
DRAFT

Chapter 8

Verification of Real-time Probabilistic Systems

8.1. Introduction

In this chapter, we consider verification techniques for a particular class of real-
time systems: those which incorporate probabilistic characteristics. This can come
from a number of possible sources, for example, unpredictable behaviour resulting
from the failure of components of a system, or random choices made according to the
execution of a probabilistic protocol. An application domain in which both of these
aspects are important is that of probabilistic communication protocols, including for
example Bluetooth, IEEE 802.11 Wireless LAN and IEEE 1394 FireWire, which often
include potentially faulty communication channels and probabilistic algorithms such
as randomised back-off.

Formal verification techniques for systems such as these need to incorporate not
only probabilistic characteristics, but also nondeterminism (e.g. due to concurrency
between asynchronous components or underspecified system parameters) and real-
time information. For this reason, probabilistic timed automata are an ideal modelling
formalism in this context. In this chapter, we give an introduction to probabilistic
timed automata, how to express properties of these models, and a range of model
checking techniques that can be applied to them. We also include an example of their
practical application to a case study: the IEEE 1394 FireWire root contention protocol.

The structure of the remainder of this chapter is as follows. In Section 8.2, we give
some background material and notation, introduce the probabilistic timed automata

Chapter written by Marta KWIATKOWSKA, Gethin NORMAN, David PARKER and Jeremy
SPROSTON.

257

DRAFT

258 Modeling and Verification of Real-Time Systems

formalism and then explain how properties of these models can be formalised. In Sec-
tion 8.3, we present four model checking techniques: the region graph method, the
forwards symbolic and backwards symbolic approaches and the digital clocks tech-
nique. Finally, in Section 8.4, we present the FireWire root contention case study and,
using this, summarise the relative performances of the various approaches.

8.2. Probabilistic timed automata

We model real-time probabilistic systems using probabilistic timed automata
[JEN 96, KWI 02a], a formalism which features nondeterministic and probabilistic
choices between transitions, and also contains constraints on the times at which tran-
sitions can or must be taken. The formalism is derived by extending classical timed
automata [ALU 94, HEN 94] with discrete probability distributions over edges.

8.2.1. Preliminaries

A discrete probability distribution over a countable set Q is a function µ : Q →
[0, 1] such that

∑

q∈Q µ(q) = 1. Let Dist(Q) denote the set of all probability distri-
butions over Q. For a distribution µ on Q, let support(µ) = {q ∈ Q | µ(q)>0}. For
an uncountable set Q′ we define Dist(Q′) to be the set of functions µ : Q′ → [0, 1],
such that support(µ) is a countable set and µ restricted to support(µ) is a (discrete)
probability distribution. For q ∈ Q, let µq be the point distribution at q which assigns
probability 1 to q.

We use R to denote the non-negative reals, and N to denote the naturals. Let
T ∈ {R,N} be a time domain, and let X be a finite set of variables called clocks
which take values from T. A function v : X → T is referred to as a clock valuation.
The set of all clock valuations is denoted by T

X . Let 0 ∈ T
X be the clock valuation

that assigns 0 to all clocks in X . For any v ∈ T
X and t ∈ T, we use v+t to denote

the clock valuation defined as (v+t)(x) = v(x)+t for all x ∈ X . We use v[X :=0] to
denote the clock valuation obtained from v by resetting all of the clocks in X ⊆ X to
0, and leaving the values of all other clocks unchanged; formally, v[X :=0](x) = 0 if
x ∈ X and v[X :=0](x) = v(x) otherwise.

The set of zones of X , written Zones(X), is defined by the syntax:

ζ ::= x 6 d | c 6 x | x+c 6 y+d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. As usual, ζ1∧ζ2 ≡ ¬(¬ζ1 ∨ ¬ζ2), strict constraints
can be written using negation, for example x>2 ≡ ¬(x62), and equality can be
written as the conjunction of constraints, for example x=3 ≡ (x63)∧(36x). The
clock valuation v satisfies the zone ζ, written v ⊳ ζ, if and only if ζ resolves to true
after substituting each clock x ∈ X with the corresponding clock value v(x) from v.

DRAFT

Verification of Real-Time Probabilistic Systems 259

Intuitively, the semantics of a zone is the set of clock valuations (subset of T
X) which

satisfy the zone.

Note that more than one zone may represent the same set of clock valuations (for
example, (x62)∧(y61)∧(x6y+2) and (x62)∧(y61)∧(x6y+3)). We henceforth
consider only canonical zones, which are zones for which the constraints are as ‘tight’
as possible. For any valid zone ζ ∈ Zones(X), there exists an O(|X |3) algorithm to
compute the (unique) canonical zone of ζ [DIL 89]. This enables us to use the above
syntax for zones interchangeably with semantic, set-theoretic operations.

We require the following classical operations on zones [HEN 94, TRI 98]. For
zones ζ, ζ′ and set of clocks X ⊆ X :

րζ′ ζ
def
=

{

v | ∃t>0. ∃v′ ⊳ ζ.
(

v=v′+t ∧ ∀t′6t. (v′+t′ ⊳ ζ∨ζ′)
)}

ւζ′ ζ
def
=

{

v | ∃t>0.
(

v+t ⊳ ζ ∧ ∀t′6t. (v+t′ ⊳ ζ∨ζ′)
)}

[X :=0]ζ
def
= {v | v[X := 0] ∈ ζ}

ζ[X :=0]
def
= {v[X :=0] | v ∈ ζ} .

Zoneրζ′ ζ contains the clock valuations that can be reached from a clock valuation
in ζ by letting time pass and remain in ζ′ while time elapses. On the other hand,
zoneւζ′ ζ contains the clock valuations that can, by letting time pass, reach a clock
valuation in ζ and remain in ζ′ until ζ is reached. Zone [X :=0]ζ contains the clock
valuations which result in a clock valuation in ζ when the clocks in X are reset to 0,
while ζ[X :=0] contains the clock valuations which are obtained from clock valuations
in ζ by resetting the clocks in X to 0.

In addition we will require the concepts of c-equivalence and c-closure [TRI 98,
DAW 98].

DEFINITION 8.1.– For c ∈ N, two clock valuations v, v′ are described as c-equivalent
if the following conditions are satisfied:

– for any x ∈ X , either v(x) = v′(x), or v(x)>c and v′(x)>c;

– for any x, y ∈ X , either v(x)−v(y) = v′(x)−v′(y), or v(x)−v(y) > c and
v′(x)−v′(y) > c.

We define the c-closure of a zone ζ ∈ R
X , denoted by close(ζ, c), to be the greatest

zone ζ′ ⊇ ζ satisfying the following: for all v′ ∈ ζ′, there exists v ∈ ζ such that v and
v′ are c-equivalent.

Intuitively, the c-closure of a zone is obtained by removing all of its boundaries
that correspond to constraints referring to integers greater than c. Observe that, for a
given c, there are only a finite number of c-closed zones.

DRAFT

260 Modeling and Verification of Real-Time Systems

8.2.2. Syntax of probabilistic timed automata

We now define formally probabilistic timed automata, in which, similarly to timed
automata [ALU 94, HEN 94], the timing constraints are represented by zones over a
finite set of clocks. The difference between timed automata and probabilistic timed
automata lies in the edge relation: in timed automata the traversal of an edge corre-
sponds to a single target location and, possibly, the resetting of some clocks; instead
probabilistic timed automata allow (discrete) probabilistic choice over target locations
and clock resets.

DEFINITION 8.2.– A probabilistic timed automaton is a tuple PTA =
(L, l̄,X ,Σ, inv , prob) where:

– L is a finite set of locations with an initial location l̄ ∈ L;

– X is a finite set of clocks;

– Σ is a finite set of events;

– inv : L→ Zones(X) is a function called the invariant condition;

– prob ⊆ L×Zones(X)×Σ×Dist(2X×L) is a finite set called the probabilistic
edge relation.

A state of a probabilistic timed automaton PTA is a pair (l, v) ∈ L×T
X such

that v ⊳ inv (l). Informally, the behaviour of a probabilistic timed automaton can be
understood as follows. The model starts in the initial location l̄ with all clocks set to 0,
that is, in the state (l̄,0). In this, and any other state (l, v), there is a nondeterministic
choice of either (1) making a discrete transition or (2) letting time pass. In case (1), a
discrete transition can be made according to any probabilistic edge (l, g, σ, p) ∈ prob

with source location l which is enabled, where (l, g, σ, p) is said to be enabled if its
zone g is satisfied by the current clock valuation v. Then the probability of moving to
the location l′ and resetting all of the clocks in X to 0 is given by p(X, l′). Case (2)
has the effect of increasing the values of all clocks inX by the amount of time elapsed.
We note that, in case (2), the option of letting time pass is available only if the invariant
condition inv (l) is satisfied continually while time elapses.

DEFINITION 8.3.– An edge of PTA generated by (l, g, σ, p) ∈ prob is a tuple of the

form (l, g, σ, p,X, l′) such that p(X, l′)>0. Let edges(l, g, σ, p) be the set of edges
generated by (l, g, σ, p), and let edges = {edges(l, g, σ, p) | (l, g, σ, p) ∈ prob}.

EXAMPLE 8.1.–Consider the probabilistic timed automatonmodelling a simple prob-
abilistic communication protocol given in Figure 8.1. The nodes represent the loca-

tions, namely di (sender has data, receiver idle), si (sender sent data, receiver idle),

and sr (sender sent data, receiver received). The automaton starts in location di in

which data is ready to be sent by the sender (the double border indicates that di is

the initial location). After between 1 and 2 time units, the sender attempts to send the

DRAFT

Verification of Real-Time Probabilistic Systems 261

true x63

x62
di

sr six:=0

x:=0

x:=0

x:=0

0.9 0.1

0.95

0.05

x>1
send

x>2
retry

Figure 8.1. A probabilistic timed automaton modelling a simple

communication protocol

data (event send) and with probability 0.9 the data is received (location sr is reached),

or with probability 0.1 the data is lost (location si is reached). In si, after 2 to 3 time

units, the sender will attempt to resend the data (event resend), which again can be
lost, this time with probability 0.05.

Note that a timed automaton [ALU 94, HEN 94] corresponds to a probabilistic
timed automaton for which every probabilistic edge (l, g, σ, p) ∈ prob is such that p =
µ(X,l′) (the point distribution assigning probability 1 to (X, l′)) for some (X, l′) ∈
2X × L.

We say that a probabilistic timed automaton is well-formed if, whenever a prob-
abilistic edge is enabled, the target states resulting from all probabilistic outcomes
satisfy the invariant condition. Formally, a probabilistic timed automaton PTA =
(L, l̄,X ,Σ, inv , prob) is said to be well-formed if:

∀(l, g, σ, p) ∈ prob. ∀v ∈ T
X . (v⊳g)→

(

∀(X, l′) ∈ support(p). v[X :=0]⊳inv(l′)
)

.

A probabilistic timed automaton can be transformed into a well-formed probabilis-
tic timed automaton by simply replacing the guard g in each probabilistic edge
(l, g, σ, p) ∈ prob with





∧

(X,l′)∈support(p)

[X :=0]inv(l′)



 ∧ g .

For the remainder of the chapter we assume that all probabilistic timed automata are
well-formed. Finally, we also assume that the set Σ of events of a probabilistic timed
automaton is such that Σ ∩ R = ∅.

DRAFT

262 Modeling and Verification of Real-Time Systems

8.2.3. Modelling with probabilistic timed automata

To aid higher-level modelling, it is often useful to define complex systems as the
parallel composition of a number of interacting sub-components. The definition of the
parallel composition operator ‖ of probabilistic timed automata uses ideas from the
theory of (untimed) probabilistic automata [SEG 95b] and classical timed automata
[ALU 94]. Let PTAi = (Li, l̄i,Xi,Σi, inv i, probi) for i ∈ {1, 2} and assume that
X1 ∩ X2 = ∅.

DEFINITION 8.4.– The parallel composition of two probabilistic timed automata
PTA1 and PTA2 is the probabilistic timed automaton

PTA1 ‖PTA2 = (L1 × L2, (l̄1, l̄2),X1 ∪ X2,Σ1 ∪ Σ2, inv , prob)

such that

– inv(l, l′) = inv1(l) ∧ inv2(l
′) for all (l, l′) ∈ L1 × L2;

– ((l1, l2), g, σ, p) ∈ prob if and only if one of the following conditions holds:

1) σ ∈ Σ1\Σ2 and there exists (l1, g, σ, p1) ∈ prob1 such that p = p1⊗µ(∅,l2);
2) σ ∈ Σ2\Σ1 and there exists (l2, g, σ, p2) ∈ prob2 such that p = µ(∅,l1)⊗p2;
3) σ ∈ Σ1 ∩ Σ2 and there exists (li, gi, σ, pi) ∈ probi for i = 1, 2 such that

g = g1 ∧ g2 and p = p1⊗p2

where for any l1 ∈ L1, l2 ∈ L2,X1 ⊆ X1 andX2 ⊆ X2:

p1⊗p2(X1 ∪X2, (l1, l2)) = p1(X1, l1) · p2(X2, l2) .

In addition (as in the timed automata model-checking tool UPPAAL [LAR 97,
BEH 04]), we allow the use of urgent locations, which when entered must be left
before time can advance. These can be represented in the probabilistic timed au-
tomata framework by introducing an auxiliary clock z, setting the invariant condition
of the urgent locations to z60, and resetting the value of z to 0 on entry to each urgent
location. However, rather than introducing an auxiliary clock, it is generally more
convenient from a modelling perspective to explicitly denote such locations as urgent.

8.2.4. Semantics of probabilistic timed automata

The semantics of timed automata is generally presented in terms of timed tran-
sition systems. To define the semantics of probabilistic timed automata, we employ
timed Markov decision processes, which extend timed transition systems with (dis-
crete) probabilistic choice. Timed Markov decision processes can also be seen as
an extension of Markov decision processes (see Chapter 9) and a variant of Segala’s
probabilistic timed automata [SEG 95a].

DEFINITION 8.5.– A timed Markov decision process is a tuple TMDP =
(S, s̄,Σ,T,Steps) where:

DRAFT

Verification of Real-Time Probabilistic Systems 263

– S is a set of states, including an initial state s̄ ∈ S;

– Steps ⊆ S × (Σ ∪ T)× Dist(S) is a probabilistic transition relation, such that,
if (s, a, µ) ∈ Steps and a ∈ T, then µ is a point distribution.

A probabilistic transition s
a,µ
−−→ s′ is performed from a state s ∈ S by first

nondeterministically selecting a pair (a, µ) such that (s, a, µ) ∈ Steps , and then by
making a probabilistic choice of target state s′ according to the distributionµ, such that
µ(s′)>0. If a ∈ Σ, then the transition is interpreted as corresponding to the execution
of an event, whereas if a ∈ T, the transition is interpreted as corresponding to the
elapse of time, the duration of which is a. We require that only event-distribution pairs
can be probabilistic; that is, duration-distribution pairs always use a point distribution.

We now proceed to define the formal semantics of probabilistic timed automata.
The definition is parametrised by both a time domain T and a time increment operator
⊕. A time increment operator is a binary operator which takes a clock valuation
v ∈ T

X and a time duration t ∈ T, and returns a clock valuation v⊕t ∈ T
X which

represents, intuitively, the clock valuation obtained from v after t time units have
elapsed. The standard choice of time increment operator ⊕ corresponds to addition
+, where v+t is defined as in Section 8.2.1. The semantics of probabilistic timed
automata is typically described for the case in which T = R and ⊕ is +. We also
consider in Section 8.3.4 an integer semantics in which T = N and ⊕ is no longer
standard addition.

DEFINITION 8.6.– Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed au-
tomaton. The semantics of PTA with respect to time domain T and time increment⊕
is the timed Markov decision process [[PTA]]⊕

T
= (S, s̄,Σ,T,Steps) such that:

– S ⊆ L× T
X where (l, v) ∈ S if and only if v ⊳ inv(l);

– s̄ = (l̄,0);

– ((l, v), a, µ) ∈ Steps if and only if one of the following conditions holds:

time transitions. a=t ∈ T and µ = µ(l,v⊕t) such that v⊕t
′ ⊳ inv(l) for all t′ ∈

[0, t] ∩ T;

discrete transitions. a=σ ∈ Σ and there exists (l, g, σ, p) ∈ prob such that v ⊳ g and
for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′) .

The summation in the definition of discrete transitions is required for the cases in
which multiple clock resets result in the same target state.

DRAFT

264 Modeling and Verification of Real-Time Systems

8.2.5. Probabilistic reachability and invariance

In this section, we introduce probabilistic reachability and invariance, which are
standard performance measures for probabilistic systems. Probabilistic reachability
refers to the probability with which a certain set of states is reached (for example,
states which correspond to the achievement of some goal or error states). On the
other hand, probabilistic invariance refers to the probability of remaining in a certain
set of states. For algorithms for the computation of such measures for finite state
probabilistic systems see, for example [BIA 95, COU 98].

In order to introduce these measures, we first define more precisely the notion of
the behaviour of timed Markov decision processes. The behaviour of a timed Markov
decision process can be represented in two ways: using paths and adversaries. For-
mally, a path of a timed Markov decision process is a non-empty finite or infinite
sequence of probabilistic transitions

ω = s0
a0,µ0
−−−→ s1

a1,µ1
−−−→ s2

a2,µ2
−−−→ · · · .

We denote by ω(i) the (i+1)th state of ω, by last(ω) the last state of ω if ω is finite
and by step(ω, i) the event or duration associated with the (i+1)-th transition (that is,
step(ω, i) = ai). By abuse of notation, we say that a single state s is a path of length
0. The set of infinite paths starting in state s is denoted by Path(s). For any infinite
path ω = s0

a0,µ0
−−−→ s1

a1,µ1
−−−→ · · · , the accumulated duration up to the (n+1)-th state

of ω is defined by:

dur(ω, n+1)
def
=
∑

{|ai | 06i6n ∧ ai ∈ T|} .

In contrast to a path, an adversary (or scheduler) represents a particular resolution
of nondeterminism only. More precisely, an adversary is a function which chooses
an outgoing distribution in the last state of a path. Formally, we have the following
definition.

DEFINITION 8.7.– Let TMDP = (S, s̄,Σ,T,Steps) be a timed Markov decision pro-
cess. An adversaryA of TMDP is a function mapping every finite path ω of TMDP to

a pair (a, µ) such that (last(ω), a, µ) is an element of Steps. For any state s ∈ S, let
PathA(s) denote the subset of Path(s) which correspond to A.

The behaviour of a timed Markov decision process TMDP = (S, s̄,Σ,T,Steps)
under a given adversary A is purely probabilistic. Using the measure construction of
[KEM 76], for a state s ∈ S and adversary A we can define a probability measure
ProbAs over the set of paths PathA(s). For further details see Chapter 9 or [RUT 04].

Models of real-time systems can contain unrealisable behaviours in which time
does not exceed a certain bound. Generally, such behaviours are disregarded during

DRAFT

Verification of Real-Time Probabilistic Systems 265

the analysis of the model. In the following, we consider only time-divergent adver-
saries, which are adversaries that guarantee the divergence of time with probability 1.
Formally, we say that an infinite path ω is divergent if, for any t ∈ R, there exists
j ∈ N such that dur(ω, j)>t. An adversary A of a timed Markov decision process
TMDP is divergent if and only if, for each state s of TMDP, the probability ProbAs
assigned to the divergent paths of PathA(s) is 1. Let AdvTMDP be the set of divergent
adversaries of TMDP.

We now define probabilistic reachability and invariance at the level of timed
Markov decision processes. For a timed Markov decision process TMDP =
(S, s̄,Σ,T,Steps), state s ∈ S, sets T, I ⊆ S of target states and invariant states,
and adversaryA ∈ AdvTMDP, let:

pATMDP(s,3 T)
def
= ProbAs {ω ∈ PathA(s) | ∃i ∈ N . ω(i) ∈ T }

pATMDP(s,2 I)
def
= ProbAs {ω ∈ PathA(s) | ∀i ∈ N . ω(i) ∈ I} .

DEFINITION 8.8.– Let TMDP = (S, s̄,Σ,T,Steps) be a timed Markov decision pro-
cess. The maximum and minimum reachability probabilities of, from a state s ∈ S,
reaching the set of target states T are defined as follows:

pmax
TMDP(s,3 T) = sup

A∈AdvTMDP

pATMDP(s,3 T)

pmin
TMDP(s,3 T) = inf

A∈AdvTMDP

pATMDP(s,3 T) .

Themaximum and minimum invariance probabilities of, from a state s ∈ S, remaining
in the set of states I are defined as follows:

pmax
TMDP(s,2 I) = sup

A∈AdvTMDP

pATMDP(s,2 I)

pmin
TMDP(s,2 I) = inf

A∈AdvTMDP

pATMDP(s,2 I) .

The minimum and maximum probabilities of reachability and invariance can be con-
sidered as dual properties. More precisely, for any state s ∈ S, sets of states T and I
such that T = S \ I:

pmax
TMDP(s,3 T) = 1− pmin

TMDP(s,2 I) and pmin
TMDP(s,3 T) = 1− pmax

TMDP(s,2 I) .

Because of this relationship, for the remainder of this chapter we focus on methods
for computing probabilistic reachability properties.

DRAFT

266 Modeling and Verification of Real-Time Systems

In the context of the analysis of probabilistic timed automata, the set of target states
is often expressed in terms of a set of target locations TL ⊆ L. More precisely, given
a set of target locations TL, we take T = {(l, v) ∈ S | l ∈ TL} to be the set of target
states and, for simplicity, write pmax

[[PTA]]⊕
T

(s,3 TL) and pmin
[[PTA]]⊕

T

(s,3 TL).

More generally, target states can be expressed by a set of location-zone pairs, rather
than a set of locations. Location-zone pairs can be used, for example, to express that
a target set of locations must be reached before or after a certain deadline. Using the
construction of [KWI 02a], such reachability problems can be reduced to those refer-
ring to locations only by modifying syntactically the probabilistic timed automaton of
interest.

The following types of properties can be expressed using probabilistic reachability:

Basic probabilistic reachability: the system reaches a certain set of states with a
given maximum or minimum probability. For example, “with probability at
least 0.999, a data packet is correctly delivered”.

Probabilistic time-bounded reachability: the system reaches a certain set of states
within a certain time deadline and probability threshold. For example, “with
probability 0.01 or less, a data packet is lost within 5 time units”.

Probabilistic cost-bounded reachability: the system reaches a certain set of states
within a certain cost and probability bound. For example, “with probability 0.75
or greater, a data packet is correctly delivered with at most 4 retransmissions”.

Invariance: the system does not leave a certain set of states with a given probability.
For example, “with probability 0.875 or greater, the system never aborts”.

Bounded response: the system inevitably reaches a certain set of states within a cer-
tain time deadline with a given probability. For example, “with probability 0.99
or greater, a data packet will always be delivered within 5 time units”.

8.3. Model checking for probabilistic timed automata

In this section, we consider a number of automatic verification methods for proba-
bilistic timed automata. The underlying semantics of a probabilistic timed automaton
PTA is generally presented with respect to the time domain R, and hence the resulting
semantic timed Markov decision process [[PTA]]+

R
generally has an uncountable num-

ber of states and transitions. Therefore, the methods that we present are based on the
construction of finite-state Markov decision processes, which are defined so that their
analysis can be used to infer reachability probabilities and other performance mea-
sures of probabilistic timed automata. We present a different finite-state construction
in each of the following four sections.

DRAFT

Verification of Real-Time Probabilistic Systems 267

8.3.1. The region graph

Our first method is inspired by the classical region-graph technique for timed au-
tomata [ALU 94], in which a finite-state transition system is constructed from a timed
automaton. Proofs of the key results can be found in [KWI 02a] where it is shown that
the region graph can be used to model check the probabilistic timed temporal logic
PTCTL which subsumes the checking of reachability properties.

The construction is based on a finite equivalence relation on the infinite set R
X of

clock valuations. We apply the same equivalence to the set of clock valuations of prob-
abilistic timed automata in order to obtain a probabilistic region graph, which contains
sufficient information for the calculation of reachability probabilities. In this section,
we assume that probabilistic timed automata are structurally non-Zeno [TRI 05]: a
probabilistic timed automaton is structurally non-Zeno if, for every sequence X0,
(l0, g0, σ0, p0), X1, (l1, g1, σ, p1), . . . , Xn, (ln, gn, σ, pn), such that pi(Xi+1, li+1)>0
for 06i<n, and pn(X0, l0)>0, there exists a clock x ∈ X and 06i, j6n such that
x ∈ Xi and gj ⇒ (x>1) (that is, gj contains a conjunct of the form x>c or x>c for
some c>1).

We recall the definition of the equivalence relation on clock valuations used to
define the region graph of (non-probabilistic) timed automata [ALU 94]. For a real
number q ∈ R, let ⌊q⌋ be the integer part of q.

DEFINITION 8.9.– Let c ∈ N be a natural number and let X be a set of clocks. The
clock equivalence (with respect to c) over X is defined as the relation ≡c⊆ R

X×R
X

over clock valuations, where v ≡c v′ if and only if:

– for each clock x ∈ X , either both v(x)>c and v(x′)>c or:
- ⌊v(x)⌋ = ⌊v′(x)⌋ (clock values have the same integer part)
- v(x)−⌊v(x)⌋ = 0 if and only if v(x′)−⌊v(x′)⌋ = 0 (the fractional parts of

the clocks’ values are either all zero or all positive);

– for each pair of clocks x, y ∈ X , either ⌊v(x)−v(y)⌋ = ⌊v′(x)−v′(y)⌋ (the
integer part of the difference between clocks values is the same) or both v(x)−v(y) >
c and v′(x)−v′(y) > c.

Note that the final point of the definition implies that the ordering on the fractional
parts of the clock values of x and y is the same, unless the difference between the
clocks is above c. For example, in the case of X = {x1, x2, x3}, the clock valuations
v and v′, where v(x1)=0.1, v(x2)=0.25 and v(x3)=0.8, and v′(x1)=0.5, v′(x2)=0.9
and v′(x3)=0.95, are clock equivalent, but v′′, where v′′(x1)=0.3, v′′(x2)=0.75 and
v′′(x3)=0.6, is not clock equivalent to v and v′. An example of the partition that clock
equivalence induces on a space of valuations of two clocks x1 and x2 is shown in
Figure 8.2, where c equals 2; each vertical, horizontal or diagonal line segment, open
area, and point of intersection of lines is a distinct clock equivalence class. Clock

DRAFT

268 Modeling and Verification of Real-Time Systems

αβ

10 2 x1

x2

1

2

Figure 8.2. The partition induced by clock equivalence with c=2

equivalence classes can be interpreted as zones: for example, the clock equivalence
class α denoted in Figure 8.2 corresponds to the zone (1<x<2)∧(1<y<2)∧(x>y),
while the clock equivalence class β corresponds to the zone (x=1)∧(1<y<2).

We define the time successor of a clock equivalence class α to be the first distinct
clock equivalence class reached from α by letting time pass. Formally, the time suc-
cessor β of α is the clock equivalence class for which α 6= β and, for all v ∈ α, there
exists t ∈ R such that v + t ∈ β and v + t′ ∈ α ∪ β for all 0 6 t′ 6 t. A clock
equivalence class α is unbounded if, for all v ∈ α and t ∈ R, we have v + t ∈ α;
in the case of an unbounded clock equivalence class α, we let the time successor of α
be α itself. Because clock equivalence classes can be regarded as zones, for a clock
equivalence class α and clock set X ⊆ X , we use the notation α[X := 0] to denote
the set {v[X := 0] | v ∈ α}, as for zones. For a zone ζ ∈ Zones(X), we write α ⊳ ζ
to denote that all clock valuations in α satisfy the zone ζ.

For the remainder of this section, assume that the probabilistic timed automaton
PTA = (L, l̄,X ,Σ, inv , prob) is fixed. Let cPTA

max be the maximum constant against
which any clock is compared in the invariant conditions and guards of PTA. A re-
gion (l, α) of PTA is a pair comprising a location l ∈ L and a class α of the clock
equivalence ≡cPTA

max
. Since the set of clock equivalence classes is finite, and therefore

the number of regions is finite, we can define a finite-state Markov decision process,
the states of which are regions, and the transitions of which are derived from the time
constraints and probabilistic edges of the probabilistic timed automaton.

DEFINITION 8.10.– The region graph of PTA = (L, l̄,X ,Σ, inv , prob) is a finite-
state Markov decision process MDP = (R, r̄,StepsR), where R is the set of all re-
gions of PTA, the initial region r̄ is (l̄, {0}), and the probabilistic transition relation
StepsR ⊆ R×Dist(R) is the smallest relation such that ((l, α), ρ) ∈ StepsR if either

of the following conditions hold:

DRAFT

Verification of Real-Time Probabilistic Systems 269

time transitions: ρ = µ(l,β), where β is such that β ⊳ inv (l), and β is the time
successor of α;

discrete transitions: there exists a probabilistic edge (l, g, σ, p) ∈ prob such that

α ⊳ g and, for any region (l′, β) ∈ R, we have:

ρ(l′, β) =
∑

X⊆X &
β=α[X:=0]

p(X, l′) .

The following proposition states the correctness of the region graph for calculating
minimum and maximum reachability probabilities.

PROPOSITION 8.1.– For any probabilistic timed automaton PTA and correspond-

ing timed Markov decision process [[PTA]]+
R

= (S, s̄,Σ,R,Steps), if MDP =
(R, r̄,StepsR) is the region graph of PTA and TR is a set of target regions, then
for any s ∈ S:

pmax
[[PTA]]+

R

(s,3 T) = pmax
MDP(rs,3 TR) and pmin

[[PTA]]+
R

(s,3 T) = pmin
MDP(rs,3 TR)

where if s = (l, v), then rs = (l, α) ∈ R such that v ∈ α, and T = {(l, v) | r(l,v) ∈
TR}.

EXAMPLE 8.2.–We now consider the PTA in Example 8.1 (see Figure 8.1) and use the

region graph and Proposition 8.1 to calculate the minimum and maximum probability

of reaching the location sr within 6 time units. Following the approach of [KWI 02a],
we add an additional clock z to the automaton and compute the probability of reaching
the target set of regions TR = {(sr, α) |α ⊳ (z<6)}. The Markov decision process
representing the region graph has 115 states and 125 transitions. In Figure 8.3 we

present a fragment of this Markov decision process. Transitions without probability

labels correspond to probability 1. Computing the probability of reaching the target

set TR on the region graph, we find that the minimum and maximum probabilities of
reaching the location sr within 6 time units equal 0.995 and 0.99525 respectively.

8.3.2. Forwards symbolic approach

In this section we consider an approach to approximating the maximum reachabil-
ity probability based on a forward symbolic analysis. This approach allows us to com-
pute an upper bound on the maximum probability of reaching a set of target locations.
Before introducing the algorithm, we present a number concepts for representing and
manipulating zones and state sets of a probabilistic timed automaton.

In this section and in Section 8.3.3, we assume that probabilistic timed automata
allow time to diverge with probability 1 from each state. That is, for each probabilistic
timed automaton PTA, we assume that there exists a divergent adversary of [[PTA]]+

R
.

DRAFT

270 Modeling and Verification of Real-Time Systems

(di, x=z=0)

0.1

(di, 1<x=z<2)(di, x=z=1)

0.90.10.9

(si, 2<x<3, z=x+1)

(si, 0<x<1, 1<z<2, x+1<z)

(si, 0<x<1, 2<z<3, x+2>z)

(si, x=0, z=1)

(si, 0<x<1, z=x+1)

(si, x=1, z=2)

(si, 1<x<2, z=x+1)

(si, x=2, z=3)

(si, x=3, z=4)

(si, 0<x<1, z=2)

(si, x=1, 2<z<3)

(sr, x=0, z=3)

(si, x=0, z=3)

(sr, x=0, 3<z<4)

(si, x=0, 3<z<4)

(sr, x=0, z=4)

(si, x=0, z=4)

retry

retry

retry

0.95

0.05

0.95

0.05

0.05

0.95

(sr, x=0, z=1) (sr, x=0, 1<z<2) (si, x=0, 1<z<2)

sendsend

(di, 0<x=z<1)

Figure 8.3. Fragment of the region graph model of Example 8.1

Proofs of the key results presented in this section are available in [KWI 02a].

8.3.2.1. Symbolic state operations

In order to represent symbolically the state sets computed during the analysis, we
use, both in this section and Section 8.3.3, the concept of symbolic state. A symbolic
state is a pair (l, ζ) comprising a location and a zone over the clocks of the probabilistic
timed automaton under study. The set of states corresponding to a symbolic state (l, ζ)
is {(l, v) | v ⊳ ζ}, while the state set corresponding to a set of symbolic states is the
union of those corresponding to each individual symbolic state. Symbolic states are
denoted by u, v, z, . . . and sets of symbolic states by U, V, Z, . . .

Consider a probabilistic timed automaton PTA = (L, l̄,X ,Σ, inv , prob). Our aim
of forward exploration through the state space of PTA requires operations to return
the successor states of all of the states in a particular set (where the set is represented
as a symbolic state). More precisely, we introduce a discrete successor operation
dpost which, given an edge e = (l, g, σ, p,X, l′) of PTA and a symbolic state (l, ζ),
returns all of the states obtained by traversing e from a state in (l, ζ). Similarly, the

DRAFT

Verification of Real-Time Probabilistic Systems 271

time successor operation tpost computes, for the symbolic state (l, ζ), the set of states
which can be reached from a state in (l, ζ) by letting time elapse. These two opera-
tions are then composed to define a generalised successor operation post. For a given
symbolic state (l, ζ) and an edge e = (l, g, σ, p,X, l′) ∈ edges, the post operation
returns the set of states that can be obtained from (l, ζ) by traversing the edge e and
then letting time elapse. Note that we also parameterise post by an integer c ∈ N, and
only compute the c-closure of zones obtained by the time successor operation; this is
to ensure the termination of the forward algorithm. For a symbolic state (l, ζ), edge
e = (l, g, σ, p,X, l′) and constant c ∈ N:

tpost(l, ζ)
def
= (l,րinv(l) ζ)

dpost(e, (l, ζ))
def
= (l′, ((ζ ∧ g)[X := 0]) ∧ inv(l′))

close(l, ζ, c)
def
= (l, close(ζ, c))

post[e, c](l, ζ)
def
= close(tpost(dpost(e, (l, ζ))), c) .

8.3.2.2. Computing maximum reachability probabilities

An algorithm for generating a finite representation of the state space of a proba-
bilistic timed automaton PTA for a given set of target set TL of locations is presented
in Figure 8.4. Recall from Section 8.3.1 that cPTA

max denotes the maximum constant
against which any clock is compared in the invariant conditions and guards of PTA.
The algorithm returns a Markov decision process MDP = (Z, z̄,Steps), called the
forwards zone graph, and a set of target states Reached ⊆ Z.

The algorithm consists of two distinct computation steps: firstly, the generation
of symbolic states Z that encode states of PTA reachable from the initial state with
non-zero probability, and secondly, construction of the forwards zone graph generated
from Z and the probabilistic edges of PTA. As in the case of similar algorithms in the
non-probabilistic context [DAW 96, LAR 97], the algorithm searches forward through
a reachable portion of the state space of the system by iterating the transition relation
a finite number of times. Any symbolic state (l, ζ) such that l ∈ TL (i.e. where the
target has been reached) is not explored, but instead added to the set Reached . Since,
for a given c ∈ N, there are a finite number of c-closed zones [DAW 98, TRI 98] and
the number of locations is finite, the forwards zone graph generated by Figure 8.4 is
guaranteed to be finite. This also implies the termination of the algorithm.

Finally, we can then obtain an upper bound on the maximum probability of reach-
ing the target set TL of locations as the maximum probability of reaching the target
set Reached in the forwards zone graph. If Reached = ∅, then the forward search
through the reachable state space has found that no location in TL is reachable with

DRAFT

272 Modeling and Verification of Real-Time Systems

algorithm ForwReach(TL)

1. Z := ∅
2. Reached := ∅
3. z̄ := close(tpost(l̄,0), cPTA

max)
4. Fringe := {z̄}
5. repeat

6. choose (l, ζ) ∈ Fringe

7. Fringe := Fringe \ {(l, ζ)}
8. for each (l, g, σ, p, l′, X) ∈ edges do

9. let (l′, ζ′) := post[(l, g, σ, p, l′, X), cPTA
max](l, ζ)

10. if ζ′ 6= ∅ ∧ (l′, ζ′) 6∈ Z ∧ l′ ∈ TL then

11. Reached := Reached ∪ {(l′, ζ′)}
12. else if ζ′ 6= ∅ ∧ (l′, ζ′) 6∈ Z

13. Fringe := Fringe ∪ {(l′, ζ′)}
14. end if

15. end for each

16. Z := Z ∪ {(l, ζ)}
17. until Fringe = ∅
18. constructMDP = (Z, z̄, StepsZ) where ((l, ζ), ρ) ∈ StepsZ if and only if

there exists (l, g, σ, p) ∈ prob such that

– ζ ∩ g 6= ∅
– for any (l′, ζ′) ∈ Z: ρ(l′, ζ′) equals

P

{| p(X, l′) | post[(l, g, σ, p, l′, X), cPTA
max](l, ζ) = (l′, ζ′)|}

19. return (MDP,Reached)

Figure 8.4. Algorithm ForwReach(TL) for PTA = (L, l̄,X , Σ, inv , prob)

positive probability, and therefore we conclude that the maximum probability is 0.
The correctness of the algorithm follows from the following proposition.

PROPOSITION 8.2.– Let PTA = (L, l̄,X ,Σ, inv , prob) be a probabilistic timed au-
tomaton and TL be a set of target locations. If the algorithm ForwReach(TL) returns
MDP = (Z, z̄,Steps) and Reached , then:

pmax
[[PTA]]+

R

((l̄,0),3 TL) 6 pmax
MDP(z̄,3 Reached) .

Unfortunately, the probability obtained via this approach may be greater than the
probability of reaching the target set via any adversary of the probabilistic timed au-
tomaton. This is illustrated by the example below.

EXAMPLE 8.3.– Consider the probabilistic timed automaton presented in Figure 8.5
and suppose that target set of interest consists of the single location l. There are only
two classes of adversary with a non-zero probability of reaching location l: one in

DRAFT

Verification of Real-Time Probabilistic Systems 273

truel1 l2

l

truetrue
true

x=0 ∧ y=1
1 1

true0.5 0.5 x:=0x:=0

l̄

y:=0

x=0 ∧ y=0

(l̄, x=y)

(l1, x6y) (l2, x=y)

(l, x=y)

11

0.5 0.5

Reached :

Figure 8.5. Example demonstrating that ForwReach yields only upper bounds

which the initial state is left when x=y=0, and the other when the initial state is left
when x=y=1. In the former case, if the left-hand edge to location l1 is taken, then
the outgoing edge of l1 can never be taken, and so we must remain in this location;
however, if the right-hand edge to l2 is taken, then the outgoing edge to l can be
selected immediately. The case for the selection of the transition of l̄ when x=y=1
is symmetric. Therefore, for each of the two classes of adversaries, the probability

of reaching the target set {l} is 0.5. However, for the forwards zone graph and set
Reached generated by ForwReach({l}), as shown in Figure 8.5, the corresponding
reachability probability is 1.

Recall that invariance properties can be stated in terms of reachability properties.
The fact that we obtain upper bounds on maximum reachability probabilities implies
that we obtain lower bounds on the minimum probability of invariance, and hence the
forward reachability method is particularly appropriate for establishing the satisfaction
of probabilistic, real-time invariance properties.

One important difference between the algorithm in Figure 8.4 and analogous al-
gorithms in the non-probabilistic, real-time literature, is the fact that the on-the-fly
property of the latter algorithms is compromised in our context. This property refers
to the fact that, if a symbolic state which reaches the target set is computed, then the
algorithm can terminate immediately with a “YES” answer to the reachability prob-
lem. Such a strategy is insufficient for probabilistic timed automata. For example,
consider the case in which we have found a path of symbolic states reaching the target
set TL, and which corresponds to the probability λ. Then it may be possible to find
another path to TL, thus increasing the probability of reaching this target set.

EXAMPLE 8.4.– Returning to Example 8.1 (see Figure 8.1), we now calculate the
maximum probability of reaching the location sr within 6 time units. Following the

DRAFT

274 Modeling and Verification of Real-Time Systems

Reached :
(srbefore, x+16y6x+2)
(srbefore, x+36y<x+5)
(srbefore, x+56y<x+6)

(si, x63∧x+6<y)(si, x63∧x+56y<x+6)
(si, x63∧x+56y6x+6)

(srafter, x+6<y)(srafter, x+66y)

0.95 0.95

(si, x63∧x+16y6x+5)

(si, x63∧x+16y6x+2)

(di, x = y62)

0.95

0.05

0.05

0.05

0.95
0.05

0.05

0.01

0.9

0.95

Figure 8.6. Markov decision process generated by ForwReach({srbefore})

approach of [KWI 02a], we add a distinct clock z to the automaton, and split the lo-
cation sr into locations srbefore and srafter. Furthermore, we replace each probabilistic

edge which has sr as a target location with two probabilistic edges where sr is replaced

with srbefore or srafter, and where z<6 or z>6, respectively, is added to the guard. Ap-
plying ForwReach({srbefore}) to this automaton returns the Markov decision process
given in Figure 8.6. From Proposition 8.2, it follows that the maximum probability of

reaching the location sr within 6 time units is bounded above by 0.99525, correspond-

ing to the maximum probability of reaching Reached from z̄ = (di, x=y62) in the
Markov decision process given in Figure 8.6. In fact, in this case, the computed bound

equals the actual probability. Intuitively, this is because there is no conflict between

letting time pass on different edges: the maximum probability is obtained by always

taking a discrete transition as soon as it is available.

8.3.3. Backwards symbolic approach

In this section we consider an approach for computing both the maximum and
minimum reachability probability based on a backwards symbolic analysis. Unlike
the forwards approach in the previous section, this technique yields exact results. Fur-
thermore, as in the region graph approach, it computes the probabilities for all states
of the probabilistic timed automaton rather than for a fixed initial state.

Proofs of the key results, and specialised algorithms for qualitative properties
(finding states that have probability 0 or 1 of reaching the target set), for which ver-
ification can be performed through an analysis of the underlying graph, are available
in [KWI 07]. In fact, [KWI 07] presents algorithms for model checking for the prob-
abilistic timed temporal logic PTCTL [KWI 02a], which subsumes reachability prop-
erties.

DRAFT

Verification of Real-Time Probabilistic Systems 275

8.3.3.1. Symbolic state operations

Consider a probabilistic timed automaton PTA = (L, l̄,X ,Σ, inv , prob). The
backwards exploration through the state space of PTA requires operations to return
the predecessors of a set of symbolic states. More precisely, we introduce a discrete
predecessor operation dpre which, given an edge e of PTA and a set of symbolic states
V, returns the set of symbolic states that encodes the set of states which, when edge e
is traversed, belong to the set encoded by V. The time predecessor operation tpreU is
parametrised by a set of symbolic states U, and computes, for a set of symbolic states
V, the set of symbolic states encoding states that can reach V by letting time elapse and
remaining in U at all intermediate times.

Formally, we extended the time predecessor and discrete predecessor functions
tpre and dpre of [HEN 94, TRI 98] to probabilistic timed automata as follows. For
any sets of symbolic states U, V and edge e = (l, g, σ, p,X, l′):

tpreU(V)
def
=

{

(l,ւζl
U∧inv(l) (ζlV ∧ inv (l)))

∣

∣ l ∈ L
}

dpre(e, U)
def
=

{

(l, g ∧ inv(l) ∧ ([X :=0]ζl
′

U))
}

.

where for any set U of symbolic states ζlU
def
=
∨

{ζ | (l, ζ) ∈ U}; that is, ζlU is the zone
such that v ⊳ ζlU if and only if (l, v) ∈ u for some u ∈ U.

We also extend clock reset, conjunction and disjunction operations to sets of sym-
bolic states as follows. For any clock x and sets of symbolic states U, V:

x.U
def
=

{

(l, [{x}:=0]ζlU)
∣

∣ l ∈ L
}

U∧V
def
=

{

(l, ζlU∧ζ
l
V)
∣

∣ l ∈ L
}

U∨V
def
=

{

(l, ζlU∨ζ
l
V)
∣

∣ l ∈ L
}

.

Finally, let [[false]] def
= ∅ and [[true]] def

= {(l, inv(l)) | l ∈ L} be the sets of symbolic
states representing the empty and full state sets respectively. In addition, for any
ζ ∈ Zones(X), let [[ζ]] = {(l, ζ∧inv(l)) | l ∈ L}.

8.3.3.2. Probabilistic until

The algorithm for computing minimum reachability probabilities (which will be
described in Section 8.3.3.4) relies on the computation of (maximum) probabilities for
two classes of properties: probabilistic invariance (see Section 8.2.5) and probabilistic
until. Probabilistic until corresponds to the probability of reaching a certain set of

DRAFT

276 Modeling and Verification of Real-Time Systems

target states while remaining in another set of states until the target set is reached.
For a timed Markov decision process TMDP = (S, s̄,Σ,T,Steps), state s ∈ S, sets
U, V ⊆ S of states, and adversaryA ∈ AdvTMDP:

pATMDP(s, U U V)
def
= ProbAs {ω ∈ PathA(s̄) | ∃i ∈ N .(ω(i) ∈ V ∧∀j<i .ω(j) ∈ U)} .

Note that probabilistic reachability is a special case of probabilistic until:

pATMDP(s,3 V) = pATMDP(s, S U V) .

DEFINITION 8.11.– Let TMDP = (S, s̄,Σ,T,Steps) be a timed Markov decision
process. The maximum and minimum until probabilities of, from a state s ∈ S,
reaching a set of states V while remaining in a set of states U up until this point are
defined as follows:

pmax
TMDP(s, U U V) = sup

A∈AdvTMDP

pATMDP(s, U U V)

pmin
TMDP(s, U U V) = inf

A∈AdvTMDP

pATMDP(s, U U V) .

8.3.3.3. Computing maximum reachability probabilities

In this section we present methods for calculating maximum reachability probabil-
ities. In fact, we present a more general method which can compute maximum until
probabilities, as introduced in the previous section.

In the case of computing maximum until probabilities and, in particular maximum
reachability probabilities, we use the algorithm MaxU given in Figure 8.7 and adapted
from [KWI 01]. The algorithm iteratively applies time predecessor, discrete predeces-
sor and conjunction operations on symbolic states until a fixpoint is reached. The key
observation is that to preserve probabilistic branching we must take the conjunctions
of symbolic states generated by edges from the same distribution. More precisely,
we need to identify the state sets from which multiple edges within the support of the
same distribution of the probabilistic timed automaton can be used to reach previously
generated state sets. Upon termination of the fixpoint algorithm, the set of generated
symbolic states is used to construct a finite-state Markov decision process which has
sufficient information to compute the maximum probability of interest.

We now explain the algorithm MaxU(U, V) in more detail. Lines 1–4 deal with the
initialisation of Z, which is set equal to the set of time predecessors of V, and the set
of edges E(l,g,σ,p) associated with each probabilistic edge (l, g, σ, p) ∈ prob. Lines

DRAFT

Verification of Real-Time Probabilistic Systems 277

algorithmMaxU(U, V)

1. Z := tpreU∨V(V)
2. for (l, g, σ, p) ∈ prob

3. E(l,g,σ,p) := ∅
4. end for

5. repeat

6. Y := Z

7. for y ∈ Y ∧ (l, g, σ, p) ∈ prob ∧ e = (l, g, σ, p, X, l′) ∈ edges(l, g, σ, p)
8. z := U ∧ dpre(e, tpreU∨V(y))
9. if (z 6= ∅) ∧ (z 6∈ tpreU∨V(V))
10. Z := Z ∪ {z}
11. E(l,g,σ,p) := E(l,g,σ,p) ∪ {(z, (X, l′), y)}
12. for (z̄, (X̄, l̄′), ȳ) ∈ E(l,g,σ,p)

13. if (z ∧ z̄ 6= ∅) ∧ ((X̄, l̄′) 6= (X, l′)) ∧ (z ∧ z̄ 6∈ tpreU∨V(V))
14. Z := Z ∪ {z ∧ z̄}
15. end if

16. end for

17. end if

18. end for

19. until Z = Y

20. constructMDP = (Z,StepsZ) where (z, ρ) ∈ StepsZ if and only if

there exists (l, g, σ, p) ∈ prob and E ⊆ E(l,g,σ,p) such that

– z ∈ {z′ | (z′, e, z′′) ∈ E}
– (z′, e, z′′) ∈ E ⇒ z′ ⊇ z

– (z′1, e, z
′) 6= (z′2, e

′, z′′) ∈ E ⇒ e 6= e
′

– E is maximal

– ρ(z′) =
P

{| p(X, l′) | (z, (X, l′), z′) ∈ E |} ∀z′ ∈ Z

21. returnMDP

Figure 8.7. AlgorithmMaxU(U, V) for PTA = (L, l̄,X , Σ, inv , prob)

5–20 generate a finite-state graph, the nodes of which are symbolic states, obtained
by iterating timed and discrete predecessor operations (line 8), and taking conjunc-
tions (lines 12–16). The edges of the graph are partitioned into the sets E(l,g,σ,p) for
(l, g, σ, p) ∈ prob, where any (z, (X, l′), z′) ∈ E(l,g,σ,p) corresponds to a transition
from any state in the symbolic state z to some state in the symbolic state z′ when the
outcome (X, l′) of the probabilistic edge (l, g, σ, p) is chosen. The graph edges are
added in line 11. Line 20 describes the manner in which the probabilistic edges of the
probabilistic timed automaton are used in combination with the computed edge sets
to construct the Markov decision process MDP. The states of MDP are the symbolic
states generated by the previous steps of the algorithm, and the probabilistic transition
relation of MDP is constructed by grouping the graph edges generated by the same
probabilistic edge of the probabilistic timed automaton under study. The initial state
of MDP is irrelevant, and therefore is omitted from the notation.

DRAFT

278 Modeling and Verification of Real-Time Systems

0.9

0.90.90.950.95

0.05

0.05

0.95

0.1

0.1

(si, 26x63∧z<6)

(si, 26x63∧z<4)

(si, 26x63∧z<2)

(di, 16x62∧z<3)

(di, 16x62∧z<5)

(di, 16x62)target set tpre[[true]](sr, z<6) = {(sr, z<6)}

Figure 8.8. Markov decision process generated byMaxU([[true]], (sr, z<6))

The following proposition states the correctness of our algorithm for calculating
maximum until probabilities.

PROPOSITION 8.3.– For any probabilistic timed automaton PTA, corresponding

timed Markov decision process [[PTA]]+
R

= (S, s̄,Σ,R,Steps) and sets of symbolic
states U and V, if MDP = (Z,StepsZ) is the Markov decision process generated by
MaxU(U, V), then for any s ∈ S:

– pmax
[[PTA]]+

R

(s, U U V)>0 if and only if s ∈ tpreU∨V(Z);

– if pmax
[[PTA]]+

R

(s, U U V)>0, then

pmax
[[PTA]]+

R

(s, U U V) = max {pmax
MDP(z,3 tpreU∨V(V)) | z ∈ Z ∧ s ∈ tpreU∨V(z)} .

EXAMPLE 8.5.– We now return to the probabilistic timed automaton in Example 8.1
(see Figure 8.1) and repeat the calculation from Example 8.4, i.e. the maximum prob-

ability of reaching the location sr within 6 time units. We therefore add a distinct
clocks z to the automaton and consider the probability of reaching the symbolic state
(sr, z<6). ApplyingMaxU([[true]], {(sr, z<6)}) returns the Markov decision process
given in Figure 8.8 where the darker arrows correspond to those edges generated by

time and discrete predecessor operations (line 11 of Figure 8.7) and the lighter ar-

rows are those generated in the construction of the Markov decision process (line 20

of Figure 8.7). From Proposition 8.3 it follows that, starting from the initial state, the

maximum probability of reaching location sr within 6 time units is 0.99525, corre-
sponding to the maximum probability of (di, 16x62∧ z<3) reaching the target set in
the Markov decision process given in Figure 8.8.

DRAFT

Verification of Real-Time Probabilistic Systems 279

8.3.3.4. Computing minimum reachability probabilities

As in the cases of (non-probabilistic) timed automata and (finite-state) Markov
decision processes with fairness constraints, when considering properties which have
universal quantification over paths or require the computation of minimum probabil-
ities, standard algorithms can no longer be applied. For example, under divergent
adversaries the minimum probability of letting one time unit elapse is 1; however, if
we remove the restriction to time-divergent adversaries, then this minimum probabil-
ity becomes 0.

The results presented below are an extension of the results for (non-probabilistic)
timed automata [HEN 94] which show that verifying ∃2 I (“there exists a divergent
path for which all states along the paths are in the set I”) reduces to computing the
greatest fixpoint and, for certain sets of states U and V , computing the set of states
satisfying U ∃U V (“there exists a divergent path for which a state in V is reached and
it remains in the state U until a state in V is reached”). More precisely, for any set of
symbolic states I, the set of states that satisfy ∃2 I reduces to computing the greatest
fixpoint:

gfpX.
(

I ∧ z.(X ∃U [[z>c]])
)

(8.1)

for any c(>0) ∈ N and clock z that does not appear in any of the guards, invariants
or resets of the timed automata under study. An important point is that the expression
requires that more than c time units elapse repeatedly.

Recall, from the duality between reachability and invariance, for any state s of
[[PTA]]+

R
:

pmin
s (3 T) = 1− pmax

s (2 (L \ T)) ,

and hence, to calculate the minimum probability of reaching a set of target locations,
it suffices to calculate the maximum probability of remaining in the states not in the
target set, i.e. a maximum invariance probability. Note that, although we have re-
duced the problem to that of calculating a maximum probability, we cannot ignore
time divergence when calculating such probabilities. For example, returning to the
probabilistic timed automaton in Example 8.1 and the invariance set {(di, 06x63)},
under all adversaries the maximum probability of remaining in this set is 1; however,
as we cannot let more that 3 time units pass in di, under divergent adversaries this
probability is 0.

Proposition 8.4 shows that we can reduce the computation of the maximum prob-
ability of invariance to that of computing the maximum probability of until within
which a qualitative invariance is nested. As issues of time divergence are irrelevant
to the computation of the maximum until probabilities, the proposition allows us to
focus our attention on incorporating time divergence when finding the states which
have maximum invariance probability 1.

DRAFT

280 Modeling and Verification of Real-Time Systems

algorithmMaxI>1(c, I)

Z:=[[true]]
repeat

Y:=Z

Z:=I ∧ z.MaxU>1(Y, [[z>c]])
until Z = Y

return Z

Figure 8.9. AlgorithmMaxI>1(c, I) for PTA = (L, l̄,X , Σ, inv , prob)

PROPOSITION 8.4.– For any probabilistic timed automaton PTA, corresponding

timed Markov decision process [[PTA]]+
R

= (S, s̄,Σ,R,Steps), state s ∈ S and set
of symbolic states I:

pmax
[[PTA]]+

R

(s,2 I) = pmax
[[PTA]]+

R

(s, I U [[2 I]]=1)

where [[2 I]]=1 = {s′ | s′ ∈ S ∧ pmax
[[PTA]]+

R

(s′,2 I) = 1}.

Since we have already introduced an algorithm for calculating maximum until
probabilities, it remains to consider a method for calculating the set [[2 I]]=1. Based
on (8.1) we obtain the following proposition.

PROPOSITION 8.5.– For any probabilistic timed automaton PTA, corresponding

timed Markov decision process [[PTA]]+
R

= (S, s̄,Σ,R,Steps), set of symbolic states
I, constant c(>0) ∈ N, if z ∈ X does not appear in any of the guards or invariant
conditions of PTA, then the set [[2 I]]=1 is given by the greatest fixpoint

gfpX.
(

I ∧ z.[[X U [[z>c]]]]=1

)

where [[U U V]]=1 = {s | s ∈ S ∧ pmax
[[PTA]]+

R

(s, U U V) = 1}.

The algorithm MaxI>1(c, I) for calculating the set [[2 I]]=1 follows from Propo-
sition 8.5 and is given in Figure 8.9. The algorithm calls MaxU>1(U, V), given in
Figure 8.10, which computes the set of states [[U U V]]=1 and is based on a similar
algorithm for finite-state Markov decision processes [ALF 97].

EXAMPLE 8.6.– We now return to the probabilistic timed automaton in Example 8.1
(see Figure 8.1) and compute the minimum probability of a message being correctly
delivered before 6 time units have elapsed. This is achieved by adding a clock z to the
probabilistic timed automaton and computing the maximum probability of remaining

in the set of symbolic states

I = [[true]] \ {(sr, z<6)} = {(di, 06x63), (si, 06x62), (sr, z>6)} ,

DRAFT

Verification of Real-Time Probabilistic Systems 281

algorithmMaxU>1(U, V)

Z0 := [[true]]
repeat

Y0 := Z0

Z1 := [[false]]
repeat

Y1 := Z1

Z1 := V ∨ (U ∧ dpre1(Y0, Y1))
Z1 := Z1 ∨ tpreU∨V(Y0∧Y1)

until Z1 = Y1

Z0 := Z1

until Z0 = Y0

return Z0

algorithm dpre1(U, V)

Y := [[false]]
for (l, g, σ, p) ∈ prob

Y0 := [[true]]
Y1 := [[false]]
for e ∈ edges(l, g, p)
Y0 := dpre(e, U) ∧ Y0

Y1 := dpre(e, V) ∨ Y1

end

Y := (Y0 ∧ Y1) ∨ Y
end

return Y

Figure 8.10. AlgorithmMaxU>1(U, V) for PTA = (L, l̄,X , Σ, inv , prob)

0.1 0.05

0.10.1

0.05

0.05

(di, 16x62∧z>3)

(si, 26x63∧z>3) (si, 26x63)

(di, 16x62)

target set tpreI∨[[2 I]]=1
([[2 I]]=1) = {(sr, z>6), (si, x63∧z>x+3), (di, x62∧z>x+4)}

Figure 8.11. Markov decision process generated byMaxU(I, [[2 I]]=1)

i.e. the states where either the message has not been delivered or clock z is greater
than or equal to 6. Using Proposition 8.4 we have pmax

s (2 I) = pmax
s (I U [[2 I]]=1),

and hence we first find [[2 I]]=1 (the set of states for which the maximum probability

of remaining in I is 1). Using Proposition 8.5 this set is given byMaxI>1(c, I) which
returns:

[[2 I]]=1 = {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)} .

Next, applying MaxU(I, [[2 I]]=1) returns the Markov decision process given in
Figure 8.11. As (di, 16x62) is the only symbolic state in Figure 8.11 for which the
time predecessor set includes (di, x=0∧z=0), using Proposition 8.3, from the initial
state, the maximum probability of remaining in I until a state in [[2 I]]=1 is reached

equals the maximum probability of (di, 16x62) reaching tpreI∨[[2 I]]=1
([[2 I]]=1),

and hence equals 0.005.

DRAFT

282 Modeling and Verification of Real-Time Systems

Finally, using Proposition 8.4 and the duality between probabilistic reachabil-

ity of invariance, starting from di with x equal to 0, the minimum probability of
correctly delivering before 6 time units have elapsed equals 1− 0.005 = 0.995.

8.3.4. Digital clocks

In this section we present the integral semantics (or “digital clocks”) model where
the time domain is the natural numbers as opposed to the reals. This leads to a finite-
state Markov decision process which can therefore be model checked directly by em-
ploying the efficient symbolic methods in tools such as PRISM [HIN 06, PRI]. This
approach is based on the work of [HEN 92] which studies the question of when real-
time properties of timed automata can be verified using only integral durations (digital
clocks), and shows that such a reduction is possible for a large class of systems and
properties, including time-bounded invariance and response. However, before we dis-
cuss the integral semantics, we introduce an additional measure for probabilistic timed
automata, expected reachability, since this measure is, along with probabilistic reach-
ability, preserved under certain restrictions by the integral semantics.

In this section, we assume that probabilistic timed automata are structurally non-
Zeno (see Section 8.3.1) and also closed and diagonal-free, that is, automata whose
zones do not compare the values of clocks with each another or contain strict compar-
isons with constants. The correctness of the results presented in this section can be
found in [KWI 06].

8.3.4.1. Expected reachability

Expected reachability is defined with respect to a set of target states and a cost
function mapping state-event and state-duration pairs to real values (the cost of per-
forming an event or letting a certain amount of time pass in the corresponding state,
respectively). This measure corresponds to the expected cost (with respect to the cost
function) of reaching the target set. More formally, for a timed Markov decision pro-
cess TMDP = (S, s̄,Σ,T,Steps), cost function C : S × (Σ ∪ T) → R, state s ∈ S,
set T ⊆ S of target states, and adversary A ∈ AdvTMDP, let eATMDP(s, cost(C, T))
denote the usual expectation of the function cost(C, T) (which returns, for a given
path ω ∈ Path(s), the total cost accumulated until a state in T is reached along ω)
with respect to the measure ProbAs over PathA(s). That is:

eATMDP(s, cost(C, T)) =

∫

ω∈PathA(s)

cost(C, T)(ω) dProbAs

where for any ω ∈ PathA(s):

cost(C, T)(ω)
def
=

min{j |ω(j)∈T}
∑

i=1

C(ω(i−1), step(ω, i−1))

DRAFT

Verification of Real-Time Probabilistic Systems 283

if there exists j ∈ N such that ω(j) ∈ T , and cost(C, T)(ω)
def
=∞ otherwise.

Since cost of a path which does not reach T is set to∞, even though the total cost
of the path may not be infinite, the expected cost of reaching T from s is finite if and
only if a state in T is reached from s with probability 1. Expected time reachability
(the expected time with which a given set of states can be reached) is a special case of
expected reachability, corresponding to the case when C(s, σ) = 0 for all s ∈ S and
σ ∈ Σ and C(s, t) = t for all s ∈ S and t ∈ T.

DEFINITION 8.12.– Let TMDP = (S, s̄,Σ,T,Steps) be a timed Markov decision
process. The maximum and minimum expected costs of, from a state s ∈ S, reaching
a set of states T under the cost function C are defined as follows:

emax
TMDP(s, C,3 T) = sup

A∈AdvTMDP

eATMDP(s, cost(C, T))

emin
TMDP(s, C,3 T) = inf

A∈AdvTMDP

eATMDP(s, cost(C, T)) .

Calculating expected reachability for finite-state Markov decision processes is
equivalent to the stochastic shortest path problem; see for example [BER 91, ALF 99].

In practice, cost functions are defined not at the level of timed Markov decision
processes, but in terms of probabilistic timed automata. At this level, cost functions
can be defined using a pair (cΣ, r), where cΣ : L×Σ→ R is a function assigning the
cost, in each location, of executing each event in Σ, and r : L → R is a function
assigning to each location the rate at which costs are accumulated as time passes
in that location. The associated cost function CcΣ,r is defined as follows, for each
(l, v) ∈ L× T

X and a ∈ Σ ∪ T:

CcΣ,r((l, v), a)
def
=

{

cΣ(l, a) if a ∈ Σ
a · r(l) otherwise.

A probabilistic timed automaton equipped with a pair (cΣ, r) is a probabilistic exten-
sion of priced timed automata (also known as weighted timed automata) [BEH 01,
ALU 04].

Expected time reachability allows us to express, for example, “the expected time
until a data packet is delivered is at most 20 ms” and “the expected time until a packet
collision occurs is at least 100 seconds”. In general, expected reachability allows us to
compute the maximum and an minimum values for measures including: “the expected
number of retransmissions before the message is correctly delivered”, “the expected
number of packets sent before failure” and “the expected number of lost messages

DRAFT

284 Modeling and Verification of Real-Time Systems

within the first 200 seconds”. For example, in the case of the last property, to cal-
culate this measure, we would first need to modify the probabilistic timed automaton
under study by adding a distinct clock and location such that, from all locations, once
this clock has reached 200 seconds the only transition is to this new location. The set
of target states would then be the set containing only this new location and the cost
function would equal 0 on all time transitions and events except the event(s) corre-
sponding to a message being lost, whose cost would be set to 1.

In addition, using cost functions of the form CcΣ,r, we can consider performance
measures such as:

– the expected time the channel is free before N messages are sent (by setting
r(l) to be 1 if location l corresponds to a state in which the channel is free, and 0
otherwise);

– the expected time a sender spends waiting for an acknowledgement (by setting
r(l) to be 1 if location l corresponds to a state in which the sender is waiting for an
acknowledgement, and 0 otherwise);

– the expected energy consumption within the first T (∈ N) seconds (by setting
r(l) to the power usage (Watts) of location l ∈ L and cΣ(l, σ) to be the energy con-
sumption associated with performing the event σ in location l).

8.3.4.2. Integral semantics

Recall that the semantics of a probabilistic timed automaton given in Section 8.2.4
is parameterised by both the time domain T and time increment ⊕. In this section
we set the time domain T equal to N, we let the time increment operator ⊕ equal
⊕N which is defined below, and refer to [[PTA]]⊕N

N
as the integral semantics of PTA.

To define ⊕N, first, for any x ∈ X , let cx denote the greatest constant the clock x
is compared to in the clock constraints of PTA. If the value of the clock x exceeds
cx, then its exact value is not relevant when deciding which probabilistic edges are
enabled. This means that cx+1 is the maximum value of clock x that needs to be
represented, because we can interpret this value as corresponding to all clock values
greater than cx, which leads us to the following definition of ⊕N. For any clock
valuation v ∈ N

X and time duration t ∈ N, let v⊕Nt be the clock valuation ofX which
assigns the value min{v(x)+t, cx+1} to all clocks x ∈ X (although the operator⊕N

is dependent on PTA, we omit the sub- or superscript indicating this for clarity).

The definition of integral semantics for probabilistic timed automata is a general-
isation of the analogous definition for the classical model in [BEY 01]. The fact that
the integral semantics of a probabilistic timed automaton is finite can be derived from
the definitions.

The results below demonstrate that digital clocks are sufficient for calculating
probabilistic reachability and expected reachability properties of probabilistic timed
automata.

DRAFT

Verification of Real-Time Probabilistic Systems 285

(di, (0, 0))

(sr, (0, 1))

(si, (2, 3))

(si, (1, 2))

(si, (0, 1))

(di, (1, 1))
1 1

0.1

(sr, (0, 2))

0.05

0.95

0.95

0.05

(sr, (0, 3))

(si, (0, 3))
0.05

0.95

0.95

0.05

(si, (3, 4))

(si, (2, 4))

(si, (1, 3))

(di, (2, 2))

(si, (0, 2))

(si, (3, 5))

1

(sr, (0, 4))

(si, (0, 4))

0.9 0.1 0.9

1

1

1 1

1

send

retry

retry

retry

retry

send

Figure 8.12. Fragment of the integral semantic model of Example 8.1

PROPOSITION 8.6.– For any probabilistic timed automaton PTA and target set of

symbolic states T in which all zones are closed and diagonal free:

pmax
[[PTA]]+

R

((l̄,0),3 T) = pmax

[[PTA]]
⊕N

N

((l̄,0),3 T)

pmin
[[PTA]]+

R

((l̄,0),3 T) = pmin

[[PTA]]
⊕N

N

((l̄,0),3 T) .

Furthermore, for any (non-negative) cost function CcΣ,r with rational coefficients, if
all probability values appearing in PTA are rational, then:

emax
[[PTA]]+

R

((l̄,0), CcΣ,r,3 T) = emax

[[PTA]]
⊕N

N

((l̄,0), CcΣ,r,3 T)

emin
[[PTA]]+

R

((l̄,0), CcΣ,r,3 T) = emin

[[PTA]]
⊕N

N

((l̄,0), CcΣ,r,3 T) .

EXAMPLE 8.7.–We return once more to the PTA in Example 8.1 (see Figure 8.1) and

consider the integer semantic model of this automaton. Similarly to the cases before,

since we are interested in the probability of reaching the location sr within 6 time
units, we add an additional clock z to the automaton. Note that, since all zones must
be closed (and diagonal-free), in this case we cannot consider a strict bound on the

clock z, i.e. we can consider the target set (sr, z66) but not the target set (sr, z<6).
The Markov decision process obtained through the integer semantics has 32 states and

DRAFT

286 Modeling and Verification of Real-Time Systems

42 transitions. In Figure 8.12 we present a fragment of this Markov decision process

in which a clock valuation v is written as a pair (r1, r2) rather than v(x) = r1 and
v(z) = r2. We find that the minimum and maximum probabilities equal 0.995 and
0.9975 respectively. The fact that maximum probability differs from the previous cases

is due to the fact that the target set now includes the case when the clock z equals 6.

8.4. Case study: the IEEE FireWire root contention protocol

We illustrate the practical applicability of the techniques presented in this chap-
ter with a real-life case study: the IEEE FireWire root contention protocol [IEE 95],
which uses both randomisation and timing delays to determine a leader among two
contending processes. This section is based on results presented in [KWI 03, DAW 04,
KWI 06].

8.4.1. Overview

The IEEE 1394 High Performance Serial Bus is used to transport digital video and
audio signals within a network of multimedia systems and devices, such as PCs, lap-
tops and camcorders. It has a scalable architecture, and it is hot-pluggable, meaning
that devices can be added to or removed from the network at any time, supports both
isochronous and asynchronous communication and allows quick, reliable and inex-
pensive data transfer. It is currently one of the standard protocols for interconnecting
multimedia equipment. The standard comprises various protocols. The one that we
consider here is a leader election protocol called the root contention protocol.

The root contention protocol takes place after a bus reset in the network, i.e. when
a node (device or peripheral) is added to or removed from the network. After a bus
reset, all nodes in the network have equal status and know only to which nodes they
are directly connected, so a leader must then be chosen. The aim of this protocol is to
check whether the network topology is a tree and, if so, to construct a spanning tree
over the network whose root is the leader elected by the protocol.

In order to elect a leader, nodes exchange “be my parent” requests with its neigh-
bours. However, contention may arise when two nodes simultaneously send such
requests to each other. The solution adopted by the standard to overcome this conflict,
called root contention, is both probabilistic and timed: each node will flip a coin in
order to decide whether to wait for a short or for a long time before sending a request.

8.4.2. Probabilistic timed automata model

The model comprises four components: two contending nodes and two connect-
ing wires. Figure 8.13 shows the probabilistic timed automaton Node

p

i for a node.

DRAFT

Verification of Real-Time Probabilistic Systems 287

xi61670

REC_REQ_SLOW

xi6850

REC_REQ_FAST

REC_IDLE

urgenturgent

rec_idlei

rec_reqi

rec_idlei

rec_reqi

rec_idlei

rec_reqi

snd_idlei snd_idlei

snd_acki
xi>760

snd_reqi

xi>1590

snd_reqi
xi>760

urgent

xi6850

xi61670
REC_IDLE_SLOW

REC_IDLE_FAST

A_ROOT

rec_reqi

snd_acki

rooti
rec_acki

A_CHILD

xi>1590

ROOT_CONT

childi
urgent

CHILDtrueROOTtrue
trueSNT_REC

xi:=0 xi:=0

0.50.5

xi:=0

0.5

xi:=0

0.5

Figure 8.13. The probabilistic timed automaton Node
p

i

This model is a probabilistic extension of the timed automaton model presented in
[SIM 01].

The behaviour of the model commences in location ROOT_CONT, which models
the situation in which the node has detected root contention. Because this location
is urgent, Nodepi is forced to select an outgoing probabilistic edge instantly. Consider
the bifurcating probabilistic edge labelled by snd_idlei, which corresponds to the node
flipping a coin in order to determine whether it should wait for a short or long time.
The snd_idlei event is sent by Node

p

i to its communication medium, referring to a
transmission of an idle signal across the node’s wire to the other node. In both of the
locations REC_REQ_FAST and REC_REQ_SLOW which may be reached after tak-
ing the probabilistic edge, the passage of time may mean that the value of clock xi can
reach a value enabling the edges, which means that an acknowledgement is sent (event
snd_acki), and the node then declares itself to be leader (the event rooti which labels
the subsequent left-pointing edge to the location ROOT). In contrast, in the locations
REC_REQ_FAST and REC_REQ_SLOW, if the node receives an idle signal from
the other contending node (event rec_idlei) before sending an acknowledgement, it is
forced to move to the right to REC_IDLE_FAST or REC_IDLE_SLOW, respectively.

In this case, after a certain amount of time elapses, Nodepi can issue a request to the
other node to be its parent by sending the event snd_reqi to its wire. If the node then
subsequently detects a parent request from the other node (event rec_reqi), it returns
to the location ROOT_CONT, and restarts the root contention process. If, on the other
hand, the node detects an acknowledgement from the other node (event rec_acki), it
proceeds to declare itself as the child by sending a childi event.

DRAFT

288 Modeling and Verification of Real-Time Systems

y6delay
REC_ACK

y6delay
REC_IDLE

x6delay
REC_IDLE_REQ

x6delay
REC_REQ_ACK

REC_REQ_IDLE

x6delay

x6delay
REC_ACK_REQ

x6delay

rec_ackj

rec_idlej

REC_ACK_IDLE

x6delay

snd_idlei

y:=0
snd_idlei rec_ackj

y:=0
snd_reqi

snd_reqi

rec_ackj

snd_acki

rec_reqj

snd_acki

snd_reqi

snd_acki

y, x:=0

snd_reqi x, y:=0

rec_reqj

snd_idlei
y:=0

snd_idlei

snd_reqi

rec_idlej

snd_reqi, y:=0

snd_idlei rec_idlej

snd_acki

y:=0

rec_reqj

REC_IDLE_ACK REC_REQ
y6delay

snd_idlei

snd_acki

EMPTYtrue

Figure 8.14. The probabilistic timed automaton Wirei

The communication medium between the nodes comprises two wires modelled as
two-place buffers, along which signals are driven continuously. These are represented
by the timed automata Wire1 and Wire2. Figure 8.14 illustrates the general case,
Wirei. This model is the classical (non-probabilistic) timed automaton taken from
[SIM 01], with the interpretation that all transitions are made with probability 1. The
parallel composition

Implp = Node
p

1 ‖ Wire1 ‖ Wire2 ‖ Node
p

2

of the resulting probabilistic timed automata is then constructed using Definition 8.4.

DRAFT

Verification of Real-Time Probabilistic Systems 289

x6360

x6360 x6360 x6360 x6360

x:=0x:=0
x:=0x:=0x:=0

x>760
x:=0

x>1590
x:=0

x>1230

x>1230

x>400

x>1230

x61670x6850 x61670 x61670

0.5 0.50.50.5

0.50.5

start-startfast-start start-fast start-slow slow-startslow-fastfast-slowfast-fast slow-slow
trueele
ted

0.5 0.5 0.5 0.5

0.5 0.5

x:=0
x:=0

x:=0

Figure 8.15. The probabilistic timed automaton I
p

1

D (103ns) Region graph Forwards Backwards Digital clocks

2 423,016 53 (0.00) 15 (1.39) 68,056
4 1,395,390 131 (0.00) 25 (1.55) 220,565
8 3,375,390 372 (0.02) 81 (1.35) 530,965

10 4,365,390 526 (0.03) 126 (1.61) 686,165
20 9,315,390 1,876 (0.09) 528 (11.0) 1,462,165
30 14,265,390 4,049 (0.20) 1,206 (11.2) 2,238,165
40 19,215,390 7,034 (0.46) 2,168 (1,030) 3,014,165
50 24,165,390 10,865 (1.23) 3,426 (6,464) 3,790,165
60 29,115,390 15,511 (2.74) 4,964 (26,995) 4,566,165

∞ 1,542 - 0 (0.55) 776

Table 8.1. Model sizes (and generation times in seconds) for I
p

1

We also study the abstract probabilistic timed automaton I
p

1 of the root contention
protocol given in Figure 8.15. It is a probabilistic extension of the classical timed
automaton I1 of [SIM 01], where each instance of bifurcating edges corresponds to
a coin being flipped. For example, in the initial location start-start, there is a non-
deterministic choice corresponding to node 1 (respectively node 2) starting the root
contention protocol and flipping its coin, leading with probability 0.5 to each of slow-
start and fast-start (respectively start-slow and start-fast). To simplify the presenta-
tion, the events of the probabilistic edges of Ip1 have been omitted.

DRAFT

290 Modeling and Verification of Real-Time Systems

D (103ns) Forwards Backwards Digital clocks

2 965 (0.08) 551 (447) 6,719,773
4 2,599 (0.94) 2,220 (3,854) 44,366,235
6 4,337 (1.64) 4,264 (14,954) 86,813,479
8 7,831 (2.93) 8,075 (100,893) 129,267,079

10 11,119 (4.27) 13,428 (608,392) 171,720,679
20 41,017 (18.7) - 383,988,679
30 89,283 (56.1) - 596,256,679
40 155,675 (129) - 808,524,679

∞ - 0 (97.2) 212,268

Table 8.2. Model sizes (and generation times in seconds) for Implp

D Region graph Forwards Backwards Digital clocks
(103ns) const. m/c const. m/c const. m/c const. m/c

2 14.3 5.90 0.08 0.02 0.08 0.03 2.90 0.53
4 29.2 45.2 0.10 0.03 0.07 0.02 8.67 3.81
8 72.4 215 0.15 0.03 0.30 0.03 31.4 22.0

10 100 332 0.16 0.04 0.59 0.03 49.0 34.1
20 314 1,140 0.70 0.10 11.5 0.05 183 134
30 898 2,535 1.83 0.16 44.7 0.12 406 280
40 1,186 2,786 4.66 0.29 268 0.29 746 312
50 1,906 2,861 11.0 0.50 448 0.53 1,191 302
60 2,666 2,938 19.6 0.71 1,125 0.73 1,754 300

∞ 0.61 0.33 - - 0 0 0.41 0.11

Table 8.3. Model construction and model checking times in seconds for I
p

1

8.4.3. Model checking statistics

In this section we investigate the state spaces and timing statistics of the differ-
ent approaches presented in this chapter when applied to the root contention protocol.
The statistics were obtained when setting the maximum transmission delay equal to
360 nanoseconds and calculating the minimum probability of electing a leader by a
deadline D and the minimum probability of eventually electing a leader (i.e. when
D=∞). The generation times for the symbolic backwards approach are for the pro-
totype implementation of [KWI 07] and in the case of the forwards algorithm for the
implementation based on KRONOS [DAW 96] presented in [DAW 04]. To apply the
forwards algorithm, which can only compute upper bounds on maximum reachabil-
ity probabilities, the model transformations of Implp and I

p

1 presented in [KWI 03]
were employed. Since no model transformation is known to reduce the computation
of the minimum probability of eventually electing a leader to a maximum reachability
probability, the forwards approach has not been applied to this case.

DRAFT

Verification of Real-Time Probabilistic Systems 291

D Forwards Backwards Digital clocks
(103ns) const. m/c const. m/c const. m/c

2 3.02 0.08 10.8 0.04 264 2.49
4 8.98 0.11 157 0.08 1,627 300
6 14.1 0.15 646 0.09 2,967 13,812
8 41.3 0.23 2,065 0.15 5,690 26,583

10 79.5 0.34 5,081 0.30 7,930 34,885
20 1,303 1.11 - - 16,748 104,112
30 6,893 4.54 - - 26,969 141,785
40 25,417 8.38 - - 32,325 199,102

∞ - - 0 0 23.0 68.9

Table 8.4. Model construction and model checking times in seconds for Implp

Tables 8.1 and 8.2 present the state spaces for all techniques and generation times
for the backwards and forward algorithms. The results demonstrate that the region
graph and digital clocks models have very large state spaces and that the region graph
becomes prohibitively large very quickly (limiting its applicability to only the abstract
version of the contention protocol Ip1). The results also show that the forwards and
backwards methods lead to models of similar sizes and that the generation times are
much larger for the backward algorithms. This difference in times can be attributed
to the fact that the backwards technique requires more complex operations on zones.
This difference is increased by the fact that the forwards implementation employs the
established tool KRONOS. For the caseD=∞, note that the backwards algorithm gen-
erates an empty state space. This is because after the first step (calculating [[2 I]]=1)
there is no further work to be done.

Tables 8.3 and 8.4 report on the construction and model checking times for the
(finite-state) Markov decision processes when using the PRISM tool [HIN 06, PRI].
Due to the size of the state spaces for the region graph and digital clocks models, the
construction and model checking times are larger in these cases. Although the digital
clocks approach generates much larger state spaces, we can see that this does not have
a drastic effect on the model checking times. This is due to regularity in the model
which is exploited in the symbolic data structures employed by PRISM. The fact that
construction times for the forwards models are much faster than those obtained for
the backwards models is due to the forwards implementation optimising the PRISM
input [DAW 04]. Finally we note that, due to similarity between the model sizes,
there is no significant difference between the model checking times of the forwards
and backwards models.

DRAFT

292 Modeling and Verification of Real-Time Systems

0
2

4
6

8
10

4

12

20

28

36

0

0.2

0.4

0.6

0.8

1

deadline D (10
3
 ns)

comm. delay (ns)

m
in

.
p

ro
b

a
b

ili
ty

 e
le

c
ti
n

g
 l
e

a
d

e
r

b
y
 d

e
a

d
lin

e
 D

(a) Communication delay

0
2.5

5
7.5

10

0

0.25

0.5

0.75

1
0

0.2

0.4

0.6

0.8

1

deadline D (10
3
 ns)

prob. choosing fast
m

in
.

p
ro

b
a

b
ili

ty
 e

le
c
ti
n

g
 l
e

a
d

e
r

b
y
 d

e
a

d
lin

e
 D

(b) Biased coin (short wire)

0
2.5

5
7.5

10

0

0.25

0.5

0.75

1
0

0.2

0.4

0.6

0.8

1

deadline D (10
3
 ns)

prob. choosing fast

m
in

.
p

ro
b

a
b

ili
ty

 e
le

c
ti
n

g
 l
e

a
d

e
r

b
y
 d

e
a

d
lin

e
 D

(c) Biased coin (long wire)

Figure 8.16. Minimum probability of electing a leader by deadline D

8.4.4. Performance analysis

We now present an analysis of the performance of the FireWire root contention
protocol based on the application of the techniques described in the previous section.
Firstly, Figure 8.16(a) presents the minimum probability of electing a leader within
a deadline as the communication delay (wire length) between the nodes varies. As
expected, as the communication delay between the nodes increases, the probability of
electing the root before a deadline decreases.

In the remaining analysis, we will consider two cases for the maximum transmis-
sion delay along the wires (the constant delay in Figure 8.14): 360 nanoseconds (ns)
and 30 ns. This models the distance between the two nodes, i.e. the length of the con-
necting wires. A delay of 360 ns represents the assumption that the nodes are separated
by a distance close to the maximum required for the correctness of the protocol (from
the analysis of [SIM 01]). A delay of 30 ns corresponds more closely to the maximum
separation of nodes specified in the actual IEEE standard; this value is 22.725 ns, and
therefore our figure of 30 ns is an over-approximation. This is for efficiency reasons:
it allows us to use a time granularity of 10 ns when we consider probabilistic model
checking using digital clocks. In the following paragraphs, we will refer to the two
cases (360 ns and 30 ns) as “long wire” and “short wire”, respectively.

Figures 8.16(b), 8.16(c) and 8.17 report on the effect of using a biased coin with
respect to the minimum probability of electing a leader within a deadline and the max-
imum expected time to elect a leader, respectively. Note that we assume that the nodes
in root contention use coins of the same bias. Although it is possible to improve the
performance of the protocol by assuming that the nodes’ coins have different biases,
i.e. one coin is biased towards fast and the other towards slow, this is not feasible in
practice since each node follows the same procedure and is not known in advance
which nodes of the network will take part in the root contention protocol. Further-
more, assuming that two nodes enter the contention protocol, to decide which node
should flip which sort of coin is equivalent to electing a leader.

DRAFT

Verification of Real-Time Probabilistic Systems 293

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
x 10

4

probability of choosing fast

m
a
x
im

u
m

 e
x
p
e
c
te

d
 t
im

e
 (

n
s
)

long wire
short wire

(a) both wire lengths

0.45 0.5 0.55 0.6 0.65 0.7

30

31

probability of choosing fast
m

a
x
im

u
m

 e
x
p
e
c
te

d
 t
im

e
 (

1
0
0
 n

s
)

(b) short wire

0.42 0.46 0.5 0.54 0.58 0.62 0.66 0.7

36

37

38

39

probability of choosing fast

m
a
x
im

u
m

 e
x
p
e
c
te

d
 t
im

e
 (

1
0
0
 n

s
)

(c) long wire

Figure 8.17. Maximum expected time to elect a leader

The results demonstrate that the (timing) performance of the root contention pro-
tocol can be improved using a biased coin which has a higher probability of flipping
“fast”. The idea behind this result is that, although the use of such a biased coin de-
creases the likelihood of the nodes flipping different values, when nodes flip the same
values there is a greater chance that less time passes before they flip again (i.e. when
both flip “fast”) [STO 02]. There is a compromise here, because as the coin becomes
more biased towards “fast”, the probability of the nodes actually flipping different
values (which is required for a leader to be elected) decreases even though the delay
between coin flips will on average decrease. The results in Figure 8.17 further demon-
strate that, for a shorter wire length, there is a greater advantage when using a biased
coin (for the short wire length the minimum occurs for a coin which flips “fast” with
a probability near 0.58 while for the long wire length the minimum is near 0.56). The
reasoning behind this result is that for the short wire length more time is saved when
both nodes flip fast than for a longer wire length, since the time required when both
nodes flip fast is dependent on a constant delay given by the protocol specification
plus a delay dependent on the wire length.

8.5. Conclusions

In this chapter we gave an introduction to the probabilistic timed automata for-
malism, which is suitable for the modelling and analysis of systems exhibiting both
real-time and probabilistic characteristics. We described four different techniques for
model checking probabilistic timed automata. In brief these can be summarised as
follows:

– The region graph approach is applicable to a large class of probabilistic timed
automata and full PTCTL, but its application can be prohibitively expensive.

– The forwards reachability approach is applicable to general probabilistic timed
automata, but is restricted to computing upper bounds on maximum reachability prob-
abilities.

DRAFT

294 Modeling and Verification of Real-Time Systems

– The backwards reachability approach is applicable to general probabilistic timed
automata and full PTCTL, but is more expensive than the forwards approach and, at
the time of writing, cannot be applied to expected reachability.

– The digital clocks approach is applicable to closed and diagonal free probabilis-
tic timed automata; it can be used to compute probabilistic and expected reachability
measures, but cannot be used to verify full PTCTL.

This chapter also demonstrated the applicability of these methods to the analysis
of the IEEE FireWire root contention protocol. Additional case studies using these
methods include Bluetooth Device Discovery [DUF 06], IEEE 802.11 Wireless LAN
[KWI 02b], IPV4 Zeroconf [KWI 06], IEEE 802.15.4 CSMA-CA (ZigBee) [FRU 06]
and IEEE 802.3 CSMA/CD [KWI 07]. See also [PRI] for further details.

8.6. Bibliography

[ALF 97] DE ALFARO L., Formal verification of probabilistic systems, PhD thesis, Stanford
University, 1997.

[ALF 99] DE ALFARO L., “Computing minimum and maximum reachability times in proba-
bilistic systems”, BAETEN J., MAUW S., Eds., Proc. 10th Int. Conf. Concurrency Theory
(CONCUR’99), vol. 1664 of Lecture Notes in Computer Science, Springer-Verlag, p. 66–
81, 1999.

[ALU 94] ALUR R., DILL D., “A theory of timed automata”, Theoretical Computer Science,
vol. 126, num. 2, p. 183–235, 1994.

[ALU 04] ALUR R., LA TORRE S., PAPPAS G., “Optimal paths in weighted timed automata”,
Theoretical Computer Science, vol. 318, num. 3, p. 297–322, 2004.

[BEH 01] BEHRMANN G., FEHNKER A., HUNE T., LARSEN K., PETTERSSON P., ROMIJN

J., VAANDRAGER F., “Minimum-cost reachability for linearly priced timed automata”,
BENEDETTO M. D., SANGIOVANNI-VINCENTELLI A., Eds., Proc. 4th Int. Workshop on
Hybrid Systems: Computation and Control (HSCC’01), vol. 2034 of Lecture Notes in Com-
puter Science, Springer-Verlag, p. 147–162, 2001.

[BEH 04] BEHRMANN G., DAVID A., LARSEN K. G., “A tutorial on UPPAAL”, BERNARDO

M., CORRADINI F., Eds., Formal Methods for the Design of Real-Time Systems: 4th Int.
School on Formal Methods for the Design of Computer, Communication, and Software Sys-

tems, SFM-RT 2004, vol. 3185 of Lecture Notes in Computer Science, Springer-Verlag,
p. 200–236, 2004.

[BER 91] BERTSEKAS D., TSITSIKLIS J., “An analysis of stochastic shortest path problems”,
Mathematics of Operations Research, vol. 16, num. 3, p. 580–595, 1991.

[BEY 01] BEYER D., “Improvements in BDD-based reachability analysis of timed automata”,
OLIVEIRA J., ZAVE P., Eds., Proc. Symp. Formal Methods Europe (FME’01), vol. 2021 of
Lecture Notes in Computer Science, Springer-Verlag, p. 318–343, 2001.

DRAFT

Verification of Real-Time Probabilistic Systems 295

[BIA 95] BIANCO A., DE ALFARO L., “Model checking of probabilistic and nondeterministic
systems”, THIAGARAJAN P., Ed., Proc. 15th Conf. Foundations of Software Technology and
Theoretical Computer Science, vol. 1026 of Lecture Notes in Computer Science, Springer-
Verlag, p. 499–513, 1995.

[COU 98] COURCOUBETIS C., YANNAKAKIS M., “Markov decision processes and regular
events”, IEEE Transactions on Automatic Control, vol. 43, num. 10, p. 1399–1418, 1998.

[DAW 96] DAWS C., OLIVERO A., TRIPAKIS S., YOVINE S., “The tool KRONOS”, ALUR

R., HENZINGER T., SONTAG E., Eds., Hybrid Systems III, Verification and Control,
vol. 1066 of Lecture Notes in Computer Science, Springer-Verlag, p. 208–219, 1996.

[DAW 98] DAWS C., TRIPAKIS S., “Model checking of real-time reachability properties using
abstractions”, STEFFEN B., Ed., Proc. 4th Int. Conf. Tools and Algorithms for Construction
and Analysis of Systems (TACAS’98), vol. 1384 of Lecture Notes in Computer Science,
Springer-Verlag, p. 313–329, 1998.

[DAW 04] DAWS C., KWIATKOWSKA M., NORMAN G., “Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM”, Int. Journal on Software Tools
for Technology Transfer, vol. 5, num. 2–3, p. 221–236, 2004.

[DIL 89] DILL D., “Timing assumptions and verification of finite-state concurrent system”,
SIFAKIS J., Ed., Proc. Int. Workshop Automatic Verification Methods for Finite State Sys-
tems, vol. 407 of Lecture Notes in Computer Science, Springer-Verlag, p. 197–212, 1989.

[DUF 06] DUFLOT M., KWIATKOWSKA M., NORMAN G., PARKER D., “A formal analysis
of Bluetooth device discovery”, Int. Journal on Software Tools for Technology Transfer,
vol. 8, num. 6, p. 621–632, 2006.

[FRU 06] FRUTH M., “Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol”, Proc. 2nd Int. Symp. Lever-
aging Applications of Formal Methods, Verification and Validation (ISOLA’06), 2006.

[HEN 92] HENZINGER T., MANNA Z., PNUELI A., “What good are digital clocks?”,
KUICH W., Ed., Proc. 19th Int. Colloquium on Automata, Languages and Programming
(ICALP’92), vol. 623 of Lecture Notes in Computer Science, Springer-Verlag, p. 545–558,
1992.

[HEN 94] HENZINGER T., NICOLLIN X., SIFAKIS J., YOVINE S., “Symbolic model checking
for real-time systems”, Information and Computation, vol. 111, num. 2, p. 193–244, 1994.

[HIN 06] HINTON A., KWIATKOWSKA M., NORMAN G., PARKER D., “PRISM: A tool for
automatic verification of probabilistic systems”, HERMANNS H., PALSBERG J., Eds.,
Proc. 12th Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’06), vol. 3920 of Lecture Notes in Computer Science, Springer-Verlag, p. 441-
444, 2006.

[IEE 95] IEEE 1394-1995, High Performance Serial Bus Standard, 1995.

[JEN 96] JENSEN H., “Model checking probabilistic real time systems”, BJERNER B., LARS-
SON M., NORDSTRÖM B., Eds., Proc. 7th Nordic Workshop on Programming Theory, Re-
port 86, Chalmers University of Technology, p. 247–261, 1996.

DRAFT

296 Modeling and Verification of Real-Time Systems

[KEM 76] KEMENY J., SNELL J., KNAPP A.,Denumerable Markov Chains, Springer-Verlag,
2nd edition, 1976.

[KWI 01] KWIATKOWSKA M., NORMAN G., SPROSTON J., “Symbolic computation of max-
imal probabilistic reachability”, LARSEN K., NIELSEN M., Eds., Proc. 13th Int. Conf.
Concurrency Theory (CONCUR’01), vol. 2154 of Lecture Notes in Computer Science,
Springer-Verlag, p. 169–183, 2001.

[KWI 02a] KWIATKOWSKA M., NORMAN G., SEGALA R., SPROSTON J., “Automatic veri-
fication of real-time systems with discrete probability distributions”, Theoretical Computer
Science, vol. 282, p. 101–150, 2002.

[KWI 02b] KWIATKOWSKA M., NORMAN G., SPROSTON J., “Probabilistic model checking
of the IEEE 802.11 wireless local area network protocol”, HERMANNS H., SEGALA R.,
Eds., Proc. 2nd Joint Int. Workshop Process Algebra and Probabi listic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV’02), vol. 2399 of LNCS, Springer,
p. 169–187, 2002.

[KWI 03] KWIATKOWSKA M., NORMAN G., SPROSTON J., “Probabilistic model checking of
deadline properties in the IEEE 1394 FireWire root contention protocol”, Formal Aspects
of Computing, vol. 14, p. 295–318, 2003.

[KWI 06] KWIATKOWSKA M., NORMAN G., PARKER D., SPROSTON J., “Performance anal-
ysis of probabilistic timed automata using digital clocks”, Formal Methods in System De-
sign, vol. 29, p. 33–78, 2006.

[KWI 07] KWIATKOWSKA M., NORMAN G., SPROSTON J., WANG F., “Symbolic model
checking for probabilistic timed automata”, Information and Computation, vol. 205,
num. 7, 2007.

[LAR 97] LARSEN K., PETTERSSON P., YI W., “UPPAAL in a nutshell”, Int. Journal on
Software Tools for Technology Transfer, vol. 1, num. 1-2, p. 134–152, 1997.

[PRI] PRISM web page, www.theprismmodelchecker.org/.

[RUT 04] RUTTEN J., KWIATKOWSKA M., NORMAN G., PARKER D., Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van
Breugel (eds.), vol. 23 of CRM Monograph Series, American Mathematical Society, 2004.

[SEG 95a] SEGALA R., Modelling and verification of randomized distributed real-time sys-
tems, PhD thesis, Massachusetts Institute of Technology, 1995.

[SEG 95b] SEGALA R., LYNCH N. A., “Probabilistic simulations for probabilistic processes”,
Nordic Journal of Computing, vol. 2, num. 2, p. 250–273, 1995.

[SIM 01] SIMONS D., STOELINGA M. I. A., “Mechanical verification of the IEEE 1394a
root contention protocol using UPPAAL2k”, Int. Journal on Software Tools for Technology
Transfer, vol. 3, num. 4, p. 469–485, Springer-Verlag, 2001.

[STO 02] STOELINGA M., Alea jacta est: verification of probabilistic, real-time and paramet-
ric systems, PhD thesis, University of Nijmegen, The Netherlands, 2002.

[TRI 98] TRIPAKIS S., The formal analysis of timed systems in practice, PhD thesis, Univer-
sity of Joseph Fourier, 1998.

DRAFT

Verification of Real-Time Probabilistic Systems 297

[TRI 05] TRIPAKIS S., YOVINE S., BOUAJJANI A., “Checking timed Büchi automata empti-
ness efficently”, Formal Methods in System Design, vol. 26, num. 3, p. 267–292, 2005.

