended battery life. Dynamic Power Management (DPM)
refers to system-level strategies that attempt to make power
mode changing decisions based on the information about
their usage pattern available at runtime. The objective is to
minimize power consumption, while minimizing the effect
on performance.Stochastic optimum controlschemes are
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Figure 1. FireWire with a biased coin.

being applied, alongside the more conventional predictive
schemes.

We have analysed two portable disks, Fujitsu and IBM,
based on real measurement data [51]. Since quantities such
as power consumption feature in the model, we have used
continuous and discrete time Markov chains, both with re-
wards/costs, and optimisation. This has enabled us to anal-
yse trade offs between average power consumption versus
the average number of queued requests, confirming that
PRISM is a useful tool for analysing resource management
schemes.

5.4 IEEE 1394 FireWire Root Contention

This case study concerns the Tree Identify Protocol
of the IEEE 1394 High Performance Serial Bus (called
“FireWire”), an efficient and widely used multimedia pro-
tocol. It has a scalable architecture and is “hot-pluggable”,
meaning that at any time devices can easily be added or re-
moved from the network.

The tree identify process of IEEE 1394 is a randomised
leader election protocol designed for connected acyclic net-
work topologies. It executes after a bus reset in the net-
work, i.e. when a node is added or removed from the net-
work, and returns a leader (root) to act as the manager of the
bus for subsequent phases of IEEE 1394. The nodes nodes
communicate “be my parent” messages, starting from the
leaf nodes. If two nodes contend the leadership (root con-
tention), the contenders exchange additional messages and
involve time delaysandelectronic coin tosses. The model
is thus a probabilistic timed automaton (PTA).

We have analysed the probabilistic aspects of the proto-
col, such as termination with probability 1, expected time to
contention resolution and soft deadlines (the probability of
resolution within a given time period) using the KRONOS-
PRISM connection [21] and integer semantics [47]. We
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have automatically confirmed an unusual property conjec-
tured by Stoelinga that the time to resolution varies if a coin
is biased [21], shown in Figure 1.

Probabilistic timed automata arise also in random back-
off schemes of physical layer protocols, as in e.g. IEEE
802.11 Wireless LAN MAC protocol analysed in [48].

6 Conclusion and Future Challenges

In this paper we have described our experience with im-
plementing probabilistic model checking techniques within
PRISM, a Probabilistic Symbolic Model Checker [41, 1],
and described its application to real-world case studies. So
far we have concentrated our efforts on efficient implemen-
tation of the techniques, but not explored any data reduction
or compositionality and proof methods; these are currently
being investigated, as are parallel out-of-core solution meth-
ods, extension with real-time clocks, sampling-based tech-
niques derived from [60] and Monte Carlo approximation
for PCTL [49]. Further applications of PRISM to model
and analyse quantum cryptographic protocols, mobile ad
hoc networks and nano-circuits are underway.
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