
Automatic Verification and Strategy
Synthesis for Zero-sum and Equilibria
Properties of Concurrent Stochastic

Games

�
Gabriel H. R. Santos

Trinity College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Ao meu pai, ao meu primo e à minha avó,
que nos deixaram tão cedo.

Acknowledgements

The completion of this work would not have been possible were it not
for the guidance and encouragement provided by my supervisor Marta
Kwiatkowska and close collaborators Gethin Norman and Dave Parker, to
whom I am deeply indebted. Some of the outcomes reported in this the-
sis are aligned with ongoing research projects led by Marta Kwiatkowska,
the EPSRC Programme Grant on Mobile Autonomy (EP/M019918/1)
and FUN2MODEL (grant agreement No. 834115), funded by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme. I would also like to acknowledge the
Engineering and Physical Sciences Research Council, the Department of
Computer Science and Trinity College for supporting my research. Special
thanks go to family and friends in Brazil, France and the UK, who were
there for me all throughout.

Oxford, 2020.

Abstract

Concepts originating from game theory have been employed to formulate
and analyse problems from a variety of domains, with applications ranging
from economics to biology. In computer science, where they also found a
fertile soil, game-theoretic ideas and solutions have been used in AI, net-
work protocols and verification, to name but a few. This thesis sets itself in
that context by presenting a framework for verifying concurrent stochas-
tic systems, where agents may compete or cooperate. More specifically,
we model systems as concurrent multi-player stochastic games, which are
mathematical models able to express environmental uncertainty, nonde-
terminism and, at each step, the outcomes of the choices made by a set
of agents. Given that assuming strict competition among agents does not
reflect the full range of system behaviours, we also make use of the notion
of social welfare Nash equilibria in order to perform quantitative or qual-
itative analysis, as well as strategy synthesis, while considering a distinct
set of objectives. Equilibria properties and strategies have the advantage
of being stable, i.e., they are the result of or a description of rational be-
haviour, meaning it is actually in the best interest of the agents to act in
a way that leads to such an outcome. Verification is also facilitated by the
possibility of specifying coalitions, which can translate communication and
synchronisation among agents, along with the presentation of a property
specification logic for probabilistic and reward-based temporal objectives.
Our model checking algorithms for a variant of stopping games make use of
linear and nonlinear optimisation along with SMT solvers and are able to
verify zero-sum and nonzero-sum properties of concurrent stochastic mod-
els. For nonzero-sum properties, our methods focus on computing optimal
equilibria, which maximise or minimise the probabilities or rewards asso-
ciated to a given set of objectives and may include a mixture of finite and
infinite-horizon operators. For finite-horizon properties the computation
is exact, while for infinite-horizon it is approximate using value iteration.

We implement our methods in the PRISM-games 3.0 tool, demonstrating
their usefulness and performance on several case studies.

5

Contents

1 Introduction 1

2 Related Work 8
2.1 Games and Equilibria Computation 9
2.2 Verification and Strategy Synthesis for Games 13

2.2.1 Strategy Synthesis for Games 14
2.2.2 Symbolic and Hybrid Methods in Synthesis and Verification . 16

2.3 Model Checking Tools for Games and Applications 16
2.4 Summary . 18

3 Background 19
3.1 Notation . 20
3.2 Game-theoretic Concepts . 21
3.3 Stochastic Models . 25

3.3.1 Markov Decision Processes . 26
3.4 Properties of Stochastic Models . 28

3.4.1 Probabilistic Reachability . 29
3.4.2 Reward-based Properties . 29
3.4.3 Parity Objectives . 31

3.5 The Logic PCTL . 31
3.5.1 Model Checking For PCTL 32

3.6 Model Checking Properties of MDPs 34
3.6.1 Model Checking for MDPs . 34

3.7 Summary . 38

i

4 Zero-sum Properties 40
4.1 Normal Form Games . 41

4.1.1 Representing Games with Matrices 42
4.2 Zero-sum Games and Minimax Strategies 44

4.2.1 Computing Values of Matrix Games 45
4.3 Stochastic Games . 46
4.4 Property Specification . 54

4.4.1 Coalition Games . 56
4.5 Model Checking Zero-sum Properties 59

4.5.1 Computing Values of Zero-sum Finite-horizon Formulae 60
4.5.2 Computing Values of Zero-sum Infinite-horizon Formulae . . . 61
4.5.3 Pre-computation Algorithms 64

4.6 Strategy Synthesis . 65
4.7 Correctness and Complexity . 66
4.8 Summary . 67

5 Two-player Equilibria Properties 68
5.1 Nonzero-sum Games and Equilibria Strategies 69

5.1.1 Computing Values of Bimatrix Games 71
5.2 Property Specification . 75
5.3 Model Checking Two-player Nonzero-sum Properties 79

5.3.1 Computing SWNE Values of Finite-horizon Nonzero-sum For-
mulae . 81

5.3.2 Computing SWNE Values of Infinite-horizon Nonzero-sum For-
mulae . 84

5.3.3 Computing SCNE Values of Finite-horizon Nonzero-sum For-
mulae . 85

5.3.4 Computing SCNE Values of Infinite-horizon Nonzero-sum For-
mulae . 88

5.3.5 Computing SWNE Values of Mixed Nonzero-sum Formulae . . 90
5.4 Strategy Synthesis . 93
5.5 Correctness and Complexity . 94
5.6 Summary . 95

ii

6 Multi-player Equilibria Properties 96
6.1 Computing NE Values of n-Player Games 97
6.2 Property Specification . 101
6.3 Model Checking Multi-player Nonzero-sum Properties 103

6.3.1 Computing SWNE Values of Finite-horizon Nonzero-sum For-
mulae . 104

6.3.2 Computing SWNE Values of Infinite-horizon Nonzero-sum For-
mulae . 106

6.3.3 Computing SCNE Values of Finite-horizon Nonzero-sum For-
mulae . 107

6.3.4 Computing SCNE Values of Infinite-horizon Nonzero-sum For-
mulae . 108

6.4 Strategy Synthesis . 109
6.5 Correctness and Complexity . 110
6.6 Summary . 111

7 Tool Implementation 112
7.1 Modelling and Property Specification Language 113

7.1.1 Overview . 113
7.1.2 Modelling CSGs in PRISM-games 114

7.2 Implementation Details . 118
7.2.1 Model Building . 118
7.2.2 Model Checking . 119

7.2.2.1 Model Checking For Zero-sum Properties 120
7.2.2.2 Model Checking For Two-player Equilibria Properties 123
7.2.2.3 Model Checking For Multi-player Equilibria Properties 124

7.2.3 Strategy Synthesis . 127
7.3 Tool Demonstration . 129
7.4 Summary . 131

8 Case Studies and Experimental Results 134
8.1 Case Studies . 135

8.1.1 Robot Coordination . 135
8.1.2 Secret Sharing . 137
8.1.3 Future Market Investors . 141
8.1.4 Trust Models for User-centric Networks 144
8.1.5 Aloha Protocol . 145

iii

8.1.6 Public Good . 146
8.1.7 Medium Access Control . 148
8.1.8 Power Control . 149
8.1.9 Intrusion Detection Policies 150
8.1.10 Jamming Multi-channel Radio Systems 152

8.2 Efficiency and Scalability . 153
8.3 Summary . 156

9 Conclusion 162
9.1 Summary . 162
9.2 Future Work . 165
9.3 Final Remarks . 167

A Correctness 168
A.1 Correctness of the Model Checking Algorithms 168

A.1.1 Nonzero-sum Two-player Formulae 168
A.1.2 Nonzero-sum Multi-player Formulae 174

B Precomputation and Model Checking Algorithms 178
B.1 Precomputation Algorithms for Zero-sum Formulae 178
B.2 Algorithms for Zero-sum rPATL Formulae 184
B.3 Algorithms for Two-player Equilibria rPATL Formulae 191

C Convergence and Assumptions 197
C.1 Convergence of Zero-sum Total Reward Formulae 197
C.2 Convergence of Zero-sum Reachability Reward Formulae 198
C.3 Convergence of Nonzero-sum Probabilistic Reachability Properties . . 199
C.4 Convergence of Nonzero-sum Expected Reachability Properties 201

iv

List of Figures

3.1 Two-player prisoner’s dilemma in extensive form. 22
3.2 Matrix representations. 24
3.3 Backward induction on two-player prisoner’s dilemma. 25
3.4 An example of an MDP. 28

4.1 Representation of a rock-paper-scissors game as a matrix game. . . . 43
4.2 Representation of a coalitional stag hunt game as a bimatrix game. . 44
4.3 An MDP model of a robot moving over a grid. 48
4.4 Turn-based example of two robots moving over a grid. 49
4.5 Concurrent example of two robots moving over a grid. 50
4.6 Turn-based example of two robots moving over a grid with a fixed

strategy. 51
4.7 Concurrent example of two robots moving over a grid with a fixed

strategy. 52
4.8 Rock-paper-scissors represented in extensive and normal forms (one

round). 64

5.1 Graphical representation of the regions of best response for the coali-
tional stag hunt game. 73

5.2 Graphical representation of the regions of best response for the negated
coalitional stag hunt game. 75

5.3 An instance of matching pennies in extensive and normal forms (one
round). 89

v

5.4 CSG example where memory may be required for synthesising an op-
timal strategy (0 < p < 1.). 94

7.1 A model of the MAC problem as concurrent stochastic game. 115
7.2 Properties for the MAC problem model shown in Figure 7.1. 118
7.3 State space of the MAC problem as exported by PRISM-games 3.0. . 119
7.4 A strategy for the MAC example shown in Figure 7.1 as exported by

PRISM-games 3.0. 128
7.5 Screenshot of PRISM-games 3.0 showing a CSG model. 129
7.6 Screenshot of PRISM-games 3.0 showing a path being constructed us-

ing the simulator. 130
7.7 Screenshot of PRISM-games 3.0 showing a property being verified. . . 131
7.8 Screenshot of PRISM-games 3.0 plotting the results of an experiment

when running an equilibria property. 132

8.1 Robot coordination: probability of reaching the goal without crashing. 136
8.2 Robot coordination: expected steps to reach the goal. 137
8.3 〈〈p1:p2:p3〉〉max=?(R[F done]+R[F done]+R[F done]), (pfail=0.2 for rba). 139
8.4 Expected number of rounds (left) and probability only the first player

learns the secret (right). (pfail=0.2 for rba). 139
8.5 Expected utilities over a bounded number of rounds (pfail=0.2 for rba). 140
8.6 Futures market investors: normal market. 142
8.7 Futures market investors: later cash-ins without (left) and with (right)

fluctuations. 142
8.8 Investors: normal profiles (left) and mixed profiles (right) (pbar=0.1). 143
8.9 Investors: normal profiles (left) and mixed profiles (right) (pbar=0.5). 144
8.10 User-centric network results (CSG/TSG values as solid/dashed lines). 145
8.11 Aloha: 〈〈usr 1:{usr 2, usr 3}〉〉max=?(P[F (s1∧t6D)]+P[F (s2∧s3∧t6D)]) 146
8.12 Public good game: Impact of small increments in parameter f 147
8.13 Public good game: Expected rewards after kmax rounds. 148
8.14 Medium access control (emax =5, smax =5, q1=0.9 and q2=0.75) 149
8.15 Power control: 〈〈p1:p2〉〉max=?(R

r1 [F e1=0]+Rr2 [F e2=0]) 150
8.16 Intrusion detection policies: min. expected cost cumulative (left) and

at a given round (right). 151
8.17 Jamming multi-channel radio systems: maximum probability half of

the messages are sent (left) and maximum number of messages sent
(right). 153

vi

C.1 Counterexample for zero-sum total reward properties. 197
C.2 Counterexample for zero-sum expected reachability reward properties. 198
C.3 Counterexample for nonzero-sum probabilistic reachability properties. 199
C.4 Counterexample for nonzero-sum expected reachability properties. . . 201

vii

CHAPTER 1

Introduction

Computerised devices play a part in virtually all activities in modern society. While
their presence as a tool to automate tasks or to facilitate human interaction is al-
ready established, their role as artificial agents, whether interacting with the physical
world as self-driving cars, or confined to a virtual environment as trading agents, is
only beginning to flourish. In all scenarios, it is paramount that interactions involv-
ing these agents, both with humans as well as other artificial agents, are safe and
appropriate. In order for that to happen, we have to ensure they abide by a set of
requirements, and need to be able to assess their reliability and establish a degree of
trust in how they behave. Formal methods is a branch of computer science whose very
raison d’être is addressing issues regarding the correctness, safety and performance
of software and hardware systems. Correctness of systems is typically established
by employing formal verification, which aims to prove that the system model satis-
fies a given requirement specification. More specifically, probabilistic verification and
quantitative analysis allow for the specification and reasoning about systems whose
behaviour is probabilistic (also referred to as stochastic). Naturally, the mathematical
models and methods behind the description and analysis of such systems have to be
sophisticated and powerful enough to handle ever growing complexity. In particular,
when considering interacting agents, one needs to be able to faithfully represent not
only their individual behaviours but also what form that interaction takes, that is,
whether they collaborate or compete, and what their intentions or objectives are. An
attractive solution to tackle these issues has been to adopt concepts from game the-
ory, a field of study developed initially to deal with problems in economics and the

1

military.
Generally speaking, a game is a formal description of a scenario in which agents (or

players) interact through actions (or moves). The possible combinations of actions
chosen by each agent at a given stage can affect their environment in different ways,
and thus have an influence on what they are able to do in future, as well as the
final outcome (value) of the game. In addition, games enable the introduction of
concepts typically not present in probabilistic models, for example turns, concurrency,
adversarial behaviour and coalitions.

Other than the specification of actions and outcomes, one of the core concepts
behind game-theoretic models is that of strategies. A strategy is a description of how
each agent should act in different stages of a game, that is, what action to take in each
possible scenario when considering a given objective. Therefore, one of the benefits of
borrowing from game-theoretic concepts is the possibility of not only reasoning about
what may happen during a system’s execution, but also synthesising a strategy (or a
controller) for each agent to achieve a particular outcome or to prevent an undesirable
event from happening. Techniques such as model checking [60, 176] (aka automated
verification) have commonly been used both for analysing a model and constructing
strategies automatically, and to this end a range of model checking tools have been
developed and applied on relevant case studies. Of these the most relevant to this
thesis is PRISM-games [139], which supports the modelling of multi-player turn-based
stochastic games, where players alternate their moves, and reasoning about their coali-
tional behaviour using rPATL (Probabilistic Alternating-time Temporal Logic with
Rewards) [53] as a property specification logic. Unfortunately, existing approaches
have been historically focused on worst-case scenarios, in which one assumes agents
will necessarily play against each other, capturing zero-sum objectives only. It is not
difficult to see, however, that in many cases this is an overly strong assumption as,
in reality, it might be in their best interest as rational agents to collaborate.

Aims. Despite considerable progress in verification and strategy synthesis for stochas-
tic games, previous algorithmic solutions and probabilistic verification tools have fo-
cused mainly on strictly competitive models and properties. Another feature missing
from the software tool landscape was the possibility of modelling concurrent behaviour
in games, in the sense of allowing players to make moves concurrently, which con-
strained the set of applications. The main goal of the work presented in this thesis is
to expand the scope of verification methods for stochastic games by developing model
checking and strategy synthesis algorithms that incorporate the notions of both con-
currency and equilibria in the context of multi-player games. To achieve this, we

2

build on PRISM-games [139], which supports turn-based stochastic games with two-
coalition properties, in order to develop a comprehensive framework that comprises
a formal description of the underlying models and methods, an extension of rPATL
as a property specification logic for zero-sum or equilibria objectives over concurrent
stochastic games (including coalitional two-player and multi-player cases), a substan-
tially improved modelling specification language, a comprehensive set of case studies
to illustrate the applicability and performance of the algorithms, as well as a new
release of the PRISM-games 3.0 software tool developed as part of this thesis.

Approach. This thesis focuses on the development and integration of explicit and
symbolic methods within automated verification of stochastic games. This involves
formulating a modelling language, construction of models from the description, and
developing and implementing algorithms for model checking. Stochastic games [185]
appear in different forms in the literature, depending on the domain. In computer
science, turn-based stochastic games played on graphs can be linked to probabilistic
automata (PAs) [183] andMarkov Decision Processes (MDPs) [17], with the difference
that nondeterministic choices are controlled by separate agents. Concurrent stochastic
games generalise turn-based games by allowing the transitions to be controlled by
multiple agents simultaneously. The system’s behaviour and how it progresses is then
determined by how these agents interact and there is no prior assumption of whether
their objectives are opposed or complementary. The different types of goals (zero-sum
and equilibria) are then expressed by means of a property specification, which relates
to system’s variables, its agents and how they are grouped into coalitions.

One of the main bottlenecks of model checking is scalability. Real systems often
possess a large number of variables and possible behaviours which, in order to be faith-
fully translated, may require a considerable number of states and transitions. This
poses the challenge of finding efficient methods and data structures in order to build,
store and verify these models. Symbolic data structures such as decision diagrams
have been successfully integrated within probabilistic verification when considering
non-competitive models [172], with substantial scalability improvements. Similarly,
SAT (satisfiability) and SMT (satisfiability modulo theory) solvers have been used
in model checking tools to address scalability [20, 21, 22]. Recently, the performance
of SAT/SMT solvers, in particular, has progressively improved in terms of the num-
ber of clauses and variables they are able to handle, which holds promise for their
application in this setting.

While there are a number of algorithms and tools for equilibria computation, to
the best of our knowledge they are limited to relatively small games, mainly in normal

3

form. Specifically, there is a lack of general and accessible verification frameworks
and tools for the computation of values for large games played over graphs, especially
those considering equilibria for (stochastic) games in extensive form. There is also
little work on applying satisfiability theory in this context, and even algorithms tool
support for reasoning about zero-sum and concurrent stochastic games are limited.
This thesis aims to fill some of these gaps by presenting novel theoretical and practical
contributions that address some of these shortcomings.

Lastly, in order to showcase the applications and evaluate the effectiveness of our
methods, we present a comprehensive set of case studies that illustrate the scope and
potential impact of the work developed, as well as a stable and publicly available tool
PRISM-games 3.0 that implements them.

Contributions

We develop a framework for model checking and strategy synthesis for both zero-
sum and equilibria properties of turn-based and concurrent stochastic games in non-
discounted setting, focusing on providing novel algorithms for equilibria-based ver-
ification and the integration of symbolic SMT-based methods. For the variants we
consider (zero-sum, nonzero-sum, two-coalitional, multi-coalitional), we propose iter-
ative techniques for exact and approximate value computation when verifying finite-
horizon and infinite-horizon properties, respectively. This builds on PRISM-games
2.0 framework, which is restricted to temporal, two-coalition, zero-sum properties
for turn-based stochastic games. Through several case studies we demonstrate the
application of the techniques to modelling of multi-agent systems, highlighting the
advantages of considering objectives that are not strictly opposed. The main contri-
butions of this work are presented in Chapters 4-8 and can be summarised as follows:

1. In Chapter 4, we give our model checking and strategy synthesis algorithms for
temporal and reward zero-sum properties. We extend rPATL to allow for the
specification of strictly competitive objectives for players in concurrent stochas-
tic games and combine value iteration and linear programming methods to com-
pute/approximate values for models and properties that may include action and
state costs or rewards. We enhance the framework with total expected cost and
instantaneous reward operators and describe how our algorithms can be used
for strategy synthesis.

4

2. In Chapter 5, we present our model checking and strategy synthesis algorithms
for temporal and reward two-player equilibria properties. We reason about equi-
libria that guarantee optimal choices at every state of the game according to
different criteria and make use of an SMT-based encoding and implementation
in order to compute these values at a state level. The computation/approx-
imation of values for properties is achieved by combining our approach with
previously developed techniques for MDP model checking. In order to guaran-
tee uniqueness, we further extend our property specification logic to consider
a combination of distinct objectives that is expressed as the sum of the values
associated to them. We further discuss how to perform strategy synthesis, com-
bining finite and infinite-horizon objectives, and the challenges behind equilibria
computation.

3. In Chapter 6, we introduce our model checking and strategy synthesis algo-
rithms for temporal and reward multi-player equilibria properties. Computing
values for multi-player properties is considerably more involved than for the
two-player case and requires a different approach. We develop a solution that
makes use of nonlinear programming in order to compute equilibria strategies
and values at different stages of the game, and further extend our property
specification logic to reason about the combination of an arbitrary number of
distinct coalitions and properties. We also discuss the challenges of computing
values and constructing strategies for multi-player properties.

4. In Chapter 7, we discuss the implementation of the methods detailed in Chapters
4-6 as part of PRISM-games 3.0. This new release substantially extends the
functionality of its predecessor with a new modelling language that supports
the specification of concurrent stochastic games and the novel strategy synthesis
and model checking algorithms for zero-sum and equilibria properties. We give
an overview of its main features and present the relevant technical aspects.

5. In Chapter 8, we present a range of case studies covering verification and strat-
egy synthesis for different properties of concurrent stochastic games, as well as
a discussion of the tool’s efficiency and scalability. Our selection of examples
comprises applications from finance, network protocols, attack-defence scenar-
ios, and others. We highlight the particularities of zero-sum and equilibria
properties, as well as two- and multi-player coalition variants.

5

We also present additional details, including a proof of correctness and pseudo-
code for the algorithms, in Appendices A and B.

Thesis Outline

In Chapter 2, we present an overview of work related to this thesis, while in Chapter 3,
we review the necessary technical concepts and known results. The main theoretical
contributions are presented in Chapters 4-6. Chapter 7 is dedicated to a description
of the tool we developed to implement our framework. We describe some of the case
studies considered throughout in Chapter 8. We conclude with Chapter 9 by pre-
senting a summary of our contributions and pointing out open problems and possible
extensions.

Publications

Part of the work presented in this thesis has been published in jointly authored pa-
pers. Extending the algorithms and code base of PRISM-games was a considerable
undertaking and has benefited from collaboration with Gethin Norman (University
of Glasgow) and David Parker (University of Birmingham), the original developers
of the framework. The methods described in Chapter 4, along with the relevant case
studies of Chapter 8, were presented in the 15th edition of QEST (International Con-
ference on Quantitative Evaluation of Systems) that took place in Bejijing, China, in
2018 [136]. I developed the initial version of the model checking algorithms for prob-
abilistic reachability and total rewards, which were later extended and formalised in
collaboration with Gethin Norman, with whom I also collaborated on the elaboration
of the case studies. I developed and implemented the model building, model checking
and strategy synthesis procedures with the assistance from Dave Parker.

Similarly, the results for equilibria properties presented in Chapter 5 and the
relevant case studies made up our successful submission to the 23rd edition of FM
(International Symposium on Formal Methods), the main conference of the 3rd World
Congress on Formal Methods that took place in Porto, Portugal in 2019 [137]. The
work presented at FM led to an invitation to submit a journal paper to a special is-
sue of FMSD (Formal Methods in System Design) [140]. I developed the SMT-based
approach for equilibria computation, extended the algorithms presented in [136] to
compute equilibria values for bounded model checking formulae, and incorporated

6

the implementation into PRISM-games with support from Dave Parker. I collabo-
rated with Gethin Norman on the development of model checking algorithms for the
unbounded operators, the correctness proof and the case studies.

Additionally, the work detailed in Chapter 7 led to a successful submission of a
tool paper to the 32nd edition of CAV (International Conference on Computer-Aided
Verification), which was hosted online in Los Angeles, USA in July 2020 [139]. I
developed the new modelling language as well as some of the reported case studies in
collaboration with Gethin Norman and Dave Parker.

Finally, our method for verifying multi-player equilibria properties has been ac-
cepted for publication in the proceedings of the 17th edition of QEST, which took
place online in Vienna, Austria, in October 2020 [138]. I developed and implemented
the approach for computing values for multi-player games combining SMT and nonlin-
ear programming. I collaborated on the development and formalisation of the model
checking algorithms as well as the implementation of the case studies with Gethin
Norman.

The beta version release of PRISM-games 3.0, developed and made public with
support from David Parker and Gethin Norman, can be found online at https:

//www.prismmodelchecker.org/games/. A website containing a description of the
tool, tutorials and webpages for the collection of case studies was set up mainly by
Gethin Norman, with support from David Parker and myself, and can be found by
following the same link.

7

https://www.prismmodelchecker.org/games/
https://www.prismmodelchecker.org/games/

CHAPTER 2

Related Work

Contents
2.1 Games and Equilibria Computation 9

2.2 Verification and Strategy Synthesis for Games 13

2.3 Model Checking Tools for Games and Applications . . . 16

2.4 Summary . 18

Game-theoretic concepts are actively applied to computer science problems as a
way to model and synthesise controllers for stochastic reactive systems [62, 63]. The
rigorous treatment of game theory itself as an independent field has its origins in the
seminal work by John von Neumann [204], although it can be linked all the way back
to 1838 with Cournot’s work on duopolies and other early work by Zermelo [218] and
Borel [28]. Other fundamental work was carried out by Shapley [185], who considered
finite concurrent games with discounted rewards. A few survey papers have covered
the connection between the two areas, such as [124], [187] and more recently [192].
Games remain an active topic of research within formal methods, often appearing in
conferences dedicated to formal verification, concurrency, artificial intelligence, net-
working, electronic commerce, learning and other topics. As a modelling formalism,
games are especially relevant to the design and study of systems in which multiple
entities with different information sets and objectives interact. Extensive theoretical
work has been carried out on the use of games in computer science. There have
been numerous papers and theses written on different aspects of games such as the
complexity of playing extensive games (games on graphs) for a variety of objectives

8

[43, 201], on computing the result of normal form games (strategic form) [171] and
mechanism design [165], with dedicated books covering the many topics [166]. Con-
siderable amount of experimental work has also taken place to develop tools and case
studies that showcase the usefulness of this formalism. Among the many examples of
applications one can cite: autonomous urban driving [55], smart energy management
[53], decision making in sensor networks [53], reputation-based services [142], financial
markets [157] and control systems [16], including dedicated books for the analysis of
wireless protocols [105, 106].

This chapter will cover different developments related to the rigorous treatment
of games, equilibria and their application to formal verification. We start in Sec-
tion 2.1 by setting the problem and presenting results concerning the complexity of
computing zero-sum and equilibria values for normal form and extensive games. In
Section 2.2 we explore different approaches for combining verification and equilibria.
We continue in Section 2.2.1 by discussing the complementary problem of synthesis,
another contribution of this thesis. Next, Section 2.2.2 presents a brief overview of the
applications of symbolic and hybrid methods to probabilistic verification. We con-
clude this chapter by summarising other applications and tools dedicated to model
checking for games in Section 2.3.

2.1 Games and Equilibria Computation

Nash equilibria (NE) [164] is one of the best known concepts to emerge from game
theory. The general idea behind an equilibrium is having a collection of strategies
from which players do not have an incentive to deviate. Computing values for equi-
libria and zero-sum objectives is a difficult task. One can divide that task into two
categories: computing values of normal (or strategic) form games and computing
values of extensive form games. A normal form game is one described by a number
of players, an action set for each player and a payoff or utility function that maps all
elements of the product of actions sets to a real value (we present a formal description
and a detailed discussion in Section 4.1). On the other hand, extensive games are
usually described by graphs, with nodes representing a given stage of the game and
edges representing the choices made by the players. They are also commonly repre-
sented by trees, where nodes can be grouped according to information sets, with the
game progressing as players make choices at different nodes and the leaves account-
ing for the payoff each one of them receives. A directed graph can be similarly used
as a representation for extensive games and will be employed to describe games in

9

the contribution chapters of this thesis, with vertices (or states) representing distinct
information sets in which players choose an action from the set of actions available
to them. Differently from game trees, graphs may have self-loops in their structure
and may not have terminal nodes. Directed graphs are the common representation
for iterated or repeated games, i.e., games that may consist of an indefinite number of
stages. The payoffs for games played over graphs may then be specified by auxiliary
structures that associate real values to states or transitions. Uncertainty can be added
to these different representations by the means of an extra player, often referred to as
nature, as well as through probabilistic nodes or probability distributions associated
to the transitions.

Although computation for games in extensive form (games played over graphs) can
be reduced to that of a normal form game, the nature of the objectives (reachability,
expected rewards, parity, Büchi, co-Büchi, Rabin-chain, Streett, Muller...), in addition
to the fact they could be played for an infinite number of rounds, sets them apart
when considering their complexity and the algorithmic solutions that are used to
calculate or approximate their values. Throughout this document we will refer to
different variants of games and different variants of objectives. We present a formal
definition of the relevant concepts in Chapter 3. At this stage, it suffices to say that
an objective is an outcome that is of particular interest for a player in the game and
thus defines how the player should act. A game can then be characterised by a type
of objective given we have an assumption on the players’ behaviours. We start this
section with an overview of results concerning zero-sum and parity games. In the
following sections, we focus on methods for computing equilibria.

Zero-sum Objectives. Zero-sum objectives translate scenarios of strict competition
among players in a game. As will be further detailed in Chapter 3, zero-sum objectives
can also be formally characterised as an equilibrium but are computationally easier.
Computing zero-sum values for normal form games reduces to linear programming,
which can be solved in PTIME [86]. With respect to extensive concurrent games, var-
ious results concerning this type of objectives are discussed in [76]. Differently from
turn-based games, concurrent games generally require the use of randomised strate-
gies and, even for reachability properties, optimal strategies may not exist. Also, for
ω-regular objectives (a subclass of Borel objectives widely applied to reactive systems
[151, 194]), infinite memory may be required for both optimal and ε-optimal strate-
gies. It is also known that the value of a game can be irrational and thus in general we
can only hope to compute ε-approximations [76]. Furthermore, for Büchi, co-Büchi
and Rabin-chain, the alternation of greatest and least fixpoint operators within known

10

algorithms leads to approximation procedures that contain nested iterations, and it
is unclear how to obtain monotonically converging approximation schemes. Etessami
and Yannakakis in [82] comment on the fact that, for finite-state concurrent games,
while the maximiser can only hope for ε-optimal strategies, the minimiser does have
optimal randomised memoryless strategies as shown in [86, 76]. It is also shown that
deciding qualitative and quantitative termination problems for concurrent stochastic
games is in PSPACE. The authors also point out a flaw in [52] and establish that
approximating the values of finite-state concurrent reachability games is in PSPACE.
Sure and almost-sure reachability for Büchi and co-Büchi can be decided in PTIME
[75, 74].

Parity Objectives. Parity conditions encompass all simpler ω-regular objectives,
including Büchi, co-Büchi, safety and reachability [162]. They are therefore very
expressive and widely studied. A parity objective essentially establishes a condition
on the set of nodes that is visited infinitely often. They are of particular interest
due to the fact that any ω-regular objective can be turned into a parity objective
following a modification to the game graph [162]. Computing values for this class of
objectives is in PSPACE, while decidability for sure and almost-sure variants is in
NP ∩ co-NP [48].

Equilibria in Normal Form Games. One of the most heavily researched topics
within game theory is the computation of equilibria values of normal form games.
Within this topic, one has to differentiate between the cases of two and multi -player
(or n-player) games. The problem is considerably simpler for the former as it falls
within the class of linear complementarity problems (LCP) [64] [80], whereas for the
multi-player case, nonlinearities are present due to products of strategy variables of
the other players. Papadimitriou established in one of his seminal papers the problem
of finding a mixed Nash equilibrium for two-player games to be in PPAD (polynomial
parity argument in a directed graph) [171] and, to the best of our knowledge, there
is still no polynomial algorithm for the general case. Daskalakis, Goldberg and Pa-
padimitriou in [71] and Chen, Deng and Teng in [57] subsequently proved that finding
NE for games with two or more players is PPAD-complete. One of the first and bet-
ter known methods for finding equilibria points and values of two-player games is the
Lemke-Howson algorithm [145], although there are equilibria which cannot be located
by this method [186]. We refer the reader to [206, 109, 217] for an extensive survey on
the subject. For the multi-player case, the Govindan-Wilson algorithm [99, 97, 210] is
a well-known solution and we refer the reader to [214] for a comprehensive discussion

11

on the matter. Other solutions for equilibria computation include quantal response
equilibria [199, 160], function minimisation [158] and Mangasarian’s method [150].
Etessami and Yannakakis in [83] define the complexity class FIXP (for fix point prob-
lems), whose upper bound would be PSPACE, and show the problem of computing
equilibria values for games with 3 or more players to be FIXP-complete. In addition
to dedicated algorithmic solutions, numerous search and enumeration-based proce-
dures have been developed for both two and multi-player cases [174, 179, 9]. Porter,
Nudelman and Shoham in [174] presented experimental results to support that their
combination of iterative strategy elimination algorithms combined with linear and
nonlinear optimisation third-party software in most cases outperformed implementa-
tions of dedicated algorithms. More closely related to our problem, it has been shown
in [95] that determining whether there exists an equilibrium that guarantees a player
a payoff of a given bound is NP-complete for a two-player game and NP-hard for the
general case. Moreover, Avis, Rosenberg, Savani and von Stegel in [9] demonstrate
that a two-player game may have a number of equilibria that is exponential with re-
spect to the number of actions, and thus any method that relies on enumerating them
in the worst-case cannot be expected to perform in a running time that is polynomial
with respect to the input size. Other recent works concerning equilibria and normal
form games include [67] presenting methods to compute approximate Nash equilibria
in bimatrix games with different simultaneous criteria, [68] where Czumaj, Fasoulakis
and Jurdziński present a polynomial-time algorithm for computing an approximate
Nash equilibrium in symmetric n-player games, [69] where the same authors use zero-
sum game techniques for designing a polynomial-time algorithm to compute additive
approximate Nash equilibria in bimatrix games and [66] where a distributed method
to compute approximate equilibria for two-player normal form games is developed.

Equilibria in Extensive Games. Probably the earliest method for computing
equilibria for games played over trees is backward induction [181, 205, 188], which
works by propagating equilibria values up the tree starting from the leaves. Despite
it being a method that goes back to the very origins of game theory, it is still the
basis and continues to be applied in modern algorithms and applications. Kuhn
showed in 1950 [133] that every finite turn-based game in extensive form has an equi-
librium in pure strategies, which can be found by performing backward induction.
A method based on reducing extensive games to normal form games and solving
them through linear complementarity is developed in [131]. Turocy [200] extends the
method of quantal response equilibria to extensive games. Littman, Ravi, Talwar

12

and Zinkevich [146] propose a polynomial algorithm for computing optimal equilib-
ria for turn-based games played over trees, while considering different criteria such
as social optimum (utilitarian), fairness (egalitarian), single maximum (republican)
and player best (libertarian) values. Blum, Shelton and Koller [25] develop an exact
algorithm for computing Nash equilibria for games played over multi-agent influence
diagrams (MAIDs). Closer to the work reported in this thesis, Chatterjee, Majumdar
and Jurdziński in [42, 52] write about a variety of aspects for computing equilibria
values, establishing the complexity of computing Nash equilibria for reachability ob-
jectives over graphs to be EXPTIME and devising algorithms for computing values
for upward-closed objectives. Nash equilibria exist for n-player concurrent games with
safety objectives for all players [182]. Existence of ε-Nash equilibria for all ε > 0 has
also been demonstrated for n-player concurrent games with reachability objectives [52]
and for two-player concurrent games with ω-regular objectives [41]. More recently,
Brihaye, Bruyère, Goeminne, Raskin and van den Bogaard proved in [35] that the
problem of computing subgame-perfect equilibria [184] for quantitative reachability
objectives is PSPACE-complete. Other recent work include [34], which focus on com-
plexity results for ω-regular Boolean objectives and weak subgame-perfect equilibria
over turn-based games.

2.2 Verification and Strategy Synthesis for Games

Previous works have also tackled the issue of combining equilibria computation and
verification in computer science. Efforts have been made both in terms of developing
property specification logics that reason about equilibria in games and algorithms
that compute or approximate values for these properties. ATL (Alternating-time
Temporal Logic) [4] was introduced for games in order to offer selective quantifica-
tion over the paths representing the possible outcomes, such as those where the system
and the game alternated their moves. It makes it possible then to specify the player
whose actions are controllable and write properties that translate safety and reach-
ability objectives, which may also include an infinite-horizon until operator. pATL
(Probabilisitic Alternating-time Temporal Logic) enables reasoning about concurrent
stochastic multi-player games in a similar way that PCTL (Probabilistic Computation
Tree Logic) facilitates the specification of properties for MDPs, but model checking of
the specifications reduces to solving concurrent stochastic two-player games [56, 39]
and rewards are not supported. SGL (Stochastic Game Logic) is a very powerful
logic, proposed to specify the properties of turn-based stochastic multi-player games,

13

but the model checking problem for it is undecidable in general [10], as is also the
case for a variant of PCTL for stochastic games [31]. One of the first logics to be able
to express equilibria objectives is strategy logic (SI) [50], which differentiates between
paths and strategy formulae. In SI, path formulae are LTL formulae interpreted over
infinite paths, while strategy formulae apply first-order logic quantifiers and logical
connectives to the players’ strategies, thus being able to express existence of both
NE and secure NE. More recently, Aminof, Kwiatkowska, Maubert, Murano and Ru-
bin [5] introduced probabilistic strategy logic (PSL), an extension of SI for stochastic
systems. PSL allows one to express several central concepts related to game the-
ory such as ε-NE, Pareto optimality and dominating strategies. Attempts have also
been made to devise algorithms for specific variants of games and other probabilistic
models. Fernando, Dong, Jegourel and Dong [85] considered the problem of comput-
ing approximate equilibria for probabilistic BAR (distributed systems that includes
Byzantine, Altruistic and Rational) agents. Similarly, Mari, Melatti, Salvo, Tronci,
Alvisi, Clement and Li in [152] develop a symbolic model checking algorithm for the
verification of Nash equilibria for finite-state mechanisms modelling Multiple Admin-
istrative Domains (MAD), which are distributed systems with possible coalitions and
Byzantine agents.

2.2.1 Strategy Synthesis for Games

Complementary to the problem of computing optimal expected utility values for play-
ers in a game, strategy synthesis has also been an active research topic within game
theory from the very beginning. When considering the original game-theoretic ap-
proach and games in strategic form, the problem of computing a value for a player in
a game is actually described and implemented as the task of finding strategy profiles
that satisfy an equilibrium condition. Strategy synthesis has also received consider-
able attention within model checking due to the possibility of constructing controllers
automatically from a specification. In the verification context, strategies are then
not only a witness that a given property is satisfied by a model but also a recipe of
how to implement a program that will guarantee that happens. When we consider
the wider context of stochastic systems, this means being able to derive a procedure
that would guarantee, for instance, a required level of performance with respect to
a given metric. The task of synthesising a strategy in a two-player zero-sum game
is finding a sequence of moves that would lead to a winning condition for one of the
players against all possible strategies the other player could choose to adopt, while for
equilibria the idea is finding sets of strategies that would be a mutual best response.

14

A winning condition in verification is based on a specification which can be of quali-
tative or quantitative nature. A qualitative specification in non-stochastic games can
be thought of as a mapping from system runs to Boolean values. Such problems
were first stated by Church in [59] and solved by Büchi and Landweber [37], which
established the connection between specification logics and game theory. Other more
recent application examples include [170] and [213]. For stochastic variants, it means
that, when considering all possible runs of a system, which are then the result of
the actions made by the players, a property is satisfied with probability 1. Synthesis
for qualitative LTL (Linear Temporal Logic) and CTL* (Computational Tree Logic)
for stochastic systems was studied by Schewe in [180] and for parity objectives by
Chatterjee, Jurdziński and Henzinger in [51]. Strategy synthesis for MDPs has also
been used as a mechanism design tool for multi-agent systems to synthesise the equi-
libria strategies [173]. On the other hand, quantitative specifications aim to establish
not only whether an objective is achieved or not, but how well it is achieved [24].
In a strictly competitive setting, we traditionally aim to maximise or minimise the
expected payoff (also referred to as rewards or costs) for a given player, which is accu-
mulated as the game is played or determined when the game ends. These are known
as quantitative due to the fact that the strategies are required to optimise a numerical
value according to an objective, which can be long-run [96], mean-payoff [86], ratio
[203], ω-regular [76], or Pareto optimal with respect to some other objective (when
considering multi-objective queries [87]) among other variants.

Strategy complexity is concerned with whether it is necessary to randomise among
actions in a state and also if no memory, finite memory or infinite memory elements
are required in order to construct a strategy. Strategies can also employ a stochastic
update mechanism for updating memory elements in order to have reduced repre-
sentations, as used for turn-based games in [189]. Chatterjee and Henzinger in [48]
point to the fact that memoryless randomised strategies are sufficient for ε-optimal
zero-sum reachability, safety and co-Büchi objectives. On the other hand, strategies
for parity objectives are in the family of randomised, history-dependent and infinite
memory strategies, apart from sure parity objectives, which only require pure memo-
ryless strategies. For the work presented in this thesis, all computed strategies need
randomisation and some need finite memory. Furthermore, strategy synthesis is per-
formed using model checking algorithms for the different types of properties, and thus
have the same computational complexity.

15

2.2.2 Symbolic and Hybrid Methods in Synthesis and Verifi-
cation

Symbolic algorithms and data structures have been applied to and, in some contexts,
revolutionised model checking. They helped to expand the scope of applications by
providing succinct representation of models and strategies as well as algorithms that
deal with entire regions of the state space instead of individual states, which meant
considerable gains in performance and scalability. The use of Binary Decision Dia-
grams (BDDs) [130] and Multi-terminal Decision Diagrams (MTBDDs) [209] proved
to be pivotal for modelling and verifying large-scale models in both deterministic and
probabilistic contexts [161, 91, 172]. The implementation of BDD and MTBDD-based
model checking procedures are the very backbone of well known model checkers such
as SMV and PRISM, and since then other variants have been developed and used to
represent and verify both discrete and continuous systems [216, 36]. A prototype of
a symbolic MTBDD-based engine for zero-sum verification of turn-based stochastic
games was also developed within the context of the work presented in this thesis and
used to achieve better scalability on a case study for safe navigation [121]. Similarly,
SAT solvers have also been used in verification and some authors have analysed the
trade-offs between the different encodings [20, 21]. We refer the reader to [22] for
a comprehensive survey on the matter. More recently, exciting work has been done
combining SAT solvers and model counting. Fremont, Rabe and Seshia in [88] com-
bine sampling techniques with a SAT solver and maximal model counting to compute
reachability probability values over runs in a discrete-time Markov chain, a method we
believe could also be applied for computing optimal equilibria for games in strategic
form.

2.3 Model Checking Tools for Games and Applica-
tions

Numerous other applications of (stochastic) games have been developed within and
outside Computer Science such as in engineering [153], operations research [61], and
medical fields [197]. Games have also been applied to derive strategies for patrol
planning [215], port defence [6] and infrastructure protection [92]. There is also a clear
link between the fields of strategy synthesis and control theory. Although the latter
is typically applied to systems with continuous dynamics, those can be approximated
through discretisation, which allows for the automatic synthesis of controllers that

16

satisfy temporal logic specifications in both non-stochastic [18, 132] and stochastic
settings [193, 212]. Naturally, the process of discretisation introduces errors but efforts
have been made in the direction to bound them and provide formal performance
guarantees [190, 195].

A variety of tools have been designed to provide support for probabilistic veri-
fication of non-competitive systems. General purpose probabilistic model checkers
such as PRISM [135], MRMC [126] (which relies on PRISM or PEPA [113] spec-
ifications), STORM [112], iscasMC [103], PAT [191] and the Modest Toolset [110]
can be used to verify discrete and continuous-time probabilistic models, including
nondeterministic and timed variants such as MDPs and PTAs. PRISM, STORM
and MultiGain [122] can also be used for multi-objective probabilistic verification of
MDPs. LiQuor [11] is another tool that supports MDP verification for models written
as Probmela programs [12] against LTL properties.1 MCMAS [147], a model checker
for non-stochastic multi-agent systems, makes use of an extension of the MOCHA
modelling language [2] and supports the verification of ATL specifications, in addi-
tion to different epistemic operators. MCMAS and MOCHA both utilise symbolic
representations based on BDDs to achieve better scalability. The well-known model
checker SPIN [114] supports LTL verification for systems specified in Promela [115]
and counts among its many case studies the analysis of multi-agent systems [27] de-
veloped by translating AgentSpeak [26] into Promela. Among other relevant and
emerging specification formats that can be used for probabilistic models we men-
tion probabilistic guarded-command language (pGCL)[156], (conditional probabilistic
guarded-command language) cpGCL[100], dynamic fault trees (DFT)[81, 178], gen-
eralized stochastic Petri nets (GSPN)[154] and JANI [38]. Other specialist tools for
non-competitive models (with some support for verification of probabilistic models)
include PARAM [102], COMICS [119], PROPhESY [78], PLASMA [120], COSMOS
[15] and CADP [94].

A limited number of tools have been developed to provide support for zero-sum
verification and equilibria computation for normal form and extensive games. Pre-
vious versions of PRISM-games [144] already supported verification of turn-based
stochastic games for zero-sum and multi-objective temporal probabilistic and reward-
based properties that included reachability, expected reachability, long-run average
and ratio reward. GIST [49] allows the analysis of ω-regular properties for probabilis-
tic games, but again focuses on turn-based, not concurrent, games. GIST has among
its features the ability to perform synthesis of assumptions for the environment so

1LiQuor did not appear to be maintained or accessible at the time of writing of this document.

17

that a given objective can be achieved in case no controller at first can be constructed.
GAVS+ [58] is a general-purpose tool for algorithmic game solving, supporting turn-
based and (non-stochastic) concurrent games, but not concurrent stochastic games.2

For non-stochastic games, model checking tools such as PRALINE [33], EAGLE [198]
and EVE [118] support Nash equilibria, as does MCMAS-SLK [40] via strategy logic.
MOCHA [2] supports model checking and synthesis for ATL (Alternating-time Tem-
poral Logic) specification, also for non-stochastic games. General purpose tools such
as Gambit [159] can compute a variety of equilibria for normal form and extensive
games but, again, not for stochastic games. Gambit can be used both as a standalone
tool and a library, and supports games with more than two players by implementing
several methods for equilibria computation including support enumeration, simplicial
subdivision, function minimisation, and linear complementarity among others. Ga-
meTracer is another general purpose tool that can be used either through a command
line interface or a C library, whose implementation was also incorporated into Gambit.
It can solve games in normal form with two players or more and implements the global
Newton method of Govindan and Wilson [97], as well as their iterative polymatrix
algorithm [98], which performs better but does not provide any theoretical guarantees
of convergence. Nashpy [129] was developed as a Python library and also supports
computation for two-player games in normal form implementing Lemke-Howson [145]
as well as support and vertex enumeration.

2.4 Summary

In this chapter, we presented an overview of previous works concerning the topics of
equilibria computation, model checking and strategy synthesis for stochastic games
and the use of different symbolic methods within verification. We have also covered
different applications and related tools. Through the referenced works we have iden-
tified a gap when it comes to verification algorithms and a framework for concurrent
stochastic games that encompasses modelling, model checking and strategy synthesis.
Particularly concerning equilibria computation, algorithmic solutions for extensive
concurrent games have been few and far between. Moreover, although methods for
computing values for zero-sum objectives had been previously developed, there was
a lack of tool support and experimental results for verification. This thesis aims to
develop a comprehensive framework to address this gap.

2Neither GAVS+ nor GIST appear to be maintained or accessible via the links provided in the
respective publications at the time of writing of this document.

18

CHAPTER 3

Background

Contents
3.1 Notation . 20

3.2 Game-theoretic Concepts 21

3.3 Stochastic Models . 25

3.4 Properties of Stochastic Models 28

3.5 The Logic PCTL . 31

3.6 Model Checking Properties of MDPs 34

3.7 Summary . 38

In this chapter, we review concepts, definitions and known results that we use in
the remainder of this thesis. We start by introducing some preliminary notation and
reviewing game-theoretic concepts such as matrix and bimatrix games, strategies,
and Nash equilibria. Next, we review the probabilistic models DTMCs (discrete-
time Markov chains and MDPs (Markov decision processes). In addition, we present
various notions of strategies, objectives and specifications that form the foundation
of our strategy synthesis and model checking algorithms. We then go through model
checking methods for MDPs, such as reductions to linear programming as well as
value iteration. Finally, we present an overview of the property specification logic
PCTL and develop examples to illustrate the connection between its semantics and
verification methods.

19

3.1 Notation

In this section, we introduce background notions and notation that will be used
throughout this document.

Tuples and Sequences. Given sets A1, A2, · · · , An, we define the Cartesian product
A1 × A2 × · · · × An as the set of tuples {(a1, a2, · · · , an) | ∀i, ai ∈ Ai}. Given
a tuple a = (a1, a2, · · · , an), we denote by ai the ith component, a−i the tuple
without the ith component, i.e., a−i = (a1, · · · , ai−1, ai+1, · · · , an) and a−i[a

′
i] =

(a1, · · · , ai−1, a
′
i, ai+1, · · · , an) the tuple resulting from replacing the ith element by

a′i. Given a finite sequence ρ = a0a1 · · · an, we denote its length by |ρ| def= n + 1 and
define first(ρ)

def
= a0 and last(ρ)

def
= an. A prefix of a sequence ρ is a finite sequence

κ such that ρ = κρ′ for some sequence ρ′.

Probability. A discrete probability distribution (also just referred to as distribution)
over a countable set E is a function µ : E → [0, 1] such that

∑
e∈E µ(e) = 1. We

denote by Dist(E) the set of discrete probability distributions over E. A support
of a distribution µ ∈ Dist(E) is then defined as supp(µ)

def
= {e ∈ E | µ(e) > 0}.

A distribution µ ∈ Dist(E) is Dirac if µ(e) = 1 for some e ∈ E. We define the
product between two distributions µ1 ∈ Dist(E1) and µ2 ∈ Dist(E2) as µ1×µ2, where
µ1 × µ2(e1, e2) = µ1(e1) · µ2(e2) for all e1 ∈ E1 and e2 ∈ E2. We now define concepts
related to probability measure as presented in [134]. We refer the reader to [23] for a
comprehensive treatment of the topic.

Definition 3.1.1 (σ-algebra). Let Ω be an arbitrary non-empty set and F a family
of subsets of Ω. We say that F is a field on Ω if:

1. the empty set ∅ is in F ;

2. whenever A is an element of F , then the complement Ω\A is in F ;

3. whenever A and B are elements of F , then A ∪B is in F .

A field of subsets F is called a σ-algebra if it is a field closed under countable union:
whenever Ai ∈ F for i ∈ N, the ∪i∈NAi is also in F . The elements of a σ-algebra are
called measurable sets, and (Ω,F) is called a measurable space. A σ-algebra generated
by a family of sets Ai, denoted σ(A), is the smallest σ-algebra that contains A.

Definition 3.1.2 (Measurable space). Let (Ω,F) be a measurable space. A function
P : F → [0, 1] is a probability measure on (Ω,F) and (Ω,F ,P) a probability space,
if P satisfies the following properties:

20

1. P(Ω) = 1;

2. P(∪iAi) =
∑

iP(Ai) for any countable sequence of mutually disjoint sets
A1, A2, . . . of F ;

The set Ω is called the sample space and the elements of F events.

Definition 3.1.3 (Random variable). Let (Ω,F ,P) be a probability space. A func-
tion X : Ω→ R is said to be a random variable. Given a random variable X : Ω→ R,
and the probability space (Ω,F ,P), the expectation or average value with respect to
the measure P is given by: E[X] =

∫
ω∈Ω

X(ω)dP .

Relations and Functions. A relation R between sets A and B is a subset R ⊆
A×B, and is a function from A to B, written f : A→ B, if no a ∈ A has more than
one b ∈ B such that R(a, b). A function is total if f(a) is defined for all a, and it is
partial if there can be unassigned a ∈ A.

3.2 Game-theoretic Concepts

In this section, we review key concepts and results from game theory.

Normal form games. Normal form games (NFGs) are simple game representations.
They define a set of players, a set of actions for each player and a utility function that
describes, for each player, a payoff based on the collective choice. NFGs are one-shot
games, that is, concurrently, each player makes a choice and the game ends. Table 3.1
shows the representation of a two-player prisoner’s dilemma in normal form. In the
table, columns a, u1 and u2 represent the collective choice, player 1’s utility and player
2’s utility, respectively. In prisoner’s dilemma we have the notions of cooperation and
defection, which are represented by ci and di in the action tuples, i ∈ {1, 2}. For
instance, if player 1 chooses to cooperate and player 2 chooses to defect, resulting in
the action tuple (c1, d2), the former gets a payoff of −4 while the latter gets 0.

a u1 u2

(c1, c2) −1 −1
(c1, d2) −4 0

a u1 u2

(d1, c2) 0 −4
(d1, d2) −3 −3

Table 3.1: Two-player prisoner’s dilemma in normal form.

Extensive form games. Extensive form are representations that do not necessarily
assume players in a game make choices simultaneously. Thus, they can be used

21

to describe games possibly composed of multiple rounds and in which the outcome
of a given round may have an influence in the next. Extensive form games are
often represented by trees or graphs. Normal form games can be represented by
extensive games and a reverse transformation is also possible. In Figure 3.1, we show
the representation of the two-player prisoner’s dilemma example in extensive form.
We identify player i nodes as pi. The dotted line between the p2 nodes indicates
they belong to the same information set, meaning that, given we are representing
a concurrent game, player 2 makes its choice without knowing the move previously
taken by player 1.

p1

p2

(−1,−1) (−4, 0)

p2

(0,−4) (−3,−3)

c1

c2 d2

d1

c2 d2

Figure 3.1: Two-player prisoner’s dilemma in extensive form.

Strategies and strategy profile. A strategy is a way to resolve nondeterminism
in both normal form and extensive games. A mixed strategy is one described by a
probability distribution over a set of actions. A pure strategy is one where the prob-
ability distribution is Dirac. A strategy profile is defined as a tuple that contains a
strategy for each player in the game. For instance, considering the two-player pris-
oner’s dilemma, we could define a strategy profile σ = (σ1, σ2), with a pure strategy
σ1 = [1 7→ c1] for player 1, and a mixed strategy σ2 = [1

2
7→ c2,

1
2
7→ d2] for player 2.

Payoff or utility. A payoff or utility is a real value that represents the outcome of
a game for a given player. In both normal form and extensive games, the collection
of payoffs can also be called a payoff vector. Given players may adopt different types
of strategies, it is possible to compute the vector of expected payoffs as a weighted
sum by taking into account the probability of each player playing each action. E.g.,
for the two-player prisoner’s dilemma, we have payoffs defined for players 1 and 2
under the columns indexed by ui of Table 3.1 or as payoff vectors in the leaf nodes of
Figure 3.1.

Dominating and weakly dominating strategies. A dominating strategy is a
pure strategy that guarantees a player a payoff that is strictly higher than that of any
other pure strategy, regardless of what strategies other players may play. A weakly

22

dominating strategy on the other hand is a pure strategy that guarantees a payoff
at least as high as any other pure strategy. Let us consider again the two-player
prisoner’s dilemma example, then strategy σ1 = [1 7→ d1] is a dominating strategy for
player 1. Similarly, picking d2 with probability 1 is a dominating strategy for player
2.

Zero-sum and nonzero-sum games. A game is said to be zero-sum if all players
have strictly opposing goals, that is, the payoff of a player is equal to the negation of
the sum of the other players in the game. A game is nonzero-sum if the sum of the
players’ payoffs is not necessarily zero. Table 3.2 shows a classic example of a zero-
sum game called matching pennies. Columns a, u1 and u2 represent the collective
choice, player 1’s utility and player 2’s utility, respectively. In this example, each
player has a coin for which they may choose the value to be heads or tails. If the
coins match, player 1 wins the round, which is indicated by being awarded a payoff
of 1, while player 2 gets a payoff of −1. If the coins do not match, their payoffs are
inverted. It is easy to see that the sum of payoffs is always zero, no matter what
strategy the players may choose to adopt. We refer to the NFG description of the
two prisoner’s dilemma in Table 3.1 as an example of a nonzero-sum game.

a u1 u2

(h1, h2) 1 −1
(h1, t2) −1 1

a u1 u2

(t1, h2) −1 1
(t1, t2) 1 −1

Table 3.2: Matching pennies game in normal form.

Matrix and bimatrix games. A matrix game is a representation of a two-player
zero-sum normal form game in matrix form. It uses the fact that, in a two-player
zero-sum game, the payoffs of a player are the negated values of the other. Simi-
larly, a bimatrix game is used to describe a two-player nonzero-sum game by defining
two separate payoff matrices. Figure 3.2 shows the matching pennies and prisoner’s
dilemma represented as matrix and bimatrix games, respectively. We use the notation
Z to refer to a matrix representation of a game across this document. In Figure 3.2,
matrix Zi represents then the payoffs of player i given the different possible plays
indicated by the actions associated to the rows and columns.

Nash equilibrium. A Nash equilibrium (NE) is a strategy profile from which it is
not advantageous to any player to deviate. Both in normal and extensive form games,
there can be multiple equilibria. Also, there could be different types of equilibria. An
equilibrium can be maximal with respect to the payoff of a given player, can be

23

Z =

(h2 t2

h1 1 −1
t1 −1 1

)
(a) Matching pennies.

Z1 =

(c2 d2

c1 −1 −4
d1 0 −3

)
Z2 =

(c2 d2

c1 −1 0
d1 −4 −3

)
(b) Two-player prisoner’s dilemma.

Figure 3.2: Matrix representations.

minimal with respect to the difference between the payoffs of the players, can be
maximal in terms of the sum of payoffs, etc. The strategy profile where both players
defect in a prisoner’s dilemma is a Nash equilibrium. It is easy to see that, if one of
the players chooses to defect, the better option for the other is to also defect.

Social welfare and social cost Nash equilibria. A social welfare Nash equilibrium
(SWNE) is an NE that maximises the sum of the players’ payoffs. A social cost
Nash equilibrium (SCNE) is an NE that maximises the sum of the players’ payoffs
considering the game where all payoffs are negated (thus, minimising the sum in the
original game). If we consider again the prisoner’s dilemma example, a SWNE would
be given by the strategy profile where both players defect and get−3 each. Conversely,
the only SCNE is given when both players cooperate (by playing ci, that is), which
would yield a payoff of −1 for each. Note that, the SWNE equilibrium gives a lower
value although it is characterised by the intention to maximise the sum of payoffs.
We introduce SCNE for convenience, in addition to working with the classical notion
of SWNE. We highlight that our definition of SCNE is based on a broader definition
of an NE, that is, a strategy profile from which no player has an incentive to deviate
but considering that the players’ objective is to minimise their rewards instead of
maximising them. Differently from SWNE, which can be computed by finding the set
of NE and selecting the one that maximises the sum of payoffs, SCNE is computed
over a modified game and therefore does not constitute a subset of the NE found in
the original game. A formal definition is presented in Chapter 5.

Backward induction. Backward induction is a method for computing Nash equi-
libria. When applied to a game tree description such as that used for the two-player
prisoner’s dilemma of Figure 3.1, it works by identifying the equilibria at the leaf
nodes of the tree and propagating them up the tree. Figure 3.3 shows the applica-
tion of backward induction to compute a sample Nash equilibrium for the two-player
prisoner’s dilemma. We start at nodes identified by the label p2, where we consider
choices of player 2. On the left node, player 2 would choose d2 over c2 given that,

24

assuming that player 1 would play c1, it would be preferable to get 0 than −1. Sim-
ilarly, considering the choices on the right node, assuming that player 1 would play
d1, player 2 would also choose d2 over c2 as it would be preferable to get −3 than
−4. We then propagate the payoff vectors upwards and apply the same reasoning
when considering the choices of player 1, arriving at the equilibrium payoff vector
of (−3,−3). A detailed presentation and algorithm for backward induction can be
found in [188].

p1

(−3,−3)

p2(−4, 0)

(−1,−1) (−4,0)

p2 (−3,−3)

(0,−4) (−3,−3)

c1

c2 d2

d1

c2 d2

Figure 3.3: Backward induction on two-player prisoner’s dilemma.

Iterated games. Iterated or repeated games are those where players play a known
or unknown number of rounds of the same normal form game. For a known number
of rounds, these games can also be represented by trees. Otherwise, the extensive
game representation using trees is no longer possible, as it could result in an infinite
tree and thus without terminal nodes. Given the overall utility function for such
games is potentially infinite, it is common to apply concepts such as average reward
and discounted reward to define a player’s payoff. Average reward is computed as
the limit of the sum of stage payoffs divided by the number of rounds, as it grows
to infinity. On the other hand, a discounted reward is computed by summing stage
payoffs multiplied by a factor strictly smaller than one to the power of the number
of rounds already played. Provided the utility function for iterated games can be
expressed by either criterion, it is also possible to reason about dominated strategies
and equilibria in a similar way as for one-shot normal form games. In Chapter 4, we
introduce stochastic games, a representation that can be used for defining both finite
and infinite iterated games.

3.3 Stochastic Models

In this section, we review simple probabilistic models that are needed for developing
our model checking and strategy synthesis algorithms. More specifically, we focus

25

on models capable of specifying nondeterministic choices, which serve as a basis for
subsequently defining the stochastic games modelling formalism.

3.3.1 Markov Decision Processes

Markov decision processes (MDPs) are a class of models that allow for the specifi-
cation of both probabilistic and nondeterministic behaviour. MDPs are commonly
described as transition systems with actions and probability values associated to the
connecting edges. The possible next states of a system modelled by and MDP is
determined by the action chosen by an agent or controller and the corresponding
probability distribution. For that reason, this class of models is also known as 11

2
-

games, considering the fact that, although the agent has control over the action chosen
at each state, the next state is determined probabilistically according to a distribution
over the set of states. Here we consider a labelled version of MDPs, where each state,
and thus each possible configuration of the system being modelled, can be identified
by a set of labels. Labels can be defined as predicates over variables or just simple
tags. More formally, we have:

Definition 3.3.1 (Markov decision process). A Markov decision process (MDP) is a
tuple M = (S, S̄, A, δ,AP ,L) where:

• S is a finite set of states and S̄ ⊆ S is a set of initial states;

• A is a finite set of actions;

• δ : S×A→ Dist(S) is a partial probabilistic transition function;

• AP is a set of atomic propositions;

• L : S → 2AP is a labelling function.

The progression of a system modelled as an MDP depends on the agent for re-
solving the nondeterministic choices at each state. Naturally, it is possible to define
an MDP for which only one choice is present at each state. Probabilistic models with
that characteristic are known as Discrete-time Markov chains (DTMCs). DTMCs are
also widely used in probabilistic verification and as a modelling paradigm in many
domains of science. They possess what is called Markov or memoryless property, that
is, their next state depends solely on the current state and the probabilities associated
to the transition function. Here we define DTMCs as a restricted class of MDPs as
follows:

26

Definition 3.3.2 (Discrete-time Markov chain). An MDP M = (S, S̄, A, δ,AP ,L) is
a DTMC if there is precisely one action enabled in a given state. Given there is no
nondeterminism in a DTMC, the action set A can also be dropped from the definition.

The behaviours of a system modelled as a MDP are represented by runs or paths
over the MDP. A path over an MDP M is a possible infinite sequence of state-action
pairs π = s0

a0−→ s1
a1−→ s2

a2−→ . . . such that for all i > 0, si ∈ S, δ(si, ai)(si+1) > 0. In
the following, we denote π(i) the (i+1)th state of π and by π[i] the action associated
with the (i+1)th transition. Throughout this document, we refer to the set of finite
and infinite paths of a MDP M as FPathsM and IPathsM, respectively. Similarly, we
write FPathsM,s and IPathsM,s to denote the sets of finite and infinite paths starting in
a state s. The set of terminal states is defined as the set {s ∈ S | ∀a ∈ A, δ(s, a) = s}.
An end-component of an MDP M is a subset of states S ′ ⊆ S such that, for all pairs
s, t ∈ S ′ there exists a strategy for reaching t from s and a strategy for reaching s
from t both with probability one. A maximal end-component is an end-component
that is not contained by any other end-component. Lastly, a bottom end-component
is a maximal end-component that is closed under probabilistic branching.

In order to investigate and reason about the behaviours of a system modelled as
an MDP, a probability measure can be defined over its set of infinite paths using the
σ-algebra generated by the cylinder sets of finite paths [128]. With the purpose of
defining a probability measure over paths in an MDP, we first need to have a way to
resolve nondeterministic choices. As for NFGs, this will also be done by means of a
strategy.

Definition 3.3.3 (Strategy). A strategy σ for an MDP M maps finite paths to a
distribution over the action set, i.e., its is a function of the form σ : FPathsM →
Dist(A) such that if σ(π)(a) > 0 then a ∈ A(last(π)). The set of all strategies is
denoted as Σ.

A strategy σ and an initial state s of an MDP M induces a possibly infinite
DTMC, on which a probability measure ProbM,s can be defined. A cylinder set C(π)

of a finite path π = s0
a0−→ s1

a1−→ s2
a2−→ . . . is the set of infinite paths with prefix π.

The probability associated to a cylinder set Cσ(π) of a finite path π = s0
a0−→ s1

a1−→
. . .

ak−1−−→ sk of length k + 1 is defined as:

Pσ(π) =
k−1∏
i=0

σ(π′·si)(ai) · δ(si, ai)(si−1)

where π′ is a prefix of π.

27

We can then associate a probability space (IPathsσM,s, Fσs , ProbσM,s) with an MDP
M in order to compute the probabilities of events or runs in a system. We define a set
of outcomes as the infinite paths IPathsM of M. The set Fσs is the smallest σ-algebra
that contains all cylinder sets of all π ∈ FPathsM, and ProbσM,s is the unique measure
such that ProbσM,s(Cσ(π)) = Pσ(π) for all π ∈ FPathsσM,s.

Example 1. Consider the MDP shown in Figure 3.4. It is defined by the set of states
S = {s0, s1, s2, s3, s4, s5}, with an initial state s0. State s4 is labelled with atomic
propositions a and b (L(s4) = {a, b}), state s2 is labelled with atomic proposition c

and all other states have an empty set of labels. The model has one terminal state s3.
The probabilistic transition function is defined to accommodate the choice of actions
on states, for instance, for state s4 it can be represented as δ(s4, w) = [1

2
7→ s3,

1
2
7→ s5]

and δ(s4, e) = [1 7→ s1]. If we consider a memoryless strategy σ(π · s0) = [1 7→ e],
σ(π · s4) = [1 7→ w] for all π ∈ FPathsM and the initial state s0, we then have
an infinite path s0

e−→ s1
w−→ s4

w−→ (s3
s−→)ω over the MDP. The probability of this

path equals 1
2
· 1

2
= 1

4
. We omit the definition of the strategy for states where only

one action can be chosen. There are three end-components, {s3} and {s2, s5} and
{s0, s1, s4}.

s0 s1 s2 {c}

s3

s4{a, b}

s5

n

e

w

1
2

1
2

n1
2

1
2

s

e

w

1
2

1
2

s
2
3

1
3

Figure 3.4: An example of an MDP.

�

3.4 Properties of Stochastic Models

In this section, we review a set of commonly studied behavioural properties of prob-
abilistic models. The types of properties considered here can also be applied to
stochastic games and will be fundamental to the understanding of the model check-
ing specifications and algorithms presented later. A specification is a way to formally

28

define desirable properties of a model. Based on a specification, it is possible to
synthesise strategies that assure the system will behave accordingly, or run quali-
tative/quantitative analysis over the system’s model. Naturally, strategy synthesis
only makes sense for nondeterministic systems such as MDPs and games, where it is
necessary to also specify whether we are usually interested in computing the max-
imal or minimal expected value associated to the occurrence of an event, or even
consider different criteria such as discounting and average. We will focus on prop-
erties based on reachability and reward-based objectives and give the corresponding
problem formulation.

3.4.1 Probabilistic Reachability

Reachability is one of the most fundamental types of properties used in model check-
ing. In probabilistic models, verifying reachability properties consists in computing,
for a given initial state, the probability of reaching a state or set of states at some
point during the execution of the system. More formally, given an initial state s and a
set of target states T ⊆ S, the probability of eventually reaching T from s in a MDPM

for a given strategy σ is the probability measure associated to the paths starting in s
that also contains a state in T , that is, ProbσM,s({π ∈ FPathsσM,s | ∃i ∈ N . π(i) ∈ T}).
Probabilistic reachability properties can be bounded and unbounded. Bounded prop-
erties are parameterised by an integer representing the length of the paths to be
considered. As we are dealing with discrete models, each transition represents one
time step, and therefore limiting the length of the paths corresponds to limiting the
time horizon that will be investigated. On the other hand, unbounded properties are
computed on potentially infinite paths, which represent the long-run behaviour of a
system.

3.4.2 Reward-based Properties

The notion of rewards or costs are used throughout verification as a way to measure
the impact of occurrences of a particular event during a system’s execution. It is
also frequently used in AI applications as a way to incentivise or discourage a given
behaviour, as it is done for instance in reinforcement learning. We already presented
a similar notion in the context of normal form games, which then we called payoffs or
utilities. Here, we similarly define a reward structure as a tuple of reward functions
r = (rS, rA), where rS : S → Q is a state reward function (which maps a state to a
rational value that is accumulated whenever the state is reached in a path) and an

29

action reward function rA : S × A→ Q (that associates state and action tuple pairs
to a rational value that is accumulated when the action is selected in the state). It is
worth noting that action rewards are undefined for DTMCs.

During an execution of a model, as states are visited and choices are made, rewards
are accumulated and we can study properties based on different criteria. In this
section we will focus on instantaneous, cumulative, total and expected reachability
rewards, which will be used later for developing our model checking algorithms. As
it is the case for probabilistic reachability, reward properties can be divided into
bounded and unbounded, with instantaneous and cumulative belonging to the first
group and total and expected reachability to the second. In the following, we define
a random variable X : IPaths→ Q, which we call an objective (or utility function),
and compute rewards by calculating the expected value of that variable over paths
starting from a state s, denoted Es[X], according to the type of property in question.

Cumulative Rewards. Cumulative rewards allow us to compute the sum of payoffs
accumulated during the system’s execution up to a specific time horizon. In order to
compute such values we unroll the execution of the system by calculating the weighted
sum of action and state rewards obtained in paths of a given length. Formally, the
problem involves defining a random variable X(π) =

∑k−1
i=0 (rA(π(i), π[i]) + rS(π(i)))

for paths π of length k. The reward values are then computed by multiplying these
variables by the probabilities associated to these paths.

Instantaneous Rewards. Instantaneous rewards allow us to reason about a payoff
obtained in a particular moment of the system’s execution. As states in a discrete
system represent a specific point in time, for probabilistic systems the problem is
to compute the weighted sum of the state rewards obtained after the number of
transitions specified by the bound. Formally, we define a random variable X(π) =

rS(π(k)) for some instant k ∈ N and multiply these values by the probability of
reaching the corresponding states at π(k).

Expected Total Rewards. Expected total reward properties are extensively used
in probabilistic model checking. They are often employed as a means to estimate
resource consumption and running time over the system execution. Given they are
not bounded by a specific event or time horizon, these type of properties may not
be applicable to all systems and often rely on assumptions about how rewards are
accumulated, the underlying graph structure or are alternatively computed using a
discount factor. Here, we compute the reward of a path as the sum of action and state
rewards on that path. For example, for a MDP M, a strategy σ and state s ∈ S, the

30

expected total reward under σ is expressed as Eσs [X] =
∫
π∈IpathsσM,s

XdProbσM,s, where

X(π) =
∑∞

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
.

Expected Reachability. Expected reachability is unbounded with respect to time
but bounded in the sense they are computed up to a specific point of the execution
of the system, which is expressed by a set of target states. Naturally, there can be
different ways of computing such values, concerning more specifically the measures
associated to paths that never reach a target. Here, we will use a definition that
associates an infinite value to paths that do not reach a state from the target set.

3.4.3 Parity Objectives

Parity objectives can encode any ω-regular path properties such as Büchi and Co-
Büchi, which can be used to express repeated reachability, persistence and other prop-
erties. Given a model and a parity function of the form P : S → {0, . . . , d − 1},
where d is the number of priorities, a parity objective expresses the probability that
a path satisfies the parity condition, that is, that the lowest priority of the states
occurring infinitely often in the path is even. We will make use of this type of objec-
tives in pre-computation algorithms for computing zero-sum properties as described
in Chapter 4.

3.5 The Logic PCTL

In this section, we present PCTL (Probabilistic Computation Tree Logic) [107, 134], a
probabilistic extension of the logic CTL. Although it is used to express properties for
both DTMCs and MDPs, here we present the semantics for the latter only. The case
for DTMCs follows similarly with the simplification of not quantifying over strategies.

Definition 3.5.1 (Probabilistic Computation Tree Logic).

φ := true | a | ¬φ | φ ∧ φ | P∼q[ψ] | Rr∼x[F φ]

ψ := Xφ | φ U φ

where a ∈ AP is an atomic proposition, ∼∈ {<,6,>, >}, q ∈ [0, 1], x ∈ Q, r is a
reward structure.

Similarly to CTL, PCTL is a branching-time temporal logic, where the formulae
are divided into state (φ) and path (ψ) formulae. In PCTL, we can define the usual
equivalences F φ ≡ true U φ, G φ ≡ ¬(F ¬φ), etc. We write s |= φ, for some state s ∈

31

S, to denote that s satisfies the state formula φ. Similarly, for a path π ∈ IPathsM,
we write π |= ψ to denote that π satisfies formula ψ. The satisfaction relation |= for
PCTL is defined inductively for all sates of MDP M = (S, S̄, A, δ,AP ,L) as follows:

s |= true always

s |= ap ⇔ ap ∈ L(s)

s |= ¬φ ⇔ s 6|= φ

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= P∼q[ψ] ⇔ ∀σ ∈ Σ . P robσM,s(ψ) ∼ p

s |= Rr∼x[F φ] ⇔ ∀σ ∈ Σ . EσM,s[X] ∼ q

where, for any path π ∈ IPathsM:

π |= Xφ ⇔ π(1) |= φ

π |= φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

In the definition above, we denote by ProbσM,s(φ) the probability of paths satisfying
ψ under σ, that is, ProbσM,s(ψ) = ProbσM,s({π ∈ IPathsσM,s | π |= ψ}). The random
variable for expected reachability formula Rr∼x[F φ] is as follows:

X(π) =

{∑kφ
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
if π(j) ∈ T for some j ∈ N

∞ otherwise

where kφ = min{j − 1 | π(j) ∈ T} and T = {s ∈ S | s |= φ}, respectively.

3.5.1 Model Checking For PCTL

Model checking for PCTL formulae follows the same principle as other branching-
time logics, where we recursively compute subsets of satisfying states starting from
the most deeply nested sub-formulae. Computation of the set for atomic propositions,
negation and conjunction is done in the usual manner. Also, we denote by Sat(φ) =

{s ∈ S | s |= φ} the set of states that satisfy formula φ. For the case of φ being of
type P∼q[ψ] we can make use of the following equivalences as in [19, 172]:

P∼q[ψ]⇔ inf
σ∈Σ

ProbσM,s(ψ) ∼ q if ∼ ∈ {>, >}

and
P∼q[ψ]⇔ sup

σ∈Σ
ProbσM,s(ψ) ∼ q if ∼ ∈ {6, <}

32

which means that it is enough to compute the optimal values for the property over the
MDP and compare it to the bound. The computation for ψ = Xφ can be performed
as follows:

inf
σ∈Σ

ProbσM,s(Xφ) =

0 if ∃a ∈ A . supp(δ(s, a)) ∩ Sat(φ) = ∅
min
a∈A

∑
s′∈Sat(φ)

δ(s, a)(s′) otherwise.

sup
σ∈Σ

ProbσM,s(Xφ) =

1 if ∃a ∈ A . supp(δ(s, a)) \ Sat(φ) = ∅
max
a∈A

∑
s′∈Sat(φ

δ(s, a)(s′) otherwise.

For the remaining operators, probability (P∼q[φ1 U φ2]) and rewards (Rr∼x[F φ]),
model checking can be reduced to probabilistic reachability and expected total re-
wards, respectively. The computation for ProbσM,s(φ1 U φ2) can be done either by
linear programming or value iteration as described in Section 3.6 by firstly perform-
ing the following reduction: we make all states in s 6∈ Sat(φ1) ∪ Sat(φ2) absorbing,
and for the remaining states we compute the maximal/minimal probability to reach
a state in Sat(φ2). Lastly, we can make use of a similar equivalence when computing
formulae of the type Rr∼x[F φ]:

Rr∼x[F φ]⇔ inf
σ∈Σ

EσM,s[X] ∼ p if ∼ ∈ {>, >}

and
Rr∼x[F φ]⇔ sup

σ∈Σ
EσM,s[X] ∼ p if ∼ ∈ {6, <}

To then compute infσ∈Σ EσM,s[X], it is first necessary to identify the states for which
this value is infinite. By definition of X, that can only happen if for all strategies
the probability to reach reach T is less than one, which can be computed by checking
the formula P<1[F φ]. For all other states, the value is finite and the computation of
the minimum expected reward values can be achieved in the following way. Firstly,
we set the reward for all states that satisfy φ to zero, that is, we construct a new
reward structure r′ such that, for all a ∈ A, r′S(s) = r′A(s, a) = 0 if s ∈ Sat(φ), and
r′S(s) = rS(s) and r′A(s, a) = rA(s, a), otherwise. Secondly, we remove zero-reward
end components, which can be done using the methods described in [72]. We can
then compute the values for minimal expected total rewards over the modified MDP
M′ by taking into account the new reward structure r′ following the methods detailed
in Section 3.6.

Finally, in order to compute supσ∈Σ EσM,s[X], we again compute the set of states
that satisfy P<1[F φ]. As previously, these states get the value of infinity because

33

there exists a strategy that does not reach T with probability one. For any other
state, we build a new reward structure r′ as before and compute maximal expected
total reward values over the modified MDP M′ following the methods described in
Section 3.6. PCTL will be used to express properties for MDPs and we integrate model
checking algorithms into the methods developed for computing equilibria properties
for concurrent stochastic games in Chapter 5.

3.6 Model Checking Properties of MDPs

In this section, we describe model checking methods for probabilistic reachability and
expected total rewards for MDPs. Model checking for these types of properties over
DTMCs can be reduced to solving a set of linear equations [65]. The solution of the set
of equations consists of the probabilistic reachability or expected total reward values
for every state in the DTMC. Classical methods such as Gaussian elimination can be
applied to solve the set of linear equations in polynomial time. Other solutions include
iterative methods such as Jacobi and Gauss-Seidel. Alternatively, value iteration can
also be applied to approximate such values.

As detailed in Section 3.5, verification of different PCTL operators can be reduced
to these two types of objectives through modifications to the underlying graphs and
reward structures. Here we show methods that can be used for both exact and
approximate computation, which will also be applied to games in later sections.

3.6.1 Model Checking for MDPs

Linear Programming. Probabilistic reachability values can be computed for MDPs
through linear programming [175, 86]. As for DTMCs, we define the sets S1, S0 and
S?, with the difference being that the set S1 contains the states for which there is a
strategy to reach the set of target states with probability 1, and the set S0 the set of
states from which it is not possible to reach a state belonging to the target set under
any strategy. For all other states, maximal probability values of reaching a target
state can be computed by finding the solution to the following linear program:
Minimise

∑
s∈S xs subject to:

xs >
∑

s′∈S δ(s, a)(s′) · xs′ if s ∈ S?, for all a ∈ A(s)
xs = 1 if s ∈ S1

xs = 0 if s ∈ S0

34

which yields a solution containing maximal reachability probability values for every
state of the DTMC.

Minimal probability values can be computed by finding the solution of the follow-
ing linear program:
Maximise

∑
s∈S xs subject to:

xs 6
∑

s′∈S δ(s, a)(s′) · xs′ if s ∈ S?, for all a ∈ A(s)
xs = 1 if s ∈ S1

xs = 0 if s ∈ S0

which yields a solution containing minimal reachability probability values for every
state of the DTMC.

Linear programming can also be used for computing expected total rewards values
for MDPs. As for DTMCs, we define the sets of states S0 and S?, where S0 is
composed of the states from which a state with non-zero rewards is never reached.
For every other state, we can compute maximal expected total reward values through
the following linear program:
Minimise

∑
s∈S xs subject to:

xs > r(s) +
∑

s′∈S r(s, a) + δ(s, a)(s′) · xs′ if s ∈ S?, for all a ∈ A(s)
xs = 0 if s ∈ S0

which yields the maximal expect total rewards values for each state in the MDP.
Likewise, minimal expected total reward values can be found by solving the fol-

lowing linear program:
Maximise

∑
s∈S xs subject to:

xs 6 r(s) +
∑

s′∈S r(s, a) + δ(s, a)(s′) · xs′ if s ∈ S?, for all a ∈ A(s)
xs = 0 if s ∈ S0

which yields the minimal expect total rewards values for each state in the MDP.

Value Iteration. Value iteration [47] is a widely used method for approximating
optimal values for properties of probabilistic models. Model checking algorithms
that are based on value iteration can be described by a Bellman operator F , which
characterises the set of optimal achievable targets x∗ of an infinite horizon optimi-
sation problem via the Bellman equation x∗ = F (x∗). As for DTMCs, it can be
similarly used to approximate maximal and minimal values for probabilistic reacha-
bility and expected total reward objectives for MDPs [175], provided the appropriate
modifications have been made to ensure convergence as explained in Section 3.5. Its
application to MDPs is slightly more complex as, for each state, it is necessary to

35

iterate through the actions to find the one that maximises or minimises its value in
the next iteration. For approximating probabilistic reachability values, we compute
at each iteration an under-approximation for each state starting from xs = 0 for all
s ∈ S\T . For the maximal case, we define the following Bellman operator:

F (x)(s) =

1 if s ∈ T,

max
a∈A

(∑
s′∈supp(δ(s,a))

δ(s, a)(s′) · xs′
)

otherwise.

Similarly, minimal expected reachability values can be approximated by applying
the following operator:

F (x)(s) =

1 if s ∈ T,

min
a∈A

(∑
s′∈supp(δ(s,a))

δ(s, a)(s′) · xs′
)

otherwise.

As for probabilistic reachability, for the task of computing expected total rewards
the method works by selecting the action that maximises the value for the objective
at each state. As we do not have a set of target sates, we start from xs = 0 for all
s ∈ S. We then have the following operators:
For maximal expected rewards:

F (x)(s) = rS(s) + max
a∈A

rA(s, a) +
∑

s′∈supp(δ(s,a))

δ(s, a)(s′) · xs′

And for minimal expected rewards:

F (x)(s) = rS(s) + min
a∈A

rA(s, a) +
∑

s′∈supp(δ(s,a))

δ(s, a)(s′) · xs′

The bounds on convergence of value iteration algorithms as defined are exponential

in the number of states of the MDP [47]. In practice, however, and also for DMTCs,
the process is stoped earlier with some convergence criterion, e.g., max

s∈S
|x
k
s−x

k−1
s

xks
| < ε

for relative difference or max
s∈S
|xks − xk−1

s | < ε for absolute difference. Methods used to
solve reachability and other verification problems when encoded as linear systems or
LPs can produce results that are more precise than those produced by value iteration.
However, value iteration can be used for problems whose state space sizes would be
hard for LP and linear solvers to handle while producing very good approximations.

36

Example 2. Let us examine again the MDP shown in Figure 3.4 and the PCTL
property Pmax=?[F c], which asks to compute the maximal probability of reaching
a state s for which L(s) ∩ {c} 6= ∅. As for the DTMC, in this example we have
S0 = {s3}, S1 = {s2, s5} and S? = {s0, s1, s4}. Note that this time we include s5

in S1 directly given that, by inspecting the graph, it is possible to see that the only
path starting from s5 that never visits s2, that is, π = (s5

s−→)ω has an associated
probability of (2

3
)∞ = 0. For the states in S? the maximal reachability values can be

computed via the following linear program:
Minimise xs0 + xs1 + xs4 subject to:

xs0 > xs1

xs0 > 0

xs1 >
1

2
· xs0 +

1

2
· xs4

xs4 >
1

2
xs4 > xs1

which gives the values xs0 = xs1 = xs4 = 1
2
. Similarly, if we were interested in com-

puting the value for the property Pmin=?[F c], which asks for the minimal probability
of reaching s2, values could be computed by solving the LP:
Maximise xs0 + xs1 + xs4 subject to:

xs0 6 xs1

xs0 6 0

xs1 6
1

2
· xs0 +

1

2
· xs4

xs4 6
1

2
xs4 6 xs1

which gives the values xs0 = xs1 = xs4 = 0. It is easy to confirm this is indeed
the case as, from s0, which is reachable with probability 1 from both s1 and s4, it
is possible to pick the action n to reach s3 with probability 1 and never leave that
state. Value iteration can also be employed for approximating reachability values
for MDPs. When computing the maximal probability, the algorithm selects at each
state the action that maximises the probability of reaching a target state based on

37

the values of the previous iteration. For Pmax=?[F c] we would then have:

(xs0 xs1 xs2 xs3 xs4 xs5

k=0 0 0 1 0 0 0
)

(xs0 xs1 xs2 xs3 xs4 xs5

k=1 0 0 1 0 0 1
3

)
(xs0 xs1 xs2 xs3 xs4 xs5

k=2 0 0 1 0 1
6

5
9

)
(xs0 xs1 xs2 xs3 xs4 xs5

k=3 0 1
12

1 0 5
18

14
27

)
which would converge to the same values obtained by computing a solution to the
LP. On the other hand, when trying to minimise probability values, we would have:

(xs0 xs1 xs2 xs3 xs4 xs5

k=0 0 0 1 0 0 0
)

(xs0 xs1 xs2 xs3 xs4 xs5

k=1 0 0 1 0 0 1
3

)
(xs0 xs1 xs2 xs3 xs4 xs5

k=2 0 0 1 0 0 5
9

)
(xs0 xs1 xs2 xs3 xs4 xs5

k=3 0 0 1 0 0 14
27

)
which would converge to the same values found when solving the LP. Notice that
the only value that changes across the different iteration is s5, which would converge
according to the equation xk+1

s5
= 2

3
· xks5 + 1

3
to 1.

�

3.7 Summary

In this chapter, we discussed auxiliary definitions, concepts and some of the stochastic
models as well as model checking methods we will make use of in the remainder
of this thesis. We reviewed key concepts from game theory such as normal and
extensive form games, strategies and equilibria. Moreover, we presented a formal
definition of two classes of probabilistic models: DTMCs and MDPs. MDPs along
with the corresponding model checking techniques are particularly relevant to the
work presented in this thesis for several reasons: (i) stochastic games extend MDPs
by either partitioning the state space among different players, in the case of turn-based
games, or by allowing more than one agent to control the transitions made by the

38

system, in the case of concurrent games; (ii) value iteration and linear programming
are also used when verifying games and are the basis for some of the model checking
algorithms presented in subsequent chapters; (iii) we make direct use of MDP model
checking when verifying two-player equilibria properties.

We have also presented PCTL, a branching-time specification logic for proba-
bilistic models, and illustrated the connection between its semantics and the different
model checking methods. Model checking for MDPs can be reduced to linear program-
ming, which can be performed in polynomial time. Naturally, the set of properties
and techniques presented in this chapter is not exhaustive and we refer the reader to
[175, 13] for a comprehensive treatment of the matter. Finally, we show the appli-
cation of exact and approximate methods for computing PCTL property values over
MDPs using linear programming and value iteration, which illustrates the workings
of different parts of the algorithms we will develop in the following chapters.

39

CHAPTER 4

Zero-sum Properties

Contents
4.1 Normal Form Games . 41

4.2 Zero-sum Games and Minimax Strategies 44

4.3 Stochastic Games . 46

4.4 Property Specification . 54

4.5 Model Checking Zero-sum Properties 59

4.6 Strategy Synthesis . 65

4.7 Correctness and Complexity 66

4.8 Summary . 67

In this chapter, we present the theoretical foundations for solving one-shot zero-
sum (matrix) games and develop algorithms for computing zero-sum properties for
stochastic games, which we also formally define. Our method for computing/approx-
imating values for concurrent stochastic games builds on top of existing techniques
for turn-based stochastic games, with the major difference being on how the value for
each local game is computed. We also consider algorithms to compute reward-based
properties with state and action rewards, a feature that general solutions as those to
compute ω-regular objectives lacked.

Concurrent stochastic games are the most general class among probabilistic models
and subsumes turn-based games, MDPs and DTMCs. At each state, multiple players
can choose from a set of actions and the next state in the system is determined
probabilistically according to the collective set of actions. In this chapter, we focus on

40

strictly competitive scenarios, which divide players into those who want to maximise
the value associated to an objective and those who want to minimise that value. We
formally define the two groups as separate coalitions, i.e., sets of players that may
cooperate by synchronising their actions, which produces what we call a coalitional
game.

We extend the logic rPATL (Probabilistic Alternating-time Temporal Logic with
Rewards) to express properties over concurrent stochastic games, introduce an opera-
tor to compute instantaneous rewards and provide formal semantics for the property
specification logic. We also discuss the pre-computation algorithms for computing
unbounded properties and detail our method for strategy synthesis. The chapter is
concluded by a discussion on the complexity and correctness of the algorithms. The
material presented in this chapter is based on [136, 140].

4.1 Normal Form Games

In this section, we formally define games in normal or strategic form. Normal form
games are simple one-shot games where players make their choices concurrently. The
payoff for each player is then determined according to the collective choice.

Definition 4.1.1 (Normal form game). A (finite, n-player) normal form game (NFG)
is a tuple N = (N,A, u) where:

• N = {1, . . . , n} is a finite set of players;

• A = A1 × · · · × An and Ai is a finite set of actions available to player i ∈ N ;

• u = (u1, . . . , un) and ui : A→ Q is a utility function for player i ∈ N .

In a game N, players select actions simultaneously, with player i ∈ N choosing
from the action set Ai. If each player i selects action ai, then player j receives the
utility uj(a1, . . . , an).

Players may have a preference on which action to play and also choose to ran-
domise over their set of actions, which can be formalised as a (mixed) strategy. A
collection of individual strategies constitutes a strategy profile. A strategy profile
eliminates nondeterminism in a normal form game and makes it possible to deter-
mine its outcome, i.e., the vector of expected payoffs.

Definition 4.1.2 (Strategies and strategy profile). A (mixed) strategy σi for player i
is a distribution over its action set, i.e. σi ∈ Dist(Ai). A strategy is said to be pure if

41

its probability distribution is a Dirac distribution, and mixed otherwise. We denote
by ηai the pure strategy that selects action ai with probability 1 and Σi

N denote the
set of strategies for player i. A strategy profile σ=(σ1, . . . , σn) is a tuple of strategies,
one for each player.

Under a strategy profile σ=(σ1, . . . , σn) of a NFG N, the expected utility of player
i is defined as follows:

ui(σ)
def
=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)
.

4.1.1 Representing Games with Matrices

A two-player NFG is also called a bimatrix game as it can be represented by two
distinct matrices Z1,Z2 ∈ Ql×m, where A1={a1, . . . , al}, A2={b1, . . . , bm}, zkij is the
element at the ith row and jth column of matrix Zk, z1

ij = u1(ai, bj) and z2
ij =

u2(ai, bj).

Definition 4.1.3 (Constant-sum and Zero-sum Games). A two-player NFG is called
a constant-sum game if there exists c ∈ Q such that u1(α)+u2(α) = c for all α ∈ A
and zero-sum if c = 0.

A zero-sum NFG is often called a matrix game as it can be represented by a single
matrix Z ∈ Ql×m, where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm} and zij = u1(ai, bj) =

−u2(ai, bj). For zero-sum two-player NFGs, in bimatrix game representation, we then
have A1 = −A2. In matrix and bimatrix games, it is also common to refer the row
player and the column player when talking about players 1 and 2, respectively.

Example 3. Consider the NFG shown in Figure 4.1. It corresponds to the ma-
trix game representation of a two-player rock-paper-scissors game. We identify each
player’s possible actions (rock, paper and scissors) by their first letters, which are also
used to identify rows and columns. In this example, entry z12 represents the outcome
when the row player plays rock while the column player plays paper, which yields a
payoff of -1 to the row player indicating that he lost that round (and a corresponding
payoff of −z12 for the column player, indicating it won that round).

If we consider a mixed strategy profile σ = (σ1, σ2), with σ1 = (2
3
, 1

6
, 1

6
) and

σ2 = (1
6
, 1

6
, 2

3
), where (σi)j is the probability of the row/column player playing the

42

Z =

r p s

r 0 −1 1
p 1 0 −1
s −1 1 0

Figure 4.1: Representation of a rock-paper-scissors game as a matrix game.

actions corresponding to row/column j, the payoffs for player 1 can be calculated as:

u1(σ) = u1(r, p) · 2

3
· 1

6
+ u1(r, s) · 2

3
· 2

3

+ u1(p, r) · 1

6
· 1

6
+ u1(p, s) · 1

6
· 2

3

+ u1(s, r) · 1

6
· 1

6
+ u1(s, p) · 1

6
· 1

6

=
1

4

Given that rock-paper-scissors is a zero-sum game, the payoff for the column player
is the negation of that of the row player, i.e., u2(σ) = −1

4
. It is easy to see that this

strategy profile is prejudicial for the column player as the row player is more likely
to play rock while he is less likely to player paper. As the rock-paper-scissors is both
zero-sum and symmetric, there should be a strategy profile for which the payoff of
both players is zero, which would indeed indicate they are both as likely to win a
round. The payoff computed for the row player indicates, however, that he would win
25% of the rounds if both players followed this strategy profile.

�

Example 4. A stag hunt game is a classic example from game theory representing
a situation in which two hunters go hunting in a forest. If the players cooperate,
they can catch a stag, which is considered to be a high payoff. If one of the players
chooses to cooperate while the other defects, the player who decided to cooperate gets
nothing while the one who defects still has a chance of catching a hare. We modify
this game as to have 3 hunters and two coalitions. Generally, a coalition is a grouping
of players who can coordinate their actions and share a combined payoff (we present a
formal definition in Section 4.4.1). In this example, we have two hunters in a coalition
represented by the column player and one hunter represented by the row player. The
players action sets are ai and bi with i representing the number of hunters in that
coalition who are willing to cooperate. Figure 4.2 shows the representation of this
scenario as a bimatrix game.

43

Z1 =

(b0 b1 b2

a0 2 2 2
a1 0 4 6

)
Z2 =

(b0 b1 b2

a0 4 2 0
a1 4 6 9

)

Figure 4.2: Representation of a coalitional stag hunt game as a bimatrix game.

If we consider a mixed strategy profile where any number of players are as likely
to cooperate, that is, σ = (σ1, σ2) where σ1 = (1

2
, 1

2
) and σ2 = (1

3
, 1

3
, 1

3
), the payoff for

player i can be computed as:

ui(σ) = (ui(a0, b0) + ui(a0, b1) + ui(a0, b2) + ui(a1, b0) + ui(a1, b1) + ui(a1, b2)) · 1

2
· 1

3

which evaluates to 8
3
and 25

6
for the row and column players, respectively. It is easy

to see that both coalitions could do better if all hunters cooperated or if half of the
hunters in the coalition represented by the column player and the hunter represented
by the row player cooperated, as they would get payoffs of 6 and 9, or 4 and 6,
respectively.

�

NFGs are a powerful formalism despite having a rather simple definition. Re-
peated games or games played over graphs can also be represented as NFGs by com-
bining the actions taken at different stages into single actions and indexing corre-
sponding payoffs accordingly. It is not hard to see, however, that tables and matrices
might not be the ideal representation if we are to consider games with millions of
separate stages and actions. In Section 4.3, we consider formalisms which are better
suited for that task.

4.2 Zero-sum Games and Minimax Strategies

In this section, we show how linear programming can be used to compute players’
payoffs and optimal strategies in two-player zero-sum normal form games. We start
by presenting a classical result from game theory concerning matrix games, which
introduces the notion of the value of a matrix game (zero-sum NFGs).

Theorem 1 (Minimax theorem [204, 205]). For any zero sum NFG N=(N,A, u) and
corresponding matrix game Z, there exists v? ∈ Q, called the value of the game and
denoted val(Z), such that:

44

• there is a strategy σ?1 for player 1, called an optimal strategy of player 1, such
that under this strategy the player’s expected utility is at least v? regardless of
the strategy of player 2, i.e. infσ2∈Σ2

N
u1(σ?1, σ2) > v?;

• there is a strategy σ?2 for player 2, called an optimal strategy of player 2, such
that under this strategy the player’s expected utility is at least −v? regardless
of the strategy of player 1, i.e. infσ1∈Σ1

N
u2(σ1, σ

?
2) > −v?.

The optimal strategies σ?i are usually referred to as minimax strategy, which is
one that minimises the other player’s best case payoff. Similarly, the optimal value v?

is called the minimax value, corresponding to the maximum amount that the other
player could achieve under player i’s minimax strategy.

4.2.1 Computing Values of Matrix Games

The value of a matrix game Z ∈ Ql×m can be found by solving the following linear
programming (LP) problem [204, 205]. Maximise v subject to the constraints:

v 6 x1·z1j + · · ·+ xl·zlj for 1 6 j 6 m
xi > 0 for 1 6 i 6 l

x1 + · · ·+ xl = 1

In addition, the solution for (x1, . . . , xl) yields an optimal strategy for player 1. The
value of the game can also be calculated as the solution of the following dual LP
problem. Minimise v subject to the constraints:

v > y1·zi1 + · · ·+ ym·zim for 1 6 i 6 l
yj > 0 for 1 6 j 6 m

y1 + · · ·+ ym = 1

and the solution (y1, . . . , ym) yields an optimal strategy for player 2.

Example 5. Let us again consider the rock-paper-scissor example previously dis-
cussed in Example 3 of Section 4.1.1. We remind the reader of its matrix game
representation, where each player i ∈ {1, 2} choses rock (ri), paper (pi) or scissors
(si):

r p s

r 0 −1 1
p 1 0 −1
s −1 1 0

45

The value for the matrix game is the solution of the following LP problem. Maximise
v subject to the constraints:

v 6 x2 − x3,
v 6 x3 − x1,
v 6 x1 − x2,

x1 + x2 + x3 = 1,
x1, x2, x3 > 0

which yields the solution v? = 0 with corresponding optimal strategy σ?1 = (1
3
, 1

3
, 1

3
)

for player 1 (the optimal strategy for player 2 is the same).
�

4.3 Stochastic Games

Stochastic games are the class of models which will be the main focus of this thesis.
Differently from MDPs, stochastic games allow for multiple agents to make choices
at a given state and/or to differentiate among the set of agents that have a choice.
Agents can be grouped into coalitions and synchronise their actions. Games can
model both competition and cooperation between agents, in presence of uncertainty.
In this section, we will cover the two main classes of stochastic games: concurrent
and turn-based.

Definition 4.3.1 (Concurrent stochastic game). A concurrent stochastic multi-player
game (CSG) is a tuple G = (N,S, S̄, A,∆, δ,AP ,L) where:

• N = {1, . . . , n} is a finite set of players;

• S is a finite set of states and S̄ ⊆ S is a set of initial states;

• A = (A1 ∪ {⊥})× · · · × (An ∪ {⊥}) where Ai is a finite set of actions available
to player i ∈ N and ⊥ is an idle action disjoint from the set ∪ni=1Ai;

• ∆: S → 2∪
n
i=1Ai is an action assignment function;

• δ : S × A→ Dist(S) is a (partial) probabilistic transition function;

• AP is a set of atomic propositions and L : S → 2AP is a labelling function.

In concurrent games, players move simultaneously, while in turn-based games,
they alternate their moves. We define turn-based stochastic games as a restricted
class of CSGs as follows:

46

Definition 4.3.2 (Turn-based stochastic game). A turn-based stochastic multi-player
game (TSG) is a special case of concurrent stochastic games in which the action
assignment function can be defined as ∆: S → 2Ai , i.e., at any given state at most one
player has a choice. This restriction has also been commonly expressed by a partition
of the state space (Si)i∈N for which ∀j ∈ N, s ∈ Si, j 6= i =⇒ ∆(s) ∩ Aj = ∅.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player i ∈ N
selects an action from its available actions Ai(s)

def
= ∆(s)∩Ai if this set is non-empty,

and from {⊥} otherwise. For any state s and action tuple a = (a1, . . . , an), the partial
probabilistic transition function δ is defined for (s, a) if and only if ai ∈ Ai(s) for all
i ∈ N . A path π of G is a sequence π = s0

α0−→ s1
α1−→ · · · where si ∈ S, αi ∈ A

and δ(si, αi)(si+1) > 0 for all i > 0. A similar reasoning can be applied and the
definitions can be extended to TSGs following the appropriate restrictions. A game
is non-stochastic if δ(s, α)(t) ∈ {0, 1} for all s, t ∈ S and α ∈ A. We follow the same
nomenclature for paths as defined for MDPs and let FPathsG and IPathsG (FPathsG,s

and IPathsG,s) be the sets of finite and infinite paths (starting in state s). A CSG G

is said to be stopping [54] if the set of terminal states is reached with probability one
under any strategy profile.

In Examples 6, 7 and 8 we illustrate the differences between MDPs, TSGs and
CSGs with a model of a robot moving over a grid. Uncertainty is introduced in this
model to model obstacles on the grid that may divert the robot from its trajectory
when it attempts to move in a given direction. We extend this example into a case
study and further discuss it in Chapter 8.

Example 6. Consider the MDP shown in Figure 4.3. It illustrates a simplified
scenario of a robot moving over a grid. Starting from the bottom left corner, its goal
is to reach its base on the top right corner by moving north (n), east (e) or northeast
(ne) at each time step. Whenever attempting to move in direction d, it succeeds with
probability qd and ends up in an adjacent cell with probability 1− qd. The resulting
model is an MDP M with four states S = {s0, s1, s2, s3}, one initial state S̄ = {s0},
three possible actions A = {n, e, ne} and a labelling function L(s3) = {goal}. The
state s3 is the only terminal state and the set of available actions at each state
changes in order to prevent it from going over the grid, for instance, while δ(s0, a) is
defined for all a ∈ A, δ(s1, n) is undefined. An example of an infinite path in M is
π = s0

e−→ (s2
n−→ s1

e−→)ω, which has an associated probability of qe((1− qn)(1− qe))∞.

47

s0

s1 s2

s3

n

qn

1− qn

e

qe

1− qe

ne
1−qne

2
1−qne

2

qne
e

1− qe

qe

n

1− qn

qn

1

Figure 4.3: An MDP model of a robot moving over a grid.

�

Example 7. Consider the example shown in Figure 4.4. It models a scenario of two
robots moving over a 2×2 grid as a two-player TSG. We denote by robot1 and robot2

the robot whose initial position is the bottom left corner and the top right corner of
the grid, respectively. The robots move one cell at a time, via probabilisitic moves.
We assign a unique value qi (i ∈ {1, 2}) for each robot to end up in an adjacent cell
regardless of the direction in it might be attempting to move in and their moves are
prevented at the edge of the grid. The robots take turns at moving, with the colour
of the grid indicating which robot is about to move, and a black grid indicating
terminal states. The overall state space can then be partitioned into two sets S1 =

{s0, s4, s6, s8, s9} and S2 = {s1, s2, s10, s11, s12}, with the set of initial states S̄ = {s0}.
We assume that, if a robot moves into a cell already occupied by the other robot,
they crash and are unable to move further. Their goal is to end up at a cell of their
corresponding colour. To that effect, we define L(s10) = L(s11) = L(s12) = {goal1},
L(s6) = L(s9) = L(s11) = {goal2} and L(s3) = L(s5) = L(s7) = {crash}. We also
have two action sets, with Ai being the actions available for robot i, A1 = {n, e, ne}
and A2 = {w, s, sw}. An example of an infinite path over the TSG is π = s0

e−→ s2
sw−→

s8
n−→ s12

s−→ (s11
1−→)ω.

48

s0

s1 s2

s3

s4

s5

s6

s7

s8s9

s10

s11

s12

e

q1

1− q1

n

q1

1− q1

e

1− q1

q1
n

1− q1

q1

w

q2

1− q2
s

q2

1− q2

n

q1

1− q1

e

q1

1− q1ne1−q1
2

1−q1
2

q1

s

q2

1− q2

w

q2

1− q2
sw

1−q2
2

1−q2
2

q2

s

q2

1− q2

w

q2

1− q2

sw

1−q2
2

1−q2
2

q21

11

1

Figure 4.4: Turn-based example of two robots moving over a grid.

�

Example 8. The example shown in Figure 4.5 modifies the game of Figure 4.4 by
considering simultaneous movement between the robots and thus transforming the
model from a turn-based into a concurrent stochastic game. We refrain from showing
diagonal movements and restrict the transitions to the initial state as the graphical
representation of complete model is rather involved; for instance, we would have
9 transitions leaving from the initial state. There is one initial state S̄ = {s0},
transitions are labelled by a vector of actions (a1, a2), with ai ∈ Ai and Ai the
action set of the player representing roboti. The corresponding probability values are
placed either at the top or the bottom of the next states. Note that the next state
probabilities are now the product of the individual probabilities of each robot failing
or succeeding at moving in the direction it intends to move. Differently from a turn-
based game, the probabilistic transition function is defined over states and products
of actions sets. It is possible then to define a matrix game to represent the transition

49

function for each state.

s0

q1·q2

s1

q1·(1− q2)

s2

(1− q1)·(1− q2)

s3

q1·q2

s4

q2·(1− q1)

s5

q2·(1− q1)

s6

q1·q2

s7

q1·(1− q2)

s8

q1·q2

s9

(n,w) (n, s)

(e, w) (e, s)

Figure 4.5: Concurrent example of two robots moving over a grid.

�

Definition 4.3.3 (Strategy). A strategy for player i in a CSG G is a function of the
form σi : FPathsG → Dist(Ai∪{⊥}) such that if σi(π)(ai) > 0, then ai ∈ Ai(last(π)).
We denote by Σi

G the set of all strategies for player i.

As for NFGs, a strategy profile for G is a tuple σ=(σ1, . . . , σn) of strategies for
all players and, for a player i and strategy σ′i, we define the sequence σ−i and profile
σ−i[σ

′
i] in the same way. For a strategy profile σ and state s, we let IPathsσG,s denote

the infinite paths from s under the choices of σ. A strategy σ and initial state s̄
induce a possible infinite DTMC on which we can define the probability measure in
the standard fashion.

Strategies for CSGs can be divided into different categories according to stochas-
ticity and memory. A strategy for a CSG is said to be pure if all its probability
distributions are Dirac distributions and mixed otherwise. Furthermore, a strategy
is memoryless if the choices made only depend on the current state and use finite
or infinite memory if the choices made also depend on the previous states that were
visited up to a point. In the work developed in this thesis we will focus on memo-
ryless and finite memory strategies. In order for a controller to implement a mixed
strategy it needs to be capable of generating random numbers. Examples 9 and 10

50

illustrate the application of strategies to the problems considered in Examples 7 and
8, respectively.

Example 9. Let us consider again the TSG shown in Figure 4.4. If we consider that,
under the restriction of staying within the boundaries of the grid, robot1 always moves
north when possible and otherwise moves east, and robot2 always moves south when
possible and otherwise moves west, we would have the following DTMC resulting
from the application of this strategy profile to the TSG:

s̄

s1 s3

s4 s6

s7

s9

s10

s11

s12

e

q1

1− q1

n

q1

1− q1

e
1− q1 q1

w

q2

1− q2
s

q2

1− q2

n

q1 1− q1

s

q2 1− q2 1

1

1

Figure 4.6: Turn-based example of two robots moving over a grid with a fixed strategy.

It is easy to see that this strategy is pure and memoryless for both players as it
does not randomise among actions and only depends on the restrictions imposed by
each state.

�

Example 10. Consider again the CSG shown in Figure 4.5. We again focus on the
transitions from the initial state s0. If we fix a pure strategy for robot1 , σ1(s0) =

[1 7→ e] and a mixed strategy for robot2 σ2(s0) = [y1 7→ w, y2 7→ s], that is, robot1 will
move east with probability 1 while robot2 will move east with probability y1 and west

51

with probability y2, the resulting model would be the DTMC indicated in Figure 4.7.
In the figure, the transitions that were labelled by the action-pairs (e, w) and (e, s)

are now labelled with the resulting probabilities of applying both strategies from s0.
We also indicate the distribution over the next states below each grid, by considering
the product of the strategies and the probabilities of ending up in a adjacent cell.

s0

(1− q1)·(1− q2)

s3

y2·q2·(1− q1)

s5

y1·q2·(1− q1)

s6

y1·q1·q2

s7

q1·(1− q2)

s8

y2·q1·q2

s9
y1 y2

Figure 4.7: Concurrent example of two robots moving over a grid with a fixed strategy.

�

We can define a probability measure ProbσG,s over the infinite paths IPathsσG,s. As
before, this construction is based on first defining the probabilities for finite paths
from the probabilistic transition function and choices of the strategies in the profile.
More precisely, for a finite path π = s0

α0−→ s1
α1−→ · · · αm−1−−−→ sm where s0 = s, the

probability of π under the profile σ is defined by:

Pσ(π)
def
=
∏m−1

j=0

((∏n
i=1 σi(π

′ · sj)(αj(i))
)
· δ(sj, αj)(sj+1)

)
.

were π′ is a prefix of π. Next, for each finite path π, we define the basic cylin-
der Cσ(π) that consists of all infinite paths in IPathsσG,s that have π as a prefix.
Finally, using properties of cylinders, we can then construct the probability space
(IPathsσG,s,Fσs ,ProbσG,s), where Fσs is the smallest σ-algebra generated by the set of
basic cylinders {Cσ(π) | π ∈ FPathsσG,s} and ProbσG,s is the unique measure such that
ProbσG,s(C

σ(π)) = Pσ(π) for all π ∈ FPathsσG,s.

Definition 4.3.4 (Reward structure). We define reward structures for CSGs as for
MDPs, i.e., they are composed of a pair functions of the form r = (rA, rS), where
rA : S × A → Q is an action reward function and rS : S → Q is a state reward

52

function. Note that, as action functions are defined over the product set, a player’s
choice may influence the reward obtained by other players. We allow both positive
and negative rewards; however, we will later impose certain restrictions to ensure the
correctness of the presented model checking algorithm as detailed in Section 4.5.

As for NFGs (see Definition 1), for a two-player CSG G and a given objective X,
we can consider the case where player 1 tries to maximise the expected value of X,
while player 2 tries to minimise it. The above definition yields the value of G with
respect to X if it is determined, i.e., if the maximum value that player 1 can ensure
equals the minimum value that player 2 can ensure. Since the CSGs we consider
are finite state and finitely-branching, it follows that they are determined for all the
objectives we consider [155]. Formally we have the following.

Definition 4.3.5 (Determinacy and optimality). For a two-player CSG G and ob-
jective X, we say that the game G is determined with respect to X if, for any state
s:

supσ1∈Σ1 infσ2∈Σ2 Eσ1,σ2G,s (X) = infσ2∈Σ2 supσ1∈Σ1 Eσ1,σ2G,s (X) .

and call this the value of G in state s with respect to X, denoted valG(s,X). Further-
more, a strategy σ?1 of player 1 is optimal with respect to X if we have Eσ

?
1 ,σ2

G,s (X) >

valG(s,X) for all s ∈ S and σ2 ∈ Σ2 and a strategy of player 2 is optimal with respect
to X if Eσ1,σ

?
2

G,s (X) 6 valG(s,X) for all s ∈ S and σ1 ∈ Σ1.

Zero-sum games are inherently two-player games, given players are partitioned
into two separate coalitions with opposing goals. The determinacy argument does not
apply for multi-player games in general as players may consider different objectives
entirely, as will be seen for nonzero-sum games in Chapters 5 and 6.

Example 11. Let us consider again the scenario in which robots moves concurrently
over a grid (as in Example 8) of size l×l. The robots start in diagonally opposite
corners and try to reach the corner from which the other starts. A robot can move ei-
ther diagonally, horizontally or vertically towards its goal. As before, obstacles which
hinder the robots as they move from location to location are modelled stochastically
according to a parameter q: when a robot moves, there is a probability that it instead
moves in an adjacent direction. For i ∈ {1, 2}, we let goali be the atomic proposition
labelling those states of Gl in which robot i has reached its goal and crash the atomic
proposition labelling the states in which the robots have crashed, i.e., are in the same
grid location.

53

Consider the objectives (Xk
1 , X

k
2) where, for any infinite path π of Gl:

Xk
i (π) =

{
1 if goali ∈ L(π(j)) for some j 6 k and crash 6∈ L(π(m)) for all m<j
0 otherwise

i.e., objective Xk
i returns 1 for paths on which robot i reaches its goal within k steps

without crashing. So, the expected value of Xk
i for a given strategy profile equals

the probability that robot i reaches its goal within k steps without crashing. Next, we
consider the objectives Y1 and Y2 where, for any infinite path π of Gl:

Yi(π) =

{ ∑kimin
j=0 r(π(i)) if goali ∈ L(π(j)) for some j
∞ otherwise

where kimin = min{j ∈ N | goali ∈ L(π(j))} and, for any state s, we have r(s)=10 if
crash ∈ L(s) and r(s)=1 otherwise. The expected value of objective Yi for a given
strategy profile equals the expected number of steps that player i requires to reach
their goal, where crashing incurs a delay of 10 steps.

�

4.4 Property Specification

In this section, we discuss the temporal logic rPATL (Probabilistic Alternating-
time Temporal Logic with Rewards), previously proposed for specifying properties
of TSGs [53], and adapt it to CSGs.

Definition 4.4.1 (Extended rPATL syntax for zero-sum properties). The syntax of
rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr∼x[ρ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | C | Fc φ | F φ

where a ∈ AP is an atomic proposition, C ⊆ N is a coalition of players, ∼∈ {<,6
,>, >}, q ∈ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.

The logic rPATL is a branching-time temporal logic that combines the probabilis-
tic operator P of PCTL [107], PRISM’s reward operator R [135], and the coalition
operator 〈〈C〉〉 of ATL [4]. The rPATL syntax distinguishes between state (φ), path
(ψ) and reward (ρ) formulae. State formulae are evaluated over states of a CSG,
while path and reward formulae are both evaluated over paths.

54

The core operators from the existing version of rPATL [53] are 〈〈C〉〉P∼q[ψ] and
〈〈C〉〉Rr∼x[ρ]. A state satisfies a formula 〈〈C〉〉P∼q[ψ] if the coalition of players C can
ensure the probability of the path formula ψ being satisfied is ∼ q and satisfies a
formula 〈〈C〉〉Rr∼x[ρ] if the players in C can ensure the expected value of the reward
formula ρ for rewards structure r is ∼ x, regardless of the actions of the other players
(N\C) in the game. Such properties are inherently zero-sum in nature as one coalition
tries to maximise an objective (e.g., the probability of ψ) and the other tries to
minimise it; hence, we call these zero-sum formulae. The probabilistic objectives are
specified by path formulae and the reward objectives are specified by both a reward
structure and reward formulae.

For path formulae, we follow the existing rPATL syntax from [53] and allow
next (Xφ), bounded until (φ U6k φ) and unbounded until (φ U φ). We also allow
the usual equivalences such as F φ ≡ true U φ (i.e., probabilistic reachability) and
F6k φ ≡ true U6k φ (i.e., bounded probabilistic reachability). For reward formulae,
the logic’s syntax differs somewhat with respect to the existing syntax from [53] and
that presented in [140]. Here, we allow instantaneous (state) reward at the kth step
(instantaneous rewards I=k), reward accumulated over k steps (bounded cumulative
rewards C6k), total cumulative reward (total rewards C) and reward accumulated until
a formula is satisfied (expected reachability Fc φ and F φ). The first two, adapted from
the property specification language of PRISM [135], were not previously included in
rPATL, but proved to be useful for the case studies we present later in Chapter 8.
The third, expected total rewards, was not included in earlier versions of rPATL and
was only introduced in [136]. For the fourth, expected reachability, the rPATL vari-
ant presented in [53] defines for turn-based games three variants (Fc φ, F φ and F0 φ),
while the work presented in [140] only considers one (Fc φ). The semantics of the
formulae Fc φ and F φ, which we consider here, differs in how they define the rewards
for paths that do not reach a state satisfying φ (for Fc it is the infinite sum of the
state- and action-rewards of the path, while for F it is infinity). Adding the variant
F0 φ is straightforward based on the algorithm of [53]. Here we focus on the variants
that are most commonly used and relevant for the experimental results reported in
Chapter 8. The following example illustrates different types of zero-sum properties
that can be investigated with rPATL.

Example 12. Recall the robot coordination problem from Example 8. The following
are properties are examples of zero-sum formulae that could expressed with rPATL:

55

• 〈〈robot1〉〉Pmax=?[¬crash U610 goal1] which asks what is the maximum probability
the first robot can ensure that it reaches its goal location within 10 steps and
without crashing, no matter how the second robot behaves;

• 〈〈robot2〉〉Rrcrash61.5 [F goal2] states no matter the behaviour of the first robot, the
second robot can ensure the expected number of times it crashes before reaching
its goal is less that or equal to 1.5 (rcrash is a reward structure that assigns 1 to
states labelled crash and 0 to all other states).

�

In order to give the semantics of the logic, we require the notion of coalition games,
which was originally introduced for CSGs in [136]. The definition of coalition games
presented in [136, 137] focused exclusively on two-coalitional games and is sufficient
for the logics and algorithms presented in this chapter and Chapter 5. However, as
we later extend our approach to multi-coalitional properties in Chapter 6, here we
present an extension of the original definition to an m-coalitonal game [138], which
accommodates multi-coalitional logic variant and the algorithms proposed in this
thesis.

4.4.1 Coalition Games

Our formalism supports game playing for agents as well as coalitions of agents. We
define coalition games which, given a CSG G and partition C of the players into m
coalitions, reduces G to an m-player coalition game, where each player corresponds
to one of the coalitions in C. Without loss of generality, we assume C is of the
form {{1, . . . , n1}, {n1+1, . . . n2}, . . . , {nm−1+1, . . . nm}} and let jC denote player j’s
position in its coalition.

Definition 4.4.2 (Coalition game). For CSG G=(N,S, s̄, A,∆, δ,AP ,L) and parti-
tion of the players into m coalitions C = {C1, . . . , Cm}, we define the coalition game
GC=(M,S, s̄, AC,∆C, δC,AP ,L) as an m-player CSG where:

• M = {1, . . . ,m};

• AC = (AC1 ∪ {⊥})× · · · × (ACm ∪ {⊥});

• ACi = (
∏

j∈Ci(Aj ∪ {⊥}) \ {(⊥, . . . ,⊥)}
)
for all i ∈M ;

• for any s ∈ S and i ∈ M : aCi ∈ ∆C(s) if and only if either ∆(s) ∩ Aj = ∅ and
aCi (jC) = ⊥ or aCi (jC) ∈ ∆(s) for all j ∈ Ci;

56

• for any s ∈ S and (aC1 , . . . , a
C
m) ∈ AC : δC(s, (aC1 , . . . , a

C
m)) = δ(s, (a1, . . . , an))

where for i ∈M and j ∈ Ci if aCi =⊥, then aj=⊥ and otherwise aj=aCi (jC).

Furthermore, for a reward structure r = (rA, rS), by abuse of notation we use r =

(rCA, r
C
S) for the corresponding reward structure of GC where:

• for any s ∈ S, aCi ∈ ACi : rCAC(s, (a
C
1 , . . . , a

C
m)) = rA(s, (a1, . . . , an)) where for

i ∈M and j ∈ Ci, if aCi = ⊥, then aj=⊥ and otherwise aj=aCi (jC);

• for any s ∈ S : rCS(s)=rS(s).

Our logic includes both finite-horizon (X , U6k, I=k, C6k) and infinite-horizon (U,
F, C, Fc) temporal operators. For the latter, the existence of optimal strategies is
not guaranteed [75] but we can check for ε-optimality for any ε. Hence, we define
the semantics of the logic in the context of a particular ε which we assume to be
specified beforehand. Throughout this chapter and the next, given we are concerned
exclusively with two-player formulae, we fix two coalitions C and N\C by letting
C = {C,N\C} when building the coalition game GC.

Definition 4.4.3 (Extended rPATL semantics for zero-sum properties). The satis-
faction relation |= of our rPATL extension is defined inductively on the structure of
the formula. The propositional logic fragment (true, a, ¬, ∧) is defined in the usual
way. For temporal operators and a state s ∈ S in CSG G, we have:

s |= 〈〈C〉〉P∼q[ψ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2
GC ,s

(Xψ) ∼ q

s |= 〈〈C〉〉Rr∼x[ρ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2
GC ,s

(Xr,ρ) ∼ x

where, for π ∈ IPathsσ1,σ2
GC ,s

:

Xψ(π) = 1 if π |=ψ and 0 otherwise

Xr,ρ(π) = rew(r, ρ)(π)

For a temporal formula and path π ∈ IPathsGC ,s:

π |= Xφ ⇔ π(1) |=φ

π |=φ1 U6k φ2 ⇔ ∃i 6 k. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

π |=φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

57

For a reward structure r, reward formula and path π ∈ IPathsGC ,s:

rew(r, I=k)(π) = rS(π(k))

rew(r, C6k)(π) =
∑k−1

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(r, C)(π) =

∑∞
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(r, Fc φ)(π) =

{∑∞
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
if ∀j ∈ N. π(j) 6|=φ∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

rew(r, F φ)(π) =

{
∞ if ∀j ∈ N. π(j) 6|=φ∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k−1 | π(k) |=φ}.

As CSGs are determined (see Definition 4.3.5) with respect to the zero-sum prop-
erties we consider [155], for any CSG G, coalitions C and N\C, state s, path formula
ψ, reward structure r and reward formula ρ, the values valGC(s,X

ψ) and valGC(s,X
r,ρ)

for either coalition of the game GC in state s with respect to the objectives Xψ and
Xr,ρ are well defined. Moreover, by abuse of notation, we refer to valGC (s,X) and
valGN\C (s,X) as the value of the game GC with respect to objective X for coalitions
C and N\C, respectively. We can represent negated path formulae by inverting
the probability threshold, e.g.: 〈〈C〉〉P>q[¬ψ] ≡ 〈〈C〉〉P61−q[ψ], notably allowing the
‘globally’ operator to be specified: G φ ≡ ¬(F ¬φ). As for other probabilistic tempo-
ral logics, it is useful to consider numerical state formulae. In the case of zero-sum
state formulae these take the form 〈〈C〉〉Pmin=?[ψ], 〈〈C〉〉Pmax=?[ψ], 〈〈C〉〉Rrmin=?[ρ] and
〈〈C〉〉Rrmax=?[ρ]. For example, for state s we have:

〈〈C〉〉Pmin=?[ψ]
def
= infσ1∈Σ1

GC
supσ2∈Σ2

GC
Eσ1,σ2
GC ,s

(Xψ)

〈〈C〉〉Pmax=?[ψ]
def
= supσ1∈Σ1

GC
infσ2∈Σ2

GC
Eσ1,σ2
GC ,s

(Xψ) .

The above determinacy result also yields the following equivalences:

〈〈C〉〉Pmax=?[ψ] ≡ 〈〈N\C〉〉Pmin=?[ψ] and 〈〈C〉〉Rrmax=?[ρ] ≡ 〈〈N\C〉〉Rrmin=?[ρ] .

If φ is a zero-sum formula of the form 〈〈C〉〉P∼q[ψ] or 〈〈C〉〉Rr∼x[ρ], this reduces to
computing values for a two-player CSG GC (for either C or N\C) with respect to Xψ

or Xr,ρ. In particular, for ∼∈ {>, >} and s ∈ S we have:

s |= 〈〈C〉〉P∼q[ψ] ⇔ valGC (s,Xψ) ∼ q

s |= 〈〈C〉〉Rr∼x[ρ] ⇔ valGC (s,Xr,ρ) ∼ x .

58

computing the value for C and, since CSGs are determined for the zero-sum properties
we consider, for ∼∈ {<,6} we have:

s |= 〈〈C〉〉P∼q[ψ] ⇔ valGN\C (s,Xψ) ∼ q

s |= 〈〈C〉〉Rr∼x[ρ] ⇔ valGN\C (s,Xr,ρ) ∼ x .

computing the value for N\C. Without loss of generality, for such formulae we focus
on computing valGC (s,Xψ) and valGC (s,Xr,ρ) and, to simplify the presentation, we
denote these values by VGC(s, ψ) and VGC(s, r, ρ) respectively.

4.5 Model Checking Zero-sum Properties

We now present an algorithm for model checking the extended rPATL logic, presented
in the previous section, on a CSG G. Since rPATL is a branching-time logic, the basic
algorithm works by recursively computing the set Sat(φ) of states satisfying formula
φ over the structure of φ, as is done for rPATL on TSGs [53]. For the remainder
of this section we assume that the available actions of players 1 and 2 of the (two-
player) CSG GC in state s are {a1, . . . , al} and {b1, . . . , bm}, respectively. We use value
iteration to compute/approximate the values of finite/infinite horizon zero-sum state
formulae. Pseudocode for the model checking procedures is presented in Section B.2
of Appendix B. We require the following assumptions on CSGs for zero-sum formulae:

Assumption 1. For total reward formulae we require that all negative rewards are
associated with state-action pairs or states such that the states reach an absorbing
state (a state where all rewards are zero and which cannot be left) with probability
1 under all strategy profiles.

Assumption 2. For a zero-sum formula of the form 〈〈C〉〉Rr∼x[F φ], from any state
s where rS(s) < 0 or rA(s, a) < 0 for some action a, under all profiles of G, with
probability 1 we reach either a state satisfying φ or a state where all rewards are zero
and which cannot be left with probability 1 under all profiles.

Without this assumptions, the values computed during value iteration can oscil-
late, and therefore fail to converge (see Appendices C.1 and C.2). This restriction
is not applied in the existing rPATL model checking algorithms for TSGs [53] since
that work assumes that all rewards are non-negative.

59

4.5.1 Computing Values of Zero-sum Finite-horizon Formulae

Finite-horizon properties are defined over a bounded number of steps: the next or
bounded until operators for probabilistic formulae, and the instantaneous or bounded
cumulative reward operators. Computation of the values VGC(s, ψ) or VGC(s, r, ρ) for
these is done recursively, based on the step bound, using backward induction and
solving matrix games in each state at each iteration.

Below we show how the matrix games are constructed. The actions of each matrix
game correspond to the actions available in that state; the utilities are constructed
from the transition probabilities δC of the game GC, the reward structure r (in the
case of reward formulae) and the values already computed recursively for successor
states.

Next. This is the simplest operator, over just one step, and so in fact requires no
recursion, just a solution of a matrix game for each state. If ψ = Xφ, then for any
state s we have that VGC(s, ψ) = val(Z) where Z ∈ Ql×m is the matrix game with:

zi,j =
∑

s′∈Sat(φ) δ
C(s, (ai, bj))(s

′) .

Bounded Until. If ψ = φ1 U6k φ2, we compute the values for the path formulae
ψn = φ1U

n φ2 for 0 6 n 6 k recursively. For any state s:

VGC(s, ψn) =

1 if s ∈ Sat(φ2)

0 else if s 6∈ Sat(φ1)

0 else if n=0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j =
∑

s′∈S δ
C(s, (ai, bj))(s

′) · vs′n−1

and vs′n−1 = VGC(s
′, ψn−1) for all s′ ∈ S.

Instantaneous Rewards. If ρ = I=k, then for the reward structure r we compute
the values for the reward formulae ρn = I=n for 0 6 n 6 k recursively. For any state
s:

VGC(s, r, ρn) =

{
rS(s) if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j =
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs′n−1

60

and vs′n−1 = VGC(s
′, r, ρn−1) for all s′ ∈ S.

Bounded Cumulative Rewards. If ρ = C6k, then for the reward structure r we
compute the values for the reward formulae ρn = C6n for 0 6 n 6 k recursively. For
any state s:

VGC(s, r, ρn) =

{
0 if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs′n−1

and vs′n−1 = VGC(s
′, r, ρn−1) for all s′ ∈ S.

4.5.2 Computing Values of Zero-sum Infinite-horizon Formu-
lae

We now discuss how to compute the values VGC(s, ψ) and VGC(s, r, ρ) for infinite-
horizon properties, i.e., when the path formula ψ is an until operator, or for the
expected reachability variant of the reward formulae ρ. In both cases, we approximate
these values using value iteration, adopting a similar recursive computation to the
finite-horizon cases above, solving matrix games in each state and at each iteration,
which converges in the limit to the desired values.

Following the approach typically taken in probabilistic model checking tools to
implement value iteration, we estimate convergence of the iterative computation by
checking the maximum relative difference between successive iterations. However,
it is known [101] that, even for simpler probabilistic models such as MDPs, this
convergence criterion cannot be used to guarantee that the final computed values
are accurate to within a specified error bound. Alternative approaches that resolve
this by computing lower and upper bounds for each state have been proposed for
MDPs (e.g. [101, 32]) and extended to both single- and multi-objective solution of
TSGs [127, 7]; extensions could be investigated for CSGs. Another possibility is to
use policy iteration (see, e.g., [44]).

Until. If ψ = φ1 U φ2, the probability values can be approximated through value iter-
ation using the fact that 〈VGC(s, φ1 U6k φ2)〉k∈N is a non-decreasing sequence converg-
ing to VGC(s, φ1 U φ2). We compute VGC(s, φ1 U6k φ2) for increasingly large k and esti-
mate convergence as described above, based on the difference between values in succes-
sive iterations. However, we can potentially speed up convergence by first precomput-
ing the set of states Sψ0 for which the value of the zero-sum objective Xψ is 0 and the

61

set of states Sψ1 for which the value is 1 using standard graph algorithms [74]. We can
then apply value iteration to approximate VGC(s, φ1 U φ2) = limk→∞ VGC(s, φ1 U φ2, k)

where:

VGC(s, φ1 U φ2, n) =

1 if s ∈ Sψ1
0 else if s ∈ Sψ0
0 else if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j =
∑

s′∈S δ
C(s, (ai, bj))(s

′) · vs′n−1

and vs′n−1 = VGC(s
′, φ1 U φ2, n− 1) for all s′ ∈ S.

Expected Total Rewards. If ρ = C, we first find the states for which the expected
reward values are infinite. Similarly to [53], we can use the qualitative algorithms
of [74] to find these states as they can also be defined as those states for which the
coalition C can ensure the probability of reaching states/performing actions with
positive reward infinitely often is greater than 0. After removing these states from
GC, the remaining values for the reward structure r can be computed as the limit of
the (non-decreasing sequence of) bounded cumulative reward values:

VGC(s, r, C) = limk→∞ VGC(s, r, C
6k) .

Expected Reachability. Here we have two reachability reward operators to con-
sider. If ρ = Fc φ, then we first make all states of GC satisfying φ absorbing. Next,
as in the case above, we find the states of GC for which the expected reward values
are infinite and remove them from the game. The values for the remaining states can
then be computed through value iteration where VGC(s, r, ρ) = limk→∞ VGC(s, r, ρk)

where:

VGC(s, r, ρn) =

{
0 if s ∈ Sat(φ)

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs′n−1

and vs′n−1 = VGC(s
′, r, ρn−1) for all s′ ∈ S.

If ρ = F φ and the reward structure is r, then we first make all states of GC satisfying
φ absorbing, i.e., we remove all outgoing transitions from such states. Second, we find
the set of states Sρ∞ for which the reward is infinite; as in [53], this involves finding the

62

set of states satisfying the formula 〈〈C〉〉P<1[F φ] and we can use the graph algorithms
of [74] to find these states. Again following [53], to deal with zero-reward cycles we
need to use value iteration to compute a greatest fixed point. This involves first
computing upper bounds on the actual values, by changing all zero reward values to
some value γ > 0 to construct the reward structure rγ = (rγA, r

γ
A) and then applying

value iteration to approximate VGC(s, rγ, ρ) = limk→∞ VGC(s, rγ, ρk) where:

VGC(s, rγ, ρn) =

0 if s ∈ Sat(φ)

∞ if s ∈ Sρ∞
val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi,j = rγA(s, (ai, bj)) + rγS(s) +
∑

s′∈S δ
C(s, (ai, bj))(s

′) · vs′n−1

and vs′n−1 = VGC(s
′, rγ, ρn−1) for all s′ ∈ S. Finally, using these upper bounds as the

initial values we again perform value iteration as above, except now using the original
reward structure r, i.e., to approximate VGC(s, r,ρ) = limk→∞ VGC(s, r, ρk). The choice
of γ can influence value iteration computations in opposing ways: increasing γ can
speed up convergence when computing over-approximations, while potentially slowing
it down when computing the actual values.

In Example 13, we illustrate how the model checking algorithm works for a
bounded probabilistic until formula (and the corresponding unbounded variant by
considering the limit as the bound grows to infinity). The example shows the con-
struction of the local matrix games and how computation combines local optimisation
(by solving LPs at the state level) and value iteration.

Example 13. Consider the problem of computing the value for the zero-sum prop-
erty φ = 〈〈p1 〉〉Pmax=?[¬win2 U6k win1] over the rock-paper-scissors game, where p1

represents the row player. We focus on computing the value for the initial state s0

for a given k. For all n, we have vs1n = 1, vs2n = 0 and vs3n = vs0n−1. The matrix game
for state s0 at iteration n can be written as in Figure 4.8 (right).

At each round, we have to solve the following LP for state s0:
Maximise vs0n subject to:

vs0n 6 x1·vs0n−1 + x2

vs0n 6 x2·vs0n−1 + x3

vs0n 6 x3·vs0n−1 + x1

x1 + x2 + x3 = 1

63

s0

s1{win1} s2 {win2}

s3{draw}

(r, r), (p, p), (s, s) (t, t)

(r, s), (p, r), (s, p) (s, r), (p, s), (r, p)

(t, t)

(a) Rock-paper-scissors CSG.

Zn =

r p s

r vs0n−1 0 1
p 1 vs0n−1 0
s 0 1 vs0n−1

(b) Matrix game for state s0.

Figure 4.8: Rock-paper-scissors represented in extensive and normal forms (one
round).

Solving the LP, we see that the optimal strategy computed for player 1 in state
s0 is always the same and consists of playing r, p or s with equal probability, i.e,
σ1 = (1

3
, 1

3
, 1

3
). Furthermore, vs0n+1 = 1

3
·vs0n + 1

3
. Given that vs00 = 0, we then have:

Z1 =

r p s

r 0 0 1
p 1 0 0
s 0 1 0

,Z2 =

r p s

r
1
3

0 1
p 1 1

3
0

s 0 1 1
3

,Z3 =

r p s

r
4
9

0 1
p 1 4

9
0

s 0 1 4
9

, . . .
and vs01 = 1

3
, vs02 = 4

9
, vs03 = 13

27
, vs04 = 40

81
, vs05 = 121

243
and so forth. In the limit, we have

limn→∞ v
s0
n = 1

2
.

�

4.5.3 Pre-computation Algorithms

We make use of the algorithms developed by de Alfaro and Henzinger in [74] as
a pre-computation step to speed up the computation for unbounded probabilistic
reachability or guarantee convergence in case of expected total rewards and expected
reachability. In [74], the authors consider different winning conditions expressed by
LTL formulas, with atomic propositions corresponding to subsets of states. Algo-
rithms to compute the different sets of winning states are defined using µ-calculus
notation, where for a given set A, νA and µA computes the greatest and the least
fixed point over A. The authors define different winning modes λ ∈ {sure, almost ,

limit , bounded , positive, exist} for formulae of the type 〈〈i〉〉λ [ϕ], which denote the
set of states from which player i can win in mode λ the game with winning condi-
tion φ. We make use of the algorithms defined for the winning modes sure, meaning
that player i has a strategy to win regardless of what strategy the other player may
choose to adopt, and almost , which establishes that player i wins almost surely,

64

that is, the player has a strategy to win with probability 1. For formulae of type
〈〈C〉〉Pmax=?[F φ], we compute 〈〈N\C〉〉sure [G ¬φ] and 〈〈C〉〉almost[F φ] to determine the
states from which we are sure never to satisfy φ and those from which C has a strategy
to reach states satisfying φ with probability 1. When checking for 〈〈C〉〉Pmin=?[F φ],
we compute 〈〈C〉〉sure[G ¬φ] and 〈〈N\C〉〉almost[F φ]. Formulae of type 〈〈C〉〉Rr

max[F φ]

and 〈〈C〉〉Rr
min[F φ] ask to compute S\〈〈N\C〉〉almost[F φ] and S\〈〈C〉〉almost[F φ], re-

spectively. Finally, when model checking for 〈〈C〉〉Rr
max[Fc φ] and 〈〈C〉〉Rr

max[C] or
〈〈C〉〉Rr

min[Fc φ] and 〈〈C〉〉Rr
min[C], we need to first find S\〈〈N\C〉〉almost[F G ϕ] and

S\〈〈C〉〉almost[F G ϕ], respectively, where ϕ is the set of states that do not accumulate
rewards. Pseudo-codes for our implementation of pre-computation algorithms can be
found in Appendix B.

4.6 Strategy Synthesis

In addition to verifying formulae in our extension of rPATL, it is typically also very
useful to perform strategy synthesis, i.e., to construct a witness to the satisfaction
of a property. For each zero-sum formula 〈〈C〉〉P∼q[ψ] or 〈〈C〉〉Rr∼x[ρ] appearing as
a sub-formula, this comprises optimal strategies for the players in coalition C (or,
equivalently, for player 1 in the coalition game GC) for the objective Xψ or Xr,ρ.

All strategies synthesised are randomised for zero-sum formulae; this is in contrast
to checking the equivalent properties against TSGs [53], where deterministic strategies
are sufficient. For infinite-horizon objectives, we synthesise memoryless strategies, i.e.,
a distribution over actions for each state of the game. For finite-horizon objectives,
strategies are finite-memory, with a separate distribution required for each state and
each time step.

We can perform strategy synthesis by adapting the model checking algorithms de-
scribed in the previous sections which compute the values of zero-sum objective. The
type of strategy needed (deterministic or randomised; memoryless or finite-memory)
depends on the types of objectives. As discussed previously (in Section 4.5.2), for
infinite-horizon objectives our use of value iteration means we cannot guarantee that
the values computed are within a particular error bound of the actual values; so, the
same will be true of the optimal strategy that we synthesise for such a formula.

For both types of objectives, we synthesise the strategies whilst computing values
using the approach presented in Section 4.5: from the matrix game solved for each
state, we extract not just the value of the game, but also an optimal (randomised)
strategy for player 1 of GC in that state. It is also possible to extract the optimal

65

strategy for player 2 in the state by solving the dual LP problem for the matrix game
(see Section 4.2.1). For finite-horizon objectives, we retain the choices for all steps; for
infinite-horizon objectives, just those from the final step of value iteration are needed
as memoryless strategies are sufficient for the properties we consider and the final
iteration contains the closest approximations according to the stopping criterion.

Example 14. Consider the problem of synthesising a strategy for the rock-paper-
scissors game previously discussed in Example 13. In the example, we considered the
property φ = 〈〈p1 〉〉Pmax=?[¬win2 U6k win1], which asks to maximise the probability
of player p1 being the first to win a round within k rounds. We showed that the
optimal strategy for player p1 in s0 is to play r, p or s with equal probability, and
given that there are no choices in s1, s2 or s3, the minimax strategy resulting from
solving the LP for s0 succinctly describes the strategy for the game irrespective of
k. As strategy synthesis makes use of model checking algorithms, the same strategy
would be computed for s0 until the difference between the values vs0n and vs0n−1 was
smaller than ε according to a given convergence criterion. Unsurprisingly, given that
the outcome of one round has no influence on the strategy a player should adopt in
the next, although we use value iteration to synthesise the strategy, the error bound
for the computed strategy is zero.

�

4.7 Correctness and Complexity

We conclude this section with a discussion of correctness and complexity. The overall
(recursive) approach and the reduction to solution of a two-player game is essentially
the same as for TSGs [53], and therefore the same correctness arguments apply.
The correctness of value iteration for unbounded properties follows from [177] and
for bounded properties from Definition 4.4.3 and the solution of matrix games (see
Section 4.2.1).

Regarding complexity, due to the recursive nature of the algorithm, it is linear
in the size of the formula φ, while in the worst case finding the optimal values of a
2-player CSG is in PSPACE [48]. In practice, we use value iteration, which solves
an LP problem of size |A| for each state at each iteration, with the number of itera-
tions depending on the convergence criterion. Such problems can be solved using the
simplex method, which is PSPACE-complete using Dantzig’s pivot rule [70, 84], but
performs well on average [196]. Karmarkar’s algorithm [125] can also be used, which
is PTIME. The efficiency in practice is reported in Chapters 7 and 8.

66

4.8 Summary

In this chapter, after reviewing classical notions and methods of game theory such
as minimax strategies and solving matrix games through linear programming, we
presented an extension of the branching-time temporal logic rPATL to express zero-
sum properties over CSGs, detailing its syntax and semantics. We then introduced
value iteration-based algorithms to approximate values for various types of objectives,
which can be expressed as a combination of probabilistic or reward operators and
different temporal operators.

We considered the problem of strategy synthesis for both quantitative and qual-
itative properties. For infinite-horizon properties, we can synthesise strategies that
are memoryless by storing state-local minimax strategies, which may require ran-
domisation. Finite-horizon properties require both memory and randomisation. We
conclude this chapter with a discussion on correctness and complexity and review
some methods and results on computing optimal values through linear programming,
an essential step in model checking for zero-sum properties.

67

CHAPTER 5

Two-player Equilibria Properties

Contents
5.1 Nonzero-sum Games and Equilibria Strategies 69

5.2 Property Specification . 75

5.3 Model Checking Two-player Nonzero-sum Properties . . 79

5.4 Strategy Synthesis . 93

5.5 Correctness and Complexity 94

5.6 Summary . 95

In this chapter, we extend our set of model checking techniques for zero-sum
properties with algorithms for the computation of nonzero-sum equilibria properties.
We start by giving a formal definition of best response, subgame-perfect Nash equilibria,
social welfare Nash equilibria (SWNE) and social cost Nash equilibria (SCNE).

We also present an extension of rPATL to accommodate equilibria properties as
well as the semantics and syntax of the new operators. The model checking algorithms
for the new temporal and rewards operators follow next, including the model trans-
formation necessary to verify properties with a mixture of bounded and unbounded
operators. A discussion on strategy synthesis and the correctness and complexity of
our approach conclude the chapter.

The methodology presented here sets itself apart from existing literature by en-
abling the computation/approximation of optimal equilibria over extensive concur-
rent stochastic games by computing local optimal equilibria at each state. Another

68

distinctive feature is the computation of equilibria properties for unbounded reach-
ability properties without a discount factor, while maximising/minimising collective
rewards/cost. Lastly, we encode the inequalities representing regions of best response
through SMT assertions and find equilibria values through a mixture of explicit pre-
computation algorithms, backward induction, value iteration and to SMT-based pro-
cedures. The material presented in this chapter is based on [137, 140].

5.1 Nonzero-sum Games and Equilibria Strategies

We utilise the concept of Nash equilibria (NE) in order to investigate properties of
nonzero-sum games. A strategy profile characterises a Nash equilibrium if it is not
beneficial for any player to unilaterally change their strategy. In particular, we will use
variants called social welfare optimal NE and social cost optimal NE. These variants
are equilibria that maximise or minimise, respectively, the total or collective utility
of the players, i.e. the sum of the individual player utilities. We start by defining
auxiliary concepts of best and least responses, which are then used to formally define
a Nash equilibrium.

Definition 5.1.1 (Best and Least Response). For an NFG N=(N,A, u), a strat-
egy profile σ=(σ1, . . . , σn) and player i strategy σ′i, we define the sequence σ−i =

(σ1, . . . , σi−1, σi+1, . . . , σn) and profile σ−i[σ′i] = (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn). For

player i and strategy sequence σ−i:

• a best response for player i to σ−i is a strategy σ?i for player i such that
ui(σ−i[σ

?
i]) > ui(σ−i[σi]) for all strategies σi of player i;

• a least response for player i to σ−i is a strategy σ?i for player i such that
ui(σ−i[σ

?
i]) 6 ui(σ−i[σi]) for all strategies σi of player i.

Definition 5.1.2 (Nash equilibrium). For NFG N=(N,A, u), a strategy profile σ? is
a Nash equilibrium (NE) and 〈ui(σ?)〉i∈N NE values if σ?i is a best response to σ?−i for
all i ∈ N .

Definition 5.1.3 (Social Welfare NE). For NFG N=(N,A, u), a strategy profile σ?

is a social welfare optimal NE (SWNE) and 〈ui(σ?)〉i∈N the corresponding SWNE
values if σ? is an NE and u1(σ?)+ · · ·+un(σ?) > u1(σ)+ · · ·+un(σ) for all NE σ of N.

69

Definition 5.1.4 (Social Cost NE). For NFG N=(N,A, u), a strategy profile σ?

is a social cost optimal NE (SCNE) and 〈ui(σ?)〉i∈N the corresponding SCNE val-
ues if σ? is an NE of N′ = (N,A, u′), where u′ = −u, and u1(σ?)+ · · ·+un(σ?) 6

u1(σ)+ · · ·+un(σ) for all NE σ of N′.

The notion of SWNE is standard and corresponds to the case where utility values
correspond to profits or rewards. We introduce the dual notion of SCNE in that case
that utility values correspond to losses or costs. We could just negate all utilities and
use the notion of SWNE. However, the notion of SCNE is more natural, particularly
in the setting of probabilistic model checking where, for example, players may try
to minimise the probability of reaching an error state or minimise the expected time
to reach a goal state. The following lemma demonstrates the relationship between
SWNE and SCNE.

Lemma 1. For NFG N = (N,A, u), a strategy profile σ? of N is an NE of N− =

(N,A,−u) if and only if σ?i is a least response to σ?−i of player i in N for all i ∈ N .
Furthermore, σ? is a SWNE of N− if and only if σ? is a SCNE of N.

We remind the reader that by ηai we denote the pure strategy that selects action
ai with probability 1. Then, for a NFG G and NE σ?, player i is indifferent between
actions ai, bi ∈ Ai with respect to σ if ui(σ?−i(ηa)) = ui(σ

?
−i(ηb)) = ui(σ

?). In such a
situation, player i is also indifferent to any affine combination of ai and bi with respect
to σ?, i.e. for any p1, p2 ∈ (0, 1) such that p1+p2 = 1: ui(σ?−i(p1·ηai+p2·ηbi)) = ui(σ

?).
In case of indifference between two or more actions, the SWNE values are always
captured by a pure strategy assignment for the indifferent player.

For nonzero-sum CSGs, with an objective Xi for each player i, we will use NE,
which can be defined as for NFGs (see Definition 5.1.2). In line with the definition
of zero-sum optimality (and because the model checking algorithms we will later
introduce are based on backwards induction [181, 205]), we restrict our attention to
subgame-perfect NE [184, 169], which are NE in every state of the CSG.

Definition 5.1.5 (Subgame-perfect NE). For CSG G, a strategy profile σ? is a
subgame-perfect Nash equilibrium for objectives 〈Xi〉i∈N if and only if Eσ?G,s(Xi) >

supσi∈Σi
Eσ

?
−i[σi]

G,s (Xi) for all i ∈ N and s ∈ S.

Furthermore, for infinite-horizon objectives, where the existence of NE is an open
problem [29], we will in some cases use ε-NE, which do exist for any ε > 0 for all the
properties we consider [52, 41].

70

Definition 5.1.6 (Subgame-perfect ε-NE). For CSG G and ε > 0, a strategy pro-
file σ? is a subgame-perfect ε-Nash equilibrium for objectives 〈Xi〉i∈N if and only if
Eσ?G,s(Xi) > supσi∈Σi

Eσ
?
−i[σi]

G,s (Xi)− ε for all i ∈ N and s ∈ S.

Finding Nash equilibria in bimatrix games is in the class of linear complementarity
problems (LCPs). More precisely, a profile (σ1, σ2) is a Nash equilibrium of the
bimatrix game Z1,Z2 ∈ Ql×m where A1={a1, . . . , al}, A2={b1, . . . , bm} if and only if
there exists u, v ∈ Q such that, for the column vectors x ∈ Ql and y ∈ Qm where
xi=σ1(ai) and yj=σ2(bj) for 1 6 i 6 l and 1 6 j 6 m, we have:

xT (1u− Z1y) = 0

yT (1v − ZT2 x) = 0

1u− Z1y > 0

1v − ZT2 x > 0

and 0 and 1 are vectors or matrices with all components 0 and 1, respectively.
As discussed in Chapter 2, there are several methods that can be used for comput-

ing Nash equilibria of bimatrix games. One of the most famous is the Lemke-Howson
algorithm [145], which can be applied for finding NE and is based on the method of
labelled polytopes [166]. Other well known methods include those based on support
enumeration [174] and regret minimisation [179]. Similarly to the Lemke-Howson
algorithm, we make use of labelled polytopes to characterise and find NE values, a
method we elaborate in the next section.

5.1.1 Computing Values of Bimatrix Games

We first explain how we compute SWNE values in bimatrix games, then subgame-
perfect SWNE values for finite-horizon objectives and lastly approximate subgame-
perfect ε-SWNE values for infinite-horizon objectives. We also discuss how to synthe-
sise SWNE profiles. Lemma 1 can be used to reduce the computation of SCNE profiles
and values to those of SWNE profiles and values (or vice versa). This is achieved
by negating all utilities in the NFG or bimatrix game, computing an SWNE profile
and corresponding SWNE values, and then negating the SWNE values to obtain an
SCNE profile and corresponding SCNE values for the original NFG or bimatrix game.

SWNE via Labelled Polytopes. Given a bimatrix game Z1,Z2 ∈ Ql×m, we
denote the sets of deterministic strategies of players 1 and 2 by I={1, . . . , l} and
M={1, . . . ,m} and define J={l+1, . . . , l+m} by mapping j ∈M to l+j ∈ J . A label

71

is then defined as an element of I ∪ J . The sets of strategies for players 1 and 2 can
be represented by:

X = {x ∈ Ql | 1x = 1 ∧ x > 0} and Y = {y ∈ Qm | 1y = 1 ∧ y > 0} .

The strategy set Y is then divided into regions Y (i) and Y (j) (polytopes) for i ∈ I
and j ∈ J such that Y (i) contains strategies for which the deterministic strategy i of
player 1 is a best response and Y (j) contains strategies which choose action j with
probability zero:

Y (i) = {y ∈ Y | ∀k ∈ I. Z1(i, :)y > Z1(k, :)y} and Y (j) = {y ∈ Y | yj−l = 0}

where Z1(i, :) is the ith row vector of Z1. A vector y is then said to have label k if
y ∈ Y (k), for k ∈ I ∪ J . The strategy set X is divided analogously into regions X(j)

and X(i) for j ∈ J and i ∈ I and a vector x has label k if x ∈ X(k), for k ∈ I ∪ J .
A pair of vectors (x, y) ∈ X × Y is completely labelled if the union of the labels of x
and y equals I ∪ J . The Nash equilibria of the game equal the vector pairs that are
completely labelled [145, 186].

We now show how to find equilibria values through SMT encoding of the sets of
best response regions X and Y and subsequent search for assignments of strategy
vector pairs that are completely labelled. The output are assignments to each vector
component xi, yj that comprise the vector pairs. Each player’s payoff can then be
computed by simple vector-matrix multiplications. In the following, zijk denotes the
element in the jth row and kth column of matrix Zi and by abuse of notation we let
X(r) and Y (r) be a Boolean variable that represents whether the condition established
by the inequality defining region r ∈ [1, l + m] of strategy sets X and Y is satisfied,
respectively. An equilibrium is then an assignment for vectors x and y such that:

l+m∧
r=1

(X(r) ∨ Y (r))

and

∀r, s ∈ [1, l] : Y (r)↔
∧
r 6=s

(∑m
i=1 yiz

1
ri >

∑m
j=1 yjz

1
sj

)
∀r ∈ [l + 1, l +m] : Y (r)↔ (yr−l = 0)

∀r, s ∈ [l + 1, l +m] : X(r)↔
∧
r 6=s

(∑l
i=1 z

2
ir >

∑l
j=1 xjz

2
js

)
∀r ∈ [1, l] : X(r)↔ (xr = 0)∑l

i=1 xi = 1∑m
j=1 yj = 1

72

Example 15. Let us consider again the problem discussed in Example 4 of Section
4.1.1. It referred to a coalitional instance of a stag hunt game described by the
matrices:

Z1 =

(b0 b1 b2

a0 2 2 2
a1 0 4 6

)
Z2 =

(b0 b1 b2

a0 4 2 0
a1 4 6 9

)

Following the labelled polytopes method, we would have a total of l+m = 5 labels
for each player. The graphical representation of the regions of best response can be
seen in Figure 5.1, and can be described by the following inequalities:

Y labels: X labels:
1© : Y (1) : 2y0 + 2y1 + 2y2 > 4y1 + 6y2 1© : X(1) : x0 = 0
2© : Y (2) : 4y1 + 6y2 > 2y0 + 2y1 + 2y2 2© : X(2) : x1 = 0
3© : Y (3) : y0 = 0 3© : X(3) : 2x0 > 2x1 ∧ 4x0 > 5x1

4© : Y (4) : y1 = 0 X© 4© : X(4) : 2x1 > 2x0 ∧ 2x0 > 3x1 7©
5© : Y (5) : y2 = 0 5© : X(5) : 5x1 > 4x0 ∧ 3x1 > 2x0

Figure 5.1 shows the strategy set Y on the right, where each subset Y (r) is indicated
by its label r drawn as a circled number. A similar representation is given for the
strategy space X, which is shown on the left. The labels 1© and 2© are the pure
strategies of the row player and are marked along the x1 and x0 axis, respectively.
Similarly, the labels 3©, 4© and 5© identify the regions in which b0, b1 and b2 are
respectively played with zero probability. Labels representing best response regions
in mixed strategies for the row and column players are identified by the numbers 3©
and 5© and 1© and 2©, respectively. We recall that, as both vectors x and y are
strategy profiles, the individual sum of their elements has to be equal to 1.

y0

y1 y2

1©

2©
5©

3©

4©

x1

x0

3©

5©
1©

2©

Figure 5.1: Graphical representation of the regions of best response for the coalitional
stag hunt game.

By examining the inequalities that describe each region, it is easy to see that
the fourth X label (X(4)) cannot be satisfied for any values of x0 and x1. As all

73

bimatrix games have an equilibrium in mixed strategies, that means that any pair
of equilibria strategies will have to satisfy the fourth Y label (Y (4)) to comply with
the rule that, in order to be an equilibrium, a pair has to be completely labelled.
This restriction simplifies the spatial representation of the regions of best response
considerably, effectively reducing it from a tetrahedron, as we only have to focus on
the y0 and y2 axes given that the value of y1 has already been established to be
zero. This restriction already gives us an insight about the problem itself, that is,
there could be no equilibria in which only 1 hunter of the coalition represented by the
column player decides to cooperate, as that would mean playing the action b1 with
positive probability. It is possible then to rewrite the inequalities assuming that 4©
has to be satisfied as follows:

Y labels: X labels:
1© : Y (1) : 2y0 > 4y2 1© : X(1) : x0 = 0
2© : Y (2) : 4y2 > 2y0 2© : X(2) : x1 = 0
3© : Y (3) : y0 = 0 3© : X(3) : 2x0 > 2x1 ∧ 4x0 > 5x1

5© : Y (5) : y2 = 0 5© : X(5) : 5x1 > 4x0 ∧ 3x1 > 2x0

Given that x0 + x1 = 1 and y0 + y2 = 1, it is easy to see that it is not possible to
satisfy 1© and 3©, 2© and 5©, 1© and 3© or 2© and 5© at the same time. Likewise, it is
possible to see that 1© and 5© would always be satisfied together as would 2© and 3©,
1© and 5© and 2© and 3©. We can then conclude the following pairs are completely
labelled and therefore constitute an equilibrium:

(x, y) =

1 : ((1, 0), (1, 0, 0)) by satisfying 1©, 2©, 3©, 4© and 5©
2 : ((5

9
, 4

9
), (2

3
, 0, 1

3
)) by satisfying 1©, 2©, 3©, 4© and 5©

3 : ((0, 1), (0, 0, 1)) by satisfying 1©, 2©, 3©, 4© and 5©

Applying the strategy profiles of equilibria 1 or 2 yields a payoff of 2 for the row
player and 4 for the column player. The strategies of equilibrium 3 yield a payoff of
6 for the row player and 9 for the column player and thus this is the only SWNE.

On the other hand, in order to compute SCNE, we first negate the entries in the
matrix, which is equivalent to changing the direction of the inequalities that describe
the regions of best response. Figure 5.2 shows the spatial representation of the regions
which are described by the following sets of inequalities:

Y labels: X labels:
1© : Y (1) : 2y0 + 2y1 + 2y2 6 4y1 + 6y2 1© : X(1) : x0 = 0
2© : Y (2) : 4y1 + 6y2 6 2y0 + 2y1 + 2y2 2© : X(2) : x1 = 0
3© : Y (3) : y0 = 0 3© : X(3) : 2x0 6 2x1 ∧ 4x0 6 5x1

4© : Y (4) : y1 = 0 4© : X(4) : 2x1 6 2x0 ∧ 2x0 6 3x1

5© : Y (5) : y2 = 0 5© : X(5) : 5x1 6 4x0 ∧ 3x1 6 2x0

74

Differently from the case of finding regular NE, we cannot eliminate any label due to
trivial unsatisfiability. We thus have a tetrahedron to represent the solution space for
the strategies of the column player and the first two Y labels defined over its frontal
face. Similarly to the previous case, when solving the set of inequalities we find three
satisfying assignments for strategy pairs which are completely labelled:

(x, y) =

1 : ((0, 1), (1, 0, 0)) by satisfying 1©, 2©, 3©, 4© and 5©
2 : ((1

2
, 1

2
), (1

2
, 1

2
, 0)) by satisfying 1©, 2©, 3©, 4© and 5©

3 : ((1, 0), (0, 0, 1)) by satisfying 1©, 2©, 3©, 4© and 5©

y0

y1

y2

1©

2©

4©
5©

3©

x1

x0

3©
4©

5©
1©

2©

Figure 5.2: Graphical representation of the regions of best response for the negated
coalitional stag hunt game.

Applying the strategy profile of equilibrium 1 yields a payoff of 0 for the row player
and 4 for the column player. The strategies of equilibrium 2 yield a payoff of 2 for
the row player and 4 for the column player. Finally, applying the strategy profile of
the third equilibrium results on a payoff of 2 for the row player and 0 for the column
player and thus this is the only SCNE.

�

5.2 Property Specification

We now extend the logic rPATL to allow the analysis of equilibria properties. Since
we are limited to considering ε-SWNE for infinite-horizon properties, we assume some
ε has been fixed in advance when considering such properties.

Definition 5.2.1 (Extended rPATL syntax for two-coalitional equilibria properties).

75

The syntax of our extended version of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr∼x[ρ] | 〈〈C:C ′〉〉opt∼x(θ)

θ := P[ψ]+P[ψ] | Rr[ρ]+Rr[ρ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | F φ

where a is an atomic proposition, C and C ′ are coalitions of players such that
C ′=N\C, opt ∈ {min,max}, ∼∈ {<,6,>, >}, q ∈ [0, 1], x ∈ Q, r is a reward
structure and k ∈ N.

We extend rPATL with the ability to reason about equilibria through Nash for-
mulae of the form 〈〈C:C ′〉〉opt∼x(θ). In addition to the usual state (φ), path (ψ) and
reward (ρ) formulae, we distinguish non-zero sum formulae (θ), which comprise a
sum of probability or reward objectives. The formula 〈〈C:C ′〉〉max∼x(θ) is satisfied
if there exists a subgame-perfect SWNE strategy profile between coalitions C and
C ′(=N\C) under which the sum of the two objectives in θ is ∼x. Similarly, a formula
〈〈C:C ′〉〉min∼x(θ) is satisfied if there exists a subgame-perfect SCNE strategy profile
between coalitions C and C ′(=N\C) under which the sum of the two objectives in θ
is ∼x.

For probabilistic objectives (θ=P[ψ1]+P[ψ2]), each ψi can be a next (X), bounded
until (U6k) or until (U) operator, with the usual equivalences such as F φ ≡ true U φ.
For reward objectives (θ=Rr1 [ρ1]+Rr2 [ρ2]), each ρi refers to the expected reward with
respect to reward structure ri: the instantaneous reward after k steps (instantaneous
rewards I=k); the reward accumulated over k steps (bounded cumulative rewards C6k);
or the reward accumulated until a state satisfying φ is reached (expected reachability
F φ). As is common for probabilistic temporal logics, we allow numerical queries of
the form 〈〈C:C ′〉〉max=?[θ] and 〈〈C:C ′〉〉min=?[θ], which return the approximate sum of
SWNE and SCNE values respectively.

The rPATL syntax for nonzero-sum formulae presented in Definition 5.2.1 dif-
fers from that for zero-sum formulae presented in Definition 4.4 by dropping the
reward operators for expected reachability (Fc) and total rewards (C) as currently no
algorithms exist for these variants. In Example 16, we present a few properties to
illustrate the use and applicability of rPATL nonzero-sum formulae. We highlight
that the use of the term “collaborate” in this context should be understood as playing
their equilibria strategies followed by full cooperation when either coalition satisfies
its goal. In that regard, when referring to nonzero-sum or equilibria properties, we

76

assume a weaker notion of collaboration than one would have if the players in the
game just synchronised their actions. In fact, we mean the players would act ratio-
nally but in a way to minimise or maximise the overall sum of the random variables
associated to their objectives (consequently maximising social welfare or minimising
social cost) and that, considering they would be following an equilibrium strategy,
they would not have an incentive to unilaterally deviate.

Example 16. Recall the robot coordination problem from Example 8. The following
are properties are examples of equilibria formulae one could express with rPATL:

• 〈〈robot1:robot2〉〉max>2(P[¬crash U goal1]+P[¬crash U goal2]) expresses that the
robots can collaborate so that both reach their goal with probability 1 without
crashing;

• 〈〈robot1:robot2〉〉min=?(R
rsteps [F goal1]+Rrsteps [F goal2]) asks what is the sum of

expected values when the robots collaborate and each wants to minimise their
expected steps to reach their goal (rsteps is a reward structure that assigns 1 to
all state action tuple pairs);

• 〈〈robot1:robot2〉〉max=?(P[F goal1]+P[¬crash U610goal2]) asks what is the sum of
probabilities when the robots collaborate to reach their individual goals with
the additional condition the second has to reach its goal within 10 steps without
crashing.

�

Our logic includes both finite-horizon (X , U6k, I=k, C6k) and infinite-horizon (U,
F) temporal operators. For the latter, the existence of SWNE or SCNE profiles is
an open problem [29], but we can check for ε-SWNE or ε-SCNE profiles for any ε
[52, 41]. Hence, we define the semantics of the logic in the context of a particular ε.

Definition 5.2.2 (Extended rPATL semantics for two-coalitional equilibria proper-
ties). The satisfaction relation |= of our rPATL extension is defined inductively on
the structure of the formula. The propositional logic fragment (true, a, ¬, ∧) is
defined in the usual way. The zero-sum formulae 〈〈C〉〉P∼q[ψ] and 〈〈C〉〉Rr∼x[ρ] are
defined as in Chapter 4. For temporal operators and a state s ∈ S in CSG GC, we
have:

s |= 〈〈C:C ′〉〉opt∼x(θ) ⇔ ∃σ?1 ∈ Σ1, σ?2 ∈ Σ2.
(
Eσ

?
1 ,σ

?
2

GC ,s
(Xθ

1) + Eσ
?
1 ,σ

?
2

GC ,s
(Xθ

2)
)
∼ x

77

where (σ?1, σ
?
2) is a subgame-perfect ε-SWNE if opt = max and a subgame-perfect

ε-SCNE if opt = min for the objectives (Xθ
1 , X

θ
2) in GC where, for 1 6 i 6 2 and

π ∈ IPathsσ1,σ2
GC ,s

:

X
P[ψ1]+P[ψ2]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ρ1]+Rr2 [ρ2]
i (π) = rew(ri, ρ

i)(π)

and kφ = min{k−1 | π(k) |=φ}.

As in the case of zero-sum properties, formulae we can represent negated path
formulae by inverting the probability threshold, e.g.: 〈〈C:C ′〉〉max>q(P[ψ1]+P[ψ2]) ≡
〈〈C:C ′〉〉min62−q(P[¬ψ1]+P[¬ψ2]), notably allowing the ‘globally’ operator to be spec-
ified for probabilistic formulae: G φ ≡ ¬(F ¬φ). This theoretical result relies on
Definition 5.2.2 and Lemma 2, which shows the equivalence for normal form games.

Lemma 2. For NFG N = (N,A, u), a profile σ? of N is a SCNE of N if and only if σ?

is a SWNE of N1− = (N,A, u1−) where u1−
i (a) = 1− ui(a) for all i ∈ N and a ∈ A.

Proof. Consider any NFG N = (N,A, u) and profile σ? of N. If σ? is a SCNE of N,
then we have:

• σ? is an NE of N− = (N,A,−u);

• u1(σ?)+ · · ·+un(σ?) 6 u1(σ)+ · · ·+un(σ) for all NE σ of N−.

Furthermore, if σ? is a SWNE of N1−, then we have:

• σ? is an NE of N1− = (N,A, u1−);

• u1−
1 (σ?)+ · · ·+u1−

n (σ?) > u1−
1 (σ)+ · · ·+u1−

n (σ) for all NE σ of N1−.

Now considering any strategy profiles σ and σ′ and player i ∈ N :

u1−
i (σ) > u1−

i (σ′) ⇔ 1− ui(σ) > 1− ui(σ′) by definition of u1−
i

⇔ −ui(σ) > −ui(σ′) rearranging

78

and hence, using Definitions 5.1.1 and 5.1.2, we have that σ is an NE of N− if and
only if σ is an NE of N1−. Furthermore for any strategy profiles σ and σ′:

u1−
1 (σ)+ · · ·+u1−

n (σ) > u1−
1 (σ′)+ · · ·+u1−

n (σ′)

⇔ (1− u1(σ))+ · · ·+(1− un(σ)) > (1− u1(σ′))+ · · ·+(1− un(σ′))

by definition of u1−

⇔ −(1− u1(σ))+ · · ·+(1− un(σ)) 6 −(1− u1(σ′)+ · · ·+(1− un(σ′))

negating both sides

⇔ u1(σ)+ · · ·+un(σ)− n 6 u1(σ′)+ · · ·+un(σ′)− n rearranging

⇔ u1(σ)+ · · ·+un(σ) 6 u1(σ′)+ · · ·+un(σ′) rearranging

Using these results and Definitions 5.1.3 and 5.1.4 we have that σ? is a SWNE of N1−

if and only if σ? is a SCNE of N. ut

5.3 Model Checking Two-player Nonzero-sum Prop-
erties

Computation of nonzero-sum properties is restricted to a class of CSGs that can be
seen as a variant of stopping games [54], which was also the case for multi-objective
TSGs. Compared to [54], we apply a weaker, objective-dependent assumption, which
ensures that, under all profiles, with probability 1, eventually the outcome of each
player’s objective does not change by continuing. We formalise these conditions
through the following assumptions.

Assumption 3. For nonzero-sum formulae, if P[φ1 U φ2] is a probabilistic objective,
then Sat(¬φ1 ∨ φ2) is reached with probability 1 from all states under all profiles of
G.

Assumption 4. For nonzero-sum formulae, if Rr[F φ] is a reward objective, then
Sat(φ) is reached with probability 1 from all states under all profiles of G.

Like for Assumption 2, without this restriction, algorithms for equilibria properties
may not converge since values can oscillate (see Appendices C.3 and C.4). Notice that
Assumption 2 is not required for nonzero-sum properties containing negative rewards
since Assumption 4 is itself a stronger restriction.

In the next sections, we show how to compute subgame-perfect SWNE and SCNE
values for the two objectives corresponding to a nonzero-sum formula. As for the

79

zero-sum case, the approach taken depends on whether the formula contains finite-
horizon or infinite-horizon objectives. As rPATL also allows for a mixture of the two
objectives, we now have three cases:

1. when both objectives are finite-horizon, we use backward induction [181, 205,
188] to compute (precise) subgame-perfect SWNE and SCNE values;

2. when both objectives are infinite-horizon, we use value iteration [177, 47] to
approximate the values;

3. when there is a mix of the two types of objectives, we convert the problem to
two infinite-horizon objectives on an augmented model.

The three cases are described separately in Sections 5.3.1, 5.3.2 and 5.3.5, respec-
tively. In a similar style to the algorithms for zero-sum properties, in all cases the
computation is an iterative process that analyses a two-player game for each state at
each step. However, this now requires finding SWNE or SCNE values of a bimatrix
game, rather than solving a matrix game as in the zero-sum case. We solve bimatrix
games using the labelled polytopes approach presented in Section 5.1.1 (see also the
more detailed discussion of its implementation in Section 7.2.2.2).

Another important aspect of our algorithms is that, for efficiency, if we reach a
state where the value of one player’s objective cannot change (e.g., the goal of that
player is reached or can no longer be reached), then we switch to the simpler problem
of solving an MDP to find the optimal value for the other player in that state. This
is possible since the only SWNE profile in that state corresponds to maximising the
objective of the other player. More precisely:

• the first player (whose objective cannot change) is indifferent, since its value
will not be affected by the choices of either player;

• the second player cannot do better than the optimal value of its objective in
the corresponding MDP where both players act to maximise that value;

• for any NE profile, the value of the first player is fixed and the value of the
second is less than or equal to the optimal value of its objective in the MDP.

We use the notation Pmax
G,s (ψ) and Rmax

G,s (r, ρ) for the maximum probability of satis-
fying the path formula ψ and the maximum expected reward for the random variable
rew(r, ρ), respectively, when the players act to maximise the same objective in state

80

s. These values can be computed through standard MDP model checking [19, 73].
From rPATL semantics (Definition Definition 5.2.2), computing Sat(φ) reduces to the
computation of subgame-perfect SWNE or SCNE values for the objectives (Xθ

1 , X
θ
2)

and a comparison of their sum to the threshold x. Again, to simplify the presentation,
will use the notation VGC(s, θ) and VGC(s, θ) for the SWNE and SCNE values of the
objectives (Xθ

1 , X
θ
2) in state s of GC. For any state formula φ and state s we let ηφ(s)

equal 1 if s ∈ Sat(φ) and 0 otherwise.
For the remainder of this section, we fix a CSG G = (N,S, S̄, A,∆, δ,AP ,L) and

coalition C of players and assume that the available actions of players 1 and 2 of
the (two-player) CSG GC in a state s are {a1, . . . , al} and {b1, . . . , bm}, respectively.
We also fix a value ε > 0 which, as discussed in Section 5.2, is needed to define the
semantics of our logic, in particular for infinite-horizon objectives where we need to
consider ε-SWNE and ε-SCNE profiles.

5.3.1 Computing SWNE Values of Finite-horizon Nonzero-
sum Formulae

As for the zero-sum case, for a finite-horizon nonzero-sum formula θ, we compute
the SWNE values VGC(s, θ) for all states s of the coalitional game GC in a recursive
fashion based on the step bound. We now solve bimatrix games at each step, which
are defined in a similar manner to the matrix games for zero-sum properties: the
actions of each bimatrix game correspond to the actions available in that state and
the utilities are constructed from the transition probabilities δC of the game GC, the
reward structure (in the case of reward formulae) and the values already computed
recursively for successor states.

Below, we explain the computation for both types of finite-horizon probabilis-
tic objectives (next and bounded until) and reward objectives (instantaneous and
bounded cumulative), as well as combinations of each type.

Next. If θ = P[Xφ1]+P[Xφ2], then VGC(s, θ) equals SWNE values of the bimatrix
game (Z1,Z2) ∈ Ql×m where:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ1(s′)

z2
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ2(s′) .

Bounded Until. If θ = P[φ1
1 U6k1 φ1

2] + P[φ2
1 U6k2 φ2

2], we compute SWNE val-
ues for the objectives for the nonzero-sum formulae θn+n1,n+n2 = P[φ1

1 U6n+n1 φ1
2] +

81

P[φ2
1 U6n+n2 φ2

2] for 0 6 n 6 k recursively, where k= min{k1, k2}, n1=k1−k and
n2 = k2−k. For any state s, if n=0, then:

VGC(s, θn1,n2) =

(ηφ12(s), ηφ22(s)) if n1=n2=0

(ηφ12(s), P
max
G,s (φ2

1 U6n2 φ2
2)) else if n1=0

(Pmax
G,s (φ1

1 U6n1 φ1
2), ηφ22(s)) otherwise.

On the other hand, if n > 0, then:

VGC(s, θn+n1,n+n2) =

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1, Pmax
G,s (φ2

1 U6n+n2 φ2
2)) else if s ∈ Sat(φ1

2)

(Pmax
G,s (φ1

1 U6n+n1 φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmax
G,s (φ1

1 U6n+n1 φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0, Pmax
G,s (φ2

1 U6n+n2 φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if s 6∈ Sat(φ1
1) ∩ Sat(φ2

1)

val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
(n−1)+n2

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Next and Bounded Until. If θ = P[Xφ1]+P[φ2
1 U6k2 φ2

2], then VGC(s, θ) equals
SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m where:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ1(s′)

z2
i,j =

1 if s ∈ Sat(φ2

2)

0 else if k2 = 0∑
s′∈S δ

C(s, (ai, bj))(s
′) · Pmax

G,s (φ2
1 U6k2−1 φ2

2) else if Sat(φ2
1)

0 otherwise.

In this case, since the value for objectives corresponding to next formulae cannot
change after the first step, we can always switch to MDP verification after this step.
The symmetric case is similar.

Instantaneous Rewards. If θ=Rr1 [I=k1]+Rr2 [I=k2], we compute SWNE values of
the objectives for the nonzero-sum formulae θn+n1,n+n2 = Rr1 [I=n+n1] + Rr2 [I=n+n2]

for 0 6 n 6 k recursively, where k= min{k1, k2}, n1 = k1−k and n2=k2−k. For any

82

state s, if n=0, then:

VGC(s, θn1,n2) =

(r1
S(s), r2

S(s)) if n1=n2=0

(r1
S(s), Rmax

G,s (r2, I
=n2)) else if n1=0

(Rmax
G,s (r1, I

=n1), r2
S(s)) otherwise

On the other hand, if n > 0, then VGC(s, θn+n1,n+n2) equals SWNE values of the
bimatrix game (Z1,Z2) ∈ Ql×m where:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
(n−1)+n2

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C6k1]+Rr2 [C6k2], we compute values of
the objectives for the formulae θn+n1,n+n2 = Rr1 [C6n+n1] + Rr2 [C6n+n2] for 0 6 n 6 k

recursively, where k= min{k1, k2}, n1=k1−k and n2 = k2−k. For state s, if n=0:

VGC(s, θn1,n2) =

(0, 0) if n1=n2=0

(0, Rmax
G,s (r2, C

6n2)) else if n1=0

(Rmax
G,s (r1, C

6n1), 0) otherwise

and if n > 0, then VGC(s, θn+n1,n+n2) equals SWNE values of the bimatrix game
(Z1,Z2) ∈ Ql×m:

z1
i,j = r1

S(s) + r1
A(s, (ai, bj)) +

∑
s′∈Sδ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j = r2

S(s) + r2
A(s, (ai, bj)) +

∑
s′∈Sδ

C(s, (ai, bj))(s
′) · vs

′,l
(n−1)+n2

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Bounded Instantaneous and Cumulative Rewards. If θ = Rr1 [I=k1]+Rr2 [C6k2],
we compute values of the objectives for the formulae θn+n1,n+n2 = Rr1 [I=n+n1] +

Rr2 [C6n+n2] for 0 6 n 6 k recursively, where k = min{k1, k2}, n1 = k1−k and
n2 = k2−k. Again, here we can only switch to MDP verification when one of the step
bounds equals zero. For state s, if n = 0:

VGC(s, θn1,n2) =

(r1
S(s), 0) if n1 = n2 = 0

(r1
S(s), Rmax

G,s (r2, C
6n2)) else if n1 = 0

(Rmax
G,s (r1, I

6n1), 0) otherwise

and if n > 0, then VGC(s, θn+n1,n+n2) equals SWNE values of the bimatrix game
(Z1,Z2) ∈ Ql×m:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j = r2

S(s) + r2
A(s, (ai, bj)) +

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,l
(n−1)+n2

83

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S. The symmetric

case follows similarly.

5.3.2 Computing SWNE Values of Infinite-horizon Nonzero-
sum Formulae

We next show how to compute SWNE values VGC(s, θ) for infinite-horizon nonzero-
sum formulae θ in all states s of GC. As for the zero-sum case, we approximate these
using a value iteration approach. Each step of this computation is similar in nature
to the algorithms in the previous section, where a bimatrix game is solved for each
state, and a reduction to solving an MDP is used after one of the player’s objective
can no longer change.

A key aspect of the value iteration algorithm is that, while the SWNE (or SCNE)
values take the form of a pair, with one value for each player, convergence is defined
over the sum of the two values. This is because there is not necessarily a unique pair
of such values, but the maximum (or minimum) of the sum of NE values is uniquely
defined. Convergence of value iteration is estimated in the same way as for the zero-
sum computation (see Section 4.5.2), by comparing values in successive iterations. As
previously, this means that we are not able to guarantee that the computed values
are within a particular error bound of the exact values.

Until. If θ = P[φ1
1 U φ1

2]+P[φ2
1 U φ2

2], values for any state s can be computed through
value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where:

VGC(s, θ, n) =

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1, Pmax
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ1

2)

(Pmax
G,s (φ1

1 U φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmax
G,s (φ1

1 U φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0, Pmax
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if n=0 or s 6∈ Sat(φ1
1) ∩ Sat(φ2

1)

val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
n−1

z2
i,j =

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
n−1

and (vs
′,1
n−1, v

s′,2
n−1) = VGC(s

′, θ, n−1) for all s′ ∈ S.

84

Expected Reachability. If θ = Rr1 [F φ1]+Rr2 [F φ2], values can be computed
through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where:

VGC(s, θ, n) =

(0, 0) if s ∈ Sat(φ1) ∩ Sat(φ2) or n=0

(0, Rmax
G,s (r2, F φ

2)) else if s ∈ Sat(φ1)

(Rmax
G,s (r1, F φ

1), 0) else if s ∈ Sat(φ2)

val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = r1

S(s) + r1
A(s, (ai, bj)) +

∑
s′∈Sδ

C(s, (ai, bj))(s
′) · vs

′,1
n−1

z2
i,j = r2

S(s) + r2
A(s, (ai, bj)) +

∑
s′∈Sδ

C(s, (ai, bj))(s
′) · vs

′,2
n−1

and (vs
′,1
n−1, v

s′,2
n−1) = VGC(s

′, θ, n−1) for all s′ ∈ S.

5.3.3 Computing SCNE Values of Finite-horizon Nonzero-sum
Formulae

In this section, we show how to compute SCNE values VGC(s, θ) for finite-horizon
nonzero-sum formula θ in all states s of GC. The two differences between the compu-
tation of SWNE and SCNE values are:

• When constructing the bimatrix game for each state, we negate the values
corresponding to their entries and subsequently negate the computed SWNE
values;

• When switching to MDP computation, we compute the values for Pmin
G,s (ψ) and

Rmin
G,s (r, ρ) for probabilistic and reward formulae, respectively.

All other arguments in Section 5.3.1 concerning finite-horizon formula also apply here.
Below, we explain the computation for both types of finite-horizon probabilistic ob-
jectives (next and bounded until) and reward objectives (instantaneous and bounded
cumulative), as well as combinations of each type.

Next. If θ = P[Xφ1]+P[Xφ2], then VGC(s, θ) equals the negation of the SWNE values
of the bimatrix game (Z1,Z2) ∈ Ql×m where:

z1
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ1(s′)

z2
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ2(s′) .

Bounded Until. If θ = P[φ1
1 U6k1 φ1

2] + P[φ2
1 U6k2 φ2

2], we compute SWNE val-
ues for the objectives for the nonzero-sum formulae θn+n1,n+n2 = P[φ1

1 U6n+n1 φ1
2] +

85

P[φ2
1 U6n+n2 φ2

2] for 0 6 n 6 k recursively, where k= min{k1, k2}, n1=k1−k and
n2 = k2−k. For any state s, if n=0, then:

VGC(s, θn1,n2) =

(ηφ12(s), ηφ22(s)) if n1=n2=0

(ηφ12(s), P
min
G,s (φ2

1 U6n2 φ2
2)) else if n1=0

(Pmin
G,s (φ1

1 U6n1 φ1
2), ηφ22(s)) otherwise

On the other hand, if n > 0, then:

VGC(s, θn+n1,n+n2) =

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1, Pmin
G,s (φ2

1 U6n+n2 φ2
2)) else if s ∈ Sat(φ1

2)

(Pmin
G,s (φ1

1 U6n+n1 φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmin
G,s (φ1

1 U6n+n1 φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0, Pmin
G,s (φ2

1 U6n+n2 φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if s 6∈ Sat(φ1
1) ∩ Sat(φ2

1)

−val(Z1,Z2) otherwise

where val(Z1,Z2) equals the SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
(n−1)+n2

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Next and Bounded Until. If θ = P[Xφ1]+P[φ2
1 U6k2 φ2

2], then VGC(s, θ) equals the
negation of the SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m where:

z1
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · ηφ1(s′)

z2
i,j = −1×

1 if s ∈ Sat(φ2

2)

0 else if k2 = 0∑
s′∈S δ

C(s, (ai, bj))(s
′) · Pmin

G,s (φ2
1 U6k2−1 φ2

2) else if Sat(φ2
1)

0 otherwise.

In this case, since the value for objectives corresponding to next formulae cannot
change after the first step, we can always switch to MDP verification after this step.
The symmetric case is similar.

Instantaneous Rewards. If θ=Rr1 [I=k1]+Rr2 [I=k2], we compute SWNE values of
the objectives for the nonzero-sum formulae θn+n1,n+n2 = Rr1 [I=n+n1] + Rr2 [I=n+n2]

for 0 6 n 6 k recursively, where k= min{k1, k2}, n1 = k1−k and n2=k2−k. For any

86

state s, if n=0, then:

VGC(s, θn1,n2) =

(r1
S(s), r2

S(s)) if n1=n2=0

(r1
S(s), Rmin

G,s (r2, I
=n2)) else if n1=0

(Rmin
G,s (r1, I

=n1), r2
S(s)) otherwise.

On the other hand, if n > 0, then VGC(s, θn+n1,n+n2) equals the negation of the SWNE
values of the bimatrix game (Z1,Z2) ∈ Ql×m where:

z1
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

z2
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
(n−1)+n2

and (vs
′,1

(n−1)+n1
, vs

′,2
(n−1)+n2

) = VGC(s
′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C6k1]+Rr2 [C6k2], we compute values of
the objectives for the formulae θn+n1,n+n2 = Rr1 [C6n+n1] + Rr2 [C6n+n2] for 0 6 n 6 k

recursively, where k= min{k1, k2}, n1=k1−k and n2 = k2−k. For state s, if n=0:

VGC(s, θn1,n2) =

(0, 0) if n1=n2=0

(0, Rmin
G,s (r2, C

6n2)) else if n1=0

(Rmin
G,s (r1, C

6n1), 0) otherwise

and if n > 0, then VGC(s, θn+n1,n+n2) equals the negation of the SWNE values of the
bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = −

(
r1
S(s) + r1

A(s, (ai, bj)) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs
′,1

(n−1)+n1

)
z2
i,j = −

(
r2
S(s) + r2

A(s, (ai, bj)) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs
′,2

(n−1)+n2

)
and (vs

′,1
(n−1)+n1

, vs
′,2

(n−1)+n2
) = VGC(s

′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Bounded Instantaneous and Cumulative Rewards. If θ = Rr1 [I=k1]+Rr2 [C6k2],
we compute values of the objectives for the formulae θn+n1,n+n2 = Rr1 [I=n+n1] +

Rr2 [C6n+n2] for 0 6 n 6 k recursively, where k = min{k1, k2}, n1 = k1−k and
n2 = k2−k. Again, here we can only switch to MDP verification when one of the step
bounds equals zero. For state s, if n = 0:

VGC(s, θn1,n2) =

(r1
S(s), 0) if n1 = n2 = 0

(r1
S(s), Rmin

G,s (r2, C
6n2)) else if n1 = 0

(Rmin
G,s (r1, I

6n1), 0) otherwise

87

and if n > 0, then VGC(s, θn+n1,n+n2) equals the negation of the SWNE values of the
bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = −

(∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
(n−1)+n1

)
z2
i,j = −

(
r2
S(s) + r2

A(s, (ai, bj)) +
∑

s′∈S δ
C(s, (ai, bj))(s

′) · vs
′,l

(n−1)+n2

)
and (vs

′,1
(n−1)+n1

, vs
′,2

(n−1)+n2
) = VGC(s

′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S. The symmetric
case follows similarly.

5.3.4 Computing SCNE Values of Infinite-horizon Nonzero-
sum Formulae

We next show how to compute SCNE values VGC(s, θ) for finite-horizon nonzero-sum
formula θ in all states s of GC. The same changes described for finite-horizon formulae
in Section 5.3.3 and the arguments concerning uniqueness and convergence for the
computation of infinite-horizon SWNE values described in Section 5.3.2 apply here.

Until. If θ = P[φ1
1 U φ1

2]+P[φ2
1 U φ2

2], values for any state s can be computed through
value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where:

VGC(s, θ, n) =

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1, Pmin
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ1

2)

(Pmin
G,s (φ1

1 U φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmin
G,s (φ1

1 U φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0, Pmin
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if n=0 or s 6∈ Sat(φ1
1) ∩ Sat(φ2

1)

−val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,1
n−1

z2
i,j = −

∑
s′∈S δ

C(s, (ai, bj))(s
′) · vs

′,2
n−1

and (vs
′,1
n−1, v

s′,2
n−1) = VGC(s

′, θ, n−1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1]+Rr2 [F φ2], values can be computed
through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where:

VGC(s, θ, n) =

(0, 0) if s ∈ Sat(φ1) ∩ Sat(φ2) or n=0

(0, Rmin
G,s (r2, F φ

2)) else if s ∈ Sat(φ1)

(Rmin
G,s (r1, F φ

1), 0) else if s ∈ Sat(φ2)

−val(Z1,Z2) otherwise

88

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Ql×m:

z1
i,j = −

(
r1
S(s) + r1

A(s, (ai, bj)) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs
′,1
n−1

)
z2
i,j = −

(
r2
S(s) + r2

A(s, (ai, bj)) +
∑

s′∈Sδ
C(s, (ai, bj))(s

′) · vs
′,2
n−1

)
and (vs

′,1
n−1, v

s′,2
n−1) = VGC(s

′, θ, n−1) for all s′ ∈ S.
In Example 17, we show the application of the model checking algorithm described

in Section 5.3.2 to compute values for a infinite-horizon equilibrium property. The
example shows how the bimatrix games are constructed and how SWNE values are
approximated through a combination of value iteration and the computation of local
(state) NE values.

Example 17. Consider the problem of computing values for the equilibria property
φ = 〈〈player1 :player2 〉〉max=?(R

r1 [F end]+Rr2 [F end]) for an instance of the matching
pennies problem shown in Figure 5.3 (left). Here we consider the problem of playing
the game repeatedly, where at each round there is a probability of p > 0 that the
game ends. Player 1 wins a round if both players play heads or tails, while the other
wins if the coins are different, that is: r1

A(s0, (h, h)) = r1
A(s0, (t, t)) = r2

A(s0, (h, t)) =

r2
A(s0, (t, h)) = 1. At each round, we need to solve the bimatrix game shown in
Figure 5.3 (right) for state s0.

s0

s1{end}

(h, h), (h, t), (t, h), (t, t)

p

1− p

(⊥,⊥)

(a) Matching pennies CSG.

Zn1 =

(h t

h 1 + (1− p)·vs0,1n−1 (1− p)·vs0,1n−1

t (1− p)·vs0,1n−1 1 + (1− p)·vs0,1n−1

)

Zn2 =

(h t

h (1− p)·vs0,2n−1 1 + (1− p)·vs0,2n−1

t 1 + (1− p)·vs0,2n−1 (1− p)·vs0,2n−1

)
(b) Bimatrix game for state s0.

Figure 5.3: An instance of matching pennies in extensive and normal forms (one
round).

Computing that the equilibrium strategy for both players at any round, we see
that it is playing h or t with equal probability, i.e., σ1 = σ2 = (1

2
, 1

2
). We also have

that the value for each player i is equal to vs0,in = 1
2

+ vs0,in−1 − p·v
s0,i
n−1. For instance, if

89

p = 1/2 we have:

Z1
1 =

(h t

h 1 0

t 0 1

)
,Z2

1 =

(h t

h
5
4

1
4

t
1
4

5
4

)
,Z3

1 =

(h t

h
11
8

3
8

t
3
8

11
8

)
,Z4

1 =

(h t

h
23
16

7
16

t
7
16

23
16

)
· · ·

Z1
2 =

(h t

h 0 1

t 1 0

)
,Z2

2 =

(h t

h
1
4

5
4

t
5
4

1
4

)
,Z3

2 =

(h t

h
3
8

11
8

t
11
8

3
8

)
,Z4

2 =

(h t

h
7
16

23
16

t
23
16

7
16

)
· · ·

At the nth iteration, the sum of SWNE values can be expressed as: vs0,1n + vs0,2n =

1 + vs0,1n−1 + vs0,2n−1 − p·(v
s0,1
n−1 + vs0,2n−1). Let vs0n be equal to the sum, we then have vs0n =

1 + vs0n−1 − p·vs0n−1. In the limit, we have limn→∞ v
s0
n = 1

p
, with each player getting 1

2p
.
�

5.3.5 Computing SWNE Values of Mixed Nonzero-sum For-
mulae

In this section, we present the model transformation needed for computing values of
nonzero-sum state formulae containing a mixture of both finite- and infinite-horizon
objectives. For these cases, the problem is reduced to computing values of a formula
θ′ that contains only infinite-horizon objectives on a modified game G′. The approach
is based on the standard construction for converting the verification of finite-horizon
properties to infinite-horizon properties [175]. We fix a game GC and non-zero sum
state formula 〈〈C:C ′〉〉opt∼x(θ). We consider the case when the first objective is finite-
horizon and second infinite-horizon; the symmetric cases follow similarly. In each
case, the modified game has states of the form (s, n), where s is a state of GC and
n ∈ N and values for the state (s, 0) of the new Nash formula correspond to values of
state s for the original Nash formula.

Next and Unbounded Until. If θ = P[Xφ1]+P[φ2
1 U φ2

2], then we construct the
game G′ = ({1, 2}, S ′, S̄ ′, AC,∆′, δ′, {aφ1 , aφ21 , aφ22},L

′) where:

• S ′ = {(s, n) | s ∈ S ∧ 0 6 n 6 2} and S̄ ′ = {(s, 0) | s ∈ S};

• ∆′((s, n)) = ∆C(s) for all (s, n) ∈ S ′;

• for any (s, n), (s′, n′) ∈ S ′ and a ∈ AC:

δ′((s, n), a)((s′, n′)) =

δC(s, a)(s′) if 0 6 n 6 1 and n′ = n+1

δC(s, a)(s′) else if n = n′ = 2

0 otherwise;

90

• for any (s, n) ∈ S ′ and 1 6 j 6 2:

– aφ1 ∈ L′((s, n)) if and only if s ∈ Sat(φ1) and n = 1;

– aφ2j ∈ L′((s, n)) if and only if s ∈ Sat(φ2
j).

and compute the SWNE values of θ′ = P[true U aφ1]+P[aφ21 U aφ22] for G′.

Bounded and Unbounded Until. If θ = P[φ1
1 U6k1 φ1

2] + P[φ2
1 U φ2

2], then we
construct the game G′ = ({1, 2}, S ′, S̄ ′, AC,∆′, δ′, {aφ11 , aφ12 , aφ21 , aφ22},L

′) where:

• S ′ = {(s, n) | s ∈ S ∧ 0 6 n 6 k1+1} and S̄ ′ = {(s, 0) | s ∈ S};

• ∆′((s, n)) = ∆C(s) for all (s, n) ∈ S ′;

• for any (s, n), (s′, n′) ∈ S ′ and a ∈ AC:

δ′((s, n), a)((s′, n′)) =

δC(s, a)(s′) if 0 6 n 6 k1 and n′ = n+1

δC(s, a)(s′) else if n = n′ = k1+1

0 otherwise;

• for any (s, n) ∈ S ′ and 1 6 j 6 2:

– aφ11 ∈ L′((s, n)) if and only if s ∈ Sat(φ1
1) and 0 6 n 6 k1;

– aφ12 ∈ L′((s, n)) if and only if s ∈ Sat(φ1
2) and 0 6 n 6 k1;

– aφ2j ∈ L′((s, n)) if and only if s ∈ Sat(φ2
j).

and compute the SWNE values of θ′ = P[aφ11 U aφ12]+P[aφ21 U aφ22] for G′.

Bounded Instantaneous and Expected Rewards. If θ = Rr1 [I=k1] + Rr2 [F φ2],
then we construct the game G′ = ({1, 2}, S ′, S̄ ′, AC,∆′, δ′, {ak1+1, aφ2},L′) and reward
structures r′1 and r′2 where:

• S ′ = {(s, n) | s ∈ S ∧ 0 6 n 6 k1+1} and S̄ ′ = {(s, 0) | s ∈ S};

• ∆′((s, n)) = ∆C(s) for all (s, n) ∈ S ′;

• for any (s, n), (s′, n′) ∈ S ′ and a ∈ AC:

δ′((s, n), a)((s′, n′)) =

δC(s, a)(s′) if 0 6 n 6 k1 and n′ = n+1

δC(s, a)(s′) else if n = n′ = k1+1

0 otherwise;

• for any (s, n) ∈ S ′:

91

– ak1+1 ∈ L′((s, n)) if and only if n = k1+1;

– aφ2 ∈ L′((s, n)) if and only if s ∈ Sat(φ2);

• for any (s, n) ∈ S ′ and a ∈ AC:

– r1′
A ((s, n), a) = 0 and r1′

S ((s, n)) = r1C
S (s) if n = k1 and r1′

A ((s, n), a) = 0

and r1′
S ((s, n)) = 0 otherwise;

– r2′
A ((s, n), a) = r2C

A (s)(a) and r2′
S ((s, n)) = r2C

S (s).

and compute the SWNE values of θ′ = Rr
′
1 [F ak1+1]+Rr

′
2 [F aφ2] for G′.

Bounded Cumulative and Expected Rewards. If θ = Rr1 [C6k1] + Rr2 [F φ2],
then we construct the game G′ = ({1, 2}, S ′, S̄ ′, AC,∆′, δ′, {ak1 , aφ2},L′) and reward
structures r′1 and r′2 where:

• S ′ = {(s, n) | s ∈ S ∧ 0 6 n 6 k1} and S̄ ′ = {(s, 0) | s ∈ S};

• ∆′((s, n)) = ∆C(s) for all (s, n) ∈ S ′;

• for any (s, n), (s′, n′) ∈ S ′ and a ∈ AC:

δ′((s, n), a)((s′, n′)) =

δC(s, a)(s′) if 0 6 n 6 k1−1 and n′ = n+1

δC(s, a)(s′) else if n = n′ = k1

0 otherwise;

• for any (s, n) ∈ S ′:

– ak1 ∈ L′((s, n)) if and only if n = k1;

– aφ2 ∈ L′((s, n)) if and only if s ∈ Sat(φ2);

• for any (s, n) ∈ S ′ and a ∈ AC:

– r1′
A ((s, n), a) = r1C

A (s) if 0 6 n 6 k1−1 and equals 0 otherwise;

– r1′
S ((s, n)) = r1C

S (s) if 0 6 n 6 k1−1 and equals 0 otherwise;

– r2′
A ((s, n), a) = r2C

A (s)(a) and r2′
S ((s, n)) = r2C

S (s).

and compute the SWNE values of θ′ = Rr
′
1 [F ak1]+Rr

′
2 [F aφ2] for G′.

92

5.4 Strategy Synthesis

We now discuss strategy synthesis for equilibria properties. For each nonzero-sum
formula 〈〈C:C ′〉〉opt∼x(θ) appearing as a sub-formula, this is a subgame-perfect SWNE
or SCNE profile for the objectives (Xθ

1 , X
θ
2) in the coalition game GC. We can per-

form strategy synthesis by adapting the model checking algorithms described in the
previous sections which computes SWNE or SCNE values of nonzero-sum objectives.
Again, as discussed in Sections 4.5.2 and 5.3.2, for infinite-horizon objectives our use
of value iteration means we cannot guarantee that the values computed are within a
particular error bound of the actual values; so, the same will be true of the optimal
strategy that we synthesise for such a formula.

In the case of a nonzero-sum state formula 〈〈C:C ′〉〉opt∼x(θ), we can return a
subgame-perfect SWNE or SCNE for the objectives (Xθ

1 , X
θ
2). This is achieved by:

• keeping track of the SWNE/SCNE profile for the bimatrix game solved in each
state, comprising the distributions over actions for each player of GC in that
state;

• generating an optimal strategy when solving the MDPs when solving them [141],
which is equivalent to a strategy profile for GC (randomisation is not needed for
this part).

We can then combine these generated profiles to yield a subgame-perfect SWNE
or SCNE, switching from the strategy generated from the bimatrix games to the
MDP strategies if we reach a state where the value of one player’s objective cannot
change. The synthesised strategies require randomisation and memory. Memory is
needed since choices change after a path formulae becomes true or a target reached,
and is also required for finite-horizon properties as separate player choices are stored
for each state and each time step. For infinite-horizon properties, the use of value
iteration means only approximate ε-NE profiles are synthesised. We illustrate the
need for memory when synthesising equilibria strategies in Example 18.

Example 18. Let us consider the CSG illustrated in Figure 5.4 and the property
〈〈p1:p2〉〉max=?(P[F goal1] + P[F goal2]). It is easy to see that memory is required in
order to synthesise a strategy that maximises the SWNE value. The shortest path
that visits both s2 and s3 is π = s0

(a1,⊥)−−−→ s1
(b1,b2)−−−→ s2

(c1,⊥)−−−→ s1
(b1,a2)−−−−→ s3, for which

the query would evaluate to the maximum possible value of 2−p. One can see though
that in order for such a path to be constructed, one needs to visit s1 at least twice

93

and, after player p1 has reached his goal by visiting state s2, player p2 has to change
its choice from b2 to a2 in order for s3 to be reached. If in state s1 player p2 decided
to maximise for itself instead of considering the collective rewards, it would choose
a2 which would prevent player p1 from ever reaching its goal and the query would
evaluate to 1. On the other hand, if player 2 always picked b2 in s2, he would never
reach his goal given that at some point s4 would be reached and the game would end.
In the latter case, the sum of probability values would also be 1.

s0

s1

s2 {goal1}

s3 {goal2}

s4

(a1,⊥)

(b1, b2)

(c1,⊥)

1− p

p

(b1, a2)

1

1

Figure 5.4: CSG example where memory may be required for synthesising an optimal
strategy (0 < p < 1.).

�

5.5 Correctness and Complexity

The proof of correctness of our approach is given in Appendix A and shows that the
values computed during value iteration correspond to subgame-perfect SWNE values
of finite game trees, and the values of these game trees converge uniformly and are
bounded from below and above by the finite approximations of GC and actual values
of GC, respectively. A limitation of our approach, as for standard value iteration [101,
127], is that convergence of the values does not give guarantees on the precision.
Complexity is linear in the size of the formula. Value iteration requires solving an
LCP problem of size |A| for each state at every iteration, with the number of iterations
depending on the convergence criterion. Papadimitriou established the complexity of
solving the class of LCPs we encounter to be in PPAD (polynomial parity argument in
a directed graph) [171] and, to the best of our knowledge, there is still no polynomial

94

algorithm for solving such problems. More closely related to finding all solutions, it
has been shown that determining if there exists an equilibrium in a bimatrix game
for which each player obtains a utility of a given bound is NP-complete [95]. Also,
it is demonstrated in [9] that bimatrix games may have a number of NE that is
exponential with respect to the size of the game, and thus any method that relies on
finding all NE in the worst case cannot be expected to perform in a running time that
is polynomial with respect to the size of the game. We present experimental results
and discuss the efficiency of our approach in Chapters 7 and 8.

5.6 Summary

In this chapter, after reviewing classic game-theoretic concepts such as best response,
Nash equilibrium, subgame-perfect equilibrium and social welfare equilibrium, we
introduced the notions of least response and social cost equilibrium. We considered
a method to compute equilibria values of bimatrix games and developed a procedure
for achieving that by encoding it as an SMT problem. Subsequently, we extended
rPATL to accommodate equilibria properties for two-player (coalitional) queries and
introduced novel algorithms to compute/approximate SWNE and SCNE values for
these properties over CSGs. rPATL includes the possibility of specifying properties
that combine bounded and unbounded temporal operators, for which we also present
a model transformation necessary to verify such properties.

We also considered the problem of synthesising strategies for equilibria properties,
which require memory and randomisation, and discussed how to construct them by
combining state-local SWNE or SWNE strategies and those resulting from MDP
model checking. We concluded the chapter with a discussion of correctness and
complexity, and the limitations of our approach.

95

CHAPTER 6

Multi-player Equilibria Properties

Contents
6.1 Computing NE Values of n-Player Games 97

6.2 Property Specification . 101

6.3 Model Checking Multi-player Nonzero-sum Properties . 103

6.4 Strategy Synthesis . 109

6.5 Correctness and Complexity 110

6.6 Summary . 111

In this chapter we detail our approach for model checking and strategy synthesis of
multi-player or multi-coalitional equilibria properties. Computation involving equi-
libria for multi-player games is a considerably more complex task than for two-player
games, and different methods have to be employed both for solving the individual
games at each state and to compute/approximate the values for the overall graph. A
clear limitation of the approach described in Chapter 5 is the assumption that agents
can, or would be willing to, cooperate, synchronise and form two distinct coalitions.
Incorporating multi-coalitional properties into rPATL then allows for a wider scope
of problems to be analysed. Naturally, the methods described in this chapter would
then also cover two-player verification but are presented separately for a number of
reasons:

• finding SWNE/SCNE values for games locally is no longer a linear problem;

• it is not possible to switch to MDP model checking when one player’s objective
cannot change;

96

• model checking algorithms are markedly more complex.

We start by formally presenting a well known result from game theory that we
use to characterise equilibria strategy profiles for normal form games. Subsequently,
we present our approach for computing NE values using nonlinear programming and
support enumeration. We then extend rPATL to accommodate multi-coalitional prop-
erties and describe the algorithms used for verification and synthesis. A discussion
of correctness and complexity concludes the chapter. The material presented in this
chapter in based on [138].

6.1 Computing NE Values of n-Player Games

We start by introducing a lemma that is central to our approach for computing
equilibria values for multi-player games. The lemma states that a profile is an NE if
and only if any player switching to a single action in the support of the profile yields
the same utility for the player and switching to an action outside the support cannot
increase its utility. In the following, we refer to the support of a profile as the product
of the supports of the individual strategies. Furthermore, a profile is said to have full
support if it includes all available action tuples.

Lemma 3 ([174]). A strategy profile σ=(σ1, . . . , σn) of an NFG N is an NE if and
only if the following conditions are satisfied:

∀i ∈ N. ∀ai ∈ Ai. σi(ai) > 0→ ui(σ−i(ηai)) = ui(σ) (6.1)

∀i ∈ N. ∀ai ∈ Ai. σi(ai) = 0→ ui(σ−i(ηai)) 6 ui(σ) . (6.2)

Example 19. In order to illustrate how the conditions described in Lemma 3 charac-
terise an NE, let us consider again the coalitional stag hunt game example originally
shown in Examples 4 and 15 as the following bimatrix game:

Z1 =

(b0 b1 b2

a0 2 2 2

a1 0 4 6

)
Z2 =

(b0 b1 b2

a0 4 2 0

a1 4 6 9

)
For a strategy profile σ we have the following payoffs for the players when they

switch to deterministic strategies:

u1(σ−1(ηa0)) = 2σ2(b0) + 2σ2(b1) + 2σ2(b2)
u1(σ−1(ηa1)) = 4σ2(b1) + 6σ2(b2)
u2(σ−2(ηb0)) = 4σ1(a0) + 4σ1(a1)
u2(σ−2(ηb1)) = 2σ2(a0) + 6σ1(a1)
u2(σ−2(ηb2)) = 9σ1(a2)

97

If we consider the strategy profile σa1,b2 = (δa1 , δb2), then the payoff vector is v = (6, 9)

and the conditions of Lemma 3 are satisfied:

2σa1,b22 (b0) + 2σa1,b22 (b1) + 2σa1,b22 (b2) = 2 6 v1

4σa1,b22 (b1) + 6σa1,b22 (b2) = 6 = v1

4σa1,b21 (a0) + 4σa1,b21 (a1) = 4 6 v2

2σa1,b21 (a0) + 6σa1,b21 (a1) = 6 6 v2

9σa1,b21 (a1) = 9 = v2

On the other hand, if we consider the strategy profile σa0,b0 = (δa0 , δb0), then the
payoff vector is v = (2, 4) and the conditions of Lemma 3 are satisfied:

2σa0,b02 (b0) + 2σa0,b02 (b1) + 2σa0,b02 (b2) = 2 = v1

4σa0,b02 (b1) + 6σa0,b02 (b2) = 0 6 v1

4σa0,b01 (a0) + 4σa0,b01 (a1) = 4 = v2

2σa0,b01 (a0) + 6σa0,b01 (a1) = 2 6 v2

9σa0,b01 (a1) = 0 6 v2

Since both profiles satisfy the conditions of Lemma 3 it therefore follows that both are
NE. It is also straightforward to check that σ = (σ1, σ2) = ((5/9·ηa0+4/9·ηa1), (2/3·ηb0+
1/3·ηb2)) is also a NE with payoff vector v = (2, 4), which then gives us the same set
of strategy profiles that had been previously found in Example 15.

�

Computing SWNE Values of NFGs. Computing equilibria values for an n-
player game is a complex task given that, differently from the two-player case, find-
ing whether a given strategy profile is an equilibrium cannot be encoded as a linear
programming problem. Computing SWNE values makes the problem even harder as
it involves finding a strategy profile that maximises the sum of utilities. The algo-
rithm for the two-player case presented in Section 5.1.1, based on labelled polytopes,
starts by considering all the regions of the strategy profile space and then iteratively
reduces the search space as positive probability assignments are found and added as
restrictions on the space. The efficiency of this approach is reduced when analysing
games with a large number of actions and when one or more players are indifferent,
as the possible assignments resulting from action permutations need to be exhausted
in order to compute SWNE values.

Going in the opposite direction, support enumeration [174] is a method for com-
puting NE that exhaustively examines all sub-regions, i.e. supports, of the strategy
profile space, one at a time, checking whether that sub-region contains an equilibrium.
The computation of SWNE values for n-player games through support enumeration

98

can thus only be computed efficiently for games with limited number of actions, as the
number of supports to be checked grows exponentially with respect to the number of
actions. More precisely, the number of supports equals

∏n
i=1(2|Ai| − 1), out of which∏n

i=1 |Ai| correspond to pure strategy profiles. Therefore, computing SWNE values
through support enumeration will only be efficient for games with a small number of
actions.

We now show how, for a given support, computing SWNE profiles can be encoded
as a nonlinear programming problem. Formally, given the support B = B1× · · ·×Bn

where Bi ⊆ Ai and Bi 6= ∅ for all i ∈ N , we choose unique pivot actions1 bpi ∈ Bi for
i ∈ N , the nonlinear programming problem is to minimise:

−
∑

i∈N

(∑
b∈B ui(b) ·

(∏
j∈N pj,bj

))
(6.3)

subject to:∑
c∈B−i(bpi) ui(c) ·

(∏
j∈N−i pj,cj

)
−
∑

c∈B−i(bi) ui(c) ·
(∏

j∈N−i pj,cj

)
= 0 (6.4)∑

c∈B−i(bpi) ui(c) ·
(∏

j∈N−i pj,cj

)
−
∑

c∈B−i(ai) ui(c) ·
(∏

j∈N−i pj,cj

)
> 0 (6.5)∑

bi∈Bi pi,bi = 1 (6.6)

pi,bi > 0 (6.7)

for all i ∈ N , bi ∈ Bi\{bpi } and ai ∈ Ai\Bi where B−i(ci) = B1 × · · · × Bi−1 × {ci} ×
Bi+1 × · · · ×Bn and N−i = N\{i}.

The variables VB = {pi,bi | i ∈ N ∧ bi ∈ Bi} in the above program represent the
probabilities players choose different actions, i.e. pi,bi is the probability of player i ∈ N
selecting action bi ∈ Bi. The constraints (6.6) and (6.7) ensure that the probabilities
of each player selecting actions sum to one and that the support of the corresponding
profile equals B. The term in Equation (6.3) corresponds to the sum of the individual
utilities of the players when they play according to the profile corresponding to the
values assigned to the variables VB. By minimising its negated value, we require the
solution is social welfare optimal. The constraints (6.4) and (6.5) require that the
solution corresponds to a NE as these constraints encode the constraints (6.1) and
(6.2), respectively, of Lemma 3 for the corresponding profile. There is a difference from
the constraints in Lemma 3 since in constraints (6.4) and (6.5) only pivot actions are
compared with other actions in Bi and Ai\Bi, respectively. However, this is sufficient
as (6.4) requires all actions in the support to yield the same utility.

1For each i ∈ N this can be any action in Bi.

99

a u1 u2 u3

(c1, c2, c3) 7 7 7
(c1, c2, d3) 3 3 9

a u1 u2 u3

(c1, d2, c3) 3 9 3
(c1, d2, d3) 0 5 5

a u1 u2 u3

(d1, c2, c3) 9 3 3
(d1, c2, d3) 5 0 5

a u1 u2 u3

(d1, d2, c3) 5 5 0
(d1, d2, d3) 1 1 1

Table 6.1: Utilities for an instance of a three-player prisoner’s dilemma.

SMT solvers with nonlinear modules can be used for computing equilibria values
of n-player NFGs, although they can be inefficient. Alternative approaches for solving
such problems include barrier or interior-point methods [167].

Example 20. Let us consider an instance of three prisoners dilemma with payoffs
described in Table 6.1. If we consider different supports B−i(ai), Bj = Aj for i 6= j,
the payoff for player i when playing action ai ∈ Ai can be computed as:

u1(B−1(c1)) = 7p2,c2p3,c3 + 3p2,c2p3,d3 + 3p2,d2p3,c3

u1(B−1(d1)) = 9p2,c2p3,c3 + 5p2,c2p3,d3 + 5p2,d2p3,c3 + p2,d2p3,d3

u2(B−2(c2)) = 7p1,c1p3,c3 + 3p1,c1p3,d3 + 3p1,d1p3,c3

u2(B−2(d2)) = 9p1,c1p3,c3 + 5p1,c1p3,d3 + 5p1,d1p3,c3 + p1,d1p3,d3

u3(B−3(c3)) = 7p1,c1p2,c2 + 3p1,c1p2,d2 + 3p1,d1p2,c2

u3(B−3(d3)) = 9p1,c1p2,c2 + 5p1,c1p2,d2 + 5p1,d1p2,c2 + p1,d1p2,d2

For a full support Bfs, that is, one in which all players play all their actions with
positive probability, if we let pivot actions bpi equal ci for i ∈ N, ci ∈ Ai, we would
have the following nonlinear program:
Minimise:

−(u1(Bfs) + u2(Bfs) + u3(Bfs))

subject to:

u1(Bfs
−1(c1))− u1(Bfs

−1(d1)) = 0 p1,c1 + p1,d1 = 1 p1,c1 > 0, p1,d1 > 0

u2(Bfs
−2(c2))− u2(Bfs

−2(d2)) = 0 p2,c2 + p2,d2 = 1 p2,c2 > 0, p2,d2 > 0

u3(Bfs
−3(c3))− u3(Bfs

−3(d3)) = 0 p3,c3 + p3,d3 = 1 p3,c3 > 0, p3,d3 > 0

Finally, if we consider a partial support Bps, wehre each player i ∈ N only plays
action di with positive probability, and thus di is the only possible pivot action for
each player, we would have the following nonlinear program:
Minimise:

−(u1(Bps) + u2(Bps) + u3(Bps))

100

subject to:
u1(Bps

−1(d1)) > 0 p1,d1 = 1 p1,d1 > 0
u2(Bps

−2(d2)) > 0 p2,d2 = 1 p2,d2 > 0
u3(Bps

−3(d3)) > 0 p3,d3 = 1 p3,d3 > 0

which reduces to:
p2,d2p3,d3 > 0 p1,d1 = 1 p1,d1 > 0
p1,d1p3,d3 > 0 p2,d2 = 1 p2,d2 > 0
p1,d1p2,d2 > 0 p3,d3 = 1 p3,d3 > 0

It is then straightforward to verify that the support Bps is indeed a satisfying as-
signment, whereas there can be no equilibria with full support, as the constraints
could be reduced to p3,c3(p2,d2 + 1) = −1, which cannot be satisfied. As with the
two-player case, defection dominates cooperation for all players, which leads to the
only equilibrium being the one where all players defect.

�

6.2 Property Specification

We now consider the logic rPATL with Nash formulae and enhance it with equilibria
properties that separate players into more than two coalitions. Since we are limited
to considering ε-SWNE and ε-SCNE for infinite-horizon properties, we assume some
ε has been fixed in advance.

Definition 6.2.1 (Extended rPATL syntax for multi-coalitional properties). The
syntax of our extended version of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr∼x[ρ] | 〈〈C1: · · · :Cm〉〉opt∼x(θ)

θ := P[ψ]+· · ·+P[ψ] | Rr[ρ]+· · ·+Rr[ρ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | F φ

where a is an atomic proposition, C and C1, . . . , Cm are coalitions of players such
that Ci ∩ Cj = ∅ for all 1 6 i 6= j 6 m and ∪mi=1Ci = N , opt ∈ {min,max},
∼∈ {<,6,>, >}, q ∈ Q ∩ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.

Our addition to the logic is Nash formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ), where
the nonzero sum formula θ comprises a sum of m probability or reward objectives.
The formula 〈〈C1:· · ·:Cm〉〉max∼x(P[ψ1]+· · ·+P[ψm]) holds in a state if, when the play-
ers form the coalitions C1, . . . , Cm, there is a subgame-perfect SWNE for which the
sum of the values of the objectives P[ψ1], . . . , P[ψm] for the coalitions C1, . . . , Cm

101

satisfies ∼x. The case for reward objectives is similar and, for formulae of the form
〈〈C1:· · ·:Cm〉〉min∼x(θ), we require the existence of an SCNE rather than an SWNE.
We also allow numerical queries of the form 〈〈C1:· · ·:Cm〉〉opt=?(θ), which return the
sum of the SWNE or SCNE values. Similarly to the two-player case, the rPATL
syntax for multi-player nonzero-sum formulae presented here differs from that for
zero-sum formulae presented in Definition 4.4 by dropping the reward operators for
expected reachability (Fc) and total rewards (C) as currently no algorithms are known
for these variants. As for two-player equilibria formulae, multi-coalitional rPATL in-
cludes infinite-horizon (U, F) temporal operators for which the existence of SWNE
and SCNE is open. However, ε-SWNE and ε-SCNE do exist for any ε > 0. Hence,
we define the semantics of the logic in the context of a particular ε.

Definition 6.2.2 (Extended rPATL semantics for Multi-coalitional Properties). The
satisfaction relation |= of our rPATL extension is defined inductively on the structure
of the formula. The propositional logic fragment (true, a, ¬, ∧) is defined in the usual
way. The zero-sum formulae 〈〈C〉〉P∼q[ψ] and 〈〈C〉〉Rr∼x[ρ] are defined as in Chapter
4. For a Nash formula and state s ∈ S in CSG G, we have:

s |= 〈〈C1: · · · :Cm〉〉opt∼x(θ) ⇔ ∃σ? ∈ ΣGC .
(
Eσ?GC ,s(X

θ
1) + · · ·+ Eσ?GC ,s(X

θ
m)
)
∼ x

and σ? = (σ?1, . . . , σ
?
m) is a subgame-perfect ε-SWNE if opt = max and a subgame-

perfect ε-SCNE if opt = min for the objectives (Xθ
1 , . . . , X

θ
m) in game GC, where C =

{C1, . . . , Cm} and for 1 6 i 6 m and π ∈ IPathsσ
?

GC ,s :

X
P[ψ1]+···+P[ψm]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ρ1]+···+Rrm [ρm]
i (π) = rew(ri, ρ

i)(π)

Example 21. Let us consider again the robot coordination problem from Example
8. The following are properties are examples of multi-player equilibria formulae that
could be expressed with rPATL (where gi and c are atomic propositions indicating
the goal position of robot1 and a collision, respectively):

• 〈〈robot1:robot2:robot3〉〉max>3(P[¬c U g1]+P[¬c U g2]+P[¬c U g3]) could be used
to check whether the robots can collaborate so that all reach their goal with
probability 1 without crashing;

• 〈〈robot1:robot2:robot3〉〉min=?(R
rsteps [F g1]+Rrsteps [F g2]+Rrsteps [F g3]) asks what is

the sum of expected values when the robots collaborate and each wants to
minimise their expected steps to reach their goal (rsteps is a reward structure
that assigns 1 to all state action tuple pairs);

102

• 〈〈robot1:robot2:robot3〉〉max=?(P[¬c U6k g1]+P[¬c U6k g2]+P[¬c U6k g3]) can be
used to compute the sum of social welfare probability values so that the robots
reach their goal without crashing within k steps.

�

6.3 Model Checking Multi-player Nonzero-sum Prop-
erties

The logic rPATL is branching-time and the model checking algorithm works by re-
cursively computing the set Sat(φ) of states satisfying formula φ over the structure
of φ. Therefore, to extend the existing approach of Chapters 4 and 5, we need only
consider formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ). From Definition 6.2.2, this re-
quires the computation of subgame-perfect SWNE or SCNE values of the objectives
(Xθ

1 , . . . , X
θ
m) and a comparison of their sum to the threshold x.

As for the two-player case reported in Chapter 5, in order to check nonzero-sum
properties on CSGs, we have to work with a restricted class of games. As previ-
ously done, we use an objective-dependent assumption, which ensures that, under all
profiles, with probability 1, eventually the outcome of each player’s objective does
not change by continuing. This can be checked using graph algorithms [72]. We re-
quire the following assumptions on CSGs for the different classes of multi-coalitional
equilibria formulae.

Assumption 5. For subformulae P[φi1 U φi2], there are no end components of G that
are subsets of Sat(¬φi1 ∨ ¬φi2).

Assumption 6. For subformulae Rr[F φi], the set Sat(φi) is reached with probability
1 from all states of G under all profiles.

If all the objectives in the nonzero sum formula θ are finite-horizon, backward
induction can be applied to compute (precise) subgame-perfect SWNE values. On
the other hand, when all the objectives are infinite-horizon, we extend the techniques
of Chapter 5 for two-player games and use value iteration to approximate subgame-
perfect SWNE values. The extension is non-trivial, as in the two-player case, when
one player reaches their goal, we can apply MDP verification techniques, while this
is no longer possible when there is more than one player that has not reached their
goal. In addition, in such cases we cannot reduce the analysis from an n-player to
a (n−1)-player game, as the choices of the player that has reached its goal can still

103

influence the outcomes of the remaining players and assigning its choices to one of
the other players can exploit these choices to its own advantage. Instead, we need to
keep track of the set of players that have reached their goal (denoted D) and can no
longer reach their goal in the case of until formulae (denoted E), and define the values
at each iteration using these sets. In cases when there is a combination of finite- and
infinite-horizon objectives, we can extend the techniques of Section 5.3.5 and make
all objectives infinite-horizon by modifying the game in a standard manner.

We now show how to compute the SWNE and SNCE values of a multi-coalitional
formula 〈〈C:· · ·:Cm〉〉opt∼x(θ). For the remainder of this section we fix a NFG N and
CSG G. Again, we use the notations VGC(s, θ), VGC(s, θ, n) and VGC(s, θ),VGC(s, θ, n)

for the vector of SWNE and SCNE values of the objectives (Xθ
1 , X

θ
2 , . . . , X

θ
N) in state

s of GC. We also use 1N and 0N to denote a vector of size N whose entries all
equal to 1 or 0, respectively. For any set of states S ′ and state s we let ηS′(s) equal
1 if s ∈ S ′ and 0 otherwise. Furthermore, to simplify the presentation the step
bounds appearing in path and reward formulae can take negative values. We refrain
from showing any combination of objectives for multi-player equilibria properties
for a number or reasons: (i) the added intricacy of keeping track of players who
cannot satisfy their objectives due to an elapsed time bound; (ii) accounting for the
possible permutations of operators inside any given formula; (iii) the reasoning behind
developing the algorithms for dealing with these cases is not dissimilar to that applied
for the two-player case (see Sections 5.3.1 and 5.3.5), and the problem could be solved
by applying appropriate model transformations.

6.3.1 Computing SWNE Values of Finite-horizon Nonzero-
sum Formulae

As for the two-player case, for a finite-horizon formula θ, we compute the SWNE
values VGC(s, θ) for all states s of the coalitional game GC in a recursive fashion based
on the step bound. We now solve normal form games at each step, which are defined
in a similar manner to the bimatrix games for two-player nonzero-sum properties: the
actions of each normal form game correspond to the actions available in that state and
the utilities are constructed from the transition probabilities δC of the game GC, the
reward structure (in the case of reward formulae) and the values already computed
recursively for successor states. Below, we explain the computation for both types of
finite-horizon probabilistic objectives (next and bounded until) and reward objectives.

104

Next. If θ = P[Xφ1]+ · · ·+P[Xφm], then VGC(s, θ) equals SWNE values of the game
N = (M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) =
∑
s′∈S

δC(s, a)(s′) · ηSat(φl)(s
′)

Bounded Until. If θ = P[φ1
1 Uk1 φ1

2]+ · · ·+P[φm1 U6km φ6m2], we compute SWNE
values of the objectives recursively for 0 6 n 6 k of the nonzero-sum formulae θn =

P[φ1
1 U6k1−n φ1

2]+ · · ·+P[φm1 U6km−n φm2], where k = max{k1, . . . , kl} and VGC(s, θ) =

VGC(s,∅,∅, θ0). For any state s and 0 6 n 6 k, D,E ⊆M such that D ∩ E = ∅:

VGC(s,D,E, θn) =

(ηD(1), . . . , ηD(m)) if D ∪ E = M

VGC(s,D ∪D′, E, θn) else if D′ 6= ∅
VGC(s,D,E ∪ E ′, θn) else if E ′ 6= ∅
val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E ′ = {l ∈ M\(D ∪ E) | s ∈ Sat(¬φl1 ∧
¬φl2)} and val(N) equals SWNE values of the game N = (M,AC, u) in which for any
1 6 l 6 m and a ∈ AC:

ul(a) =

1 if l ∈ D
0 else if l ∈ E
0 else if nl−n 6 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D,E, θn−1) for all s′ ∈ S.

Instantaneous Rewards. If θ = Rr1 [I=k1]+· · ·+Rrm [I=km], we compute SWNE val-
ues of the objectives for the nonzero-sum formulae θn = Rr1 [I=n1−n]+· · ·+Rrm [I=nl−n]

for 0 6 n 6 k recursively, where k= max{k1, . . . , kl} and VGC(s, θ) = VGC(s, θ0). For
any state s and 0 6 n 6 k, VGC(s, θn) equals SWNE values of the game N = (M,AC, u)

in which for any 1 6 l 6 m and a ∈ AC:

ul(a) =

0 if nl−n < 0∑

s′∈S δ
C(s, a)(s′) · rlS(s′) else if nl−n = 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC(s

′, θn+1) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C6k1] + · · ·+ Rrm [C6km], we compute
SWNE values of the objectives for the nonzero-sum formulae θn = Rr1 [C6n1−n] +

· · · + Rrl [C6nm−n] for 0 6 n 6 k recursively, where k= max{k1, . . . , kl} and VGC(s, θ)

105

= VGC(s, θ0). For any state s and 0 6 n 6 k, VGC(s, θn) equals SWNE values of the
game N = (M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) =

{
0 if nl−n 6 0

rlS(s) + rlA(s, a) +
∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC(s

′, θn+1) for all s′ ∈ S.

6.3.2 Computing SWNE Values of Infinite-horizon Nonzero-
sum Formulae

We next show how to compute SWNE values VGC(s, θ) for infinite-horizon multi-
player formulae θ in all states s of GC. As for the two-player case, we approximate
these using a value iteration approach. Each step of this computation is similar in
nature to the algorithms in the previous section, where a normal form is solved for
each state, and a different game is played in states where a given set of players have
satisfied or can no longer satisfy their goals.

Again, a key aspect of the value iteration algorithm is based on the fact that
convergence is defined over the sum of equilibria values for each player. Convergence
of value iteration is estimated in the same way as for the zero-sum computation (see
Section 5.3.2), by comparing values in successive iterations. As previously, this means
that we are not able to guarantee that the computed values are within a particular
error bound of the exact values.

Until. For formulae of the type θ = P[φ1
1 U φ1

2]+ · · ·+P[φm1 U φm2], values can be
computed through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where
VGC(s, θ, n) = VGC(s,∅,∅, θ, n) and for any D,E ⊆M such that D ∩ E = ∅:

VGC(s,D,E, θ, n) =

(ηD(1), . . . , ηD(m)) if D ∪ E = M

(ηSat(φ12)(s), . . . , ηSat(φm2)(s)) else if n = 0

VGC(s,D ∪D′, E, θ, n) else if D′ 6= ∅
VGC(s,D,E ∪ E ′, θ, n) else if E ′ 6= ∅
val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E ′ = {l ∈ M\(D ∪ E) | s ∈ Sat(¬φl1 ∧
¬φl2)} and val(N) equals SWNE values of the game N = (M,AC, u) in which for any
1 6 l 6 m and a ∈ AC:

ul(a) =

1 if l ∈ D
0 else if l ∈ E∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

106

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D,E, θ, n−1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1]+ · · ·+Rrm [F φm], values can be com-
puted through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where
VGC(s, θ, n) = VGC(s,∅, θ, n) and for any D ⊆M :

VGC(s,D, θ, n) =

0m if D = M

0m else if n = 0

VGC(s,D ∪D′, θ, n) else if D′ 6= ∅
val(N) otherwise

D′ = {l ∈ M\D | s ∈ Sat(φl)} and val(N) equals SWNE values of the game N =

(M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) =

{
0 if l ∈ D
rlS(s) + rlA(s, a) +

∑
s′∈S δ

C(s, a)(s′) · vs
′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D, θ, n−1) for all s′ ∈ S.

6.3.3 Computing SCNE Values of Finite-horizon Nonzero-sum
Formulae

In this section, we show how to compute SCNE values VGC(s, θ) for finite-horizon
multi-player formula θ in all states s of GC. Similarly the algorithms of Section 5.3.4,
this is achieved by negating the utility function values of the normal form games
representing each state, and subsequently negating the SWNE values computed.

Next. If θ = P[Xφ1]+ · · ·+P[Xφm], then VGC(s, θ) equals the negation of the SWNE
values of the game N = (M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) = −
∑
s′∈S

δC(s, a)(s′) · ηSat(φl)(s
′)

Bounded Until. If θ = P[φ1
1 Uk1 φ1

2]+ · · ·+P[φm1 U6km φ6m2], we compute SCNE
values of the objectives recursively for 0 6 n 6 k of the nonzero-sum formulae θn =

P[φ1
1 U6k1−n φ1

2]+ · · ·+P[φm1 U6km−n φm2], where k = max{k1, . . . , kl} and VGC(s, θ) =

VGC(s,∅,∅, θ0). For any state s and 0 6 n 6 k, D,E ⊆M such that D ∩ E = ∅:

VGC(s,D,E, θn) =

(ηD(1), . . . , ηD(m)) if D ∪ E = M

VGC(s,D ∪D′, E, θn) else if D′ 6= ∅
VGC(s,D,E ∪ E ′, θn) else if E ′ 6= ∅
−val(N) otherwise

107

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E ′ = {l ∈ M\(D ∪ E) | s ∈ Sat(¬φl1 ∧
¬φl2)} and val(N) equals the SWNE values of the game N = (M,AC, u) in which for
any 1 6 l 6 m and a ∈ AC:

ul(a) = −1×

1 if l ∈ D
0 else if l ∈ E
0 else if nl−n 6 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D,E, θn−1) for all s′ ∈ S.

Instantaneous Rewards. If θ = Rr1 [I=k1]+· · ·+Rrm [I=km], we compute SCNE val-
ues of the objectives for the nonzero-sum formulae θn = Rr1 [I=n1−n]+· · ·+Rrm [I=nl−n]

for 0 6 n 6 k recursively, where k= max{k1, . . . , kl} and VGC(s, θ) = VGC(s, θ0). For
any state s and 0 6 n 6 k, VGC(s, θn) equals the negation of the SWNE values of the
game N = (M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) = −1×

0 if nl−n < 0∑

s′∈S δ
C(s, a)(s′) · rlS(s′) else if nl−n = 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC(s

′, θn+1) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C6k1] + · · ·+ Rrm [C6km], we compute
SCNE values of the objectives for the nonzero-sum formulae θn = Rr1 [C6n1−n] +

· · · + Rrl [C6nm−n] for 0 6 n 6 k recursively, where k= max{k1, . . . , kl} and VGC(s, θ)

= VGC(s, θ0). For any state s and 0 6 n 6 k, VGC(s, θn) equals the negation of the
SWNE values of the game N = (M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) = −1×

{
0 if nl−n 6 0

rlS(s) + rlA(s, a) +
∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC(s

′, θn+1) for all s′ ∈ S.

6.3.4 Computing SCNE Values of Infinite-horizon Nonzero-
sum Formulae

We next show how to compute SCNE values VGC(s, θ) for finite-horizon multi-player
formula θ in all states s of GC. The same changes described for finite-horizon formulae
in Section 6.3.3 and the arguments concerning uniqueness and convergence for the
computation of infinite-horizon SWNE values described in Section 6.3.2 apply here.

108

Until. For formulae of the type θ = P[φ1
1 U φ1

2]+ · · ·+P[φm1 U φm2], values can be
computed through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where
VGC(s, θ, n) = VGC(s,∅,∅, θ, n) and for any D,E ⊆M such that D ∩ E = ∅:

VGC(s,D,E, θ, n) =

(ηD(1), . . . , ηD(m)) if D ∪ E = M

(ηSat(φ12)(s), . . . , ηSat(φm2)(s)) else if n = 0

VGC(s,D ∪D′, E, θ, n) else if D′ 6= ∅
VGC(s,D,E ∪ E ′, θ, n) else if E ′ 6= ∅
−val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E ′ = {l ∈ M\(D ∪ E) | s ∈ Sat(¬φl1 ∧
¬φl2)} and val(N) equals SWNE values of the game N = (M,AC, u) in which for any
1 6 l 6 m and a ∈ AC:

ul(a) = −1×

1 if l ∈ D
0 else if l ∈ E∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D,E, θ, n−1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1]+ · · ·+Rrm [F φm], values can be com-
puted through value iteration as the limit VGC(s, θ) = limn→∞ VGC(s, θ, n) where
VGC(s, θ, n) = VGC(s,∅, θ, n) and for any D ⊆M :

VGC(s,D, θ, n) =

0m if D = M

0m else if n = 0

VGC(s,D ∪D′, θ, n) else if D′ 6= ∅
−val(N) otherwise

D′ = {l ∈ M\D | s ∈ Sat(φl)} and val(N) equals SWNE values of the game N =

(M,AC, u) in which for any 1 6 l 6 m and a ∈ AC:

ul(a) = −1×

{
0 if l ∈ D
rlS(s) + rlA(s, a) +

∑
s′∈S δ

C(s, a)(s′) · vs
′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC(s

′, D, θ, n−1) for all s′ ∈ S.

6.4 Strategy Synthesis

When verifying a Nash formula 〈〈C1:C2: · · · :Cm〉〉opt∼x(θ), we can also build a strategy
that is a subgame-perfect SWNE or SCNE for the objectives (Xθ

1 , . . . , X
θ
N). This

109

is achieved by keeping track of a SWNE for the NFG solved in each state. The
synthesised strategies require randomisation and memory. Randomisation is needed
for NE of NFGs. Memory is required for finite-horizon properties and given that
choices change after a path formula becomes true or a target is reached.

For infinite-horizon properties only approximate ε-NE profiles are synthesised and
memory is also needed to keep track of players that have satisfied their objectives as
illustrated by Example 18 for the two-player case. As for strategy synthesis of infinite-
horizon zero-sum and two-player properties discussed in Sections 4.6 and 5.4, given
that we use value iteration, we cannot guarantee that the values computed are within
a particular error bound of the actual values. Given we cannot switch to MDP model
checking in games with more than two players, the memory elements are used to keep
track of the sets D and E, which record the players who have reached and cannot
reach their goals, respectively, as described in Section 6.3. Alternatively, an extended
game can be built with additional labels and states to keep track of that information,
as detailed in Chapter 7.

6.5 Correctness and Complexity

The proof of correctness follows similarly to the two-player case (see Appendix A,
Section A.1.2 for the proof). In the case of finite-horizon nonzero-sum formulae the
correctness of the model checking algorithm follows from the fact that we use back-
ward induction [181, 205, 188]. For infinite-horizon nonzero-sum formulae the proof
is based on showing that the values of the players computed during value iteration
correspond to subgame-perfect SWNE or SCNE values of finite game trees, and the
values of these game trees converge uniformly to the actual values of GC. The only
difference from the two-player case is that in the game trees when some of the play-
ers’ objectives are met we need to keep track of this in the subsequent states of
the game tree, whereas in the two-player case such situations reduce to MDP model
checking. The complexity of the algorithm is linear in the formula size, and finding
subgame-perfect NE for reachability objectives in n-player games is PSPACE [35].
Value iteration requires finding all NE for a NFG in each state of the model, and
computing NE of an NFG with three (or more) players is PPAD-complete [71].

110

6.6 Summary

In this chapter, we reviewed how to compute Nash equilibria for CSGs through sup-
port enumeration and presented an encoding of this problem as a nonlinear program.
Subsequently, we presented the syntax and semantics of a multi-coalitional exten-
sion of rPATL, which allows for property specification considering any given num-
ber of coalitions. We developed algorithms for computing/approximating SWNE or
SCNE values of multi-coalitional properties, which are also used for strategy synthe-
sis. Multi-coalitional properties add considerably to the complexity of model checking
for equilibria properties, both in terms of solving games at a state level and over the
overall graph. For this type of properties, we can no longer reduce part of the com-
putation to MDP model checking and need to keep track of sets of players that have
satisfied their objective at a given point. We conclude the chapter with a discussion
of correctness and complexity.

111

CHAPTER 7

Tool Implementation

Contents
7.1 Modelling and Property Specification Language 113

7.2 Implementation Details . 118

7.3 Tool Demonstration . 129

7.4 Summary . 131

In this chapter we describe the implementation for the model checking and strategy
synthesis methods for concurrent stochastic games based on the algorithms described
in Chapters 4, 5 and 6, which account for the main new features of PRISM-games
3.0. We build on the existing implementation of PRISM-games 2.0 [144, 143] that
already supported verification for single-objective and multi-objective zero-sum prop-
erties of turn-based stochastic games. PRISM-games is a mature state-of-art tool
for verifying stochastic games, originally built as an extension of the probabilistic
model checker PRISM [135]. Although the tool already supported TSGs, which were
built as the result of simple synchronisation among different components or through
a compositional approach guided by an assume-guarantee framework [211], both the
modelling and property specification languages revealed themselves to be unsuitable
for concurrent stochastic games. Additionally, it was not possible to verify equilibria
properties over TSGs, which can now be done by modelling them as CSGs. We start
by describing the modelling language extension, illustrating its main new features
through an example. Subsequently, we discuss the choices and challenges behind

112

the implementation of the model checking procedures. A brief tool demonstration
concludes this chapter.

PRISM-games 3.0 is available at https://www.prismmodelchecker.org/games/
and is an open source tool under the GPL licence, accompanied by a tool paper
[139] presented at CAV 2020. Earlier prototype versions that supported CSGs were
developed and used in [136, 137, 138, 140], and can also be found online.

7.1 Modelling and Property Specification Language

Prior to the work reported in this thesis, PRISM-games already allowed for the specifi-
cation of action-labelled turn-based stochastic games using an extension of the native
PRISM modelling language [143], which is itself based on the reactive modules formal-
ism of [3]. In this section, we describe the changes necessary for supporting CSGs,
together with the new features added to the modelling and property specification
languages.

7.1.1 Overview

Model building in PRISM-games is done through module composition. Modules are
used to represent smaller, self-contained parts of a system that may interact with other
modules by reading their variables and synchronising through action-labelled guarded
commands. When building a model, the tool makes a product among all synchronising
commands whose guards are satisfied in a given state in order to determine the
transitions the system may take. The next state is then computed by considering
the updates of each command and the product of each probability distribution. CSGs
could not be naturally modelled with this approach for several reasons: (i) players
need to be able to concurrently choose between multiple commands with different
action labels; (ii) the update performed by one player may be different depending on
the action chosen by another player; (iii) when multiple players execute, variables may
need to be updated according to an arbitrary probability distribution, rather than
being limited to the product of separate distributions specified locally by individual
modules.

The modelling language was adapted to accommodate the specification of CSGs by
only allowing modules to be associated to players and, in any state, letting each player
choose between enabled commands of the corresponding modules (if no command is
enabled, the player idles). In order to allow the updates of variables to depend on
the choices of other players, we extended the language by allowing commands to be

113

https://www.prismmodelchecker.org/games/

labelled with lists of actions [act1 , . . . , actn], and thus represent behaviour dependent
on other players’ choices. Reward structures were extended similarly so that an
individual player’s rewards can depend on the choices taken by multiple players.
Moreover, we also allow variables to be updated dependent on the updated values of
other variables, provided there are no cycles of dependency. This allows variables of
different players to be updated according to a joint probability distribution. Another
feature added to this new version of the language is the ability to specify independent
modules. Independent modules are not associated to any player and thus cannot
define distinct action labels, being only able to synchronise with other modules. These
modules are a useful addition and make it easier to model parallel components such
as counters and observers. They also make it possible to have a clear definition of
players as those in charge of how the system progresses, by linking players to modules
that specify actions and nondeterministic choices.

Figure 7.1 shows an example of the PRISM-games 3.0 modelling language, which
we use to illustrate some of its new features. It models a probabilistic version of
the medium access control problem (MAC), previously described in [33]. Two users
share a communication channel. At each time step, user maci (i = 1,2) can choose
between transmitting a message (ti) or waiting (wi). Variable si tracks whether a
user successfully sent its message in the last time step and ei represents its energy
level: transmissions can only occur when energy is positive. A third component is
the channel channel, modelled by Boolean variable c denoting whether a collision
occurred on the last transmission attempt. See for example the update (s1’=c’?0:1)
on line 22, which updates s1 depending on whether there was a channel collision
(reflected in c’, the updated value of c). We use this mechanism to model interference
on the channel: module channel specifies a joint probability distribution which is used
to update variables s1 and s2 simultaneously. The model in Figure 7.1 will be used
as the running example in this chapter and is the one we will be referring to, unless
it is explicitly stated otherwise.

7.1.2 Modelling CSGs in PRISM-games

Modules. Both in the original modelling language for PRISM and in that for PRISM-
games, all behaviour is encapsulated in modules, whose states are defined by a set of
finite-range variables and whose behaviour is specified using action-labelled guarded
commands. Variables are typed, may be initialised to a value using the init keyword,
and must be defined over a domain (e.g. the variables si in the model are defined over

114

1 csg
2 // Player specification
3 player p1 mac1 endplayer
4 player p2 mac2 endplayer
5 // Probability qi for transmission success when i users send
6 const double q1;
7 const double q2;
8 // Channel (computes joint transmission probabilities)
9 module channel
10 c : bool init false; // Did a collision occur during transmission?
11 [t1 ,w2] true -> q1:(c’= false) + (1-q1):(c’=true);// User 1 transmits
12 [w1 ,t2] true -> q1:(c’= false) + (1-q1):(c’=true);// User 2 transmits
13 [t1 ,t2] true -> q2:(c’= false) + (1-q2):(c’=true);// Both transmit
14 endmodule
15 // Max energy per user
16 const int emax;
17 // User 1
18 module mac1
19 s1 : [0..1] init 0;// Has user 1 sent?
20 e1 : [0.. emax] init emax;// Energy level of user 1
21 [w1] true -> true;// Wait
22 [t1] e1 >0 -> (s1 ’=c ’?0:1) & (e1 ’=e1 -1);// Transmit
23 endmodule
24 // Define second user using module renaming
25 module mac2 = mac1 [s1=s2 , e1=e2, w1=w2, t1=t2] endmodule

1 // Reward structures
2 // Number of messages sent by user 1
3 rewards "mess1"
4 s1=1 : 1;
5 endrewards
6 // Number of messages sent by user 2
7 rewards "mess2"
8 s2=1 : 1;
9 endrewards
10 // Number of times that users 1 and 2 transmit simultaneously
11 rewards "send2"
12 [t1 ,t2] true : 1;
13 endrewards

Figure 7.1: A model of the MAC problem as concurrent stochastic game.

[0..1] and initialised to 0). In a state, one or more modules can execute a command
to change its state: if the guard (a predicate over variables, considering their current
state values) is satisfied, the state can be modified (probabilistically) by applying the
updates of the command. Multiple modules can synchronise on a given set of actions
and then execute their updates simultaneously depending on how their commands
are labelled. It is assumed w.l.o.g. that all action names are distinct. If a module is
associated to a player, its commands should be specified according to the following

115

syntax:
[act1 , . . . , actn] guard→ p1 : update1 + p2 : update2 · · · ;

The list of actions that label each command in a player’s module should have at least
one action. The head of the list should always be an action belonging to that player,
while the remainder can be written in any given order. Naturally, the length of each
list should not exceed the number of player declarations in the model and should
not have more than one action belonging to the same player. A list can be partially
specified, that is, it can contain actions of only a subset of the players. In such cases,
the tool assumes that the command synchronises with any other action of players not
represented in the list.

Modules that are not associated to players are called independent. They are
specified in the same way and can also have its set of variables. However, given they
do not represent a player in the game, they cannot introduce new actions and its
commands’ labels are defined as a list of player actions written in any given order.
A feature restricted to independent modules is the ability of having empty labels, in
which case the command synchronises with any combination of actions and is executed
at every step provided its guard is satisfied. Such commands follow the syntax:

[] guard→ p1 : update1 + p2 : update2 · · · ;

Naturally, independent modules should not introduce nondeterminism in a model
and thus special attention has to paid to appropriately defining its guards when
synchronising on lists of actions or specifying empty-labelled commands.

Players. Players are added to a model by means of player declarations defined
according to the following syntax:

player p mod1 , . . . ,modn endplayer

A player may have an arbitrary number of modules associated to it and must have at
least one. This is done by providing the list of module names (mod1 , . . . ,modn) one
wants a player to control. An action declared in one module (by being the head of
a list labelling a command) can be reused in other modules provided they all belong
to the same player. If in a given state no command belonging to any of the player’s
module has its guards satisfied, that player idles (which is the equivalent of playing
⊥ as described in Section 4.3).

116

Rewards. Reward structures can be added to a model using the following syntax:

rewards "r"
[act1, . . . , actn] guard : exp;
...

endrewards

The reward structure specified above is named r and is made up of a list of re-
ward assignments as guarded statements: the optional label [act1, . . . , actn] specifies
a list of actions, the guard guard restricts the set of states to which the reward
is applied, and exp defines the rewards as a real value or an expression over vari-
ables. Rewards defined exclusively on actions are specified by assignments of the
form [act1, . . . , actn] true : values, which are trivially satisfied in every state. Sim-
ilarly, assignments of the form [] guard : exp are valid for all actions of states that
satisfy guard. Finally, assignments of the form guard : true are used to specify
rewards that are applied exclusively to states. For example, in Figure 7.1, the reward
structures messi define state rewards that assign a value of 1 to states that corre-
spond to player i having sent a message successfully, whereas the reward structure
send2 assigns a value of 1 to each time actions t1 and t2 are taken simultaneously.

Specification Language. PRISM-games 3.0 also extends the language used to spec-
ify properties for verification and strategy synthesis. The previous implementation
already supported zero-sum queries for TSGs using rPATL, including multi-objective
formulae, which were expressed as Boolean combinations of zero-sum objectives. Sup-
port for zero-sum properties of CSGs is a straightforward extension of the implemen-
tation for TSGs. For equilibria properties, we compute values or synthesise strategies
which are SWNE or SCNE, i.e., which maximise (or minimise) the sum of the values
associated to the objectives for each player. We express such properties by adding to
rPATL the + operator, which is then used to denote the sum of the values associated
to both bounded and unbounded objectives.

When using the reward operator in equilibria properties, we can reason about
cumulative (C6k), instantaneous (I=k) and expected reachability (F) objectives, with
total rewards (C) and the variant of expected reachability (Fc) being restricted to
zero-sum. For properties with the probability operator, we support bounded and
unbounded reachability using the temporal operators next (X), eventually(F) and until
(U) . With respect to expressing zero-sum properties for CSGs, we have implemented
all the previous temporal operators for probabilistic queries and a subset of the rPATL
operators reported in [53] (with the exception being F0) for reward-based queries,

117

adding to that the instantaneous reward operator. The total reward operator had
been added within the context of multi-objective properties [144].

Finally, following the style of rPATL, we separate players into coalitions with
the syntax 〈〈coalition〉〉, in order to specify the player or association of players for
which we seek to maximise or minimise the values for a given zero-sum property. For
equilibria properties, given that we maximise/minimise the sum, we use the same
operator to separate players in different coalitions using a colon, while players in the
same coalition are separated by a comma. Figure 7.2 shows two properties for the
running example. Both properties listed are SWNE equilibria properties that separate
the two players into different coalitions. The first computes the accumulated rewards
up to instant k and the second the sum of probabilistic reachability values.

1 const int k; // Time bound
2

3 // Each player wants to maximise the
4 // expected number of messages sent in k steps
5 <<p1:p2>>max=? (R{"mess1"}[C<=k] + R{"mess2"}[C<=k])
6

7 // Each player wants to maximise the
8 // probability of sending a message
9 <<p1:p2>>max=? (P[F s1=1] + P[F s2=1])

Figure 7.2: Properties for the MAC problem model shown in Figure 7.1.

7.2 Implementation Details

In this section, we present some details concerning the implementation for model
building and model checking.

7.2.1 Model Building

CSGs are built and stored in explicit-state fashion using an extension of PRISM’s
Java-implemented explicit (sparse-matrix based) engine. CSGs are stored “flat”, that
is, each state has a list of choices indexed by a product of actions. The reason for
that is that local games (matrix, bimatrix or NFGs, which describe a state) can
only be built once a coalition (or list of coalitions) has (have) been specified. Each
collective choice points to a distribution over the set of successor states. Model
building for CSGs is more intricate and costly than for TSGs, due to both the nature
of the problem and the new features added to the language. The fact that different

118

commands can synchronise partially on lists of actions requires different levels of
checking in order to make sure there is no nondeterminism or underspecification, for
instance, that in a two-player game there is an outcome and just one outcome for
every possible element of the product of action sets A1×A2. Due to the added feature
of using updated values of variables, we also need to make sure their updates are not
mutually dependent.

Figure 7.3 shows the state space representation in Dot format [93] of the medium
access problem as exported by PRISM-games (when instantiating the model with
q1 = 0.9 and q2 = 0.8). The states are represented by the diamond-shaped nodes,
which contain the values for the different variables of the system in the order they
are declared (in this case (c, s1, e1, s2, e2)). Connecting edges represent transitions
which are annotated with the element of action product set they represent, along with
the corresponding probability values, e.g., if p1 chooses t1 and p2 chooses w2 from the
state (false, 0, 1, 0, 1), the system moves to state (true, 0, 0, 0, 1) with probability
0.1 or to state (false, 1, 0, 0, 1) with probability 0.9.

(false,0,0,1,0)

0:[w1][w2]

(false,0,1,0,1)

0:[t1][t2]

1:[t1][w2] 2:[w1][t2] 3:[w1][w2]

(false,1,0,1,0)

0.8

(true,0,0,0,0)

0.2

0:[w1][w2] 0:[w1][w2]

(false,1,0,0,1)

0.9

(true,0,0,0,1)

0.1

0:[w1][t2]1:[w1][w2] 0:[w1][t2] 1:[w1][w2]

(false,0,1,1,0)

0.9

(true,0,1,0,0)

0.1

0:[t1][w2]1:[w1][w2] 0:[t1][w2] 1:[w1][w2]

0.9

(true,0,0,1,0)

0.1

0:[w1][w2]

(false,1,0,0,0)

0:[w1][w2]

0.9

(true,1,0,0,0)

0.1

0:[w1][w2]

0.9 0.1 0.1 0.9

Figure 7.3: State space of the MAC problem as exported by PRISM-games 3.0.

7.2.2 Model Checking

Matrix games, bimatrix games and NFGs are built on the fly during verification. For
all cases, we pre-allocate a number of variables for each player corresponding to the
highest number of actions they may have at any state. We found that allocating
variables either for the linear program or when using SMT solvers can be quite costly

119

in terms of time, and thus allocating a large enough number and resizing the LP
or using the solvers’ assertion stacks speeds up computation. As we have to make
repeated calls to instantiate and solve a new problem for each state, the time spent
on interfacing with solvers can be considerable.

7.2.2.1 Model Checking For Zero-sum Properties

When verifying zero-sum properties of CSGs, PRISM-games makes use of the model
checking algorithms described in Chapter 4, which were based on the methods for-
mulated in [76, 75]. We rely on backward induction and value iteration with classical
convergence criteria to compute or approximate the values for all states of the game
under study, and on solving a linear program to compute minimax values at each
state. This corresponds to solving a matrix game, which is the representation of the
one-shot zero-sum game for the enabled actions of each player in a given state. Prior
to this numerical solution phase, we find and remove the states for which the opti-
mal expected reward values are infinite by using the qualitative algorithms detailed
in Appendix B. Our current implementation uses the LPsolve [148] library to solve
the matrix games at each state. This library is based on the revised simplex and
branch-and-bound methods.

Algorithm 1 General model checking routine for rPATL (for zero-sum formulae).

1: procedure ModelCheck(φ,GC)
2: sat← ∅
3: if φ = > then
4: sat← S
5: else if φ = l ∈ AP then
6: sat← {s ∈ S | l ∈ L(s)}
7: else if φ = ¬φ1 then
8: sat← S \ModelCheck(φ1, GC)
9: else if φ = φ1 ∧ φ2 then
10: sat←ModelCheck(φ1, GC) ∩ModelCheck(φ2, GC)
11: else if φ = 〈〈C〉〉P∼x[ψ] then
12: sat←ModelCheckProb(φ, GC)
13: else if φ = 〈〈C〉〉Rr

∼x[ψ] then
14: sat←ModelCheckRew(φ, GC)
15: end if
16: return sat
17: end procedure

We present the algorithms for rPATL model checking in pseudocode starting with
the general recursive procedure for zero-sum formulae described in Algorithm 1. This

120

routine traverses a formula’s parse tree breaking it down into sub-formulae and calling
the appropriate sub-routines in order to compute the overall satisfying set of states.
Algorithm 2 shows the procedure for the zero-sum probabilistic operator 〈〈C〉〉P∼x[ψ].
Due to space restrictions, the algorithm was broken into two separate listings. It is
worth noting that lines 7 and 9 from Algorithm 2 correspond to solving the matrix
game for state s when minimising and maximising for 〈〈C〉〉, respectively. We make
use of the same notation in the different algorithms for zero-sum formulae. Model
checking for the next operator (X) is a simple one step procedure, which computes
the maximal or minimal probability of reaching a target state in the next step. For
until (U) and bounded until (U6k) multiple iterations may be required either to reach
convergence or to reach the specified time bound. When computing the satisfying set
for the unbounded version, we stop as soon as the maximal difference between the
values of two consecutive iterations becomes smaller than ε, which we assume to be
set beforehand, according to a given convergence precision criterion to be selected by
the user. For the bounded version, we stop as soon as exactly k iterations of the loop
have been performed.

Algorithm 2 Probability operator model checking routine (Next).

1: procedure ModelCheckProb(φ,GC)
2: sat ← ∅
3: if ψ = Xφ then
4: T ←ModelCheck(φ, GC)
5: for all s ∈ S do
6: if opt = min then
7: val ← min

a1∈AC1
max
a2∈AC2

∑
t∈T

δC(s, a1, a2)(t)

8: else
9: val ← max

a1∈AC1
min
a2∈AC2

∑
t∈T

δC(s, a1, a2)(t)

10: end if
11: if val ∼ x then
12: sat ← sat ∪ {s}
13: end if
14: end for

Model checking for zero-sum reward formulae 〈〈C〉〉Rr
∼x[ψ] is done in a similar

way, by first determining the property type and calling the appropriate sub-routine.
For reward formulae, we have separate algorithms for instantaneous (I=k), total and
cumulative (C, and C6k) and the two variants of expected reachability (F and Fc). The
pseudocode for the zero-sum reward formulae is included in Appendix B.2.

121

Algorithm 2 Probability operator model checking routine (Until).

15: else if ψ = φ1 U φ2 or ψ1 U6k φ2 then
16: T2 ←ModelCheck(φ2, GC)
17: T1 ←ModelCheck(φ1, GC) \ T2

18: iter ← 0; X ← 0; X ′ ← 0
19: for all s ∈ S do
20: if s ∈ T2 then X[s]← 1 else X[s]← 0 end if
21: end for
22: while true do
23: X ′ ← X
24: iter ← iter + 1
25: for all s ∈ S do
26: if s ∈ T1 then
27: if opt = min then
28: X[s]← min

a1∈AC1
max
a2∈AC2

∑
t∈S

δC(s, a1, a2, t) ·X ′[t]

29: else
30: X[s]← max

a1∈AC1
min
a2∈AC2

∑
t∈S

δC(s, a1, a2, t) ·X ′[t]

31: end if
32: end if
33: if X[s] ∼ x then
34: sat ← sat ∪ {s}
35: end if
36: end for
37: if k 6 iter then
38: break
39: else if CheckConvergence(ε,X,X ′) then
40: break
41: end if
42: end while
43: end if
44: return sat
45: end procedure

122

7.2.2.2 Model Checking For Two-player Equilibria Properties

For equilibria properties of CSGs, PRISM-games 3.0 implements the methods de-
scribed in Chapters 5 and 6. As for the zero-sum case, we rely on value iteration and
backward induction to compute/approximate values or synthesise strategies that are
SWNE or SCNE. We remind the reader that we can only compute exact values for
finite-horizon properties. For infinite-horizon properties, we can only compute values
that are ε-Nash, and assume ε is specified beforehand. At each state, we solve a
bimatrix game, which is a representation of a one-shot nonzero-sum game and is a
linear complementarity problem. We solve these games via labelled polytopes finding
all equilibria values through an SMT-based implementation, for which we use third-
party SMT solvers Z3 [77] and Yices [79]. We make use of a pre-computation step of
finding and removing strictly dominated strategies in order to minimise the number
of calls to the solver.

Regarding the complexity of solving bimatrix games, if each player has n actions,
then the number of possible assignments to the supports1 of the strategy profiles is
(2n−1)2, which therefore grows exponentially with the number of actions, surpassing
4.2 billion when each player has 16 actions. This particularly affects performance in
cases which one or both players are indifferent with respect to a given support. More
precisely, in such cases, if there is a equilibrium including pure strategies over these
supports, then there are also equilibria including mixed strategies over these supports
as the indifferent player would get the same utility for any affine combination of pure
strategies.

Example 22. Consider the following bimatrix game:

Z1 =

(b1 b2

a1 1 0
a2 1 0

)
Z2 =

(b1 b2

a1 2 2
a2 4 4

)
Since the entries in the rows for the utility matrix for player 1 are the same and the
columns are the same for player 2, it is easy to see that both players are indifferent
with respect to their actions. As can be seen in Table 7.1, all (22−1)2 = 9 possible
support assignments lead to an equilibrium as both players are indifferent.

�

For the task of computing a non-optimal NE, the large number of supports can
be somewhat mitigated by eliminating weakly dominated strategies [166]. However,

1The support of a strategy profile is the set of action-tuples that are chosen with nonzero prob-
ability.

123

Player 1 strategy Player 2 strategy Utilities
prob. a1 prob. a2 prob. b1 prob. b2 (u1, u2)

0.0 1.0 0.0 1.0 (0.0,4.0)
0.0 1.0 1.0 0.0 (1.0,4.0)
0.0 1.0 0.5 0.5 (0.5,4.0)
1.0 0.0 0.0 1.0 (0.0,2.0)
1.0 0.0 1.0 0.0 (1.0,2.0)
1.0 0.0 0.5 0.5 (0.5,2.0)
0.5 0.5 0.0 1.0 (0.0,3.0)
0.5 0.5 1.0 0.0 (1.0,3.0)
0.5 0.5 0.5 0.5 (0.5,3.0)

Table 7.1: Possible NE strategies and utilities of Example 22.

removing such strategies is not a straightforward task when computing SWNE or
SCNE, since it can lead to the elimination of SWNE or SCNE. For example, if we
removed the row corresponding to action a2 or the column corresponding to action b1

from the matrices in Example 22 above, then we eliminate an SWNE. As the number
of actions for each player increases, the number of NE also tends to increase and
so does the likelihood of indifference. Naturally, the number of actions also affects
the number of variables that have to be allocated, and the number and complexity
of assertions passed to the SMT solver. As our method is based on the progressive
elimination of support assignments that lead to NE, it takes longer to find SWNE and
SCNE as the number of possible supports grows and further constraints are added
each time an equilibrium is found.

Algorithm 3 shows the implementation for two-coalitional equilibria formulae with
probabilistic reachability operators, that is, 〈〈C:C ′〉〉opt∼x(P[F ψ1] + P[F ψ2]). The
code follows a similar structure as for zero-sum operators with the major difference
being the computation of SCNE/SWNE values instead of solving a matrix game and
the convergence check, which now has to be done on two solution vectors. Pseudocode
for the other equilibria operators and formulae is shown in Appendix B.3.

7.2.2.3 Model Checking For Multi-player Equilibria Properties

The computation of equilibria values and the strategy synthesis algorithms for multi-
coalitional equilibria properties relies on both SMT and non-linear solvers. Finding
SWNE of NFGs, which can be reduced to solving a nonlinear programming problem
(see Section 6.1), is performed using a combination of the SMT solver Z3 and the
nonlinear optimisation suite Ipopt [207]. Although SMT solvers are able to find
solutions to nonlinear problems, they are not guaranteed to do so and are only efficient
in certain cases. These cases include when there is a small number of actions per
player or finding support assignments for which an equilibrium is not possible. To
mitigate the inefficiencies of the SMT solver, we use Z3 for filtering out unsatisfiable

124

Algorithm 3 Model checking routine for two-player infinite-horizon nonzero-sum
probability formulae (Until).

1: procedure ModelCheckEqInfHorizonProb(φ,GC)
2: sat ← ∅;R← ∅
3: Tφij = ModelCheck(φij, G

C)
4: Xψ1 ← Popt[φ

1
1 U φ1

2]
5: Xψ2 ← Popt[φ

2
1 U φ2

2]
6: for all s ∈ S do
7: R← R ∪ {s}
8: if s ∈ Tφ12 ∩ Tφ22 then
9: X1[s]← 1;X2[s]← 1
10: else if s ∈ Tφ12 then
11: X1[s]← 1;X2[s]← Xψ2 [s]
12: else if s ∈ Tφ22 then
13: X1[s]← Xψ1 [s];X2[s]← 1
14: else if s ∈ Tφ11\Tφ21 then
15: X1[s]← Xψ1 [s];X2[s]← 0
16: else if s ∈ Tφ21\Tφ11 then
17: X1[s]← 0;X2[s]← Xψ2 [s]
18: else if s 6∈ Tφ11 ∩ Tφ21 then
19: X1[s]← 0;X2[s]← 0
20: else
21: X1[s]← 0;X2[s]← 0;R← R\{s}
22: end if
23: end for
24: while true do
25: X ′1 ← X1;X ′2 ← X2

26: for all s ∈ S\R do
27: if opt = min then
28: Eq← Scne(s,X ′1, X

′
2)

29: else
30: Eq← Swne(s,X ′1, X

′
2)

31: end if
32: X1[s]← Eq[1];X2[s]← Eq[2]
33: end for
34: if CheckConvergence(ε,X1, X

′
1, X2, X

′
2) then

35: break
36: end if
37: end while
38: for all s ∈ S do
39: if X1[s] +X2[s] ∼ q then sat← sat ∪ {s} end if
40: end for
41: return sat
42: end procedure

125

support assignments with a timeout, and therefore given a support assignment Z3
returns either unsat, sat or unknown (if the timeout is reached). If either sat or
unknown are returned, then the assignment is passed to Ipopt, which checks for
satisfiability (if required) and approximates SWNE values using an interior-point
filter line-search algorithm [208]. To speed up the overall computation the support
assignments are analysed in parallel. We also search for and filter out dominated
strategies as a precomputation step. The NFGs are built on the fly, as well as the
gradient of the objective function defined in Equation (6.3) and the Jacobian of the
constraints defined in Equations (6.4) - (6.6) of the nonlinear program described by
Equations (6.3) - (6.7) (Section 6.1), which are required as an input to Ipopt.

In Section 6.3, we presented algorithms for computing SWNE and SCNE values
of multi-player formulae over extensive games. The public release of PRISM-games
3.0 does not include the implementation for multi-coalitional properties, as Ipopt

uses third-party libraries, including the HSL Mathematical Software Library [117]
which does not allow redistribution. Furthermore, up to the moment of writing, only
a subset of operators are supported. For infinite-horizon formulae, only simple prob-
abilistic reachability (P[F φ]) and expected reachabilty (R[F φ]) were implemented.
For finite-horizon, methods for bounded probabilistic reachability (P[F6k φ]) and in-
stantaneous (R[I=k]) and cumulative rewards (R[C6k]) have been implemented, under
the restriction the bounds are equal. The algorithms that are part of the prototype
differ from the description of Chapter 6 in that they rely on building an extended
game instead of branching when an objective has or cannot be satisfied and keeping
track of multiple solution vectors. In the current implementation, for formulae of type
〈〈C1:C2: · · · :Cm〉〉opt∼x(θ), given the set of sub-formulae φi ∈ θ, i ∈ N , we extend the
original game by constructing a subgame GC for each non-empty coalitions of players
C ⊆ N . The subgame GC = (N,SC , S̄C , A,∆C , δC ,AP ′,LC) is constructed as follows:

S̄C =
(⋂

j∈N\C Sat(φ
j)
)
∩
(⋂

i∈C Sat(φ
i)
)

SC = ReachG(S̄C);

∆C = ∆(s) for all s ∈ SC ;

δ(s, a) = δ(s, a) for all s ∈ SC ;

AP ′ = AP ∪ {aφ1 , . . . , aφN};

aφi ∈ LC(s) if and only if i ∈ C.

The set of initial states S̄C of each subgame is composed of the states in the original
game that satisfy φi for all i ∈ C and do not satisfy φj for any j ∈ N \C. If S̄C = ∅,

126

there is no need to build the subgame for C. We write ReachG(S̄C) to refer to the set
of states in G that can be reached from any state in S̄C . Separate reward structures
also need to be set in order to properly compute the values of each subgame. Let riA,C
and riS,C be the action and state rewards for player i in subgame GC . For all i ∈ C,
j ∈ N \ C, n ∈ N , s ∈ SC , a ∈ A:

rC,iA (s, a) = 0 and rC,iS (s) = 0;

rC,jA (s, a) = rjA(s, a) and rC,jS (s) = rjS(s).

The set of values computed for each subgame GC are the equilibria values for a game
with N − |C| players, which is the game played after the objectives of the players
in C have been satisfied. Once the extended game has been built, we run backward
induction and value iteration for a given number of iterations if verifying for a finite-
horizon formula, or else until the values converge.

7.2.3 Strategy Synthesis

Strategies are also stored using the explicit (sparse matrix) engine. When synthesising
strategies, for each state we store a distribution over action indices given both zero-
sum and nonzero-sum properties required randomisation. For two-player equilibria
strategies, the computation is split between the MDP computation, which provides
the strategy once either player has achieved his goal and the equilibria computation.
This is enough to reconstruct the strategy for the whole game, as we follow the CSG
strategy until we reach a player’s target state and the MDP from then on. Memoryless
strategies guarantee optimality for reachability properties over MDPs. For the multi-
player equilibria strategies, the current implementation builds an extended game as
detailed in Section 7.2.2.3. Strategies are then computed over the new model, which
is composed of the original game and the different sub-games that arise after any of
the players have reached their goal.

We run the model checking algorithms to construct the strategy for a given prop-
erty and then make the product of the strategy with the original (or extended) model
to make it easier for the user to see how the system would progress if they were fol-
lowed. The strategy and the product are exported in Dot format, which contains the
graph corresponding to the product and the moves for each player at each state. The
graph describes the execution of the system up to the point the objectives have been
satisfied or the point from which a state that satisfies them cannot be reached. This
is shown by self-loops which indicate the states which satisfy either condition.

127

In Figure 7.4, we show a strategy that was synthesised for the MAC problem,
when running the property 〈〈p1:p2〉〉max=?(P[F s1 = 1]+P[F s2 = 1]), as exported by
PRISM-games in Dot format. As in Figure 7.3, the nodes represent states which are
distinguished by an index and a tuple of values for the variables in the system. The
edges are annotated by an identifier denoting which algorithm generated that part of
the strategy (CSG/MDP), the probability values that each action should be played
and the resulting probability distribution over the next states when the players play
accordingly. For instance, from state (false, 0, 1, 0, 1), if player mac1 plays t1 and
mac2 plays w2, both with probability 1, there is a 0.9 probability the system moves to
(false, 1, 0, 0, 1) and a 0.1 probability it will move to (true, 0, 0, 0, 1). We highlight
that transitions tagged with the MDP identifier mean that one of the players has
already satisfied its goal, and should then cooperate with the other so as to maximise
social-welfare (or minimise social-cost when applicable). Finally, we mention terminal
states whose self-loops are transitions annotated by statements such as CSG: Sat(0)

– Unsat(1):1.0, which means that the first player, mac1, has already satisfied its
goal and that from that state it is not possible for player 2, mac2, to reach a state
satisfying its goal.

0
(false,0,1,0,1)

0:CSG: 1.0: [t1] -- 1.0: [w2]

1
(false,1,0,0,1)

0.9

2
(true,0,0,0,1)

0.1

0:MDP: 1.0: [w1][t2] 0:CSG: 1.0: [w1] -- 1.0: [t2]

5
(false,1,0,1,0)

0.9

6
(true,1,0,0,0)

0.1

0:CSG: Sat(0) -- Sat(1) 0:CSG: Sat(0) -- Unsat(1)

3
(false,0,0,1,0)

0.9

4
(true,0,0,0,0)

0.1

0:CSG: Sat(1) -- Unsat(0) 0:CSG: Unsat(0) -- Unsat(1)1.0 1.01.0 1.0

Figure 7.4: A strategy for the MAC example shown in Figure 7.1 as exported by
PRISM-games 3.0.

128

7.3 Tool Demonstration

In this section we present a brief overview of the usage of PRISM-games 3.0. We
refer the interested reader to https://www.prismmodelchecker.org/games/ for fur-
ther details, download and installation instructions, and quick tutorials. We present
the new functionalities of the tool focusing on added features for supporting CSGs.
PRISM-games can used through a command line interface or a GUI, which can be
launched by running ./bin/prism and ./bin/xprism, respectively, from the instal-
lation directory. By running ./bin/prism -help, a comprehensive list of options
and switches is displayed to guide the user. If running PRISM-games via the GUI,
the user can access the main features of the tool through an intuitive set of menus
and panels. In Figure 7.5, we show the model editor window of PRISM-games with
the CSG model of the MAC problem. Models can be loaded and built by accessing
the Model menu. If model building is successful, it triggers the tool to display basic
statistics (number os states and transitions) in the bottom left corner.

Figure 7.5: Screenshot of PRISM-games 3.0 showing a CSG model.

By accessing the Simulator tab, we change to the simulator window displayed

129

https://www.prismmodelchecker.org/games/

in Figure 7.6. In the simulator, each row in the table represents a state. Actions
can be chosen automatically at random or manually. We show the construction of
a path where, after spending all their energy units, both agents can only choose to
wait (which is indicated by the arrow connecting two different rows). The possibility
of constructing paths and checking the values of each variable at each step, as well
the values for reward structures, is instrumental in debugging models and ensuring
correct behaviour.

Figure 7.6: Screenshot of PRISM-games 3.0 showing a path being constructed using
the simulator.

Moving to the Properties tab, we access the property verification window, shown in
Figure 7.7. In it, we display the numerical result for the same quantitative property we
synthesised the strategy displayed in Figure 7.4. We can see that the value computed
for the SWNE property is 1.8, which can be easily confirmed by the strategy if we
consider the sum of the individual probability values of reaching a state where either
player has sent a message. Finally, in Figure 7.8 we show the plot corresponding to
running an experiment for the property 〈〈p1:p2〉〉max=?(R

mess1 [C6k]+Rmess2 [C6k]) for
k ∈ [1, 12], which computes the sum of SWNE values of the number of messages

130

successfully sent in k rounds. Under the current implementation, strategy synthesis
is only accessible through the command line. We plan to integrate that feature into
the GUI in a future release.

Figure 7.7: Screenshot of PRISM-games 3.0 showing a property being verified.

7.4 Summary

In this chapter we detailed the implementation of our framework for verification
and strategy synthesis for zero-sum and equilibria properties of concurrent stochas-
tic games within PRISM-games 3.0. Our tool provides an intuitive and versatile
environment for modelling and analysing CSGs. We highlight the following main
contributions: (i) we extended the modelling language of PRISM-games with various
features to provide support for the specification of multi-player CSGs; (ii) we added
new operators to rPATL to accommodate equilibria properties as well as to widen the
scope of zero-sum verification; (iii) we extended the tool’s model checking capabili-
ties considerably, incorporating different third-party libraries and solvers to support
solving different types of normal form games and allowing one to compute values for

131

Figure 7.8: Screenshot of PRISM-games 3.0 plotting the results of an experiment
when running an equilibria property.

properties with distinctive objectives, which may include a mixture of bounded and
unbounded operators. To the best of our knowledge, at the time of elaboration of
this document, our tool is the only of its kind to support zero-sum verification as well
as the computation of SWNE and SCNE values for CSGs. Furthermore, given TSGs
are a subclass of CSGs, these new features extend to turn-based games which can
be modelled with the modified language. Finally, since we support multi-coalitional
properties, the added extensions grant multi-player verification capabilities to Prism-
games for the first time.

The current implementation could be enhanced in various ways. A key challenge
is improving the performance of model checking algorithms, especially for equilibria
properties. A more refined set of pre-computation techniques such as the removal of
conditionally dominated strategies would speed up equilibria computation at the state
level when using support enumeration. A similar point could be made about solving
LPs, which could be sped up by incorporating methods of polynomial complexity.
For two-player games, performance could be improved by considering other enumer-

132

ation solutions (e.g. lexicographic reverse search, enumeration of extreme equilibria
[9]) as well as internal tests for indifference based on minimal supports. Another im-
portant improvement would be related to the internal representation of local games,
probability distributions and solution vectors. PRISM-games currently relies on dou-
bles to build and store the models as well as the different computation methods for
strategy synthesis and model checking. Similarly to implementations developed for
other probabilistic models, solution methods for CSGs can be sensitive to floating-
point arithmetic issues, particularly for equilibria properties, and arbitrary precision
representations should be considered to alleviate these problems. Other interesting
extensions could explore different policies for selecting equilibria (for bounded proper-
ties) and add support for discounted models and multi-objective zero-sum properties
for CSGs.

133

CHAPTER 8

Case Studies and Experimental Results

Contents
8.1 Case Studies . 135

8.2 Efficiency and Scalability 153

8.3 Summary . 156

In this chapter, we present a series of case studies that were developed to showcase
both the scope as well as the relevance of the verification and strategy synthesis
methods detailed in this thesis. All models discussed in this chapter were written with
the new modelling language described in Chapter 7 and verified with PRISM-games
3.0 against properties expressed in the extensions of rPATL described in Chapters 4-6.
We discuss applications from a wide range of domains, including network protocols,
attack-defence scenarios, finance, robot coordination and others. Another focus of
this chapter is to demonstrate the advantages of adopting equilibria strategies in
non-strictly competitive scenarios and the differences between two and muti-player
games and properties.

As mentioned in Chapters 4-6, a number of assumptions are made with relation
to the underlying graph structure and the specification of reward structures in order
to guarantee convergence. The analysis is this chapter is then restricted to those
previously established combinations of models and properties. We found that these
restrictions do not significantly affect expressiveness. Preliminary versions of the
case studies were reported in [136, 137, 138, 140] and can be found at https://

prismmodelchecker.org/files/thesisgsantos/.

134

https://prismmodelchecker.org/files/thesisgsantos/
https://prismmodelchecker.org/files/thesisgsantos/

8.1 Case Studies

In some of the case studies, we compare our results with the corresponding zero-sum
properties. For example, for some of the models for which we run the nonzero-
sum property 〈〈C:C ′〉〉max=?(P[F φ1]+P[F φ2]), we compute the value and a zero-sum
optimal strategy σC for coalition C of the formula 〈〈C〉〉Pmax=?[F φ1], and then find
the value of a zero-sum optimal strategy for the coalition C ′ for Pmin=?[F φ2] and
Pmax=?[F φ2] in the MDP induced by CSG when C follows σC . The aim is to showcase
the advantages of cooperation as, in many real-world applications, agents’ goals are
not strictly opposed.

8.1.1 Robot Coordination

This case study expands on the scenario of Example 8, in which two robots move
concurrently over a grid of size l×l. The robots start in diagonally opposite corners
and try to reach the corner from which the other starts. Recall that a robot can
move either diagonally, horizontally or vertically towards its goal and when it moves
there is a probability (q) that it instead moves in an adjacent direction. E.g., if a
robot moves north east, then with probability q/2 it will move north or east. We
suppose the robots try to maximise the probability of reaching their individual goals
eventually and within a given number of steps (k). If there is no bound and l > 4, we
notice that the SWNE strategies allow each robot to reach its goal with probability
1 (as time is not an issue, they can collaborate to avoid crashing).

Consider the objectives (Xk
1 , X

k
2) where, for any infinite path π of Gl:

Xk
i (π) =

{
1 if goali ∈ L(π(j)) for some j 6 k and crash 6∈ L(π(m)) for all m < j

0 otherwise

i.e., objective Xk
i returns 1 for paths on which robot i reaches its goal within k steps

without crashing. So, the expected value of Xk
i for a given strategy profile equals the

probability that robot i reaches its goal within k steps without crashing.
For q=0.25, we first consider the case where k=∞. For robot 1, we find that the

values in the initial state with respect to X∞1 converge to 1 as l increases, for example
the values for G5, G10 and G20 with respect to X∞1 are approximately 0.9116, 0.9392

and 0.9581, respectively. On the other hand, considering SWNE values for (X∞1 , X
∞
2)

and l > 4, the SWNE strategies allow each robot to reach its goal with probability 1
(since time is not an issue, they can collaborate to avoid crashing).

135

0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

k

P
ro
ba

bi
lit
y

l=3

l=4

l=5

l=6

l=7

(a) Value of Gl with respect to X1

0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

k

P
ro
ba

bi
lit
y

robot1 (solid lines) and robot2 (dashed lines)

l=3

l=4

l=5

l=6

l=7

(b) SWNE values of Gl for (X1, X2)

9 10 11 12 13 14
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

k

Su
m

of
P
ro
ba

bi
lit
ie
s

l=10, q = 0.1

〈〈p1 :p2 〉〉max=?(P+P)

〈〈p1 〉〉Pmax + Pmax

〈〈p1 〉〉Pmax + Pmin

(c) Sum of SWNE and zero-sum values for
finite-horizon reachability.

Figure 8.1: Robot coordination: probability of reaching the goal without crashing.

For the bounded case, Figure 8.1 shows, for a range of k and various grid sizes,
both the values of Gl with respect to Xk

1 (left) and SWNE values of the individual
robots for (Xk

1 , X
k
2) (right). We can also see in Figure 8.1 (bottom) the plot for the

sum of SWNE and the comparison with the sum of zero-sum values for a grid of fixed
size l = 10. When there is only one route to each goal within the bound (along the
diagonal), i.e., when k = l−1, the SWNE strategies of both robots take this route.
In odd grids, there is a high chance of crashing, but also a chance one will deviate
and the other reaches their goal. Initially, as the bound k increases, for odd grids the
SWNE values for the robots are not equal (see Figure 8.1 right). Here, it is better
overall for one robot to follow the diagonal and the other to take a longer route,
since if both took the diagonal route, the chance of crashing increases, decreasing the
chance of reaching their goals. As expected, if we compare the optimal and SWNE

136

values, we see that the robots can improve their chances of reaching their goals by
collaborating.

4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

l

E
xp

ec
te
d
C
os
t

(a) Value of Gl with respect to Y1

4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

l

E
xp

ec
te
d
C
os
t

robot1

robot2

(b) SCNE values of Gl for (Y1, Y2)

Figure 8.2: Robot coordination: expected steps to reach the goal.

Next, we consider the objectives Y1 and Y2 where, for any infinite path π of Gl:

Yi(π) =

{ ∑kimin
j=0 r(π(i)) if goali ∈ L(π(j)) for some j
∞ otherwise

where kimin = min{j ∈ N | goali ∈ L(π(j))} and, for any state s, we have r(s)=10 if
crash ∈ L(s) and r(s)=1 otherwise. The expected value of objective Yi for a given
strategy profile equals the expected number of steps that player i requires to reach
their goal, where crashing incurs a delay of 10 steps.

In Figure 8.2 we have plotted the zero-sum values of Gl with respect to Y1 and
SCNE values for the individual players for (Y1, Y2) as the grid size varies. The results
again demonstrate that the players can gain by collaborating.

8.1.2 Secret Sharing

In this version of a secret sharing protocol [104], Halpern and Teague propose in-
troducing uncertainty as a means to induce cooperation. In the first step of the
protocol, all players toss a coin, which is simulated by the parameter α. If their
coin lands heads, they are supposed to share their share of the secret with the other
participants. If it lands tails, they do not share. In the second step, everyone reveals
their coin. The game ends if everyone is able to reconstruct the secret or if someone
cheats, that is, not revealing their share when supposed to. If at any stage, a player
does not receive data from a player from whom it was supposed to, it also stops the

137

protocol. Also, in other to make the protocol fair, if exactly two players get heads,
then no one learns the secret. Otherwise, if no one cheats but is not able to learn the
secret, the issuer issues new secret shares to the players and a new round starts. The
protocol also assumes that each player prefers learning the secret to not learning it
and prefers that fewer of the others learn it. This is expressed in the model by the
variables uall, utwo, uone and unone, which are the payoffs a player i gets if everyone, two
players (including i), only i, and no one is able to reconstruct the secret, respectively.

A rational player in this context is one that has the choice between cheating and
not cheating, that is, ignoring the coin toss in order to maximise the probability
of being the only one to learn the secret. An altruistic player is one who follows
the protocol strictly. Finally, a byzantine player is one who may fail by sending or
computing the wrong values. The protocol’s steps can be summarised as follows:

1. Each player is issued a signed share of the secret.

2. Each player i chooses a bit ci that is set to 0 with probability α and 1 with
probability 1−α. Another bit, c(i,+) is set uniformly (i.e. 0 or 1 with probability
0.5). A third bit, c(i,−), is computed as ci ⊕ c(i,+). Player i then sends c(i,+) to
player i+ and c(i,−) to i−. This naturally means that it receives c(i+,−) from i+

and c(i−,+) from i−.

3. Each player then computes c(i+,−)⊕ ci and sends it to i−. That way, each player
receives c((i+)+,−) ⊕ ci+ = c(i−,−) ⊕ ci+ from i+.

4. Each player calculates p = c(i−,+)⊕c(i−,−)⊕ci+⊕ci = ci−⊕ci+⊕ci. If p = ci = 1

then player i sends its signed share to the others.

5. If p = 0 and i received no shares, or if p = 1 and player i received exactly one
share (possibly from itself), the issuer is asked to restart the protocol; otherwise,
i stops the protocol (given that either it has all shares or because someone must
have cheated).

Figure 8.3 presents the expected utilities when there are two altruistic and one
rational agent, and when there is one altruistic, one byzantine and one rational agent,
as α varies. The results when there is one altruistic and two rational agents or
three rational agents yield the same graph as Figure 8.3(left), where the one or two
additional rational agents utilities match those of the altruistic agents. According to

138

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

E
xp

ec
te
d
U
ti
lit
ie
s

uall=1.0, uone=2.0, utwo=1.5, unone=0.0

rat

alt

alt

(a) 2 altruistic, 1 rational.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

E
xp

ec
te
d
R
ew

ar
ds

uall=1.0, uone=2.0, utwo=1.5, unone=0.0

rat

byz

alt

(b) 1 altruistic, 1 byzantine, 1 rational.

Figure 8.3: 〈〈p1:p2:p3〉〉max=?(R[F done]+R[F done]+R[F done]), (pfail=0.2 for rba).

[104], for a model with one rational and two altruistic agents, the rational agent only
has an incentive to cheat if:

u1·α2

α2 + (1− α)2
+

u0·(1− α)2

α2 + (1− α)2
> u3 (8.1)

This is validated by Figure 8.3(left) for the given utility values; the rational agent
only cheats when α > 0.5 (for α < 0.5 all agents receive a utility of 1 corresponding to
all agents getting the secret), which corresponds to when Equation (8.1) holds for our
chosen utility values. Figure 8.3 also shows that the closer α is to one then the greater
the expected utility of a rational agent. It is also possible to notice in Figure 8.3(right)
that, with a byzantine agent, the rational agent cheats when α > 0.4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

α

E
xp

ec
te
d
R
ou

nd
s

uall=1.0, uone=2.0, utwo=1.5, unone=0.0

aaa
raa

rba

(a) Expected rounds.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
ro
ba

bi
lit
y

uall=1.0, uone=2.0, utwo=1.5, unone=0.0

aaa
raa

rba

(b) Prob. only first player learns secrets.

Figure 8.4: Expected number of rounds (left) and probability only the first player
learns the secret (right). (pfail=0.2 for rba).

Figure 8.4 (left) demonstrates that there is a trade off between the protocol being

139

unfair and the minimum time that the protocol takes to complete. We point out that
this does not mean all agents would have been able to reconstruct the secret, as the
protocol also stops when an agent cheats, and the optimal behaviour so that all agents
receive the other shares is that of an altruistic player. Indeed, that is what explain the
difference between the curves, as a protocol with a rational agent takes less time to
complete given the agent can choose to always cheat. Similarly, in Figure 8.4 (right)
we show the maximal probability values of the first player being the only one to learn
the secret for different values of α. It is possible to notice that, as expected, for a
model where all players are altruistic the value is always zero. Moreover, for models
where there is at least one rational agent (which is the first player), that agent can
take advantage of the possibility of cheating to increase that probability. Interestingly
enough, if there is a byzantine agent, the rational agent can actually benefit from the
fact that the byzantine agent may end up sending its share when not supposed to,
and have a higher probability of being the only to learn the secret for smaller values
of α, when comparing to a model where the two other agents are altruistic.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

rmax

E
xp

ec
te
d
U
ti
lit
ie
s
(s
um

)

u3=1.0, u2=1.5, u1=2.0, u0=0.0

aaa
raa

rba
rra
rrr

(a) α=0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

rmax

E
xp

ec
te
d
U
ti
lit
ie
s
(s
um

)

u3=1.0, u2=1.5, u1=2.0, u0=0.0

aaa
raa

rba
rra
rrr

(b) α=0.8

Figure 8.5: Expected utilities over a bounded number of rounds (pfail=0.2 for rba).

Figure 8.5 plots the expected utilities of the agents when the protocol stops after
a maximum number of rounds (rmax) when α=0.3 and α=0.8. The utilities converge
more slowly for α=0.3, since when α is small there is a higher chance that an agent
flips tails in a round meaning, not all agents will share their secret in this round and
the protocol will move into another round. Again we see that there are more incentives
for a rational agent to cheat as α gets closer to 1. However, when α=0.3 and there are
altruistic agents, the incentive decreases and eventually disappears as the number of
rounds increases. Multi-player properties and algorithms were essential for developing
this case study, as the analysis could not be done by grouping two of the players in

140

a coalition. Moreover, although we do run zero-sum properties to compute minimum
expected number of rounds and maximal probabilities for one of the players, the point
of the original paper was to investigate incentive mechanisms so that a rational player
would cheat, which then asks for considering equilibria properties.

8.1.3 Future Market Investors

The futures market investor model represents the interactions between investors and
a stock market. For the original TSG version of the model described in [157], in
successive months, a single investor chooses whether to invest, next the market decides
whether to bar the investor, with the restriction that the investor cannot be barred
two months in a row or in the first month, and then the values of shares and a cap
on values are updated probabilistically.

We have built and analysed several CSG variants of the model, analysing optimal
strategies for investors under adversarial conditions. First, we made a single investor
and market take their decisions concurrently, and verified that this yielded no addi-
tional gain for the investor. This is because the market and investor have access to
the same information, i.e. the stock prices, and so the market knows when it is opti-
mal for the investor to invest without needing to see its decision. We next modelled
two competing investors who simultaneously decide whether to invest (and, as above,
the market simultaneously decides which investors to bar). If the two investors cash
in their shares in the same month, then their profits are reduced. We also consider
several distinct profit models: ‘normal market’, ‘later cash-ins’, ‘later cash-ins with
fluctuation’ and ‘early cash-ins’. The first is from [157] and the remaining reward
either postponing cashing in shares or the early cashing in of shares.

The CSG has 3 players: one for each investor and one representing the market
who decides on the barring of investors. We study both the maximum profit of one
investor and the maximum combined profit of both investors. For comparison, we
also build a TSG model in which the investors first take turns to decide whether to
invest (the ordering decided by the market) and then the market decides on whether
to bar any of the investors.

Figure 8.6 shows the maximum expected value over a fixed number of months
under the ‘normal market’ for both the profit of first investor and the combined
profit of the two investors. For the former, we show results for the first investor
acting alone (〈〈i1〉〉) and when in a coalition with the second investor (〈〈i1, i2〉〉). We
plot the corresponding results from the TSG model for comparison. Figure 8.7 shows
the maximum expected combined profit for the other two profit models.

141

1 2 3 4 5 6 7 8 9
2.5

3

3.5

4

4.5

5

5.5

Number of months

M
ax

pr
ofi

t
fo
r
fir
st

in
ve
st
or

CSG 〈〈i1 〉〉
TSG 〈〈i1 〉〉

CSG 〈〈i1 , i2 〉〉
TSG 〈〈i1 , i2 〉〉

1 2 3 4 5 6 7 8 9

7.5

8

8.5

9

9.5

10

10.5

11

Number of months

M
ax

co
m
bi
ne
d
pr
ofi

t

CSG 〈〈i1 , i2 〉〉
TSG 〈〈i1 , i2 〉〉

Figure 8.6: Futures market investors: normal market.

1 2 3 4 5 6 7 8 9
7

8

9

10

11

12

13

14

15

16

Number of months

M
ax

co
m
bi
ne
d
pr
ofi

t

CSG 〈〈i1 , i2 〉〉
TSG 〈〈i1 , i2 〉〉

1 2 3 4 5 6 7 8 9
9

10

12.5

15

17.5

20

22.5

25

27.5

Number of months

M
ax

co
m
bi
ne
d
pr
ofi

t

CSG 〈〈i1 , i2 〉〉
TSG 〈〈i1 , i2 〉〉

Figure 8.7: Futures market investors: later cash-ins without (left) and with (right)
fluctuations.

When investors cooperate to maximise the profit of the first, results for the CSG
and TSG models coincide. This follows from the discussion above since all the second
investor can do is make sure it does not invest at the same time as the first. For
the remaining cases and given sufficient months, there is always a strategy in the
concurrent setting that outperforms all turn-based strategies. The increase in profit
for a single investor in the CSG model is due to the fact that, as the investors decisions
are concurrent, the second cannot ensure it invests at the same time as the first, and
hence decrease the profit of the first. In the case of combined profit, the difference
arises because, although the market knows when it is optimal for one investor to
invest, in the CSG model the market does not know which one will, and therefore
may choose the wrong investor to bar. On the other hand, in the TSG version,
the market’s choice is made after both investors have made their decisions and can
therefore see which investor to block.

142

We performed strategy synthesis to study the optimal actions of investors. By
way of example, consider 〈〈i1 〉〉Rprofit1

max=?[F
c cashed_in1] over three months and for a

normal market (see Figure 8.6 left). The optimal TSG strategy for the first investor
is to invest in the first month (which the market cannot bar) ensuring an expected
profit of 3.75. The optimal (randomised) CSG strategy is to invest:

• in the first month with probability ∼0.4949;

• in the second month with probability 1, if the second investor has cashed in;

• in the second month with probability ∼0.9649, if the second investor did not
cash in at the end of the first month and the shares went up;

• in the second month with probability ∼0.9540, if the second investor did not
cash in at the end of the first month and the shares went down;

• in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼4.33.
We now make the market probabilistic, where the probability the market bars an

individual investor equals pbar , and consider nonzero-sum properties in which each
investor tries to maximise their individual profit, for different reward structures. In
Figure 8.8 and Figure 8.9 we have plotted the results for the investors where the
profit models of the investors follow a normal profile and where the profit models of
the investors differ (‘later cash-ins’ for the first investor and ‘early cash-ins’ for the
second), when pbar equals 0.1 and 0.5 respectively. The results demonstrate that,
given more time and a more predicable market, i.e., when pbar is lower, the players
can collaborate to increase their profits.

1 2 3 4 5 6 7 8 9
3.4

4

4.4

4.8

5.2

5.6

Number of months

P
ro
fit

i1 (normal market)
i2 (normal market)

1 2 3 4 5 6 7 8 9
3.4

4.5

5.5

6.5

7.5

8.5

9.5

Number of months

P
ro
fit

i1 (later cashin)
i2 (earlier cashin)

Figure 8.8: Investors: normal profiles (left) and mixed profiles (right) (pbar=0.1).

143

1 2 3 4 5 6 7 8 9

2.4

2.8

3.2

3.6

4

4.4

4.8

5.2

5.6

Number of months

P
ro
fit

i1 (normal market)
i2 (normal market)

1 2 3 4 5 6 7 8 9
2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

Number of months

P
ro
fit

i1 (later cashin)
i2 (earlier cashin)

Figure 8.9: Investors: normal profiles (left) and mixed profiles (right) (pbar=0.5).

Performing strategy synthesis, we find that the strategies in the mixed profiles
model are for the investor with an ‘early cash-ins’ profit model to invest as soon as
possible, i.e., it tries to invest in the first month and if this fails because it is barred,
it will be able to invest in the second. On the other hand, for the investor with the
‘later cash-ins’ profile, the investor will delay investing until the chances of the shares
falling start to increase or they reach the month before last and then invest (if the
investor is barred in this month, they will be able to invest in the final month).

8.1.4 Trust Models for User-centric Networks

Trust models for user-centric networks were analysed previously using TSGs in [142].
The analysis considered the impact of different parameters on the effectiveness of
cooperation mechanisms between service providers. The providers share information
on the measure of trust for users in a reputation-based setting. Each measure of trust
is based on the service’s previous interactions with the user (which previous services
they paid for), and providers use this measure to block or allow the user to obtain
services.

In the original TSG model, a single user can either make a request to one of three
service providers or buy the service directly by paying maximum price. If the user
makes a request to a service provider, then the provider decides to accept or deny the
request based on the user’s trust measure. If the request was accepted, the provider
would next decide on the price again based on the trust measure, and the user would
then decide whether to pay for the service and finally the provider would update its
trust measure based on whether there was a payment. This sequence of steps would

144

have to take place before any other interactions occurred between the user and other
providers.

Here we consider CSG models allowing the user to make requests and pay different
service providers simultaneously and for the different providers to execute requests
concurrently. There are 7 players: one for the user’s interaction with each service
provider, one for the user buying services directly and one for each of the 3 service
providers. Three trust models were considered. In the first, the trust level was
decremented by 1 (td=1) when the user does not pay, decremented by 2 in the second
(td=2) and reset to 0 in the third (td=inf).

1 2 3 4 5 6 7 8 9
0

0.25

0.5

0.75

1

Total number of services

Fr
ac
ti
on

of
un

pa
id

se
rv
ic
es

td=1

td=2

td=inf

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Total number of services

N
um

be
r
of

un
pa

id
se
rv
ic
es
.

td=1

td=2

td=inf

Figure 8.10: User-centric network results (CSG/TSG values as solid/dashed lines).

Figure 8.10 presents results for the maximum fraction and number of unpaid ser-
vices the user can ensure for each trust model. The results for the original TSG model
are included as dashed lines. They demonstrate that the user can take advantage of
the fact that in the CSG model it can request multiple services at the same time,
and obtain more services without paying before the different providers get a chance
to inform each other about non-payment. In addition, the results show that having
a more severe penalty on the trust measure for non-payment decreases the unpaid
services the user can obtain.

8.1.5 Aloha Protocol

This case study concerns three users trying to send packets using the slotted ALOHA
protocol [149]. In a time slot, if a single user tries to send a packet, there is a
probability (q) that the packet is sent; as more users try and send, then the probability
of success decreases. If sending a packet fails, the number of slots a user waits before
resending is set according to an exponential backoff scheme. More precisely, each user

145

maintains a backoff counter which increases each time there is a failure (up to bmax)
and, if the counter equals k, randomly chooses the slots to wait from {0, 1, . . . , 2k−1}.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

D

Su
m

of
P
ro
ba

bi
lit
ie
s

〈〈usr1:usr2〉〉=?(P+P)
〈〈usr1 〉〉Pmax + Pmax

〈〈usr1 〉〉Pmax + Pmin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

q

P
ro
ba

bi
lit
y

usr1 (SWNE)
usr2 (SWNE)

usr1 (Max)
usr2 (Max)

Figure 8.11: Aloha: 〈〈usr 1:{usr 2, usr 3}〉〉max=?(P[F (s1∧t6D)]+P[F (s2∧s3∧t6D)])

We suppose three users try to maximise the probability of sending packets before a
deadline D, with users 2 and 3 forming a coalition. Figure 8.11 presents total values
as D varies (left) and individual values as q varies (right). Through synthesis, we
find the collaboration is dependent on D and q. Given more time there is a greater
chance for the users to collaborate by sending in different slots, while if q is small,
it is likely that players have to repeatedly try and send their packets; hence waiting
for others to send in the limited slots is not advantageous. On the other hand, if q is
large it is unlikely users need to repeatedly send, so again can send in different slots.
As the coalition has more messages to send, their probabilities are lower. However,
even for two users, the probabilities are different, since, although it is advantageous
to collaborate and only one user tries first, if the transmission fails, then both users
try to send as this is the best option for their individual goals.

We have also considered the case when the users try to minimise the expected time
before their packets are sent, where again users 2 and 3 form a coalition. Synthesising
the strategies we see that the players collaborate with the coalition of users 2 and 3,
letting user 1 to try before sending their messages. However, if user 1 fails to send,
then the coalition either lets user 1 try again in case the user can do so immediately,
and otherwise the coalition tries to send their messages.

8.1.6 Public Good

We consider a public good game [111], in which each player receives a given amount
of capital (einit) and, over k rounds, the players can (partially) invest their capital in
a common stock. In each round, the total invested is multiplied by a factor f and

146

distributed equally among the players. The aim of the players is to maximise their
final capital. The capital return at the end of each round for player i is calculated as
(ci − li) + f/n· (

∑n
i=1 li), where:

• ci is player i’s capital at the start of the round;

• li is the amount invested by player i in that round;

• f is a multiplying factor;

• n is the number of players.

Figure 8.12 shows the reward values for a two-player model, where players can
invest none, a quarter, half, three quarters or the entirety of their capitals. It is
possible to notice the impact of small increments of f in the player’s willingness to
invest and their profits, illustrating the subtleties of tuning incentive mechanisms.

1.6 1.65 1.7 1.75 1.8
0

1

3

5

7

9

10.5

f

E
x
p
ec
te
d
in
d
iv
id
u
al

p
ro
fi
t

p1
p2

(a) Sum of rewards.

1.6 1.65 1.7 1.75 1.8
5

7

9

11

13

15

f

E
x
p
ec
te
d
su
m

p1 + p2

(b) Individual rewards.

Figure 8.12: Public good game: Impact of small increments in parameter f .

Figure 8.13 presents results for a 3-player public good game, in which a player can
invest none, half or all of their current capital in each round. The results compare,
as f varies, the expected utilities when the players act in isolation and when player
1 acts in isolation and players 2 and 3 form a coalition.

When the players act in isolation, for f 6 2 there is no incentive for the players
to invest. As f increases, the players start to invest some of their capital in some of
the rounds, and when f=3 each player invests all their capital in each round. On the
other hand, when players 2 and 3 act in a coalition, there is incentive to invest capital
for smaller values of f , as players 2 and 3 can coordinate their investments to ensure
they both profit; however player 1 also gains from these investments, and therefore has

147

1.5 2 2.5 3
0

25

50

75

100

125

150

175

200

225

250

275

f

E
xp

ec
te
d
R
ew

ar
ds

einit = 5, emax = 300, kmax = 3

〈〈p1〉〉
〈〈p2, p3〉〉

p1
p2
p3

(a) Individual rewards.

1.5 2 2.5 3
0

50

100

150

200

250

300

350

410

f

E
xp

ec
te
d
R
ew

ar
ds

einit = 5, emax = 300, kmax = 3

〈〈p1〉〉+ 〈〈p2, p3〉〉
p1 + p2 + p3

(b) Sum of rewards.

Figure 8.13: Public good game: Expected rewards after kmax rounds.

no incentive to invest in the final round. As f increases, there is a greater incentive
for player 1 to invest and all the players’ final capital increases. The drop in the
capital of player 1, as f increases, is caused by players 2 and 3 coordinating against
player 1 and decreasing their investments. This forces player 1 to invest to increase
its investment which, as profits are shared, also increases the capital of players 2 and
3.

8.1.7 Medium Access Control

In this subsection, we extend our discussion on the model access control problem
presented in Chapter 7 (Figures 7.1 and 7.3). In [33] a deterministic concurrent game
is used to model medium access control. Two users with limited energy share a wireless
channel and choose to transmit or wait and, if both transmit, the transmissions fail
due to interference. Users can only choose to transmit they have not yet successfully
transmitted all their messages and not used up their limited energy supply. Trying
to transmit a packet uses up one unit of energy.

Figure 8.14 presents results for these properties as the bound k varies. For both
properties, the SWNE strategies yield equal values for the players. Synthesising
strategies, we see that for small values of k there is not sufficient time to collaborate
(both users always try and transmit); however, as k increases there is time for the
users to collaborate and try to transmit in different slots, and hence improve their
values. Since the users have limited energy, Figure 8.14 shows that eventually adding
steps does not increase the reward or probability. The graph of Figure 7.4 demon-
strates that, in the synthesised strategy profile, the players cooperate to achieve their

148

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

k

M
es
sa
ge
s
Su

cc
es
sf
ul
ly

Se
nt

Rr1 [C6k]+Rr2 [C6k]

〈〈p1 :p2 〉〉max=?R
1+R2

〈〈p1 〉〉R1max + R2max

〈〈p1 〉〉R1max + R2min

5 6 7 8 9 10 11 12
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

k

Su
m

of
P
ro
ba

bi
lit
ie
s

P[F6ksent1=smax]+P[F6ksent2=smax]

〈〈p1 :p2 〉〉max=?(P+P)

〈〈p1 〉〉Pmax + Pmax

〈〈p1 〉〉Pmax + Pmin

Figure 8.14: Medium access control (emax =5, smax =5, q1=0.9 and q2=0.75)

individual goals. More precisely, player 1 waits while first player 2 tries to transmit
until either its goal has been reached, i.e. two successful transmissions, or it does
not have sufficient energy to meet its objective, i.e. either the first transmission fails
and it has only the energy to try and transmit one more time or the first succeeds
and then second transmission fails after which it has run out of energy. After this
player 2 no longer tries to transmit and player 1 tries to transmit until again either
its goal has been reached or it does not have sufficient energy to meet its objective.
This can also be seen in the SWNE values of (0.81,0.81), as 0.81 corresponds to a
player trying to transmit twice and being successful each time and the other player
not transmitting at these times.

8.1.8 Power Control

This case study is based on a model of power control in cellular networks from [33].
In the model, phones emit signals over a cellular network and the signals can be
strengthened by increasing the power level up to a bound (powmax). A stronger
signal can improve transmission quality, but uses more energy and lowers the quality
of other transmissions due to interference. We extend this model by adding a failure
probability (qfail) when a power level is increased and assume each phone has a limited
battery capacity (emax). Based on [33], we associate a reward structure with each
phone representing transmission quality dependent both on its power level and that
of other phones due to interference. Each user has a reward structure representing the
transmission quality of the phone, where the quality improves if the phone’s power
level is increased. However, the quality decreases as the other phone’s power level is

149

increased. If a phone has run out of energy, then the phone has no influence on the
other phone’s transmission quality.

1 2 3 4 5
3,000

3,200

3,400

3,600

3,800

4,000

powmax

Su
m

of
R
ew

ar
ds

〈〈p1 :p2 〉〉max=?(R1+R2)

〈〈p1 〉〉R1max + R2max

〈〈p1 〉〉R1max + R2min

1 2 3 4 5

1,600

1,700

1,800

1,900

2,000

powmax

Player 1 (SWNE)
Player 2 (SWNE)
Player 1 (Mx)
Player 2 (Mx)

Figure 8.15: Power control: 〈〈p1:p2〉〉max=?(R
r1 [F e1=0]+Rr2 [F e2=0])

We consider two players, each trying to maximise their reward before their battery
is empty. Figure 8.15 presents, for emax =10, the sum of the SWNE values (left) and
the values of the individual players (right) as powmax varies. The values of the players
are different because if one increases their power level this increases the overall reward
(their reward increases, while that of the other’s decreases by a lesser amount due to
interference), whereas if both increase their power level the overall reward decreases
(both rewards decrease due to interference).

Synthesising the optimal strategies for the players we find that the values of the
players are different because, if one increases their power level, this increases the
overall reward (their reward increases, while the other’s decreases by a lesser amount
due to interference) whereas, if both increase, the overall reward decreases (both
rewards decrease due to interference).

8.1.9 Intrusion Detection Policies

In [219], CSGs are used to model the interaction between an intrusion detection policy
and attacker. The policy has a number of libraries it can use to detect attacks and the
attacker has a number of different attacks which can incur different levels of damage
if not detected. Furthermore, each library can only detect certain attacks. In the
model, in each round the policy chooses a library to deploy and the attacker chooses
an attack.

In the model, the system can be in 3 possible states: healthy, compromised and
failure. Initially, the system is in the healthy state and remains in that state provided

150

the correct defence is chosen. If the wrong defence is chosen, it moves to a com-
promised with probability attack and otherwise remains in the healthy state. From
the compromised state, if the correct defence is chosen it goes to the healthy state
with probability recover and otherwise remains in the compromised state. If the
wrong defence is chosen from the compromised state, it goes to the failure state with
probability fail and otherwise remains in the compromised state. Finally, from the
failure state, if the correct defence is chosen it goes to the compromised state with
probability repair and otherwise remains in the failure state. If the wrong defence is
chosen from the failure state, the system does not change its state.

A reward structure is specified representing the level of damage when an attack is
not detected. Each time the wrong defence library is chosen, a cost is incurred. If the
system is already in the compromised or failure state, the cost is higher. The goal is
to find optimal intrusion detection policies which correspond to finding a strategy for
the policy that minimises damage. We have constructed CSG models with 2 players
(representing the policy and the attacker) for the two scenarios outlined in [219].

1 5 10 15 20
0

5

10

15

20

25

30

Rounds

E
xp

ec
te
d
C
os
t

〈〈policy〉〉Rdamage
min=? [F r = rounds]

Scenario 1
Scenario 2

(a) Minimum expected cumulative cost.

0 5 10 15 20
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

K

E
xp

ec
te
d
C
os
t

〈〈policy〉〉Ridamage
min=? [F r = K]

Scenario 1
Scenario 2

(b) Minimum expected cost at K.

Figure 8.16: Intrusion detection policies: min. expected cost cumulative (left) and at
a given round (right).

In scenario 1, there’s a small chance an attack is successful (attack=0.2), a high
chance of recovering if attack is prevented (recover=0.8), a small chance of failure
from a compromised state when attack continues (fail=0.2) and a high chance of
repairing itself, and then going from a failure state to a compromised state, when
attack stops (repair=0.8). In scenario 2, we flip the values of attack/recover and
fail/repair.

151

Figure 8.16 shows the plots for the minimum expected cumulative cost over a
number of rounds and the minimum expected cost at a given round K, considering a
measure of undetected attacks. It can be seen that the two reflect each other as the
rate of the cumulative cost grows or stabilises so does the instantaneous cost. It is also
possible to notice that, as expected, the associated cost in scenario 1 is considerably
smaller given the smaller rates of successful attacks and failures and the higher rates
of recover and repair.

We have synthesised optimal policies which ensure the minimum cumulative dam-
age over a fixed number of rounds and damage in a specific round. In each case, the
optimal strategy for the system is randomised. In addition, it favours the second de-
fence which can be attributed to the fact that the second defence has at least partial
success against both attacks, while this is not true of the first. Here, concurrency is
required for the game to be meaningful, otherwise it is easy for the player whose turn
follows the other player to “win”. For example, if the attacker knows what library is
being deployed, then it can simply choose an attack the library cannot detect.

8.1.10 Jamming Multi-channel Radio Systems

A CSG model for jamming multi-channel cognitive radio systems is presented in [220].
The system consists of a number of channels (chans), which can be in an idle or
occupied state. A user can only send a message successfully if a channel is idle. The
state of each channel remains fixed within a time slot and between slots is Markovian
(i.e. the state changes randomly based only on the state of the channel in the previous
slot). A secondary user has a subset of available channels and at each time-slot must
decide which to use. There is a single attacker, which again has a subset of available
channels and at each time slot decides to send a jamming signal over one of them.
Again, the ability to model concurrence is crucial here given that, if modelled as a
turn-based game, it would be easy for the player that follows the other’s move to pick
a winning action. For instance, if the attacker was able to see which channel would
be used, you could simply choose to jam that channel. The CSG has 2 players: one
representing the secondary user and one for the attacker.

We considered a model with a total of 4 channels, where the user is able to use
the first three and the attacker is able to jam the last three. Figure 8.17 shows the
results for the maximum probability a user can ensure at least half of the messages
are sent and the maximum expected number of messages sent. At each time slot,
there is a 75% probability that each channel changes its state (e.g. moving from idle
to occupied) and initially al channels are occupied.

152

1 5 10 15 20
0

0.25

0.5

0.75

1

Slots

P
ro
ba

bi
lit
y

〈〈user〉〉Pmax=?[F sent>slots/2]

(a) Max. prob. half of the messages are sent.

1 5 10 15 20
0

5

10

15

Slots

E
xp

ec
te
d
N
um

be
r

〈〈user〉〉Rrewmax=?[F t = slots + 1]

(b) Max. number of messages sent.

Figure 8.17: Jamming multi-channel radio systems: maximum probability half of the
messages are sent (left) and maximum number of messages sent (right).

We synthesise strategies for the secondary user, which maximise the probability
of ensuring at least half the messages are sent correctly. For the case where there are
only two slots, we see that the optimal behaviour of the user is to initially send on
channel 1 (as there is a high chance it will be idle in the next slot and the attacker
cannot jam this channel). In the next slot, the user should again send on channel 1,
unless it was occupied in the previous slot and both channels 2 and 3 were idle. In
this case, the user should choose between channels 2 and 3 uniformly at random. The
reason is that, in this case, there is only a small chance channel 1 will be idle when
the message is sent and a high chance both that channel 2 and channel 3 will be idle
and the attacker cannot jam both these channels. In all other cases there is either:
(i) a high chance that channel 1 will be idle and this channel cannot be jammed;
(ii) a high chance only channel 2 or channel 3 will be idle and, since the attacker
knows this, the likely to be idle channel will be jammed, and so it is better to send
on channel 1 even though there is only a low chance it will be idle.

8.2 Efficiency and Scalability

In this section, we demonstrate the performance and scalability of our methods on the
case studies in this chapter. We begin by presenting a selection of results illustrating
the performance of our implementation. The experiments for zero-sum and two-player
equilibria properties were run on a 2.10 GHz Intel Xeon with 16GB of JVM memory.

153

The precision set for convergence of value iteration for all experiments was 10−6. In
Table 8.3, we give the model statistics for the examples used: the number of players,
states, transitions and model construction times. Due to improvements in the mod-
elling language and the model building procedure, some of the model statistics differ
from those presented in [136, 137]. This is due to fact that the earlier version of the
implementation did not allow for variables of different players to be updated following
a joint probability distribution, which made it necessary to introduce intermediate
states in order to specify some of the behaviour. This section also includes results for
additional properties compared to [138], as we work with an extended version of the
logic.

Tables 8.4 and 8.6 present the model checking statistics when analysing zero-sum
and two-player nonzero-sum properties respectively. In both tables, this includes the
maximum and average number of actions of each coalition in the matrix/bimatrix
games solved at each step of value iteration and the number of iterations performed.
In the case of zero-sum properties including reward formulae of the form F φ, value
iteration is performed twice (see Section 4.5.2), and therefore the number of iterations
for each stage are presented (and separated by a semi-colon). For zero-sum proper-
ties, the timing statistics are divided into the time for qualitative and quantitative
verification (including solving matrix games). For nonzero-sum properties we divide
the timing statistics into the time for CSG verification (including solving bimatrix
games) and the instances of MDP verification. In the case of mixed nonzero-sum
properties, i.e., properties including both finite and infinite horizon objectives, we
must first build a new game (see Section 5.3.5) and the statistics for these CSGs are
presented in Table 8.7.

The implementation can analyse models with over 3 million states and almost 18
million transitions; all are solved in under 2 hours and most are considerably quicker.
The majority of the time is spent solving matrix or bimatrix games so, as well as
the number of states, it is the number of choices of each coalition, rather than the
number of players, that affects performance. For example, larger instances of the
Aloha models are verified relatively quickly since the coalitions have only one choice
in many states (the average number of choices is 1.00 for both coalitions). However,
for models where players have choices in almost all states, only models with up to
hundreds of thousands of states for zero-sum properties and tens of thousands of
states for nonzero-sum properties can be verified within 2 hours.

Table 8.2 presents experimental results for the time to solve bimatrix games using
the Yices and Z3 solvers, as the numbers of actions of the individual games vary. The

154

Bimatrix Game
Actions SWNE values SCNE values
of each Solution time (s) Num. of Solution time (s) Num. of
player Yices Z3 NE in N Yices Z3 NE in N−

Covariant games

2 0.04 0.06 1 0.2 1.1 1
4 0.04 0.1 3 0.04 0.1 3
8 0.3 2.7 13 0.3 1.8 21
12 8.3 77.0 15 11.0 130.2 45
16 764.8 4,238 103 318.6 2,627 109

Dispersion games

2 0.04 0.08 3 0.04 0.08 3
4 0.05 0.2 51 0.04 0.1 15
8 1.8 16.4 6,051 0.2 1.1 255
12 6,368 t/o 523,251 6.0 38.3 4,095

Majority voting games

2 0.03 0.08 5 0.03 0.07 2
4 0.05 0.1 15 0.04 0.1 13
8 0.5 1.0 433 0.2 0.7 186
12 9.9 22.4 3,585 9.9 16.0 3,072
16 532.5 2,386 61,441 465.9 2,791 49,153

Randomly generated games

2 0.15 1.9 1 0.03 0.08 1
4 0.04 0.1 3 0.03 0.09 3
8 0.4 2.3 13 0.3 1.8 7
12 45.60 422.0 27 68.0 343.6 31
16 2,370 t/o 81 1,112 t/o 69

Table 8.1: Finding SWNE/SCNE values in bimatrix games: comparing SMT solvers.

table also shows the number of NE in each game N, as found when determining the
SWNE values, and also the number of NE in N−, as found when determining the
SCNE values (see Lemma 1). These games were generated using GAMUT (a suite of
game generators) [168] and a time-out of 2 hours was used for the experiments. The
results show Yices to be the faster implementation and that the difference in solution
time grows as the number of actions increases. Therefore, in our experimental results
in the next section, all verification runs use the Yices implementation. The results in
Table 8.2 also demonstrate that the solution time for either solver can vary widely
and depends on both the number of NE that need to be found and the structure of the
game. For example, when solving the dispersion games, the differences in the solution
times for SWNE and SCNE seem to correspond to the differences in the number of
NE that need to found. On the other hand, there is no such correspondence between
the difference in the solution times for the covariant games.

Table 8.1 presents experimental results when solving NFGs (which were also gen-
erated using GAMUT [168]) through support enumeration using Z3 for filtering out
unsatisfiable support assignments (with a timeout of 20ms) and Ipopt. For each
NFG the table lists the numbers of players, actions of each player and support as-
signments. The table also includes the supports of each type returned by Z3 and the
solution time of Ipopt. As can be seen, by using Z3 we have significantly reduced the
assignments Ipopt needs to analyse, by orders of magnitude in some cases. However,
as the number of actions grows, the number of assignments that remain for Ipopt

155

Game Players Actions Supports Supports returned by Z3 Time(s)
unsat sat unknown Ipopt

Majority voting games

3 3,3,3 343 330 12 1 0.309
3 4,4,4 3,375 3,236 110 29 18.89
3 5,5,5 29,791 26,250 155 3,386 336.5
4 2,2,2,2 81 59 22 0 0.184
4 3,3,3,3 2,401 2,212 87 102 6.847
4 4,4,4,4 50,625 41,146 518 8,961 1,158
5 2,2,2,2,2 243 181 62 0 0.591
5 3,3,3,3,3 16,807 14,950 266 1,591 253.3

Covariant gamem

3 3,3,3 343 304 6 33 7.645
3 4,4,4 3,375 2,488 16 871 203.8
3 5,5,5 29,791 14,271 8 15,512 5,801
4 2,2,2,2 81 76 3 2 0.106
4 3,3,3,3 2,401 1,831 0 570 183.0
5 2,2,2,2,2 243 221 8 14 4.128
5 3,3,3,3,3 16,807 6,600 7 10,200 5,002

Table 8.2: Finding SWNE in NFGs (timeout of 20ms for Z3).

to solve increases rapidly, and therefore also does the solution time. Furthermore,
increasing the number of players only magnifies this issue. The solution times for
NFGs may appear to be slow; however just finding a NE is a difficult problem, while
here we require SWNE. For example, in [174], using a backtracking search algorithm
or either of the Simplicial Subdivision [202] and the Govindan-Wilson [97] algorithms
for finding a sample NE, there are instances of NFGs with 6 player and 5 actions that
timeout after 30 minutes.

Table 8.8 presents a selection of results demonstrating the performance for model
checking of multi-player nonzero-sum properties. The results for multi-player equi-
libria properties were carried out using a 2.10GHz Intel Xeon Gold with 16GB of
JVM memory. The table includes statistics for the models: number of players, states,
(maximum) actions for each player in a state, transitions and the times to both build
and verify the models. All models have been verified in under 2 hours and in most
cases much less than this. The largest model, verified in under 15 minutes, has 4
players, almost 1.5 million states and 5 million transitions. The majority of the time
is spent solving NFG games and, as shown in Table 8.1, this varies depending on the
number of choices and players.

8.3 Summary

In this chapter, we presented a range of case studies that were modelled as stochastic
games and verified against rPATL properties with PRISM-games 3.0. We have seen
applications that could not be analysed without the possibility of modelling concur-
rency, compared concurrent and turn-based variants of the same models, compared

156

zero-sum and equilibria strategies, and considered scenarios in which it was necessary
to have methods to handle multi-player properties. We noticed in case studies such
as the Future Market Investors that CSGs makes it possible to have a more faith-
ful translation of a given problem when comparing to TSGs, as well as computing
more accurate values and synthesising better strategies. A similar statement could
be made about the Trust Models for User-centric Networks case study. Subsequently,
when studying applications such as the Robot Coordination and the Aloha Protocol,
it was possible to notice the advantages of considering equilibria properties to syn-
thesise mutually beneficial stable strategies instead of assuming strictly competitive
scenarios. Finally, we were able to highlight in applications such as the Secret Sharing
Protocol and the Public Good Game scenarios, which required multi-player capabili-
ties, the additional aspects that multi-player equilibria analysis enables compared to
the two-player.

157

Case study Param. Players States Transitions Constr.
[parameters] values time (s)

Robot coordination
[l]

4 2 226 6,610 0.1
8 2 3,970 201,650 1.0
12 2 20,450 1,221,074 3.9
16 2 65,026 4,198,450 11.8
24 2 330,626 23,049,650 62.5

Future markets investors
[months]

6 3 33,338 143,487 1.4
12 3 254,793 1,257,112 7.7
24 3 826,617 4,315,864 24.7
36 3 1,398,441 7,374,616 48.8
48 3 1,970,265 10,433,368 65.5

Future markets investors
[months,pbar]

3,0.5 2 3,268 11,820 0.27
6,0.5 2 28,794 123,839 1.2
12,0.5 2 219,205 1,080,516 6.8
18,0.5 2 464,989 2,394,276 15.3

User-centric networks
[td ,K]

1,3 7 32,214 121,659 2.1
1,4 7 104,897 433,764 6.1
1,5 7 294,625 1,325,100 17.5
1,6 7 714,849 3,465,558 42.8

Aloha (deadline)
[bmax ,D]

1,8 3 3,519 5,839 0.2
2,8 3 14,230 28,895 0.5
3,8 3 72,566 181,438 2.1
4,8 3 413,035 1,389,128 9.4
5,8 3 2,237,981 9,561,201 58.4

Aloha
[bmax]

2 3 5,111 10,100 0.3
3 3 22,812 56,693 0.8
4 3 107,799 355,734 2.5
5 3 556,168 2,401,113 13.4
6 3 3,334,681 17,834,254 118.8

Intrusion detection system
[rounds]

25 2 75 483 0.07
50 2 150 983 0.08
100 2 300 1,983 0.1
200 2 600 3,983 0.1

Jamming radio systems
[chans,slots]

4,6 2 531 45,004 0.5
4,12 2 1,623 174,796 1.4
6,6 2 1,061 318,392 2.0
6,12 2 3,245 1,240,376 6.6

Medium access control
[emax]

10 3 10,591 135,915 1.7
15 3 33,886 457,680 5.0
20 3 78,181 1,083,645 8.2
25 3 150,226 2,115,060 14.0

Medium access control
[emax ,smax]

4,2 3 14,723 129,097 2.2
4,4 3 18,751 147,441 4.3
6,4 3 122,948 1,233,976 11.0
6,6 3 138,916 1,315,860 12.5

Power control
[emax , powmax]

40,8 2 32,812 260,924 1.7
80,8 2 193,396 1,469,896 6.5
40,16 2 34,590 291,766 1.6
80,16 2 301,250 2,627,278 10.5

Table 8.3: Model statistics for the CSG case studies.

158

Case study & property Param. Actions Val. Verif. time (s)
[parameters] values max/avg iters Prec. Quant.

Robot coordination
〈〈rbt1〉〉Pmax=?[¬c U6kg1]

[l,k]

4,4 3,3/2.52,2.52 4 0.02 0.04
8,8 3,3/2.52,2.52 8 0.27 1.1

12,12 3,3/2.68,2.68 12 1.61 5.7
16,16 3,3/2.76,2.76 16 5.88 35.4
24,24 3,3/2.84,2.84 24 46.5 185.2

Robot coordination
〈〈rbt1〉〉Rmin=?[F g1]

[l]

4 3,3/2.52,2.52 10; 9 0.02 0.1
8 3,3/2.52,2.52 15; 14 0.35 4.1
12 3,3/2.68,2.68 20; 19 1.99 23.2
16 3,3/2.76,2.76 24; 24 7.57 96.5
24 3,3/2.84,2.84 34; 33 56.9 744.7

Future markets investors
〈〈i1〉〉Rmax=?[Fc cashed1]

[months]

6 2,8/1.22,1.55 14 1.5 4.4
12 2,8/1.27,1.68 26 12.1 63.0
24 2,8/1.29,1.73 50 42.5 344.4
36 2,8/1.29,1.74 72 70.6 824.7
48 2,8/1.29,1.75 80 99.6 1,424

User-centric networks
〈〈user〉〉Rmax=?[Fc services=K]

[td ,K]

1,3 16,8/2.11,1.91 15 3.3 172.5
1,4 16,8/2.31,1.92 21 10.3 646.9
1,5 16,8/2.46,1.94 25 37.6 2,311
1,6 16,8/2.60,1.96 29 92.9 5,904

Aloha (deadline)
〈〈usr2, usr3〉〉Pmax=?[F s1,2∧t6D]

[bmax ,D]

2,8 4,2/1.01,1.00 24 0.5 0.8
3,8 4,2/1.01,1.00 23 1.8 1.8
4,8 4,2/1.01,1.00 23 6.5 4.5
5,8 4,2/1.01,1.00 23 35.9 9.4

Aloha
〈〈usr2, usr3〉〉Rmin=?[F sent2,3]

[bmax]

2 4,2/1.01,1.00 58; 47 0.2 2.1
3 4,2/1.01,1.00 71; 57 0.6 6.0
4 4,2/1.01,1.00 109; 86 3.7 33.7
5 4,2/1.01,1.00 193; 150 26.6 317.6
6 4,2/1.01,1.00 362; 279 314.5 3,836

Intrusion detection system
〈〈policy〉〉Rmin=?[C]

[rounds]

25 2,2/1.96,1.96 26; 26 0.03 0.2
50 2,2/1.98,1.98 51; 51 0.06 0.7
100 2,2/1.99,1.99 101; 101 0.2 2.5
200 2,2/2.00,2.00 201; 201 0.5 7.0

Jamming radio systems
〈〈user〉〉Pmax=?[F sent>slots/2]

[slots]

4,6 3,3/2.17,2.17 7 0.03 0.1
4,12 3,3/2.49,2.49 13 0.2 0.5
6,6 4,4/2.76,2.76 7 0.1 0.3
6,12 4,4/3.24,3.24 13 0.5 2.0

Table 8.4: Statistics for CSG zero-sum verification instances.

Case study & property
[parameters]

Param.
values

Inner Formula Outer Formula
Val. Verif. Val. Verif.
iters. time (s) iters. time (s)

Robot coordination
〈〈rbt1〉〉Pmax=?[F φ]

φ=〈〈rbt2〉〉R>10[F g2]

[l]

4 12; 12 0.1 5 0.1
8 22; 22 5.0 10 0.8
12 31; 30 40.5 10 2.6
16 40; 40 187.7 11 6.6
24 58; 58 1,235 12 22.6

Robot coordination
〈〈rbt1, rbt2〉〉Pmin=?[F φ]

φ=〈〈rbt1:rbt2〉〉min65(R[F g1]+R[F g2])

4 8 0.1 24 0.1
8 17 20.8 18 1.4
12 32 527.3 28 8.4
16 39 4,664 37 24.9

Aloha
〈〈usr1, usr2, usr3〉〉Pmax=?[F φ]

φ=〈〈usr1:usr2, usr3〉〉min>2(P[F s1]+P[F s2,3])

[bmax,D]

1,8 23 0.6 24 0.3
2,8 23 1.4 23 0.8
3,8 22 7.9 23 2.8
4,8 22 39.8 23 9.3
5,8 22 172.6 23 37.1

Table 8.5: Statistics for CSG nested properties verification instances.

159

Case study & property Param. Actions Val. Verif. time (s)
[parameters] values max/avg iters. MDP CSG

Robot coordination
〈〈rbt1:rbt2〉〉max=?(P[¬c U6kg1]+P[¬c U6kg2])

[l,k]

4,4 3,3/2.07,2.07 4 0.02 0.1
8,8 3,3/2.52,2.52 8 0.45 1.0

12,12 3,3/2.68,2.68 12 6.25 5.8
16,16 3,3/2.76,2.76 16 34.7 22.2
24,24 3,3/2.84,2.84 24 375.2 1,365

Robot coordination
〈〈rbt1:rbt2〉〉max=?(P[¬c U6kg1]+P[¬c U g2])

[l,k]

4,8 3,3/2.10,2.04 21 0.16 3.3
4,16 3,3/2.12,2.05 21 0.28 12.0
8,8 3,3/2.53,2.51 34 5.51 77.2
8,16 3,3/2.54,2.52 35 17.2 3,513

Robot coordination
〈〈rbt1:rbt2〉〉min=?(R[F g1]+R[F g2])

[l]

4 3,3/2.07,2.07 8 0.05 0.2
8 3,3/2.52,2.52 15 0.44 10.3
12 3,3/2.68,2.68 23 2.12 227.7
16 3,3/2.84,2.84 28 12.1 3,272

Future markets investors
〈〈i1:i2〉〉max=?(R[F c1]+R[F c2])

[months]

3 2,2/1.15,1.15 6 0.06 0.2
6 2,2/1.23,1.23 13 0.8 3.0
12 2,2/1.28,1.28 25 6.9 265.4
18 2,2/1.29,1.29 37 26.6 3,997

Aloha (deadline)
〈〈usr1:usr2,usr3〉〉max=?(P[F s1]+P[F s2,3])

[bmax ,D]

1,8 2,4/1.00,1.01 23 0.1 0.3
2,8 2,4/1.00,1.00 23 0.4 1.2
3,8 2,4/1.00,1.00 22 2.0 3.4
4,8 2,4/1.00,1.00 22 7.1 18.5
5,8 2,4/1.00,1.00 22 39.9 103.0

Aloha
〈〈usr1:usr2,usr3〉〉min=?(R[F s1]+R[F s2,3])

[bmax]

2 2,4/1.00,1.01 54 0.2 0.8
3 2,4/1.00,1.00 62 0.8 3.1
4 2,4/1.00,1.00 88 4.5 40.1
5 2,4/1.00,1.00 145 35.3 187.7
6 2,4/1.00,1.00 256 453.7 2,396

Medium access control
〈〈p1:p2,p3〉〉max=?(R[C6k]+R[C6k])

[emax ,k]

10,25 2,4/1.91,3.63 25 0.0 65.8
15,25 2,4/1.94,3.75 25 0.0 193.3
20,25 2,4/1.95,3.81 25 0.0 394.8
25,25 2,4/1.96,3.85 25 0.0 565.4

Medium access control
〈〈p1:p2,p3〉〉max=?(P[Fm1]+P[Fm2,3])

[emax ,smax]

4,2 2,4/1.70,2.88 10 0.61 96.2
4,4 2,4/1.64,2.70 12 0.61 22.8
6,4 2,4/1.77,3.12 17 7.40 1,639
6,6 2,4/1.74,3.02 18 4.09 93.6

Medium access control
〈〈p1:p2,p3〉〉max=?(P[F6k m1]+P[Fm2,3])

[emax ,smax ,k]

4,4,4 2,4/1.67,2.70 12 1.64 39.1
4,4,8 2,4/1.68,2.70 12 3.30 106.3
6,4,6 2,4/1.76,3.02 18 23.4 341.9
6,4,12 2,4/1.74,3.02 18 60.0 961.8

Power control
〈〈p1:p2〉〉max=?(R[F e1=0]+R[F e2=0])

[emax ,powmax]

40,8 2,2/1.91,1.91 20 4.1 11.7
80,8 2,2/1.88,1.88 40 34.8 130.3
40,16 2,2/1.95,1.95 40 5.4 11.6
80,16 2,2/1.98,1.98 80 64.4 211.4

Power control
〈〈p1:p2〉〉max=?(R[F e1=0]+R[C6k])

[emax ,powmax ,k]

40,4,20 2,2/1.69,1.69 20 13.3 27.5
80,4,20 2,2/1.69,1.69 20 83.9 134.2
40,8,20 2,2/1.91,1.91 20 49.1 84.6
80,8,20 2,2/1.88,1.88 20 498.6 846.8

Table 8.6: Statistics for CSG two-player nonzero-sum verification instances.

160

Case study Param. Players States Transitions[parameters] values

Robot coordination
〈〈rbt1:rbt2〉〉max=?(P[¬c U6kg1]+P[¬c U g2])

[l,k]

4,8 2 1,923 56,385
4,16 2 3,491 104,545
8,8 2 36,773 1,860,691
8,16 2 67,525 3,443,443

Medium access control
〈〈p1:p2,p3〉〉max=?(P[F6k m1]+P[Fm2,3])

[emax ,smax ,k]

4,4,4 3 89,405 718,119
4,4,8 3 158,609 1,282,435
6,4,6 3 944,727 9,071,885
6,4,12 3 1,745,001 16,800,083

Power control
〈〈p1:p2〉〉max=?(R[F e1=0]+R[C6k])

[emax ,powmax ,k]

40,4,20 2 182,772 1,040,940
80,4,20 2 917,988 5,153,700
40,8,20 2 524,473 4,179,617
80,8,20 2 3,806,240 28,950,948

Table 8.7: Model statistics for CSGs built verifying mixed two-player nonzero-sum
properties.

Case study & property Param. Players CSG statistics Constr. Verif.
[parameters] values States Max. Act. Trans. time(s) time (s)

Secret Sharing
Rmax=?[F d∨r=rmax]

model/[α,rmax ,pfail]

raa/0.3,10, 3 4,279 2,1,1 5,676 0.057 0.565
rba/0.3,10,0.2 3 7,095 2,1,1 9,900 0.090 0.939
rra/0.3,10, 3 8,525 2,2,1 11,330 0.250 25.79
rrr/0.3,10, 3 17,017 2,2,2 22,638 0.250 96.07

Public Good
Rmax=?[I=kmax]

[f, kmax]

2.9,2 3 758 3,3,3 1,486 0.098 7.782
2.9,3 3 16,337 3,3,3 36,019 0.799 110.1
2.9,4 3 279,182 3,3,3 703,918 6.295 1,459
2.9,1 4 83 3,3,3,3 163 0.046 0.370
2.9,2 4 6,644 3,3,3,3 13,204 0.496 7.111
2.9,3 4 399,980 3,3,3,3 931,420 11.66 99.86
2.9,1 5 245 3,3,3,3,3 487 0.081 2.427
2.9,2 5 59,294 3,3,3,3,3 118,342 2.572 2,291

Aloha (deadline)
Pmax=?[F si∧t6D]

[bmax, D]

1,8 3 3,519 2,2,2 5,839 0.168 11.23
2,8 3 14,230 2,2,2 28,895 0.430 14.05
3,8 3 72,566 2,2,2 181,438 1.466 18.41
4,8 3 413,035 2,2,2 1,389,128 7.505 43.23
1,8 4 23,251 2,2,2,2 42,931 0.708 75.59
2,8 4 159,892 2,2,2,2 388,133 3.439 131.7
3,8 4 1,472,612 2,2,2,2 4,777,924 28.69 819.2
1,8 5 176,777 2,2,2,2,2 355,209 3.683 466.3

Aloha
Rmin=?[F si]

[bmax]

1 3 1,034 2,2,2 1,777 0.096 40.76
2 3 5,111 2,2,2 10,100 0.210 29.36
3 3 22,812 2,2,2 56,693 0.635 51.22
4 3 107,799 2,2,2 355,734 2.197 150.1

Medium access
Rmax=?[C6k]

[emax, k]

5,10 3 1,546 2,2,2 17,100 0.324 147.9
10,10 3 10,591 2,2,2 135,915 1.688 682.7
15,20 3 33,886 2,2,2 457,680 4.663 6,448
5,5 4 15,936 2,2,2,2 333,314 4.932 3,581

Table 8.8: Statistics for CSG multi-player nonzero-sum verification instances.

161

CHAPTER 9

Conclusion

9.1 Summary

The main problem examined in this thesis is that of model checking and synthesis for
systems that feature multiple players or components with distinct objectives making
concurrent, rational decisions in an unpredictable environment. Game-theoretic mod-
els, particularly CSGs, are an ideal formalism for modelling these scenarios. In order
to model uncertainty, we assume that it is a quantifiable measure that can be encoded
according to a probability distribution or through nondeterministic choices. At every
step, the evolution of the system is determined by which action each player takes,
culminating in models that are more general than TSGs and MDPs. Whether agents
in the model are expected to collaborate or work against each other is determined
at the verification level by specifying sets of objectives and grouping or separating
players into coalitions. We are then able to model a system as a concurrent stochastic
game, analyse it through the specification of quantitative or qualitative properties in
combination with model checking, and synthesise a strategy, which can also be used
as evidence of the occurrence of a particular event or a controller to enforce a desirable
behaviour.

It is not uncommon in model checking applications, particularly in non-stochastic
scenarios, to focus on worst-case analysis and safety objectives, where the properties
of interest tend to be of the type G ¬failure, that is, making sure that something
bad does not happen. It is equally common that systems are only verified against a
specification, that is, as a model that translates nothing but its own implementation,

162

or against a nondeterministic but certain environment, especially in applications that
focus on discrete control. As the focus shifts to the interaction among different
systems, so does the need for modelling paradigms that allow researchers to have a
clear framework for specifying how the interactions take place and reasoning about
a more informative set of properties and measures. We have seen in our case studies
why being able to model concurrency is important, as it makes possible to translate
real-world scenarios more faithfully. Furthermore, we have illustrated the benefits of
considering mutually beneficial strategies and an analysis that considers cooperation
without disregarding self-interest and rationality. The most advantageous aspect
of incorporating equilibria analysis is indeed being able to find a way for rational
agents to interact and accomplish a set of individual goals with no reason to second-
guess. The ability to apply different criteria when selecting equilibria, such as social
welfare or social cost, adds to the stability factor of equilibria strategies by promoting
cooperation among agents so as to maximise or minimise a collective measure. In
order to achieve this, we introduce in Chapters 5 and 6 a property specification logic
and algorithms to compute equilibria values for two and multi-player games, and in
Chapter 7 a modelling language and a tool that implements these methods and can
be used for automatic verification and synthesis.

Computing equilibria values and strategies of normal form games is a hard task.
Across decades, it has been the subject of hundreds of papers from economics, math-
ematics and computer science. The issue tackled by this thesis is harder still as we
set out to find optimal equilibria over extensive games, which required finding all
equilibria values for millions of one-shot games in our largest case studies. Further
difficulties were brought by considering non-discounted long-run objectives and prop-
erties using temporal operators, which considerably add to the complexity of our
algorithms. Both the theoretical presentation and implementation could have been
made simpler had we chosen to focus on discounted properties, which would also have
made it possible to lift some of the restrictions we had to impose to guarantee con-
vergence. Our feeling is that the range of applications reflected in our experimental
results shows that those restrictions are not very limiting and both our methods and
implementation could easily be adapted to consider a discount factor. The problem of
strategy synthesis is no less challenging as it poses the added complication of keeping
track of local strategies for all players, which may change after they have reached
their goals. Both verification and synthesis additionally support a range of reward
operators including expected reachability. For the two-player case, we also develop

163

and implement methods to enable a mixture of bounded and unbounded operators,
for which we need to modify the original game accordingly.

Contributions. Our contributions can be grouped as follows:

• We have developed a framework for verification and strategy synthesis for con-
current stochastic games based on zero-sum and equilibria properties. Our
model checking algorithms incorporate results from game theory, probabilis-
tic verification, symbolic methods and branching-time temporal logics. While
previous work had already tackled the issue of property specification logics for
games and the development of model checking algorithms, we believe this the-
sis presents a more extensive and comprehensive framework, supporting multi-
coalitional properties and a unified property specification logic for competitive
and collaborating objectives based on probabilistic and rewards temporal formu-
lae. Chapters 4-6 lay down the theoretical foundations and provide the reader
with well defined algorithms that can be implemented and extended. Particu-
larly when dealing with equilibria and concurrent stochastic games, most pre-
vious work had focused on complexity results or decision problems but lacked
a proper implementation. The work developed in the aforementioned chapters
present a non-trivial extension of pre-existing solutions for normal and exten-
sive form games by considering temporal specifications, long-run objectives,
incorporating SMT-based procedures and computing two variants of optimal
equilibria.

• We showcase the usefulness and the efficiency of our approach by implementing
our algorithms in the PRISM-games 3.0 tool, which is the subject of Chapter
7. The tool supports a modelling language for multi-player games, where the
user can model multiple potentially synchronising components, describe how
they interact and how the system evolves as the result of individual actions.
The ability to export synthesised strategies in an intuitive way, plot graphs for
experiments and use a simulator to follow an execution provide insight about
the system to the designer. We demonstrate the wide applicability scope of
both the methods and the tool, as well as the interest in being able to consider
cooperation and multiple coalitions in Chapter 8.

164

9.2 Future Work

The work in this thesis could be the basis for a number of interesting extensions and
future research directions. In this section, we highlight some we find particularly
relevant and more closely linked.

Improvements to Zero-sum and Equilibria Computation. Scalability is a ma-
jor concern when developing and implementing model checking algorithms if they
are to be capable of handling real-world applications. With respect to concurrent
stochastic games, how we compute local (state) solutions can have a major impact
on the overall performance. The general approach for zero-sum games is to solve a
linear program at each state and each iteration. However, some games can be trivial
as they can be solved by simpler methods such as searching for saddle points, that
is, an entry in the matrix that is the minimal entry in its row and the maximal of its
column. Furthermore, there are implementations of polynomial algorithms for solving
LPs, which would perform better than that of the solver we used and decrease the
model checking times we reported. Similarly, local computation of equilibria values is
of crucial importance, particularly when we are dealing with finding an optimal equi-
librium. In the current implementation we already search for and filter out dominated
strategies in both two and multi-player cases. It would be beneficial to also have a
precomputation step to remove conditionally dominated strategies [174], particularly
when performing support enumeration. For the two-player case particularly, an inter-
esting direction to follow is applying maximum model counting [89] when computing
optimal equilibria as the SMT encoding can be equally translated into SAT and, given
it is a linear problem, one would not need to encode multiplication between variables.
It could also be helpful when computing solutions for the local games to use values of
the past iteration as the method for the two-player case relies on search and that for
the multi-player on nonlinear programming and gradient descent. In both cases, for
many states the value computed in the next iteration is likely to be in the vicinity of
the last computed value, and starting from that value could speed up computation.
More related to calculating the value for the entire game, interesting directions are to
explore symmetries in the graph as well as skipping computation for states from which
only target states can be reached, as their values are not going to change after the first
iteration. At the moment, each iteration does an undiscriminated sweep and repeats
computation that is unnecessary. Additionally, solution methods for both zero-sum
and equilibria problems are sensitive to the limitations and issues of floating-point

165

arithmetic, particularly equilibria computation, and might benefit from arbitrary pre-
cision representations. Lastly, we mention that recent research has pointed out the
shortcomings of only using a lower bound approximation as a stopping criterion for
value iteration, as it can lead to inaccuracies [14, 101, 127]. The impact of similar
issues on model checking for games is still to be studied.

Partial Observability. The algorithms and modelling language presented in this
thesis assume that we have full knowledge of every aspect of the system beforehand.
In some cases, however, it is not possible to be sure in which state a system currently
is, as some of its parameters might not be observable. In such cases, it is common
to say that one has a belief of where the system is and verification has then to
account for that. Solutions to handle this type of problem include partial observable
Markov decision process [123, 1] and partially observable games [46, 45]. Partial
observability adds to the complexity of model checking and can also make problems
undecidable. The problem of partial observability for concurrent stochastic games and
zero-sum properties has been recently explored in [116]. Bayesian games [108] would
be a starting point to consider new algorithms that combine partial observability and
equilibria.

Correlated Equilibria. Correlated equilibria were introduced by Aumann in [8]. It
is a concept that generalises NE in the sense that is possible to construct a correlated
equilibrium for every NE. The opposite, however, is not true and thus correlated
equilibria are a strictly weaker notion than NE. The idea behind correlated equilibria
is that players condition their strategies based on a probability distribution over a set
of outcomes, e.g., cooperate or defect in a prisoner’s dilemma based on the outcome of
a coin flip. The outcome is revealed to all players in the game and they can condition
their decisions accordingly. Correlated equilibria may lead to payoffs which are fairer
and achieve higher expected utilities. Moreover, it has been shown in [95] that finding
a correlated equilibrium with maximal payoff for games in normal form can be done in
polynomial time, whereas finding a maximum NE is NP-hard (NP-complete for two
players). As they may return fairer equilibria and are computationally less costly, it
is a interesting direction to follow.

Mechanism Design and Coalition Building. In a way, mechanism design [165,
163] goes in the opposite direction of verification. Here we start with a full model,
which may or may not have reward structures, and a property where players are
separated into coalitions. We then try to compute the value associated to that prop-
erty and either output the result and/or compare it with a given bound. Mechanism

166

design, on the other hand, asks how can we set incentives, which could be seen as
reward structures or probabilities, in such way that we have an equilibrium among the
participants. We have seen the application of that in some of our examples, particu-
larly the secret sharing case study, and specifically how having the right incentives (or
punishments) are crucial to make sure that rational agents act according to a specifi-
cation that guarantees the good functioning of a protocol and are in accordance with
other principles such as fairness and social welfare. In our example though, we have
a varying parameter and instantiate different models to see how the behaviour of the
agents change. Naturally, if we consider non-discrete increments or a parameter that
can take a very large range of values, that approach becomes impractical. Mecha-
nism design tackles this issue by presenting a more structured way of finding these
values. Similarly, whenever we verify a property or synthesise a strategy, we do so by
grouping the players into coalitions. One could raise the question of whether those
coalitions are indeed an optimal split when considering a given criterion, as for in-
stance, social welfare. It is possible that it would be collectively more beneficial for a
player to cooperate with another player than the one he was grouped with. Research
on how to group agents to optimise cooperation, and whether certain coalitions are
even feasible, given that a player may get the same utility by playing by itself (as
seen in the public good game case study) is also a thriving topic within game theory.

9.3 Final Remarks

With the ever growing complexity of autonomous systems and their interactions, we
believe that formal modelling and synthesis methods will become more and more rel-
evant to ensure they behave safely. Automatic controller synthesis for coordination
among different agents is still in its inception, and the usefulness of game-theoretic
concepts such as equilibria remains largely obscure to computer scientists and engi-
neers alike. We think that the work reported in this thesis contributes to addressing
some gaps and presents a comprehensive account of the challenges and the impor-
tance of bridging verification and game theory. It is our opinion that developments in
this area have the potential to be pivotal in transforming the design and certification
process of autonomous systems as well as having an impact in several domains within
and beyond computer science.

167

APPENDIX A

Correctness

A.1 Correctness of the Model Checking Algorithms

The overall (recursive) approach and the reduction to solution of a two-player game
is essentially the same as for TSGs [53], and therefore the same correctness argu-
ments apply. In the case of zero-sum formulae, the correctness of value iteration for
infinite-horizon properties follows from [177] and for finite-horizon properties from
Definition 4.4.3 and the solution of matrix games (see Section 4.2.1). Below, we show
the correctness of the model checking algorithms for nonzero-sum formulae.

A.1.1 Nonzero-sum Two-player Formulae

We fix a game G and a nonzero-sum formula 〈〈C:C ′〉〉opt∼x(θ). For the case of finite-
horizon nonzero-sum formulae, the correctness of the model checking algorithms fol-
lows from the fact that we use backward induction [181, 205, 188]. For infinite-horizon
nonzero-sum formulae, the proof is based on showing that the values computed during
value iteration correspond to subgame-perfect SWNE values of finite game trees, and
the values of these game trees converge uniformly and are bounded from above by
the actual values of GC.

The fact that we use MDP model checking when the goal of one of the players is
reached means that the values computed during value iteration are not finite approx-
imations for the values of GC. Therefore we must also show that the values computed
during value iteration are bounded from below by finite approximations for the values

168

of GC. We first consider the case when both the objectives in the sum θ are infinite-
horizon objectives. Below we assume opt = max and the case when opt = min follow
similarly. For any (v1, v2), (v′1, v

′
2) ∈ Q2, let (v1, v2) 6 (v′1, v

′
2) if and only if v1 6 v′1

and v2 6 v′2. The following lemma follows by definition of subgame-perfect SWNE
values.

Lemma 4. Consider any strategy profile σ and state s of GC and let (vσ,s1 , vσ,s2) be
the corresponding values of the players in s for the objectives (Xθ

1 , X
θ
2). Considering

subgame-perfect SWNE values of the objectives (Xθ
1 , X

θ
2) in state s, in the case that

θ is of the form P[φ1
1 U φ1

2]+P[φ2
1 U φ2

2] :

• if s |=φ1
2∧φ2

2, then (1, 1) are the unique subgame-perfect SWNE values for state
s and (vσ,s1 , vσ,s2) 6 (1, 1);

• if s |=φ1
2 ∧ φ2

1 ∧ ¬φ2
2, then (1, Pmax

G,s (φ2
1 U φ2

2)) are the unique subgame-perfect
SWNE values for state s and (vσ,s1 , vσ,s2) 6 (1, Pmax

G,s (φ2
1 U φ2

2));

• if s |=φ1
1 ∧ ¬φ1

2 ∧ φ2
2, then (Pmax

G,s (φ1
1 U φ1

2), 1) are the unique subgame-perfect
SWNE values for state s and (vσ,s1 , vσ,s2) 6 (Pmax

G,s (φ1
1 U φ1

2), 1);

• if s |=φ1
2 ∧¬φ2

1 ∧¬φ2
2, then (1, 0) are the unique subgame-perfect SWNE values

for state s and (vσ,s1 , vσ,s2) 6 (1, 0);

• if s |=¬φ1
1 ∧¬φ1

2 ∧ φ2
2, then (0, 1) are the unique subgame-perfect SWNE values

for state s and (vσ,s1 , vσ,s2) 6 (0, 1);

• if s |=¬φ1
1 ∧ ¬φ1

2 ∧ φ2
1 ∧ ¬φ2

2, then (0, Pmax
G,s (φ2

1 U φ2
2)) are the unique subgame-

perfect SWNE values for state s and (vσ,s1 , vσ,s2) 6 (0, Pmax
G,s (φ2

1 U φ2
2));

• if s |=φ1
1 ∧ ¬φ1

2 ∧ ¬φ2
1 ∧ ¬φ2

2, then (Pmax
G,s (φ1

1 U φ1
2), 0) are the unique subgame-

perfect SWNE values for state s and (vσ,s1 , vσ,s2) 6 (Pmax
G,s (φ1

1 U φ1
2), 0);

• if s |=¬φ1
1∧¬φ1

2∧¬φ2
1∧¬φ2

2, then (0, 0) are the unique subgame-perfect SWNE
values for state s and (vσ,s1 , vσ,s2) 6 (0, 0).

On the other hand, in the case that θ is of the form Rr1 [F φ1]+Rr2 [F φ2] :

• if s |=φ1∧φ2, then (0, 0) are the unique subgame-perfect SWNE values for state
s and (vσ,s1 , vσ,s2) 6 (0, 0);

• if s |=φ1 ∧ ¬φ2, then (0, Rmax
G,s (r2, F φ

2)) are the unique subgame-perfect SWNE
values for state s and (vσ,s1 , vσ,s2) 6 (0, Rmax

G,s (r2, F φ
2));

169

• if s |=¬φ1 ∧ φ2, then (Rmax
G,s (r1, F φ

1), 0) are the unique subgame-perfect SWNE
values for state s and (vσ,s1 , vσ,s2) 6 (Rmax

G,s (r1, F φ
1), 0).

Next we require the following objectives of GC.

Definition A.1.1. For any sum of two probabilistic or reward objectives θ, 1 6 i 6 2

and n ∈ N, let Xθ
i,n be the objective where for any path π of GC :

X
P[φ11 U φ12]+P[φ21 U φ22]
i,n (π) =

{
1 if ∃k 6 n. (π(k) |=φi2 ∧ ∀j < k. π(j) |=φi1)

0 otherwise

X
Rr1 [F φ1]+Rr2 [F φ2]
i,n (π) =

∞ if ∀k ∈ N. π(k) 6|=φi∑kφi−1

k=0

(
rA(π(k), π[k]) + rS(π(k))

)
if kφi 6 n−1

0 otherwise

and kφi = min{k | k ∈ N ∧ π(k) |=φi}.

The following lemma demonstrates that, for a fixed strategy profile and state, the
values of these objectives are non-decreasing and converge uniformly to the values of
θ.

Lemma 5. For any sum of two probabilistic or reward objectives θ and ε > 0, there
exists N ∈ N such that, for any n > N , s ∈ S, σ ∈ Σ1

GC×Σ2
GC and 1 6 i 6 2 :

0 6 EσGC ,s(X
θ
i)− EσGC ,s(X

θ
i,n) 6 ε .

Proof. Consider any sum of two probabilistic or reward objectives θ, state s and
1 6 i 6 2. Using Assumption 4 we have that, for subformulae Rr[F φi], the set
Sat(φi) is reached with probability 1 from all states of G under all profiles, and
therefore EσGC ,s(X

θ
i) is finite. Furthermore, for any n > N , by Definitions 5.2.2 and

A.1.1 we have that EσGC ,s(X
θ
i,n) is the value of state s for the nth iteration of value

iteration [47] when computing EσGC ,s(X
θ
i) in the DTMC obtained from GC by following

the strategy σ, and the sequence is both non-decreasing and converges. The fact that
we can choose an N independent of the strategy profile for uniform convergence
follows from Assumptions 3 and 4. ut

In the proof of correctness, we will use the fact that n iterations of value iteration
is equivalent to performing backward induction on the following game trees.

Definition A.1.2. For any state s and n ∈ N, let GCn,s be the game tree corresponding
to playing GC for n steps when starting from state s and then terminating.

170

We can map any strategy profile σ of GC to a strategy profile of GCn,s by only
considering the choices of the profile over the first n steps when starting from state
s. This mapping is clearly surjective, i.e., we can generate all profiles of GCn,s, but
is not injective. We also need the following objectives corresponding to the values
computed during value iteration for the game trees of Definition A.1.2.

Definition A.1.3. For any sum of two probabilistic or reward objectives θ, s ∈ S,
n ∈ N, 1 6 i 6 2 and j = i+1 mod 2, let Y θ

i be the objective where, for any path π
of GCn,s :

Y
P[φ11 U φ12]+P[φ21 U φ22]
i (π) =
1 if ∃m 6 n. (π(m) |=φi2 ∧ ∀k < m. π(k) |=φ1

1∧¬φ1
2∧φ2

1∧¬φ2
2)

Pmax
G,π(m)(φ

i
1 U φi2) else if ∃m 6 n. (π(m) |=φj2 ∧ ∀k < m. π(k) |=φ1

1∧¬φ1
2∧φ2

1∧¬φ2
2)

0 otherwise

Y
Rr1 [F φ1]+Rr2 [F φ2]
i (π) ={
∞ if ∀k 6 n. π(k) 6|=φi∑kφ1∨φ2−1

k=0

(
rA(π(k), π[k]) + rS(π(k))

)
+ riS(π(k)) otherwise

where

riS(s′) =

{
Rmax
G,s′ (ri, F φ

i) if s′ |=¬φi ∧ φj

0 otherwise

for s′ ∈ S and kφ1∨φ2 = min{k | k 6 n ∧ π(k) |=φ1 ∨ φ2}.

Similarly to Lemma 5, the lemma below demonstrates, for a fixed strategy profile
and state s of GC, that the values for the objectives given in Definition A.1.3 when
played on the game trees GCn,s are non-decreasing and converge uniformly. As with
Lemma 5 the result follows from Assumptions 3 and 4.

Lemma 6. For any sum of two probabilistic or reward objectives θ and ε > 0, there
exists N ∈ N such that for any m > n > N , σ ∈ Σ1

GC×Σ2
GC , s ∈ S and 1 6 i 6 2 :

0 6 EσGCm,s(Y
θ
i)− EσGCn,s(Y

θ
i) 6 ε .

We require the following lemma relating the values of the objectives Xθ
i,n, Y θ

i and
Xθ
i for 1 6 i 6 2.

Lemma 7. For any sum of two probabilistic or reward objectives θ, state s of GC,
strategy profile σ such that when one of the targets of the objectives of θ is reached,
the profile then collaborates to maximise the value of the other objective, n ∈ N and
1 6 i 6 2 :

sup
σi∈Σ

GCn,s
i

Eσ−i[σi]
GC ,s

(Xθ
i,n) 6 sup

σi∈Σ
GCn,s
i

Eσ−i[σi]
GCn,s

(Y θ
i) 6 supσi∈ΣGC

i
Eσ−i[σi]

GC ,s
(Xθ

i) .

171

Proof. Consider any strategy profile σ, n ∈ N and 1 6 i 6 2. By Definitions A.1.1
and A.1.3 it follows that:

EσGC ,s(X
θ
i,n) 6 EσGCn,s(Y

θ
i).

Furthermore, if we restrict the profile σ such that, when one of the targets of the
objectives of θ is reached, the profile then collaborates to maximise the value of the
other objective, then by Definitions A.1.3 and 5.2.2:

EσGCn,s(Y
θ
i) 6 EσGC ,s(X

θ
i).

Combining these results with Lemma 4, we have:

sup
σi∈Σ

GCn,s
i

Eσ−i[σi]
GC ,s

(Xθ
i,n) 6 sup

σi∈Σ
GCn,s
i

Eσ−i[σi]
GCn,s

(Y θ
i) 6 supσi∈ΣGC

i
Eσ−i[σi]
GC ,s

(Xθ
i)

as required. ut

We now define the strategy profiles synthesised during value iteration.

Definition A.1.4. For any n ∈ N and s ∈ S, let σn,s be the strategy profile generated
for the game tree GCn,s (when considering value iteration as backward induction) and
σn,? be the synthesised strategy profile for GC after n iterations.

Before giving the proof of correctness we require the following results.

Lemma 8. For any state s of GC, sum of two probabilistic or reward objectives θ and
n ∈ N we have that σn,s is a subgame-perfect SWNE profile of the CSG GCn,s for the
objectives (Y θ

1 , Y
θ

2).

Proof. The result follows from the fact that value iteration selects SWNE profiles,
value iteration corresponds to performing backward induction for objectives (Y θ

1 , Y
θ

2)

and backward induction returns a subgame-perfect NE [205, 188]. ut

The following proposition demonstrates that value iteration converges and de-
pends on Assumptions 3 and 4. Without this assumption, convergence cannot be
guaranteed as demonstrated by the counterexamples in Appendices C.3 and C.4. Al-
though value iteration converges, unlike value iteration for MDPs or zero-sum games,
the generated sequence of values is not necessarily non-decreasing.

Proposition 1. For any sum of two probabilistic or reward objectives θ and state s,
the sequence 〈VGC(s, θ, n)〉n∈N converges.

172

Proof. For any state s and n ∈ N we can consider GCn,s as two-player infinite-action
NFGs Nn,s where for 1 6 i 6 2:

• the set of actions of player i equals the set of strategies of player i in GC;

• for the strategy profile (σ1, σ2), the utility function for player i returns EσGCn,s(Y
θ
i).

The correctness of this construction relies on the mapping of strategy profiles from the
game GC to GCn,s being surjective. Using Lemma 6, we have that the sequence 〈Nn,s〉n∈N
of NFGs converges uniformly, and therefore, since VGC(s, θ, n) are subgame-perfect
SWNE values of GCn,s (see Lemma 8), the sequence 〈VGC(s, θ, n)〉n∈N also converges.

ut

A similar convergence result to Proposition 1 has been shown for the simpler case
of discounted properties in [90].

Lemma 9. For any ε > 0, there exists N ∈ N such that for any s ∈ S and 1 6 i 6 2:∣∣Eσn,?GC ,s(X
θ
i)− Eσn,sGCn,s

(Y θ
i)
∣∣ 6 ε .

Proof. Using Lemma 6 and Proposition 1, we can choose N such that the choices of
the profile σn,s agree with those of σn,? for a sufficient number of steps such that the
inequality holds. ut

Theorem 2. For a given sum of two probabilistic or reward objectives θ and ε > 0,
there exists N ∈ N such that for any n > N the strategy profile σn,? is a subgame-
perfect ε-SWNE profile of GC and the objectives (Xθ1 , Xθ2).

Proof. Consider any ε > 0. From Lemma 9 there exists N1 ∈ N such that for any
s ∈ S and n > N1: ∣∣Eσn,?GC ,s(X

θ
i)− Eσn,sGCn,s

(Y θ
i)
∣∣ 6 ε

2
. (A.1)

For any m ∈ N and s ∈ S, using Lemma 8 we have that σm,s is a NE of GCm,s, and
therefore for any m ∈ N, s ∈ S and 1 6 i 6 2:

Eσm,sGCm,s
(Y θ

i) > sup
σi∈Σ

GCm,s
i

Eσ
m,s
−i [σi]

GCm,s
(Y θ

i) . (A.2)

From Lemma 5 there exists N2 ∈ N such that for any n > N2, s ∈ S and 1 6 i 6 2:

supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i,n) 6 ε
2
. (A.3)

173

By construction, σn,? is a profile for which, if one of the targets of the objectives of
θ is reached, the profile maximises the value of the objective. We can thus rearrange
(A.3) and apply Lemma 7 to yield for any n > N2, s ∈ S and 1 6 i 6 2:

sup
σi∈Σ

GCn,s
i

Eσ
n,s
−i [σi]

GCn,s
(Y θ

i) > supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− ε
2
. (A.4)

Letting N = max{N1, N2}, for any n > N , s ∈ S and 1 6 i 6 2:

Eσn,?GC ,s(X
θ
i) > Eσn,sGCn,s

(Y θ
i)− ε

2
by (A.1) since n > N1

> sup
σi∈Σ

GCn,s
i

Eσ
n,s
−i [σi]

GCn,s
(Y θ

i)− ε
2

by (A.2)

>
(

supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− ε
2

)
− ε

2
by (A.4) since n > N2

= supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− ε

and hence, since ε > 0, s ∈ S and 1 6 i 6 2 were arbitrary, σn,? is a subgame-perfect
ε-NE. It remains to show that the strategy profile is a subgame-perfect social welfare
optimal ε-NE, which follows from the fact that when solving the bimatrix games
during value iteration social welfare optimal NE are returned. ut

It remains to consider the model checking algorithms for nonzero-sum properties
for which the sum of objectives contains both a finite-horizon and an infinite-horizon
objective. In this case (see Section 5.3.5), for a given game GC and sum of objectives
θ, the algorithms first build a modified game G′ with states S ′ ⊆ S×N and sum
of infinite-horizon objectives θ′ and then computes SWNE/SCNE values of θ′ in G′.
The correctness of these algorithms follows by first showing there exists a bijection
between the profiles of GC and G′ and then that, for any profile σ of GC and σ′, the
corresponding profile of G′ under this bijection, we have:

EσGC ,s(X
θ
i) = Eσ′G′,(s,0)(X

θ′

i)

for all states s of GC and 1 6 i 6 2. This result follows from the fact that in
Section 5.3.5 we used a standard construction for converting the verification of finite-
horizon properties to infinite-horizon properties.

A.1.2 Nonzero-sum Multi-player Formulae

We fix a game G and nonzero-sum state formula 〈〈C1:· · ·:Cm〉〉opt∼x(θ) and let C =

{C1, . . . , Cm}. For the case of finite-horizon nonzero-sum formulae the correctness
of the model checking algorithm follows from the fact that we use backward induc-
tion [181, 205]. Below we consider probabilistic and expected reachability objectives

174

in the case that opt = max. The remaining cases for infinite-horizon nonzero-sum
formulae follow similarly. For a nonzero-sum formula θ, we denote by θi the ith term
in θ. We first introduce the following objectives for the coalition game GC which are
n-step approximations of Xθ

i .

Definition A.1.5. For any probabilistic or expected reachability nonzero-sum for-
mula θ, 1 6 i 6 m and n ∈ N, let Xθ

i,n be the objective where for any path π of
GC :

X
P[F φ1]+···+P[F φm]
i,n (π) =

{
1 if ∃k 6 n. π(k) |=φi

0 otherwise

X
Rr1 [F φ1]+···+Rrm [F φm]
i,n (π) =

∞ if ∀k ∈ N. π(k) 6|=φi∑ki

k=0r(π, k) if ki 6 n−1
0 otherwise

r(π, k) = rA(π(k), π[k]) + rS(π(k)) and ki = min{k−1 | k ∈ N ∧ π(k) |=φi}.

The following lemma demonstrates that, for a fixed strategy profile and state, the
values of these objectives are non-decreasing and converge uniformly to the values of
θ.

Lemma 10. For any probabilistic or expected reachability nonzero-sum formula θ
we have that the sequence 〈EσGC ,s(X

θ
i)〉n∈N is non-decreasing and, for any ε > 0, there

exists N ∈ N such that for any n > N , s ∈ S, σ ∈ ΣGC and 1 6 i 6 m :

0 6 EσGC ,s(X
θ
i)− EσGC ,s(X

θ
i,n) 6 ε .

Proof. Consider any probabilistic or expected reachability nonzero-sum formula θ,
state s and 1 6 i 6 m. Using Assumption 6 we have that for subformulae Rr[F φi],
the set Sat(φi) is reached with probability 1 from all states of G under all profiles,
and therefore EσGC ,s(X

θ
i) is finite. Furthermore, for any n ∈ N , by Definitions 6.2.2

and A.1.5 we have that EσGC ,s(X
θ
i,n) is the value of state s for the nth iteration of

value iteration [47] when computing EσGC ,s(X
θ
i) in the DTMC obtained from GC by

following the strategy σ. It therefore follows that the sequence is both non-decreasing
and converges uniformly. ut

In the proof of correctness, we will use the fact that n iterations of value iteration
is equivalent to performing backward induction on the following game trees.

Definition A.1.6. For any state s and n ∈ N, let GCn,s be the game tree corresponding
to playing GC for n steps when starting from state s and then terminating.

175

We can map any strategy profile σ of GC to a strategy profile of GCn,s by only
considering the choices of the profile over the first n steps when starting from state s.
This mapping is clearly surjective, i.e. we can generate all profiles of GCn,s, but is not
injective. We require the following lemma relating the values of the objectives Xθ

i,n

and Xθ
i over GC and GCn,s for any n ∈ N and s ∈ S.

Lemma 11. For any probabilistic or expected reachability nonzero-sum formula θ,
state s of GC, strategy profile σ, n ∈ N and 1 6 i 6 m : EσGC ,s(X

θ
i,n) = EσGCn,s(X

θ
i).

Proof. The proof follows from Definitions A.1.5 and A.1.6, in particular, we have that
Xθ
i,n is the n-step approximations of Xθ

i and GCn,s corresponds to playing game GC from
state s for n steps. ut

We now define the strategy profiles synthesised during value iteration.

Definition A.1.7. For any n ∈ N and s ∈ S, let σn,s be the strategy profile generated
for the game tree GCn,s (when considering value iteration as backward induction) and
σn,? be the synthesised strategy profile for GC after n iterations.

Before giving the proof of correctness we require the following results.

Lemma 12. For any state s of GC, probabilistic or expected reachability nonzero-sum
formula θ and n ∈ N we have that σn,s is a subgame-perfect SWNE of the CSG GCn,s
for the objectives (Xθ

1 , . . . , X
θ
m).

Proof. The result follows from the fact that, for any n ∈ N and s ∈ S, the value iter-
ation procedure selects SWNE, n steps of value iteration corresponds to performing
backward induction for the objectives (Xθ

1 , . . . , X
θ
m) in the game GCn,s and backward

induction returns a subgame-perfect NE [205, 188]. ut

The following proposition demonstrates that value iteration converges and de-
pends on Assumptions 5 and 6. Without this assumption convergence cannot be
guaranteed as demonstrated by the counterexamples in Appendices C.3 and C.4. Al-
though value iteration converges, unlike value iteration for MDPs or zero-sum games
the generated sequence of values is not necessarily non-decreasing.

Proposition 2. For any probabilistic or expected reachability nonzero-sum formula
θ and state s, the sequence 〈VGC(s, θ, n)〉n∈N converges.

Proof. For any state s and n ∈ N we can consider GCn,s as an m-player infinite-action
NFG Nn,s where for 1 6 i 6 m:

176

• the set of actions of player i equals the set of strategies of player i in GC;

• for the strategy profile (σ1, σ2), the utility function for player i returns EσGCn,s(X
θ
i).

The correctness of this construction relies on the mapping of strategy profiles from
the game GC to GCn,s being surjective. Using Lemma 10, we have that the sequence
〈Nn,s〉n∈N of NFGs converges uniformly, and therefore, since VGC(s, θ, n) are subgame-
perfect SWNE values of GCn,s (see Lemma 12), the sequence 〈VGC(s, θ, n)〉n∈N also
converges. ut

Again, we point out to the fact that a similar convergence result to Proposition 2
has been shown for discounted properties of two-player games in [90].

Theorem 3. For a given probabilistic or expected reachability nonzero-sum formula
θ and ε > 0, there exists N ∈ N such that for any n > N the strategy profile σn,? is
a subgame-perfect ε-SWNE for GC and the objectives (Xθ1 , . . . , Xθm).

Proof. Consider any ε > 0. From Definition A.1.7 for any s ∈ S, n > N and
1 6 i 6 m:

Eσn,?GC ,s(X
θ
i) = Eσn,sGCn,s

(Xθ
i) . (A.5)

For any k ∈ N and s ∈ S, using Lemma 12 we have that σk,s is a NE of GCk,s, and
therefore for any k ∈ N, s ∈ S and 1 6 i 6 m:

Eσk,sGCk,s
(Xθ

i) = sup
σi∈Σ

GCk,s
i

Eσ
k,s
−i [σi]

GCk,s
(Xθ

i) . (A.6)

From Lemma 10 there exists N ∈ N such that for any n > N , s ∈ S and 1 6 i 6 m:

supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i,n) 6 ε . (A.7)

Therefore, for any n > N , s ∈ S and 1 6 i 6 m, using (A.5) we have:

Eσn,?GC ,s(X
θ
i) = Eσn,sGCn,s

(Xθ
i)

= sup
σi∈Σ

GCn,s
i

Eσ
n,s
−i [σi]

GCn,s
(Xθ

i) by (A.6)

= supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i,n) by Lemma 11

6 supσi∈ΣGC
i
Eσ

n,?
−i [σi]

GC ,s
(Xθ

i)− ε by (A.7) since n > N

and hence, since ε > 0, s ∈ S and 1 6 i 6 m were arbitrary, σn,? is a subgame-perfect
ε-NE. It remains to show that the strategy profile is a subgame-perfect social welfare
optimal ε-NE, which follows from the fact that when solving the normal form games
during value iteration social welfare optimal NE are returned. ut

177

APPENDIX B

Precomputation and Model Checking Algorithms

B.1 Precomputation Algorithms for Zero-sum For-
mulae

For zero-sum formulae, players are necessarily split into two-coalitions: one whose
objective is minimising/maximising the expected value of the random variable asso-
ciated to its objective, and the other who is acting to oppose that. Given a two-player
CSG GC, where C = {C1, C2} = {C,N\C}, we let GC be the game were the indices of
coalitions C1 and C2 are swapped.

Safety. Implementation for computing the set of states satisfying the safety objective
�B = νX.(Pre1(X) ∧B).

Algorithm 4 Model checking routine for G(X,GC)

Input: Set of states X ⊆ S.
Output: A subset of X for which the row player has a strategy to remain in X.
1: procedure G(X,GC)
2: sol1 ← S; done← false
3: while ¬done do
4: sol2 ← Pre1(sol1,G

C) ∩X
5: done← (sol2 = sol1)
6: sol1 ← sol2
7: end while
8: return sol1
9: end procedure

178

For a state s and a set X ⊆ S, we let ACi (s) = ACi ∩ ∆(s) and ¬X = S \ X.
Furthermore, given a two-player CSG GC, where C = {C1, C2} = {C,N\C}, we let
GC be the game were the indices of coalitions C1 and C2 are swapped.

The pseudocode for the different algorithms is based on an explicit-state represen-
tation and all procedures take a coalitional game GC as input. The implementation
follows from [74] and we present the corresponding functions and objectives in µ-
calculus notation as in the original paper. In the following, we let X, Y, Z ⊆ S,
Vi ⊆ ACi , AsY : 2A

C
2 (s) → 2A

C
1 (s) and Bs

X : 2A
C
1 (s) → 2A

C
2 (s). Moreover, by abuse of no-

tation, we let δ(s, a, b) also refer to the set of possible successor states when playing
(a, b) from s.

Predecessor operator. Implementation for computing the set of states satisfying
the operator Pre1(X), following the condition s ∈ Pre1(X) iff ∃a ∈ AC1(s) such that
∀b ∈ AC2(s), δ(s, a, b) ⊆ X.

Algorithm 5 Model checking routine for Pre1(X,GC)

Input: Set of states X ⊆ S.
Output: A subset of X satisfying the predecessor operator Pre1(s,X).
1: procedure Pre1(X,GC)
2: sol← ∅
3: for all s ∈ X do
4: if Pre1(s,X,GC) then sol← sol ∪ {s} end if
5: end for
6: return sol
7: end procedure

Algorithm 6 Model checking routine for Pre1(s,X,GC)

1: procedure Pre1(s,X,GC)
2: sat← false
3: for all a ∈ AC1(s) do
4: sat← true
5: for all b ∈ AC2(s) do
6: sat← sat ∧ δC(s, a, b) ⊆ X
7: end for
8: if sat then
9: break
10: end if
11: end for
12: return sat
13: end procedure

179

Almost-sure reachability. Implementation for computing the set of states satisfy-
ing the reachability objective 〈〈1〉〉λ♦B = νY.µX.(λpre1(Y,X) ∨ B), for λ = almost .

Algorithm 7 Model checking routine for AF(X,GC)

Input: Set of states X ⊆ S.
Output: The subset of states from which player 1 can guarantee to reach a state in
X almost-surely.
1: procedure AF(X,GC)
2: solY ← S; doneY ← false
3: while ¬doneY do
4: doneX ← false; solX ← ∅
5: while ¬doneX do
6: sol← Apre1(solX , solY ,G

C)
7: sol← sol ∪X
8: doneX ← (solX = sol)
9: solX ← sol
10: end while
11: doneY ← (solY = solX)
12: solY ← solX
13: end while
14: return solY
15: end procedure

Predecessor operator. Implementation for computing the set of states satisfying
the operator Apre1(Y,X), following the condition s ∈ Apre1(Y,X) iff Bs

X(AsY (∅)) =

AC2(s).

Algorithm 8 Model checking routine for Apre1(X, Y,GC)

Input: Sets of states X, Y ⊆ S.
Output: A subset of states which, for all actions in AC2 , there exists an action in AC1
that reaches X while remaining in Y .
1: procedure Apre1(X, Y,GC)
2: sol1 ← ∅
3: for all s ∈ S do
4: sol2 ← B(s,X,A(s, Y,∅,GC),GC)
5: if |sol2| = |AC2(s)| then sol1 ← sol1 ∪ {s} end if
6: end for
7: return sol1
8: end procedure

180

Auxiliary method for predecessor operators. Implementation for the auxiliary
method for predecessor operators returning the set of actions from AC1 , following the
condition AsY (V2) = {a ∈ AC1(s) | ∀b ∈ AC2(s). δ(s, a, b) 6⊆ Y → b ∈ V2}

Algorithm 9 Model checking routine for A(s, Y, V2,G
C)

Input: State s ∈ S, set of states Y ⊆ S and set of actions V2 ⊆ AC2 .
Output: A subset of AC1 which, for all actions in b ∈ AC2 , either the states reached
are in Y or b ∈ V2.
1: procedure A(s, Y, V2,G

C)
2: sol← ∅; sat← false
3: for all a ∈ AC1(s) do
4: sat← true
5: for all b ∈ AC2(s) do
6: sat← sat ∧ (δC(s, a, b) ⊆ Y) ∨ (b ∈ V2))
7: end for
8: if sat then sol← sol ∪ {a} end if
9: end for
10: return sol
11: end procedure

Auxiliary method for predecessor operators. Implementation for the auxiliary
method for predecessor operators returning the set of actions from AC2 , following the
condition Bs

X(V1) = {b ∈ AC2(s) | ∃a ∈ V1. δ(s, a, b) ∩X 6= ∅}

Algorithm 10 Model checking routine for B(s,X, V1,G
C)

Input: State s ∈ S, set of states X ⊆ S and set of actions V1 ⊆ AC1 .
Output: A subset of AC2 for which there exists an action in V1 such that a state in
X is reached.
1: procedure B(s,X, V1,G

C)
2: sol← ∅
3: for all b ∈ AC2(s) do
4: for all a ∈ V1(s) do
5: if (δC(s, a, b) ∩X) 6= ∅) then
6: sol← sol ∪ {b}
7: break
8: end if
9: end for
10: end for
11: return sol
12: end procedure

181

Eventually always. Implementation for computing the set of states satisfying
the Co-Büchi objective 〈〈1〉〉λ♦�B = νZ.µX.νY.((B ∧ λFpre1(Z, Y,X)) ∨ (¬B ∧
λpre1(Z,X))), for λ = almost .

Algorithm 11 Model checking routine for AFG(X,GC)

Input: Set of states X ⊆ S.
Output: The subset of states from which player 1 can guarantee to eventually restrict
the game to states in X almost-surely.
1: procedure AFG(X,GC)
2: solZ ← S; doneZ ← false
3: while ¬doneZ do
4: solX ← ∅;doneX ← false
5: while ¬doneX do
6: solY ← S; doneY ← false
7: while ¬doneY do
8: sol← (X ∩AFpre1(solX , solY , solZ ,G

C))∪ (¬X ∩Apre1(solX , solZ ,G
C))

9: doneY ← (solY = sol)
10: solY ← sol
11: end while
12: doneX ← (solX = solY)
13: solX ← solY
14: end while
15: doneZ ← (solX = solZ)
16: solZ ← solX
17: end while
18: return solZ
19: end procedure

182

Predecessor operator. Implementation for computing the set of states satisfy-
ing the operator AFpre1(Z, Y,X), following the condition s ∈ AFpre1(Z, Y,X)

iff νV.(AsZ(∅) ∧ AsY (Bs
X(V))) 6= ∅.

Algorithm 12 Model checking routine for AFpre1(X, Y, Z,GC)

Input: Sets of states X, Y, Z ⊆ S
Output: Set of states that satisfy the predecessor operator AFpre1(X, Y).
1: procedure AFpre1(X, Y, Z,GC)
2: sol← ∅
3: for all s ∈ S do
4: if AFpre1(s,X, Y, Z,GC) then
5: sol← sol ∪ {s}
6: end if
7: end for
8: return sol
9: end procedure

Algorithm 13 Model checking routine for AFpre1(s,X, Y, Z,GC)

1: procedure AFpre1(s,X, Y, Z,GC)
2: sol1 ← AC1(s); done← false
3: while ¬done do
4: sol2 ← A(s, Z,∅,GC) ∩ A(s, Y,B(s,X, sol1,G

C),GC)
5: done← (sol1 = sol2)
6: sol1 ← sol2
7: end while
8: return sol1 6= ∅
9: end procedure

183

B.2 Algorithms for Zero-sum rPATL Formulae

In this section, we present pseudocode for the model checking algorithms for zero-
sum properties of CSGs. The algorithms are implementations of the methods devel-
oped in Chapter 4, which, given a rPATL formula, proceeds by recursively comput-
ing the sets of states satisfying each sub-formula. We employ an undefined method
CheckConvergence, which checks whether the maximal difference between values
of two consecutive iterations are smaller than ε according to a convergence criterion.
We assume that a coalitional game GC has been built beforehand.

Algorithm 14 Model checking routine for rPATL (zero-sum formulae).

1: procedure ModelCheck(φ,GC)
2: sat← ∅
3: if φ = > then
4: sat← S
5: else if φ = l ∈ AP then
6: sat← {s ∈ S | l ∈ L(s)}
7: else if φ = ¬φ1 then
8: sat← S \ModelCheck(φ1, GC)
9: else if φ = φ1 ∧ φ2 then
10: sat←ModelCheck(φ1, GC) ∩ModelCheck(φ2, GC)
11: else if φ = 〈〈C〉〉P∼x[ψ] then
12: sat←ModelCheckProb(φ, GC)
13: else if φ = 〈〈C〉〉Rr

∼x[ψ] then
14: sat←ModelCheckRew(φ, GC)
15: end if
16: return sat
17: end procedure

184

Algorithm 15 Model checking routine for the reward operator.
1: procedure ModelCheckRew(φ,GC)
2: if ρ = Fc φ then
3: sat← ModelCheckRewFc(〈〈C〉〉Rr

∼x[F
c φ],GC)

4: else if ρ = F φ then
5: sat← ModelCheckRewFinf(〈〈C〉〉Rr

∼x[F φ],GC)
6: else if ρ = C then
7: sat← ModelCheckRewFc(〈〈C〉〉Rr

∼x[C],GC)
8: else if ρ = C6k then
9: sat← ModelCheckRewCumul(〈〈C〉〉Rr

∼x[C
6k],GC)

10: else if ρ = I=k then
11: sat← ModelCheckRewInst(〈〈C〉〉Rr

∼x[I
=kφ],GC)

12: end if
13: return sat
14: end procedure

Algorithm 16 Model checking routine for the probability operator (Next).

1: procedure ModelCheckProb(φ,GC)
2: sat ← ∅
3: if ψ = Xφ then
4: T ←ModelCheck(φ, GC)
5: for all s ∈ S do
6: if opt = min then
7: val ← min

a1∈AC1
max
a2∈AC2

∑
t∈T

δC(s, a1, a2)(t)

8: else
9: val ← max

a1∈AC1
min
a2∈AC2

∑
t∈T

δC(s, a1, a2)(t)

10: end if
11: if val ∼ x then
12: sat ← sat ∪ {s}
13: end if
14: end for

185

Algorithm 16 Model checking routine for the probability operator (Until).

15: else if ψ = φ1 U φ2 or ψ1 U6k φ2 then
16: T2 ←ModelCheck(φ2, GC)
17: T1 ←ModelCheck(φ1, GC) \ T2

18: iter ← 0; X ← 0; X ′ ← 0
19: for all s ∈ S do
20: if s ∈ T2 then X[s]← 1 else X[s]← 0 end if
21: end for
22: while true do
23: X ′ ← X
24: iter ← iter + 1
25: for all s ∈ S do
26: if s ∈ T1 then
27: if opt = min then
28: X[s]← min

a1∈AC1
max
a2∈AC2

∑
t∈S

δC(s, a1, a2, t) ·X ′[t]

29: else
30: X[s]← max

a1∈AC1
min
a2∈AC2

∑
t∈S

δC(s, a1, a2, t) ·X ′[t]

31: end if
32: end if
33: if X[s] ∼ x then
34: sat ← sat ∪ {s}
35: end if
36: end for
37: if k 6 iter then
38: break
39: else if CheckConvergence(ε,X,X ′) then
40: break
41: end if
42: end while
43: end if
44: return sat
45: end procedure

186

Algorithm 17 Model checking routing for the reward I=k operator.
1: procedure ModelCheckRewInst(φ,GC)
2: iter ← 0
3: for all s ∈ S do
4: X[s]← rCS(s)
5: end for
6: while true do
7: for all s ∈ S do
8: X ′[s]← X[s]
9: if opt = min then
10: X[s]← min

a1∈AC1
max
a2∈AC2

∑
t∈S

δ(s, a1, a2, t) ·X ′[t]

11: else
12: X[s]← max

a1∈AC1
min
a2∈AC2

∑
t∈S

δ(s, a1, a2, t) ·X ′[t]

13: end if
14: if X[s] ∼ x then
15: sat ← sat ∪ {s}
16: end if
17: end for
18: iter ← iter + 1
19: if k 6 iter then
20: break
21: else if CheckConvergence(ε,X,X ′) then
22: break
23: end if
24: end while
25: return sat
26: end procedure

187

Algorithm 18 Model checking routing for the reward C6k operator.
1: procedure ModelCheckRewCumul(φ,GC)
2: iter ← 0; X ← 0; X ′ ← 0
3: while true do
4: for all s ∈ S do
5: X ′[s]← X[s]
6: if opt = min then
7: X[s]← rC(s) + min

a1∈AC1
max
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

8: else
9: X[s]← rC(s) + max

a1∈AC1
min
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

10: end if
11: if X[s] ∼ x then
12: sat ← sat ∪ {s}
13: end if
14: end for
15: iter ← iter + 1
16: if k 6 iter then
17: break
18: else if CheckConvergence(ε,X,X ′) then
19: break
20: end if
21: end while
22: return sat
23: end procedure

188

Algorithm 19 Model checking routine for the Fc and C reward operators.
1: procedure ModelCheckRewFc(φ,GC)
2: T ←ModelCheck(φ, GC)
3: AP ← AP ∪ {arew}
4: for all s ∈ S do
5: if rC(s) > 0 then L(s)← L(s ∪ {arew}) end if
6: end for
7: S∞ ← S \AFG(ModelCheck(arew)GC)
8: if ψ = Fc φ then
9: T ←ModelCheck(φ, GC)
10: S ← S \ T
11: end if
12: S ← S \ S∞
13: iter ← 0; sat ← ∅; unsat ← ∅;X ← 0;X ′ ← 0
14: while true do
15: X ′ ← X
16: for all s ∈ S do
17: if opt = min then
18: X[s]← rC(s) + min

a1∈AC1
max
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

19: else
20: X[s]← rC(s) + max

a1∈AC1
min
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

21: end if
22: if X[s] ∼ x then
23: sat ← sat ∪ {s}
24: end if
25: end for
26: iter ← iter + 1
27: if CheckConvergence(ε,X,X ′) then
28: break
29: end if
30: end while
31: return sat
32: end procedure

189

Algorithm 20 Model checking routine for the F reward operator.
1: procedure ModelCheckRewInf(φ,GC)
2: T ←ModelCheck(φ, GC)
3: S∞ ← S \AF(T,GC)
4: S ← S \ S∞
5: if ∼∈ {>, >} then
6: sat ← S∞

7: else
8: sat ← ∅
9: end if
10: X ← 0;X ′ ← 0
11: while true do
12: X ′ ← X
13: for all s ∈ S \ T do
14: if opt = min then
15: X[s]← (rC(s) + γ) + min

a1∈AC1
max
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

16: else
17: X[s]← (rC(s) + γ) + max

a1∈AC1
min
a2∈AC2

(rC(s, a1, a2) +
∑
t∈S

δ(s, a1, a2, t) ·X ′[t])

18: end if
19: end for
20: if CheckConvergence(ε,X,X ′) then
21: if γ > 0 then
22: γ ← 0
23: else
24: break
25: end if
26: end if
27: end while
28: for all s ∈ S do
29: if X[s] ∼ x then
30: sat ← sat ∪ {s}
31: end if
32: end for
33: return sat
34: end procedure

190

B.3 Algorithms for Two-player Equilibria rPATL For-
mulae

In this section, we present pseudocode for the model checking algorithms for two-
player nonzero-sum properties of CSGs. The algorithms are implementations of the
methods developed in Chapter 5, which, given a rPATL formula, proceeds by recur-
sively computing the sets of states satisfying each sub-formula. The list of algorithms
presented in this section is not exhaustive and focuses on the more intricate opera-
tors (and combinations) of rPATL. More specifically, we do not include algorithms
for computation of formulae with the next operator and also do not include pseu-
docode for the SMT-based implementation for computing SNWE or SCNE values
for bimatrix games, here referred to as OptNash. We also do not include code for
the computation of mixed nonzero-sum formulae as, in that case, the finite-horizon
sub-formula is transformed into infinite-horizon and thus the algorithms for infinite-
horizon properties could be used, along with the model transformations described in
Section 5.3.5. As for zero-sum formulae, for infinite-horizon properties we employ an
undefined method CheckConvergence, which checks whether the values between
to consecutive iterations are ε-close according to a convergence criterion. We assume
that a coalitional game GC has been built beforehand.

Algorithm 21 Model checking routine for rPATL (two-player nonzero-sum formu-
lae).

1: procedure ModelCheck(φ,GC)
2: sat← ∅
3: if φ = > then
4: sat← S
5: else if φ = l ∈ AP then
6: sat← {s ∈ S | l ∈ L(s)}
7: else if φ = ¬φ1 then
8: sat← S \ModelCheck(φ1, GC)
9: else if φ = φ1 ∧ φ2 then
10: sat←ModelCheck(φ1, GC) ∩ModelCheck(φ2, GC)
11: else if φ = 〈〈C:C ′〉〉opt∼x(P[ψ1] + P[ψ2]) then
12: sat←ModelCheckEqProb(φ, GC)
13: else if φ = 〈〈C:C ′〉〉opt∼x(R

r1 [ρ1] + Rr2 [ρ2]) then
14: sat←ModelCheckEqRew(φ, GC)
15: end if
16: return sat
17: end procedure

191

Algorithm 22 Model checking routine for the probability operator.
1: procedure (ModelCheckEqProb(φ,GC)
2: if ψ1 = φ1

1 U φ1
2 and ψ2 = φ2

1 U φ2
2 then

3: sat←ModelCheckEqInfHorizonProb(φ,GC)
4: else if (ψ1 = φ1

1 U6k1 φ1
2 or ψ1 = Xφ1) and (ψ2 = φ2

1 U6k2 φ2
2 or ψ2 = Xφ2) then

5: sat←ModelCheckEqFinHorizonRew(φ,GC)
6: else
7: sat←ModelCheckEqMixedProb(φ,GC)
8: end if
9: return sat
10: end procedure

Algorithm 23 Model checking routine for the reward operator.
1: procedure ModelCheckEqRew(φ,GC)
2: if ψ1 = F φ1 and ψ2 = F φ2 then
3: sat←ModelCheckEqInfHorizonRew(φ,GC)
4: else if (ψ1 = I=k1 or ψ1 = C6k1) and (ψ2 = I=k2 or ψ2 = C6k2) then
5: sat←ModelCheckEqFinHorizonRew(φ,GC)
6: else
7: sat←ModelCheckEqMixedRew(φ,GC)
8: end if
9: return sat
10: end procedure

Algorithm 24 Model checking routine for finite-horizon probability formulae (Until).

1: procedure ModelCheckEqFinHorizonProb(φ,GC)
2: sat ← ∅; k ← |k1 − k2|
3: Tφij ←ModelCheck(φij, G

C)
4: if k1 > k2 then n1 ← k else n1 ← 0 end if
5: if k2 > k1 then n2 ← k else n2 ← 0 end if
6: while true do
7: if n1 > 0 then Xψ1 ← Popt[φ

1
1 U6n1 φ1

2] end if
8: if n2 > 0 then Xψ2 ← Popt[φ

2
1 U6n2 φ2

2] end if

192

Algorithm 24 Model checking routine for finite-horizon probability formulae (Until)
9: if min(n1, n2) > 0 then
10: for all s ∈ S do
11: if s ∈ Tφ12 ∩ Tφ22 then
12: X ′1[s]← 1;X ′2[s]← 1
13: else if s ∈ Tφ12 then
14: X ′1[s]← 1;X ′2[s]← Xψ2 [s]
15: else if s ∈ Tφ22 then
16: X ′1[s]← Xψ1 [s];X

′
2[s]← 1

17: else if s ∈ Tφ11 \ Tφ21 then
18: X ′1[s]← Xψ1 [s];X

′
2[s]← 0

19: else if s ∈ Tφ21 \ Tφ11 then
20: X ′1[s]← 0;X ′2[s]← Xψ2 [s]
21: else if s 6∈ Tφ11 ∩ Tφ21 then
22: X ′1[s]← 0;X ′2[s]← 0
23: else
24: Eq← OptNash(s,X1, X2, opt)
25: X ′1[s]← Eq[1];X ′2[s]← Eq[2]
26: end if
27: end for
28: X1 ← X ′1; X2 ← X ′2
29: else
30: for all s ∈ S do
31: if n1 = 0 and n2 = 0 then
32: if s ∈ Tφ12 then X1[s]← 1 else : end if X1[s]← 0
33: if s ∈ Tφ22 then X2[s]← 1 else : end if X2[s]← 0
34: else if n1 = 0 then
35: if s ∈ Tφ12 then X1[s]← 1 else : end if X1[s]← 0
36: if s ∈ Tφ22 then X2[s]← 1 else : end if X2[s]← Xψ2 [s]
37: else
38: if s ∈ Tφ12 then X1[s]← 1 else : end if X1[s]← Xψ1 [s]
39: if s ∈ Tφ22 then X2[s]← 1 else : end if X2[s]← 0
40: end if
41: end for
42: end if
43: if k = max(k1, k2) then
44: break
45: end if
46: k ← k + 1; n1 ←min(n1 + 1, k1); n2 ←min(n2 + 1, k2)
47: end while
48: for all s ∈ S do
49: if X1[s] +X2[s] ∼ q then sat← sat ∪ {s} end if
50: end for
51: return sat
52: end procedure

193

Algorithm 25 Model checking routine for finite-horizon reward formulae.
1: procedure ModelCheckEqFinHorizonRew(φ,GC)
2: sat ← ∅; k ← |k1 − k2|
3: if k1 > k2 then n1 ← k else n1 ← 0 end if
4: if k2 > k1 then n2 ← k else n2 ← 0 end if
5: while true do
6: if n1 > 0 then
7: if ρ1 = I=k1 then Xρ1 ← Rr1opt[I

=n1] else Xρ1 ← Rr1opt[C
6n1] end if

8: end if
9: if n2 > 0 then
10: if ρ2 = I=k2 then Xρ2 ← Rr2opt[I

=n2] else Xρ2 ← Rr2opt[C
6n2] end if

11: end if
12: if min(n1, n2) > 0 then
13: for all s ∈ S do
14: Eq← OptNash(s,X1, X2, opt)
15: X ′1[s]← Eq[1];X ′2[s]← Eq[2]
16: end for
17: X1 ← X ′1; X2 ← X ′2
18: else
19: for all s ∈ S do
20: if n1 = 0 and n2 = 0 then
21: if ρ1 = I=k1 then X1[s]← r1

S(s) else X1[s]← 0 end if
22: if ρ2 = I=k2 then X2[s]← r2

S(s) else X2[s]← 0 end if
23: else if n1 = 0 then
24: if ρ1 = I=k1 then X1[s]← r1

S(s) else X1[s]← 0 end if
25: X2[s]← Xρ2 [s]
26: else
27: X1[s]← Xρ1 [s]
28: if ρ2 = I=k2 then X2[s]← r2

S(s) else X2[s]← 0 end if
29: end if
30: end for
31: end if
32: if k = max(k1, k2) then
33: break
34: end if
35: k ← k + 1; n1 ←min(n1 + 1, k1); n2 ←min(n2 + 1, k2)
36: end while
37: for all s ∈ S do
38: if X1[s] +X2[s] ∼ q then
39: sat← sat ∪ {s}
40: end if
41: end for
42: return sat
43: end procedure

194

Algorithm 26 Model checking routine for infinite-horizon probability formulae (Un-
til).

1: procedure ModelCheckEqInfHorizonProb(φ,GC)
2: sat ← ∅;R← ∅
3: Tφij ←ModelCheck(φij, G

C)
4: Xψ1 ← Popt[φ

1
1 U φ1

2]
5: Xψ2 ← Popt[φ

2
1 U φ2

2]
6: for all s ∈ S do
7: R← R ∪ {s}
8: if s ∈ Tφ12 ∩ Tφ22 then
9: X1[s]← 1;X2[s]← 1
10: else if s ∈ Tφ12 then
11: X1[s]← 1;X2[s]← Xψ2 [s]
12: else if s ∈ Tφ22 then
13: X1[s]← Xψ1 [s];X2[s]← 1
14: else if s ∈ Tφ11 \ Tφ21 then
15: X1[s]← Xψ1 [s];X2[s]← 0
16: else if s ∈ Tφ21 \ Tφ11 then
17: X1[s]← 0;X2[s]← Xψ2 [s]
18: else if s 6∈ Tφ11 ∩ Tφ21 then
19: X1[s]← 0;X2[s]← 0
20: else
21: X1[s]← 0;X2[s]← 0;R← R \ {s}
22: end if
23: end for
24: while true do
25: X ′1 ← X1;X ′2 ← X2

26: for all s ∈ S \R do
27: Eq← OptNash(s,X ′1, X

′
2, opt)

28: X1[s]← Eq[1];X2[s]← Eq[2]
29: end for
30: if CheckConvergence(ε,X1, X

′
1, X2, X

′
2) then

31: break
32: end if
33: end while
34: for all s ∈ S do
35: if X1[s] +X2[s] ∼ q then
36: sat← sat ∪ {s}
37: end if
38: end for
39: return sat
40: end procedure

195

Algorithm 27 Model checking routine for infinite-horizon reward formulae.
1: procedure ModelCheckEqInfHorizonRew(φ,GC)
2: sat ← ∅;R← ∅
3: Tφi ←ModelCheck(φi, GC)
4: Xψ1 ← Rr1opt[F φ

1]
5: Xψ2 ← Rr2opt[F φ

2]
6: for all s ∈ S do
7: R← R ∪ {s}
8: if s ∈ Tφ1 ∩ Tφ2 then
9: X1[s]← 0;X2[s]← 0
10: else if s ∈ Tφ1 then
11: X1[s]← 0;X2[s]← Xψ2 [s]
12: else if s ∈ Tφ2 then
13: X1[s]← Xψ1 [s];X2[s]← 0
14: else
15: X1[s]← 0;X2[s]← 0;R← R \ {s}
16: end if
17: end for
18: while true do
19: X ′1 ← X1;X ′2 ← X2

20: for all s ∈ S \R do
21: Eq← OptNash(s,X ′1, X

′
2, opt)

22: X1[s]← Eq[1];X2[s]← Eq[2]
23: end for
24: if CheckConvergence(ε,X1, X

′
1, X2, X

′
2) then

25: break
26: end if
27: end while
28: for all s ∈ S do
29: if X1[s] +X2[s] ∼ q then
30: sat← sat ∪ {s}
31: end if
32: end for
33: return sat
34: end procedure

196

APPENDIX C

Convergence and Assumptions

C.1 Convergence of Zero-sum Total Reward Formu-
lae

In this section, we give a witness to the failure of convergence for value iteration for
zero-sum total expected reward properties if Assumption 1 does not hold.

s0 s1

(a1, a2)

(a1, a2)

rA(s, (a1, a2)) =

1 if s = s0

−1 if s = s1

0 otherwise

Figure C.1: Counterexample for zero-sum total reward properties.

Consider the CSG in Figure C.1 with players p1 and p2 and the zero-sum state formula
φ = 〈〈p1, p2〉〉Rrmax=?[C]. In the CSG, we have that rS(s) = 0 for all s. Clearly,
state s1 does not reach an absorbing state while the reward for the state-action pair
(s1, (a1, a2)) is negative. Applying the value iteration algorithm of Section 4.5.2, we
see that the values for state s0 oscillate between 0 and 1, whereas the values for state
s1 oscillate between 0 and −1.

197

C.2 Convergence of Zero-sum Reachability Reward
Formulae

In this section, we give a witness to the failure of convergence for value iteration when
verifying zero-sum formulae with an infinite horizon reward objective if Assumption 2
does not hold.

s0 s1

t{a}

(a1, a2)

(a1, a2)

(a1, b2) rA(s, (c1, c2)) =

−1 if s = s0 and (c1, c2) = (a1, a2)

1 if s = s1 and (c1, c2) = (a1, a2)

0 otherwise

Figure C.2: Counterexample for zero-sum expected reachability reward properties.

Consider the CSG in Figure C.2 with players p1 and p2 and the zero-sum state formula
φ = 〈〈p1, p2〉〉Rrmax=?[F a], where a is the atomic proposition satisfied only by state t.
In the CSG, we have that rS(s) = 0 for all s. Clearly, state s0 does not reach either
the target of the formula or an absorbing state with probability 1 under all strategy
profiles, while the reward for the state-action pair (s0, (a1, a2)) is negative. Applying
the value iteration algorithm of Section 4.5.2, we see that the values for state s0

oscillate between 0 and −1, while the values for state s1 oscillate between 0 and 1.

198

C.3 Convergence of Nonzero-sum Probabilistic Reach-
ability Properties

In this section, we give a witness to the failure of convergence for value iteration
when verifying nonzero-sum formulae with infinite horizon probabilistic objectives if
Assumption 3 does not hold.

s0 s1

t1{a} t2{a} t3 {a} t4 {a}

(c,⊥)

(⊥, c)(s,⊥) (⊥, s)

1
4

3
4

3
4

1
4

(⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥)

Figure C.3: Counterexample for nonzero-sum probabilistic reachability properties.

Consider the CSG in Figure C.3 with players p1 and p2 (an adaptation of a TSG
example from [30]) and the nonzero-sum state formula 〈〈p1:p2〉〉max=?(θ), where θ =

P[F a1]+P[F a2] and ai is the atomic proposition satisfied only by the state ti. Clearly,
this CSG has a non-terminal end component as one can remain in {s0, s1} indefinitely
or leave at any time.

Applying the value iteration algorithm of Section 5.3.2, we have:

• In the first iteration VGC (s0, θ, 1) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c 0
s

1
4

)
and Z2 =

(⊥

c 0
s

3
4

)
i.e. the values (1

4
, 3

4
), and VGC (s1, θ, 1) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 0 3
4

)
and Z2 =

(c s

⊥ 0 1
4

)
i.e. the values (3

4
, 1

4
).

199

• In the second iteration VGC (s0, θ, 2) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c
3
4

s
1
4

)
and Z2 =

(⊥

c
1
4

s
3
4

)
i.e. the values (3

4
, 1

4
), and VGC (s1, θ, 2) are the SWNE values of the bimatrix

games:

Z1 =
(c s

⊥ 1
4

3
4

)
and Z2 =

(c s

⊥ 3
4

1
4

)
i.e. the values (1

4
, 3

4
).

• In the third iteration VGC (s0, θ, 3) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c
1
4

s
1
4

)
and Z2 =

(⊥

c
3
4

s
3
4

)
i.e. the values (1

4
, 3

4
), and VGC (s1, θ, 3) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 3
4

3
4

)
and Z2 =

(c s

⊥ 1
4

1
4

)
i.e. the values (3

4
, 1

4
).

• In the fourth iteration VGC (s0, θ, 4) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c
3
4

s
1
4

)
and Z2 =

(⊥

c
1
4

s
3
4

)
i.e. the values (3

4
, 1

4
), and VGC (s1, θ, 4) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 3
4

3
4

)
and Z2 =

(c s

⊥ 1
4

1
4

)
i.e. the values (3

4
, 1

4
).

As can be seen the values computed at each iteration for the states s0 and s1 will
oscillate between (1

4
, 3

4
) and (3

4
, 1

4
).

200

C.4 Convergence of Nonzero-sum Expected Reach-
ability Properties

In this section, we give a witness to the failure of convergence for value iteration
when verifying nonzero-sum formulae with infinite horizon reward objectives if As-
sumption 4 does not hold.

s0 s1

t1{a} t2 {a}

(c,⊥)

(⊥, c)

(s,⊥) (⊥, s)

(⊥,⊥) (⊥,⊥)

r1
A(s, (a1, a2)) =

1
3

if s = s0 and (a1, a2) = (s,⊥)

2 if s = s1 and (a1, a2) = (⊥, s)
0 otherwise

r2
A(s, (a1, a2)) =

1 if s = s0 and (a1, a2) = (s,⊥)
1
3

if s = s1 and (a1, a2) = (⊥, s)
0 otherwise

Figure C.4: Counterexample for nonzero-sum expected reachability properties.

Consider the CSG in Figure C.4 with players p1 and p2 (which again is an adaptation
of a TSG example from [30]) and the nonzero-sum state formula 〈〈p1:p2〉〉max=?(θ),
where θ = Rr1 [F a]+Rr2 [F a] and a is the atomic proposition satisfied only by the
states t1 and t2. In the CSG, we have that r1

S(s) = r2
S(s) = 0 for all s. Clearly, there

are strategy profiles for which the targets are not reached with probability 1.
Applying the value iteration algorithm of Section 5.3.2, we have:

• In the first iteration VGC (s0, θ, 1) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c 0
s

1
3

)
and Z2 =

(⊥

c 0
s 1

)
i.e. the values (1

3
, 1), and VGC (s1, θ, 1) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 0 2
)

and Z2 =
(c s

⊥ 0 1
3

)
i.e. the values (2, 1

3
).

201

• In the second iteration VGC (s0, θ, 2) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c 2
s

1
3

)
and Z2 =

(⊥

c
1
3

s 1

)
i.e. the values (2, 1

3
), and VGC (s1, θ, 2) are the SWNE values of the bimatrix

games:

Z1 =
(c s

⊥ 1
3

2
)

and Z2 =
(c s

⊥ 1 1
3

)
i.e. the values (1

3
, 1).

• In the third iteration VGC (s0, θ, 3) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c
1
3

s
1
3

)
and Z2 =

(⊥

c 1
s 1

)
i.e. the values (1

3
, 1), and VGC (s1, θ, 3) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 2 2
)

and Z2 =
(c s

⊥ 1
3

1
3

)
i.e. the values (2, 1

3
).

• In the fourth iteration VGC (s0, θ, 4) are the SWNE values of the bimatrix game:

Z1 =

(⊥

c 2
s

1
3

)
and Z2 =

(⊥

c
1
3

s 1

)
i.e. the values (2, 1

3
), and VGC (s1, θ, 4) are the SWNE values of the bimatrix

game:

Z1 =
(c s

⊥ 1
3

2
)

and Z2 =
(c s

⊥ 1 1
3

)
i.e. the values (1

3
, 1).

As can be seen the values computed during value iteration oscillate for both s0 and
s1.

202

Bibliography

[1] K. J. Åström. Optimal control of Markov processes with incomplete state in-
formation i. 10:174–205, 1965.

[2] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proc. CAV ’98, volume 1427 of
LNCS, pages 521–525. Springer, 1998.

[3] R. Alur and T. A. Henzinger. Reactive modules. FMSD, 15(1):7–48, 1999.

[4] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

[5] B. Aminof, M. Kwiatkowska, B. Maubert, A. Murano, and S. Rubin. Prob-
abilistic strategy logic. In Proc. IJCAI’19, pages 32–38. International Joint
Conferences on Artificial Intelligence Organization, 2019.

[6] B. An, E. Shieh, M. Tambe, R. Yang, C. Baldwin, J. DiRenzo, B. Maule, and
G. Meyer. PROTECT – a deployed game theoretic system for strategic security
allocation for the united states coast guard. AI Magazine, 33(4):96, 2012.

[7] P. Ashok, K. Chatterjee, J. Kretínský, M. Weininger, and T. Winkler. Approx-
imating values of generalized-reachability stochastic games. In Proc. LICS’20,
pages 102–115. ACM, 2020.

[8] R. Aumann. Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics, 1(1):67–96, 1974.

203

[9] D. Avis, G. Rosenberg, R. Savani, and B. von Stengel. Enumeration of Nash
equilibria for two-player games. Economic Theory, 42(1):9–37, 2010.

[10] C. Baier, T. Brázdil, M. Größer, and A. Kučera. Stochastic game logic. Acta
Informatica, 49(4):203–224, 2012.

[11] C. Baier and F. Ciesinski. LiQuor: A tool for qualitative and quantitative linear
time analysis of reactive systems. In Proc. QEST’06, pages 131–132. IEEE CS
Press, 2006.

[12] C. Baier, F. Ciesinski, and M. Grosser. PROBMELA: a modeling language for
communicating probabilistic processes. In Proc. MEMOCODE’04, pages 57–66.
IEEE Computer Society, 2004.

[13] C. Baier and J-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[14] C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich. Ensuring
the reliability of your model checker: Interval iteration for Markov decision
processes. In Proc. CAV’17, volume 10426 of LNCS, pages 160–180. Springer,
2017.

[15] P. Ballarini, B.Barbot, M. Duflot, S. Haddad, and N. Pekergin. HASL: A
new approach for performance evaluation and model checking from concepts to
experimentation. Performance Evaluation, 90:53–77, 2015.

[16] N. Basset, M. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy synthesis
for stochastic games with multiple long-run objectives. In Proc. TACAS’15,
volume 9035 of LNCS, pages 256–271. Springer, 2015.

[17] R. Bellman. A Markovian decision process. Indiana University Mathematics
Journal, 6:679–684, 1957.

[18] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.
Symbolic planning and control of robot motion. IEEE Robotics Automation
Magazine, 14(1):61–70, 2007.

[19] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In Proc. FSTTCS’95, volume 1026 of LNCS, pages 499–513.
Springer, 1995.

204

[20] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model check-
ing using SAT procedures instead of bdds. In Proc. DAC’99, pages 317–320.
Association for Computing Machinery, 1999.

[21] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS’99, pages 193–207. Springer Berlin Heidelberg, 1999.

[22] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

[23] P. Billingsley. Probability and Measure. Wiley Series in Probability and Statis-
tics. Wiley, 1995.

[24] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality
in synthesis through quantitative objectives. In Computer Aided Verification,
pages 140–156. Springer Berlin Heidelberg, 2009.

[25] B. Blum, C. Shelton, and D. Koller. A continuation method for Nash equilibria
in structured games. J. Artif. Intell. Res. (JAIR), 25:457–502, 2006.

[26] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
Agentspeak. In Proc. AAMAS’03, pages 409–416. Association for Computing
Machinery, 2003.

[27] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent
programs by model checking. Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[28] É. Borel. La théorie du jeu et les équations intégrales à nouyau symétrique.
Comptes Rendus hebdomadaires des séances de l’Académie des Sciences,
173:1304–1308, 1921.

[29] P. Bouyer, N. Markey, and D. Stan. Mixed Nash equilibria in concurrent games.
In Proc. FSTTCS’14, volume 29 of LIPICS, pages 351–363. Leibniz-Zentrum
für Informatik, 2014.

[30] P. Bouyer, N. Markey, and D. Stan. Stochastic equilibria under imprecise de-
viations in terminal-reward concurrent games. In Proc. GandALF’16, volume
226 of EPTCS, pages 61–75. Open Publishing Association, 2016.

205

[31] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with
branching-time winning objectives. In Proc. LICS’06, pages 349–358, 2006.

[32] T. Brázdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský, M. Kwiatkowska,
D. Parker, and M. Ujma. Verification of Markov decision processes using learn-
ing algorithms. In Proc. ATVA’14, volume 8837, pages 98–114. Springer, 2014.

[33] R. Brenguier. PRALINE: A tool for computing Nash equilibria in concurrent
games. In Proc. CAV’13, volume 8044 of LNCS, pages 890–895. Springer, 2013.

[34] T. Brihaye, V. Bruyère, A. Goeminne, and J-F. Raskin. Constrained existence
problem for weak subgame perfect equilibria with ω-regular boolean objectives.
In Proc. GandALF’18, volume 277 of EPTCS, pages 16–29, 2018.

[35] T. Brihaye, V. Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bo-
gaard. The complexity of subgame perfect equilibria in quantitative reacha-
bility games. In Proc. CONCUR’19, volume 140 of LIPIcs, pages 13:1–13:16.
Leibniz-Zentrum für Informatik, 2019.

[36] R. Bryant. Chain reduction for binary and zero-suppressed decision diagrams.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
81–98. Springer International Publishing, 2018.

[37] J. Büchi and L. Landweber. Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society, 138:295–311, 1969.

[38] C. E. Budde, C. Dehnert, E. M. Hahn, A. Hartmanns, S. Junges, and A. Turrini.
JANI: quantitative model and tool interaction. In Proc. TACAS’17, volume
10206 of LNCS, pages 151–168, 2017.

[39] N. Bulling and W. Jamroga. What agents can probably enforce. Fundamenta
Informaticae, 93(1–3):81–96, 2009.

[40] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model
checker for the verification of strategy logic specifications. In Proc. CAV’14,
volume 8559 of LNCS, pages 525–532. Springer, 2014.

[41] K. Chatterjee. Two-player nonzero-sum ω-regular games. In Proc. CONCUR’05,
pages 413–427. Springer Berlin Heidelberg, 2005.

206

[42] K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. CSL’06,
volume 4027 of LNCS, pages 271–286. Springer, 2006.

[43] K. Chatterjee. Stochastic ω-Regular Games. PhD thesis, University of California
at Berkeley, 2007.

[44] K. Chatterjee, L. de Alfaro, and T. Henzinger. Strategy improvement for con-
current reachability and turn-based stochastic safety games. Journal of Com-
puter and System Sciences, 79(5):640–657, 2013.

[45] K. Chatterjee and L. Doyen. Partial-observation stochastic games: How to win
when belief fails. ACM Trans. Comput. Logic, 15(2), 2014.

[46] K. Chatterjee, L. Doyen, and T. Henzinger. A survey of partial-observation
stochastic parity games. Formal Methods in System Design, 43(2):268–284,
2013.

[47] K. Chatterjee and T. Henzinger. Value iteration. In 25 Years of Model Checking,
volume 5000 of LNCS, pages 107–138. Springer, 2008.

[48] K. Chatterjee and T. Henzinger. A survey of stochastic ω-regular games. Jour-
nal of Computer and System Sciences, 78(2):394–413, 2012.

[49] K. Chatterjee, T. Henzinger, B. Jobstmann, and A. Radhakrishna. Gist: A
solver for probabilistic games. In Proc. CAV’10, volume 6174 of LNCS, pages
665–669. Springer, 2010.

[50] K. Chatterjee, T. Henzinger, and N. Piterman. Strategy logic. In Proc. CON-
CUR’07, pages 59–73. Springer Berlin Heidelberg, 2007.

[51] K. Chatterjee, M. Jurdziński, and T. Henzinger. Simple stochastic parity games.
In Computer Science Logic, pages 100–113. Springer Berlin Heidelberg, 2003.

[52] K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash equilibria in stochas-
tic games. In Proc. CSL’04, volume 3210 of LNCS, pages 26–40. Springer, 2004.

[53] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic
verification of competitive stochastic systems. Formal Methods in System De-
sign, 43(1):61–92, 2013.

207

[54] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochas-
tic games with multiple objectives. In Proc. MFCS’13, volume 8087 of LNCS,
pages 266–277. Springer, 2013.

[55] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-
objective stochastic games: An application to autonomous urban driving. In
Proc. QEST’13, volume 8054 of LNCS, pages 322–337. Springer, 2013.

[56] T. Chen and J. Lu. Probabilistic alternating-time temporal logic and model
checking algorithm. In Proc. FSKD’07, pages 35–39. IEEE Computer Society,
2007.

[57] X. Chen, X. Deng, and S-H. Teng. Settling the complexity of computing two-
player Nash equilibria. J. ACM, 56(3), 2009.

[58] C. Cheng, A. Knoll, M. Luttenberger, and C. Buckl. GAVS+: An open platform
for the research of algorithmic game solving. In Proc. TACAS’11, volume 6605
of LNCS, pages 258–261. Springer, 2011.

[59] A. Church. Application of recursive arithmetic to the problem of circuit syn-
thesis. Journal of Symbolic Logic, 28(4):289–290, 1963.

[60] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages
52–71. Springer-Verlag, 1982.

[61] J. L. Cohon. Multiobjective Programming and Planning. Academic Press, New
York, 1978.

[62] A. Condon. Computational Models of Games. PhD thesis, University of Wash-
ington, 1987.

[63] A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

[64] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical
programming. Linear Algebra and its Applications, 1(1):103–125, 1968.

[65] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite
state probabilistic programs. In Proc. FOCS’88, pages 338–345. IEEE Com-
puter Society Press, 1988.

208

[66] A. Czumaj, A. Deligkas, M. Fasoulakis, J. Fearnley, M. Jurdziński, and R. Sa-
vani. Distributed methods for computing approximate equilibria. Algorithmica,
81(3):1205–1231, 2019.

[67] A. Czumaj, M. Fasoulakis, and M. Jurdziński. Approximate plutocratic and
egalitarian Nash equilibria: (extended abstract). In Proc. AAMAS’16, pages
1409–1410. ACM, 2016.

[68] A. Czumaj, M. Fasoulakis, and M. Jurdziński. Multi-player approximate Nash
equilibria. In Proc. AAMAS’17, pages 1511–1513. ACM, 2017.

[69] A. Czumaj, M. Fasoulakis, and M. Jurdziński. Zero-sum game techniques for
approximate Nash equilibria. In Proc. AAMAS’17, pages 1514–1516. ACM,
2017.

[70] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1965.

[71] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of comput-
ing a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

[72] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

[73] L. de Alfaro. Computing minimum and maximum reachability times in prob-
abilistic systems. In Proc. CONCUR’99, volume 1664 of LNCS, pages 66–81.
Springer, 1999.

[74] L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In LICS’00,
pages 141–154. ACM, 2000.

[75] L. de Alfaro, T. Henzinger, and O. Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007.

[76] L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68(2):374–397, 2004.

[77] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proc. TACAS’08, volume 4963 of LNCS, pages 337–340. Springer, 2008.
github.com/Z3Prover/z3.

209

https://github.com/Z3Prover/z3

[78] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J-P.
Katoen, and E. Ábrahám. PROPhESY: A PRObabilistic ParamEter SYnthesis
tool. In Proc. CAV’15, pages 214–231. Springer International Publishing, 2015.

[79] B. Dutertre. Yices 2.2. In Proc CAV’14, volume 8559 of LNCS, pages 737–744.
Springer, 2014.

[80] B. C. Eaves. The linear complementarity problem. Management Science,
17(9):612–634, 1971.

[81] Y. Elderhalli, O. Hasan, W. Ahmad, and Sofiène S. Tahar. Formal dynamic
fault trees analysis using an integration of theorem proving and model checking.
In Proc. NFM’18, pages 139–156. Springer International Publishing, 2018.

[82] K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. In
Proc. ICALP ’06, volume 4052 of LNCS, pages 324–335. Springer, 2006.

[83] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and
other fixed points (extended abstract). In Proc. FOCS’07, pages 113–123. IEEE
Computer Society, 2007.

[84] J. Fearnley and R. Savani. The complexity of the simplex method. In Proc.
STOC’15, pages 201–208. ACM, 2015.

[85] D. Fernando, N. Dong, C. Jegourel, and J. S. Dong. Verification of strong Nash-
equilibrium for probabilistic BAR systems. In Formal Methods and Software
Engineering, pages 106–123. Springer International Publishing, 2018.

[86] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.

[87] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantita-
tive multi-objective verification for probabilistic systems. In Proc. TACAS’11,
volume 6605 of LNCS, pages 112–127. Springer, 2011.

[88] D. Fremont, M. Rabe, and S. Seshia. Maximum model counting. Techni-
cal Report UCB/EECS-2016-169, EECS Department, University of California,
Berkeley, 2016.

[89] D. Fremont, M. N. Rabe, and S. A. Seshia. Maximum model counting. In Proc.
AAAI’17, pages 3885–3892, 2017.

210

[90] D. Fudenberg and D. Levine. Subgame-perfect equilibria of finite- and infinite-
horizon games. Journal of Economic Theory, 31(2):251–268, 1983.

[91] M. Fujita, P. McGeer, and J. Yang. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design, 10(2):149–169, 1997.

[92] Gerald G. Brown, M. Carlyle, J. Salmerón, and R. Wood. Defending critical
infrastructure. Interfaces, 36:530–544, 2006.

[93] E. Gansner and S. North. An open graph visualization system and its applica-
tions to software engineering. Software - Practice and Experience, 30(11):1203–
1233, 2000.

[94] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for
the construction and analysis of distributed processes. International Journal
on Software Tools for Technology Transfer, 15(2):89–107, 2013.

[95] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity con-
siderations. Games and Economic Behavior, 1(1):80–93, 1989.

[96] H. Gimbert and F. Horn. Solving simple stochastic games. In Logic and Theory
of Algorithms, pages 206–209. Springer Berlin Heidelberg, 2008.

[97] S. Govindan and R. Wilson. A global Newton method to compute Nash equi-
libria. Journal of Economic Theory, 110(1):65–86, 2003.

[98] S. Govindan and R. Wilson. Computing Nash equilibria by iterated polymatrix
approximation. Journal of Economic Dynamics and Control, 28(7):1229 – 1241,
2004.

[99] S. Govindan and R. Wilson. Computing equilibria of n-player games with
arbitrary accuracy. Stanford University, Graduate School of Business, Research
Papers, 2008.

[100] F. Gretz, N. Jansen, B. Kaminski, J-P. Katoen, A. McIver, and F. Olmedo.
Conditioning in probabilistic programming. Electronic Notes in Theoretical
Computer Science, 319, 2015.

[101] S. Haddad and B. Monmege. Interval iteration algorithm for MDPs and IMDPs.
Theoretical Computer Science, 735:111–131, 2018.

211

[102] E. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A model checker
for parametric Markov models. In Proc. CAV’10, volume 6174 of LNCS, pages
660–664. Springer, 2010.

[103] E. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang. IscasMC: A web-based
probabilistic model checker. In Proc. FM’14, volume 8442 of LNCS, pages
312–317. Springer, 2014.

[104] J. Halpern and V. Teague. Rational secret sharing and multiparty computation:
Extended abstract. In Proc. STOC’04, pages 623–632. ACM, 2004.

[105] Z. Han, D. Niyato, W. Saad, T. Bas̨ar, and A. Hjørungnes. Game Theory
in Wireless and Communication Networks: Theory, Models, and Applications.
Cambridge University Press, 2011.

[106] Z. Han, D. Niyato, W. Saad, T. Bas̨ar, and A. Hjørungnes. Game Theory for
Next Generation Wireless and Communication Networks: Modeling, Analysis,
and Design. Cambridge University Press, 2019.

[107] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[108] J. Harsanyi. Games with incomplete information played by ’bayesian’ players,
I-III. volume 14, pages 159–182, 1967.

[109] J. C. Harsanyi and R. Selten. A General Theory of Equilibrium Selection in
Games. MIT Press Classics. IMW, 1988.

[110] A. Hartmanns and H. Hermanns. The Modest toolset: An integrated environ-
ment for quantitative modelling and verification. In Proc. TACAS’14, volume
8413 of LNCS, pages 593–598. Springer, 2014.

[111] O. Hauser, C. Hilbe, K. Chatterjee, and M. Nowak. Social dilemmas among
unequals. Nature, 572:524–527, 2019.

[112] C. Hensel, S. Junges, J-P. Katoen, T. Quatmann, and M. Volk. The probabilistic
model checker Storm, 2020.

[113] J. Hillston. PEPA: Performance enchaced process algebra. Phd thesis, Univer-
sity of Edinburgh, 1993.

212

[114] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[115] Gerard J. Holzmann. Design and validation of protocols: a tutorial. Computer
Networks and ISDN Systems, 25(9):981–1017, 1993.

[116] K. Horák, B. Bošanský, and M. Péchouček. Heuristic search value iteration
for one-sided partially observable stochastic games. In Proc. AAAI’17, pages
558–564. AAAI Press, 2017.

[117] The HSL Mathematical Software Library. www.hsl.rl.ac.uk/.

[118] Julian J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. Eve: A tool
for temporal equilibrium analysis. In Proc. ATVA’18, volume 11138 of LNCS,
pages 551–557. Springer, 2018.

[119] N. Jansen, E. Ábrahám, M. Volk, R. Wimmer, J-P. Katoen, and B. Becker.
The COMICS tool – computing minimal counterexamples for DTMCs. In Proc.
ATVA’12, pages 349–353. Springer Berlin Heidelberg, 2012.

[120] C. Jegourel, A. Legay, and S. Sedwards. A platform for high performance statis-
tical model checking – PLASMA. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 498–503. Springer Berlin Heidelberg, 2012.

[121] S. Junges, N. Jansen, J-P. Katoen, U. Topcu, R. Zhang, and M. Hayhoe. Model
checking for safe navigation among humans. In Proc. QEST’18, pages 207–222.
Springer International Publishing, 2018.

[122] T. Brázdil K., Chatterjee, V. Forejt, and A. Kučera. Multigain: A con-
troller synthesis tool for MDPs with multiple mean-payoff objectives. In Proc.
TACAS’15, pages 181–187. Springer, 2015.

[123] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998.

[124] E. Kalai. Games, computers, and O.R. In Proc. SODA’96, pages 468–473.
Society for Industrial and Applied Mathematics, 1996.

[125] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373–395, 1984.

213

http://www.hsl.rl.ac.uk/

[126] J-P Katoen, I. Zapreev, E. Hahn, H. Hermanns, and D. Jansen. The ins and outs
of the probabilistic model checker MRMC. Performance Evaluation, 68(2):90–
104, 2011. Advances in Quantitative Evaluation of Systems.

[127] E. Kelmendi, J. Krämer, J. Kretínský, and M. Weininger. Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. In Proc.
CAV’18, volume 10981 of LNCS, pages 623–642. Springer, 2018.

[128] J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer,
1976.

[129] V. Knight and J. Campbell. Nashpy: A python library for the computation of
Nash equilibria. Journal of Open Source Software, 3(30):904, 2018.

[130] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle
1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley
Professional, 12th edition, 2009.

[131] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior, 14(2):247–259,
1996.

[132] H. Kress-Gazit, G. Fainekos, and G. Pappas. Where’s Waldo? Sensor-based
temporal logic motion planning. In Proc. of IEEE International Conference on
Robotics and Automation, pages 3116–3121, 2007.

[133] H. W. Kuhn. Extensive games. Proceedings of the National Academy of Sci-
ences, 36(10):570–576, 1950.

[134] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In
Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS (Tutorial
Volume), pages 220–270. Springer, 2007.

[135] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Proc CAV’11, volume 6806 of LNCS, pages 585–
591. Springer, 2011.

[136] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Automated verification
of concurrent stochastic games. In Proc. QEST’18, volume 11024 of LNCS,
pages 223–239. Springer, 2018.

214

[137] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Equilibria-based proba-
bilistic model checking for concurrent stochastic games. In Proc. FM’19, LNCS.
Springer, 2019.

[138] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Multi-player equi-
libria verification for concurrent stochastic games. In Proc. QEST’20, LNCS.
Springer, 2020.

[139] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Prism-games 3.0:
Stochastic game verification with concurrency, equilibria and time. In Proc.
CAV’20, LNCS. Springer, 2020.

[140] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Automatic verification
of concurrent stochastic systems. Formal Methods in System Design, 2021.

[141] M. Kwiatkowska and D. Parker. Automated verification and strategy synthesis
for probabilistic systems. In Proc. ATVA’13, volume 8172 of LNCS, pages 5–22.
Springer, 2013.

[142] M. Kwiatkowska, D. Parker, and A. Simaitis. Strategic analysis of trust models
for user-centric networks. In Proc. SR’13, volume 112 of EPTCS, pages 53–60.
Open Publishing Association, 2013.

[143] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A tool for
multi-objective strategy synthesis for stochastic games. In Proc. TACAS’16,
volume 9636 of LNCS. Springer, 2016.

[144] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games: Verification and
strategy synthesis for stochastic multi-player games with multiple objectives.
Software Tools for Technology Transfer, 20(2):195–210, 2018.

[145] C. Lemke and Jr J. Howson. Equilibrium points of bimatrix games. Journal of
the Society for Industrial and Applied Mathematics, 12(2):413–423, 1964.

[146] M. Littman, N. Ravi, A. Talwar, and M. Zinkevich. An efficient optimal-
equilibrium algorithm for two-player game trees. In Proc. UAI’06, pages 298–
305. AUAI Press, 2006.

[147] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: an open-source model checker
for the verification of multi-agent systems. International Journal on Software
Tools for Technology Transfer, 19(1):9–30, 2017.

215

[148] LPSolve (version 5.5). lpsolve.sourceforge.net/5.5/.

[149] A. MacKenzie and S. Wicker. Stability of multipacket slotted Aloha with selfish
users and perfect information. In Proc. IEEE INFOCOM’03, pages 1583–1590.
IEEE Computer Society, 2003.

[150] O. L. Mangasarian. Equilibrium points of bimatrix games. Journal of the
Society for Industrial and Applied Mathematics, 12(4):778–780, 1964.

[151] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[152] F. Mari, I. Melatti, I. Salvo, E. Tronci, L. Alvisi, A. Clement, and H. Li. Model
checking coalition Nash equilibria in MAD distributed systems. In Stabilization,
Safety, and Security of Distributed Systems, pages 531–546. Springer Berlin
Heidelberg, 2009.

[153] R. Marler and J. Arora. Survey of multi-objective optimization methods for en-
gineering. Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

[154] M. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans.
Comput. Syst., 2(2):93–122, 1984.

[155] D. Martin. The determinacy of blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

[156] A. McIver and C. Morgan. Abstraction, Refinement And Proof For Probabilistic
Systems (Monographs in Computer Science). Springer-Verlag, 2004.

[157] A. McIver and C. Morgan. Results on the quantitative mu-calculus qMu. ACM
Trans. Computational Logic, 8(1), 2007.

[158] R. McKelvey. A Liapunov function for Nash equilibria. California Institute of
Technology, 1998.

[159] R. McKelvey, A. McLennan, and T. Turocy. Gambit: Software tools for game
theory, version 16.0.1. gambit-project.org, 2016.

[160] R. McKelvey and T. Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6–38, 1995.

216

http://lpsolve.sourceforge.net/5.5/
http://www.gambit-project.org

[161] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[162] A. W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. In Computation Theory, pages 157–168. Springer Berlin Heidelberg,
1985.

[163] Y. Narahari, R. Narayanam, D. Garg, and H. Prakash. Foundations of mecha-
nism design. In Game Theoretic Problems in Network Economics and Mecha-
nism Design Solutions, Advanced Information and Knowledge Processing, pages
1–131. Springer, 2009.

[164] J. Nash. Equilibrium points in n-person games. Proc. Natl. Acad. Sci, 36:48–49,
1950.

[165] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35(1):166–196, 2001.

[166] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

[167] J. Nocedal, A. Wächter, and R. Waltz. Adaptive barrier update strategies for
nonlinear interior methods. SIAM Journal on Optimization, 19(4):1674–1693,
2009.

[168] E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms.
In Proc. AAMAS’04, pages 880–887. ACM, 2004. gamut.stanford.edu.

[169] M. Osborne and A. Rubinstein. An Introduction to Game Theory. Oxford
University Press, 2004.

[170] N. Ozay, U. Topcu, R. Murray, and T. Wongpiromsarn. Distributed synthesis
of control protocols for smart camera networks. In 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, pages 45–54, 2011.

[171] C. Papadimitriou. On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences, 48(3):498–
532, 1994.

[172] D. Parker. Implementation of Symbolic Model Checking for Probabilistic Sys-
tems. Phd thesis, University of Birmingham, 2002.

217

http://gamut.stanford.edu

[173] D. Parkes and S. Singh. An MDP-based approach to online mechanism design.
In Proc. NIPS’03, pages 791–798. MIT Press, 2003.

[174] R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding a
Nash equilibrium. In Proc. AAAI’04, pages 664–669. AAAI Press, 2004.

[175] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., 1st edition, 1994.

[176] J-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Proceedings of the 5th Colloquium on International Symposium
on Programming, pages 337–351. Springer-Verlag, 1982.

[177] T. Raghavan and J. Filar. Algorithms for stochastic games — a survey.
Zeitschrift für Operations Research, 35(6):437–472, 1991.

[178] E. Ruijters and M. Stoelinga. Fault tree analysis: A survey of the state-of-the-
art in modeling, analysis and tools. Computer Science Review, 15-16:29–62,
2015.

[179] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods
for finding Nash equilibria. In Proc. AAAI’05, pages 495–501. AAAI Press,
2005.

[180] S. Schewe. Synthesis for probabilistic environments. In Automated Technology
for Verification and Analysis, pages 245–259. Springer Berlin Heidelberg, 2006.

[181] U. Schwalbe and P. Walker. Zermelo and the early history of game theory.
Games and Economic Behavior, 34(1):123–137, 2001.

[182] P. Secchi and W. Sudderth. Stay-in-a-set games. International Journal of Game
Theory, 30(4):479–490, 2002.

[183] R. Segala. Modeling and verification of randomized distributed real-time sys-
tems. Technical report, Massachusetts Institute of Technology, 1996.

[184] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-
frageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts.
Zeitschrift für die gesamte Staatswissenschaft / Journal of Institutional and
Theoretical Economics, 121(2):301–324, 1965.

218

[185] L. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953.

[186] L. Shapley. A note on the Lemke-Howson algorithm. In Pivoting and Extension:
In honor of A.W. Tucker, volume 1 of Mathematical Programming Studies,
pages 175–189. Springer, 1974.

[187] Y. Shoham. Computer science and game theory. Commun. ACM, 51(8):74–79,
2008.

[188] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[189] A. Simaitis. Automatic Verication of Competitive Stochastic Systems. PhD
thesis, Department of Computer Science, University of Oxford, 2014.

[190] S. Soudjani, C. Gevaerts, and A. Abate. Faust2: Formal abstractions of
uncountable-state stochastic processes. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 272–286. Springer Berlin Heidelberg,
2015.

[191] J. Sun, Y. Liu, J. Dong, and J. Pang. PAT: Towards flexible verification under
fairness. In Proc. CAV’09, volume 5643 of LNCS, pages 709–714. Springer,
2009.

[192] M. Svoreňová and M. Kwiatkowska. Quantitative verification and strategy syn-
thesis for stochastic games. European Journal of Control, 30:15–30, 2016.

[193] M. Svoreňová, I. Černá, and C. Belta. Optimal control of MDPs with temporal
logic constraints. In 52nd IEEE Conference on Decision and Control, pages
3938–3943, 2013.

[194] W. Thomas. Languages, Automata, and Logic, pages 389–455. Springer Berlin
Heidelberg, 1997.

[195] I. Tkachev and A. Abate. Formula-free finite abstractions for linear temporal
verification of stochastic hybrid systems. In Proc. HSCC ’13, pages 283–292.
ACM, 2013.

[196] M. Todd. The many facets of linear programming. Mathematical Programming,
91(3):417–436, 2002.

219

[197] S. Topaloglu. A multi-objective programming model for scheduling emergency
medicine residents. Computers & Industrial Engineering, 51(3):375–388, 2006.

[198] A. Toumi, J. Gutierrez, and M. Wooldridge. A tool for the automated verifica-
tion of Nash equilibria in concurrent games. In Proc. ICTAC’15, volume 9399
of LNCS, pages 583–594. Springer, 2015.

[199] T. L. Turocy. A dynamic homotopy interpretation of the logistic quantal re-
sponse equilibrium correspondence. Games and Economic Behavior, 51(2):243–
263, 2005. Special Issue in Honor of Richard McKelvey.

[200] T. L. Turocy. Computing sequential equilibria using agent quantal response
equilibria. Economic Theory, 42(1):255–269, 2010.

[201] M. Ummels. Stochastic Multiplayer Games: Theory and Algorithms. PhD
thesis, RWTH Aachen University, 2010.

[202] G. van der Laan, A. Talman, and L. van der Heyden. Simplicial variable di-
mension algorithms for solving the nonlinear complementarity problem on a
product of unit simplices using a general labelling. Mathematics of Operations
Research, 12(3):377–397, 1987.

[203] C. von Essen and B. Jobstmann. Synthesizing efficient controllers. In Proc.
VMCAI’12, volume 7148 of LNCS, pages 428–444. Springer, 2012.

[204] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[205] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

[206] B. von Stengel. Computing equilibria for two-person games. volume 3 of Hand-
book of Game Theory with Economic Applications, pages 1723–1759. Elsevier,
2002.

[207] A. Wächter. Short tutorial: Getting started with ipopt in 90 minutes. In
Combinatorial Scientific Computing, number 09061 in Dagstuhl Seminar Pro-
ceedings. Leibniz-Zentrum für Informatik, 2009. github.com/coin-or/Ipopt.

[208] A. Wächter and L. Biegler. On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, 2006.

220

https://github.com/coin-or/Ipopt

[209] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

[210] R. Wilson. Computing equilibria of n-person games. SIAM Journal on Applied
Mathematics, 21(1):80–87, 1971.

[211] C. Wiltsche. Assume-Guarantee Strategy Synthesis for Stochastic Games. Phd
thesis, University of Oxford, 2015.

[212] E. Wolff, U. Topcu, and R. Murray. Optimal control of non-deterministic sys-
tems for a computationally efficient fragment of temporal logic. In 52nd IEEE
Conference on Decision and Control, pages 3197–3204, 2013.

[213] H. Xu, U. Topcu, and R. M. Murray. A case study on reactive protocols for
aircraft electric power distribution. In 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), pages 1124–1129, 2012.

[214] Z. Yang. Computing Equilibria and Fixed Points. Springer, 2014.

[215] Z. Yin, A. Jiang, M. Tambe, C. Kiekintveld, K. Leyton-Brown, T. Sandholm,
and J. Sullivan. TRUSTS: Scheduling randomized patrols for fare inspection in
transit systems using game theory. AI Magazine, 33(4):59, 2012.

[216] Z. Zamani, S. Sanner, and C. Fang. Symbolic dynamic programming for contin-
uous state and action mdps. In Proc. AAAI’12, pages 1839–1845. AAAI Press,
2012.

[217] W. I. Zangwill and C. Garcia. Pathways to Solutions, Fixed Points, and Equi-
libria. Computational Mathematics Series. Prentice-Hall, 1981.

[218] E. Zermelo. Über eine anwendung der mengenlehre auf die theorie des
schachspiels. Proc. of the 5th International Congress of Matematicians, 2:501–
504, 1913.

[219] Q. Zhu and T. Başar. Dynamic policy-based IDS configuration. In CDC’09,
pages 8600–8605. IEEE, 2009.

[220] Q. Zhu, H. Li, Z. Han, and T. Başar. A stochastic game model for jamming in
multi-channel cognitive radio systems. In Proc. ICC’10, pages 1–6. IEEE, 2010.

221

	Introduction
	Related Work
	Games and Equilibria Computation
	Verification and Strategy Synthesis for Games
	Strategy Synthesis for Games
	Symbolic and Hybrid Methods in Synthesis and Verification

	Model Checking Tools for Games and Applications
	Summary
	Background
	Notation
	Game-theoretic Concepts
	Stochastic Models
	Markov Decision Processes

	Properties of Stochastic Models
	Probabilistic Reachability
	Reward-based Properties
	Parity Objectives

	The Logic PCTL
	Model Checking For PCTL

	Model Checking Properties of MDPs
	Model Checking for MDPs

	Summary
	Zero-sum Properties
	Normal Form Games
	Representing Games with Matrices

	Zero-sum Games and Minimax Strategies
	Computing Values of Matrix Games

	Stochastic Games
	Property Specification
	Coalition Games

	Model Checking Zero-sum Properties
	Computing Values of Zero-sum Finite-horizon Formulae
	Computing Values of Zero-sum Infinite-horizon Formulae
	Pre-computation Algorithms

	Strategy Synthesis
	Correctness and Complexity
	Summary

	Two-player Equilibria Properties
	Nonzero-sum Games and Equilibria Strategies
	Computing Values of Bimatrix Games

	Property Specification
	Model Checking Two-player Nonzero-sum Properties
	Computing SWNE Values of Finite-horizon Nonzero-sum Formulae
	Computing SWNE Values of Infinite-horizon Nonzero-sum Formulae
	Computing SCNE Values of Finite-horizon Nonzero-sum Formulae
	Computing SCNE Values of Infinite-horizon Nonzero-sum Formulae
	Computing SWNE Values of Mixed Nonzero-sum Formulae

	Strategy Synthesis
	Correctness and Complexity
	Summary

	Multi-player Equilibria Properties
	Computing NE Values of n-Player Games
	Property Specification
	Model Checking Multi-player Nonzero-sum Properties
	Computing SWNE Values of Finite-horizon Nonzero-sum Formulae
	Computing SWNE Values of Infinite-horizon Nonzero-sum Formulae
	Computing SCNE Values of Finite-horizon Nonzero-sum Formulae
	Computing SCNE Values of Infinite-horizon Nonzero-sum Formulae

	Strategy Synthesis
	Correctness and Complexity
	Summary

	Tool Implementation
	Modelling and Property Specification Language
	Overview
	Modelling CSGs in PRISM-games

	Implementation Details
	Model Building
	Model Checking
	Model Checking For Zero-sum Properties
	Model Checking For Two-player Equilibria Properties
	Model Checking For Multi-player Equilibria Properties

	Strategy Synthesis

	Tool Demonstration
	Summary

	Case Studies and Experimental Results
	Case Studies
	Robot Coordination
	Secret Sharing
	Future Market Investors
	Trust Models for User-centric Networks
	Aloha Protocol
	Public Good
	Medium Access Control
	Power Control
	Intrusion Detection Policies
	Jamming Multi-channel Radio Systems

	Efficiency and Scalability
	Summary

	Conclusion
	Summary
	Future Work
	Final Remarks

	Correctness
	Correctness of the Model Checking Algorithms
	Nonzero-sum Two-player Formulae
	Nonzero-sum Multi-player Formulae

	Precomputation and Model Checking Algorithms
	Precomputation Algorithms for Zero-sum Formulae
	Algorithms for Zero-sum rPATL Formulae
	Algorithms for Two-player Equilibria rPATL Formulae
	Convergence and Assumptions
	Convergence of Zero-sum Total Reward Formulae
	Convergence of Zero-sum Reachability Reward Formulae
	Convergence of Nonzero-sum Probabilistic Reachability Properties
	Convergence of Nonzero-sum Expected Reachability Properties

