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Abstract Ubiquitous computing is a vision of computing in
which the computer disappears from view and becomes em-
bedded in our environment, in the equipment we use, in our
clothes, and even in our body. Everyday objects – called ‘ev-
eryware’ by Adam Greenfield – are now endowed with sens-
ing, controlled by software, and often wirelessly connected
and Internet-enabled. Our increasing dependence on ubiq-
uitous computing creates an urgent need for modelling and
verification technologies to support the design process, and
hence improve the reliability and reduce production costs.
At the same time, the challenges posed by ubiquitous com-
puting are unique, deriving from the need to consider coor-
dination of communities of ‘everyware’ and control physical
processes such as drug delivery.

Model-based design and verification techniques have pro-
ved useful in supporting the design process by detecting
and correcting flaws in a number of ubiquitous computing
applications, but are limited by poor scalability, efficiency
and range of scenarios that can be handled. In this paper
we describe the objectives and initial progress of the re-
search aimed at extending the capabilities of quantitative,
probabilistic verification to challenging ubiquitous comput-
ing scenarios. The focus is on a advancing quantitative ver-
ification in new and previously unexplored directions, in-
cluding game-based techniques, incorporation of continu-
ous dynamics in addition to stochasticity, and online appro-
aches. The research involves investigating the fundamentals
of quantitative verification, development of algorithms and
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prototype implementations, and experimenting with case stud-
ies.
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1 Introduction

In the words of Adam Greenfield, “the age of ubiquitous
computing is here: a computing without computers, where
information processing has diffused into everyday life, and
virtually disappeared from view” [52]. Ubiquitous comput-
ing, also known as pervasive computing, was conceived by
Mark Weiser over 20 years ago in a paper [100] which fa-
mously began as follows: “The most profound technologies
are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from
it”. In the ubiquitous computing world, a multitude of sensor-
enabled computing devices, of all shapes and sizes, are op-
erating, silently supporting our daily activities and autono-
mously making decisions on our behalf. These software-
controlled devices are embedded in our environment, in the
equipment we use, in our clothes, and even in our body.
As information processing becomes part of the functionality
of everyday objects, these objects evolve from conventional
hardware and software into ‘everyware’ [52], which refers to
artefacts that incorporate sensing, computation and commu-
nication, and are ‘smart’, that is, capable of sensing what is
around them, remembering the context and adapting to new
situations, and communicating with humans as well as other
devices. When wirelessly connected and Internet-enabled,
these smart everyday objects form the ‘Internet of Things’,
envisaged as early as 1999 [94] and organised into commu-
nities, networks and ecosystems. The fast pace of techno-
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logical progress in electronics, communication engineering
and cloud computing has turned this powerful vision into re-
ality, with remotely managed home appliance networks and
Internet-enabled fridges [1] available on the market today.

The widespread adoption of the ubiquitous computing
paradigm has been facilitated by a number of factors, the
main one being the huge growth in the mobile phone and
tablet platform, which now outstrips the desktop PC, partic-
ularly in the third world countries. Thanks to the advances in
microelectronics, smartphones are now endowed with sev-
eral miniature sensors, e.g. accelerometers and GPS, and
can be used to perform a wide range of information gath-
ering functions, including air pollution monitoring, location-
sensitive look up, and even more specialised healthcare checks
such as ECG monitoring [33]. Sensor-enabled smart devices
are also used to monitor and control physical processes, for
example, self-parking and self-driving cars, environmental
and wildlife monitoring, as well as implantable devices such
as glucose monitors and cardiac pacemakers [93,62]. Future
potential developments in this area are endless, with nan-
otechnology and molecular sensing devices already envis-
aged [67].

Our growing dependence on sensor-enabled smart de-
vices, together with a steep increase in the number of device
recalls [3], have naturally prompted a surge of interest in
methodologies for ensuring their safety, reliability and per-
formability. At the core of these devices is embedded soft-
ware, for which a variety of design and validation method-
ologies exist. Model-based design and automated verifica-
tion technologies offer a number of advantages, particularly
with regard to embedded software controllers: they enable
rigorous software engineering methods such as model che-
cking in addition to testing, and have the potential to reduce
the development effort through code generation and soft-
ware reuse via product lines. Models can be extracted from
high-level design notations or even source code, represented
as finite-state abstractions, and systematically analysed to
establish if, e.g., the executions never violate a given prop-
erty. These technologies provide means to automatically anal-
yse properties such as “the smartphone will never execute
a financial transaction more than once” (reliability), “the
probability of failure to raise alarm if the levels of airborne
pollutant are unacceptably high is tolerably low” (safety),
and “the maximum expected time to retrieve location infor-
mation based on GPS position is within the specified range”
(performability).

Automated verification via model checking [32] has made
great progress in recent years, resulting in a variety of soft-
ware tools now integrated within software development en-
vironments, to mention CProver [29]. These have been ap-
plied to limited ubiquitous computing scenarios, for exam-
ple, sensor network software for TinyOS [13]. In cases where
the focus is on safety, reliability and performance, it is nec-

essary to include in the models quantitative aspects such
as probability, time delays and energy usage. The preferred
technique here is quantitative, probabilistic verification [68],
which employs variants of Markov chains, annotated with
real-time and costs/rewards, as models and aims to establish
quantitative properties, for example, calculating the real-time
deadline, probability of an event of interest, or expected cu-
mulated cost of some process. Tools such as the real-time
model checker UPPAAL [8] and the probabilistic model che-
cker PRISM [72] are widely used for this purpose in several
application domains, including distributed systems, commu-
nication networks and wireless protocols.

However, the world of ubiquitous computing poses new
and wide-ranging challenges. The UK Ubiquitous Comput-
ing Grand Challenge [18] put forward a three-pronged pro-
posal, pertaining to the design and engineering of ‘every-
ware’ systems, their scientific understanding, and human in-
teraction mechanisms; see also [78]. Robin Milner was a
great proponent of developing the science of ubiquitous com-
puting [85], believing that “ubiquitous computing can em-
power us, if we can understand it”. Within the extensive
landscape of research into the science of ubiquitous com-
puting, the work reported here, inspired by Milner’s vision,
offers a focused contribution that complements his founda-
tional research with a more practical, algorithmic slant to-
wards industrially relevant methodologies and software tools
to support the design of ubiquitous computing devices. More
specifically, we aim at extending quantitative verification
techniques towards considering the following aspects: com-
munities of ‘everyware’, which act autonomously, can ex-
hibit cooperative and competitive behaviour due to conflict-
ing goals, potentially giving some agents an unfair advan-
tage that can lead to unexpected gains/losses; sensor-enabled
devices frequently need to monitor and control physical pro-
cesses, such as the electrical signal in the heart or concentra-
tion of glucose in the blood, which necessitates the consid-
eration of sophisticated, possibly non-linear continuous dy-
namics in addition to discrete function and stochasticity; and
continuous interaction with the environment naturally leads
to adaptive behaviours, where offline verification no longer
suffices and online verification is essential to ensure depend-
ability of reconfigurations. As concrete examples of situa-
tions that we are targeting, consider the following properties
where the new aspects are highlighted in italics: “the ex-
pected energy usage will remain within the specified range,
irrespective of demand by other users” (competitive); “the
blood glucose level will return to a normal range in at most
3 hours, assuming wireless communication failure rate is
within specified tolerance” (continuous and stochastic dy-
namics); and “the expected time to make a collective de-
cision by a group of potentially faulty mobile sensors falls
within a specified interval of time, even allowing for some
sensors to move out of reach of the signal”.
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This paper reports on ongoing research performed as
part of the ERC Advanced Grant VERIWARE (2010-15)
[4], aimed at developing automated quantitative verification
and synthesis methodologies to cater for ubiquitous com-
puting. We summarise the state of the art and the goals of
the VERIWARE project, and present selected research high-
lights from the initial phase: (i) analysis of cooperative be-
haviours [26]; (ii) integration of sensing and monitoring for
continuous physical processes, including at nanoscale [24,
79]; (iii) compositional quantitative verification via multi-
objective probabilistic model checking [73,46,47], and (iv)
quantitative runtime verification to handle adaptive behaviours
[14,48]. We conclude by outlining the challenges and future
promise of the methods.

2 State of the Art

Quantitative modelling. Model-based design methodolo-
gies support the design process through providing tools for
a range of analysis methods, as well as code generation.
Ubiquitous computing systems are distributed and reactive,
and therefore naturally modelled using automata-like for-
malisms or process calculi, where the focus is on system
dynamics as it evolves. Mobility and spatial movement char-
acteristic of ubiquitous computing systems can be modelled
in e.g. the pi-calculus [86]. The induced models are state-
transition graphs, where vertices correspond to system states
and arrows correspond to transitions between system states.
Quantitative extensions annotate model states or transitions
with real-valued quantities that capture resource usage. These
include weighted automata [20], which can model a variety
of resource types, as well as probabilistic [98], timed [6]
and hybrid automata [58], which target specific resources
and associated analyses. Probabilistic extensions of process
calculi have also been proposed, for example the probabilis-
tic pi-calculus [88], where transitions are taken according to
discrete probability distributions, and the stochastic process
algebra PEPA [60], where transitions are governed by expo-
nential distributions.

The majority of the modelling formalisms for represent-
ing reactive systems have discrete dynamics, where tran-
sitions between the states are discrete. Quantitative exten-
sions of such formalisms may redefine this dynamics in a
number of ways: as discrete transitions but with a proba-
bilistic outcome, as in probabilistic automata [98]; as con-
tinuous real-valued time delay, as in timed automata [6];
or as continuous stochastically distributed time delay, as in
stochastic process algebras [60]. All these features – and
additional information about resources, e.g. energy, mem-
ory consumption, etc – play a part in the modelling of ‘ev-
eryware’, whose underlying semantics is hybrid. By virtue
of being embedded [59], ‘everyware’ are exposed to reac-
tion constraints, which include time deadlines and which can

be hard or stochastically distributed, as well as execution
constraints, such as energy level and failures in the (wire-
less) communication medium. The design of such systems
must combine control engineering techniques (for the reac-
tion constraints, essentially achieved through deriving ana-
lytical models) with computational techniques (for the ex-
ecution constraints, achieved via extended automata-based
models). Despite recent progress concerning design frame-
works and tool support for embedded systems, e.g. Ptolemy
[40], the integration of discrete and continuous dynamics,
particularly in presence of stochastic behaviour, remains a
challenge for the long term.

Automated verification via model checking. Model che-
cking [32,11] is a formal verification technique that can es-
tablish automatically, that is, by means of an algorithm, whe-
ther certain properties, usually expressed in temporal logic,
hold for a system model, typically a finite-state automaton.
Temporal logics such as CTL view the executions as a tree
and can express properties (of states or paths) which refer
to the relative order of events, for example, whether the tar-
get state is reachable from the initial state. More complex
path properties, such as repeated reachability or fairness,
can be expressed in LTL which views the system dynam-
ics as a set of executions. CTL model checking proceeds
inductively on the structure of the formula, with the tempo-
ral subformulas established through a fixpoint computation.
The LTL model checking procedure transforms the negation
of the formula into a finite-state automaton and then checks
the reachability on the product of thus obtained automa-
ton and the system model. For both CTL and LTL graph-
theoretic algorithms suffice for automatic verification. The
model checking technology is well established, with several
model checking tools widely available and in industrial use.
The main limitation of model checking is the state-space ex-
plosion problem, which can be tackled by techniques such
as model reduction, compositional reasoning and abstraction
techniques.

Quantitative verification. Quantitative model checking
approaches have emerged in three main variants: real-time
and hybrid system verification, respectively based on timed
and hybrid automata, and the more recent probabilistic ver-
ification, the core of this project. Timed automata are au-
tomata endowed with clocks, and allow for time delays spec-
ified as dense real-time values. The underlying semantics
gives rise to infinite-state dynamics, which can be reduced
to appropriate finite-state representations by the region or
zone-based quotients. Efficient model checking algorithms
exist on the zone quotient, implemented in the UPPAAL
model checker. Hybrid automata allow continuous flows ac-
cording to differential equations, for example to model ther-
modynamics, and the corresponding model checking algo-
rithms, in view of undecidability, are restricted to certain
subclasses, with implementation in PHAVer [49]. Both UP-



4 Marta Kwiatkowska

PAAL and PHAVer have been applied to the analysis of em-
bedded systems that are relevant to ubiquitous computing,
such as automotive controllers and mobile robots, but do
not support stochastic dynamics. Probabilistic verification
(also known as probabilistic model checking) is founded on
[98] and subsequently developed for further model classes
[68]. It applies to probabilistic models, typically variants
of Markov chains, and has been implemented in the tools
PRISM [72], PROBMELA [9] and MRMC [64]. Model che-
cking for probabilistic extensions of process algebras can be
achieved through translation to Markov chains [87]. There
are a variety of models, which can be classified according
to whether they contain discrete or continuous state spaces
or probability distributions, exhibit nondeterminism, or fea-
ture continuous time or variables. The models can be en-
dowed with costs and rewards that annotate states and/or
transitions. Similarly to timed and hybrid automata, abstrac-
tion techniques can be applied to yield finite-state models
amenable to model checking.

Quantitative specifications are stated in appropriate ex-
tensions of temporal logic, which can express a real-time
deadline, the probability that some event occurs, expected
reward (for example, expected time or number of failures),
or limit-average properties. Examples include probabilistic
branching-time logics such as PCTL [56] and linear-time
quantitative specifications which can express properties such
as mean payoff [20]. Model checking for quantitative spec-
ifications draws on techniques for conventional model che-
cking, such as graph-theoretic algorithms, symbolic appro-
aches and automata-theoretic methods, but these must be
combined with appropriate algebraic and numerical meth-
ods, e.g. the solution of linear equations to compute the prob-
ability. For example, for models with dense real-time a time-
abstract model has to be constructed first (for a given prop-
erty) and analysed using conventional probabilistic model
checking techniques. As an alternative to the exact, exhaus-
tive model checking algorithms, statistical model checking
[103] is a way to establish if a property approximately holds
by sampling and inspecting simulated executions of the sys-
tem. For a chosen confidence level, one can deduce whether
the property holds or not by estimating the proportion of ex-
ecutions that satisfy the property, or statistical inference.

Software model checking. Modelling typically involves
a manual step of model derivation, in the native language
of the appropriate model checker, either from the problem
specification or from a protocol standard, for example Blue-
tooth [39]. Such effort is not sustainable in the long term,
since it is time consuming, open to transcription errors, and
assumes familiarity with the model checker used. In recent
years, considerable effort has been put into the development
of model checking directly from software, i.e. written in
programming languages such as C or Java, including Java
Pathfinder [99] and CProver [29]. This is based on the pre-

mise that state-transition system models can be extracted
from software, which is possible with the help of compiler
tools and abstract interpretation, and that – despite the state-
space explosion problem – such extracted control flow graph
models can be iteratively abstracted and refined, resulting in
automatically establishing or refuting the property. The CE-
GAR (counter-example guided abstraction refinement) ap-
proach [31] is invoked, where counter-example traces are
used to guide the refinement process, without user interven-
tion. These techniques are becoming established in the soft-
ware engineering community, for example the Astree project
has successfully employed abstract interpretation to rule out
floating point overflow errors in the Airbus controller soft-
ware. However, although first steps have been made towards
quantitative software verification (PASS and [65]), the tech-
nology is in its infancy, with limitations largely due to the
difficulty of automated quantitative refinement and lack of a
compositional approach to aid scalability.

Compositionality in verification. In the light of the state-
space explosion problem, compositional frameworks that en-
able one to verify that the property holds for the composed
system, based on an analysis of the components in isola-
tion, are highly desirable as a means to achieve scalability.
Compositional assume-guarantee frameworks have been ex-
tensively studied in the literature [91,30], and implemented
and successfully applied in practice [83]. A variety of rule
formats have been proposed, but their applicability is lim-
ited because such approaches rely on the user being able
to provide the assumptions for each component of the sys-
tem. Alternative approaches being pursued investigate meth-
ods for finding assumptions automatically [89]. More recent
proposals focus on compositional verification for interface
theories [38,80]. There is also a significant body of theoret-
ical work which develops compositional reasoning of prob-
abilistic systems, including for variants of probabilistic au-
tomata [95,36,27], but none of these were implemented in
practice. The main difficulty is interference between proba-
bility and nondeterminism which may result in the failure of
compositionality.

Runtime verification. Runtime verification is achieved
through continually observing and intercepting the system
parameters as it executes, performing fault detection, identi-
fication and reconfiguration [35], which makes this approach
particularly appropriate for context-aware, adaptive systems.
Various techniques have been developed that use model che-
cking at runtime, see e.g. models@runtime, including steer-
ing to avoid failures in distributed systems [102]. Machine
learning techniques have been applied to improve the qual-
ity of predictions based on the history of executions and for
state estimation [97]. There is also increasing interest in in-
cremental model checking techniques which have the poten-
tial to improve efficiency. However, these methods have not
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until recently [44] been applied in the quantitative runtime
verification setting.

Agent-based formalisms. Although traditionally pro-
cess calculi formalisms have allowed a notion of a process
or agent, these were rather weak, in that they did not have
intentions, and instead they offered capabilities to the envi-
ronment, and the environment (which could well be other
agents) would attempt to synchronise and interact on these
capabilities. In multi-agent systems [101], intentions are typ-
ically described by goals, which can be multi-objective and
quantitative, for example achieving minimum start-up cost
and maximum average price over the lifetime. Collabora-
tion in agent communities is achieved through the sharing of
common goals. Technically, negotiation and similar modes
of agreement are a result of mechanism design that sup-
ports this kind of behaviour, though the situation compli-
cates when issues such as privacy are considered. The po-
tential of agent-based techniques to model ubiquitous com-
puting systems has already been noted, for example for sen-
sor fusion in ubiquitous computing. Some real-time goals
have been considered, e.g. in the context of (controller syn-
thesis for) timed automata. However, how best to incorpo-
rate a range of quantitative goals within the modelling for-
malisms, and how to design algorithms for the verification
of collaborating communities of agents against quantitative
multi-objective goals – particularly in the context of contin-
uous and possibly stochastic dynamics – is a subject open to
research.

Game-theoretic approaches. When considering com-
munities of self-aware ‘everyware’, which aim to achieve
certain objectives such as efficient management of their re-
sources, one must also take into account their (possibly ad-
versarial) interaction with environment. Game-theoretic app-
roaches, which explicitly represent the moves and counter-
moves of players and adversaries, are a natural model to
represent and analyse such behaviours through the study of
winning strategies, for example minimisation of energy us-
age, and the respective trade-offs. Games have been exten-
sively studied in computer science, with the work focus-
ing mainly on the complexity of computing certain winning
strategies, but we are also seeing the emergence of economic
games in the context of coordination for sensor networks
(for example in the analysis of the Aloha protocol [82]).
The work extends to stochastic games [34] as well as real-
time games, where the key difficulty is that the conventional
region-based approaches to obtaining a finite-state quotient
are no longer sufficient. An important use of real-time games
is for controller synthesis [17], but models which feature the
important combination of probability and real-time, neces-
sary for Quality of Service, have not been considered to date.
The majority of the cited work is theoretical, with few gen-
uine ubiquitous computing scenarios, and henceforth con-
siderable effort is need to put these techniques into practice.

3 Project Rationale

This VERIWARE project contributes to the science aspects
of the the UK Ubiquitous Computing Grand Challenge [18],
and focuses on one of its subgoals, that is, formulating auto-
mated verification techniques, methodologies and tools. The
overriding desire is to prevent software faults in ‘everyware’
systems, thus ensuring their safety, dependability, performa-
bility and resource efficiency.

The summary of research to date presented above has
identified key conceptual features of ‘everyware’ that any
modelling effort must be able to address as a prelude to veri-
fication, such as quantitative goals, cooperation and compe-
tition mechanisms, discrete and continuous dynamics, and
stochastic behaviour. The potential and promise of a range
of automated verification techniques has also been amply
illustrated, with some already applied in the context of ubiq-
uitous computing. Yet, it is clear that the applicability of
these techniques to ubiquitous computing is severely limited
at present.

Encouraged by the success of model checking and its
growing acceptance in industry, and, building upon quanti-
tative model checking techniques, the central premise of this
project is to enable ‘everyware’ verification through a shift
towards employing the following:

• Agent-based frameworks. A faithful model of communi-
ties of ‘everyware’ must represent them as self-interested
agents, guided by goals and incentives, and continuously
interacting with the environment as well as other agents.
The aim is to work with game-theoretic techniques and
develop specification formalisms and automated tech-
niques for quantitative analysis of cooperative behaviour.
• Software-centric, component-based approach. Manual mo-

del building effort is time-consuming and costly. The
project seeks scalable automated frameworks for extrac-
tion and verification of models directly from real soft-
ware, such as C, which will crucially depend on our abil-
ity to formulate efficient abstraction-refinement schemes.
A secondary and more ambitious aim is to formulate ef-
fective synthesis (of models or software) from quanti-
tative specifications. To achieve scalability, it will be es-
sential to work with quantitative, compositional component-
based frameworks.
• Online methods. The offline verification approach is un-

suitable for highly dynamic, context-driven, scenarios
typical for ubiquitous computing, where adaptation is
dependent on a range of inputs and happens continu-
ously, as the system executes. We will develop online
techniques based on runtime verification, employing me-
thodology based on statistical inference and/or machine
learning. The intention is to combine model extraction
with deployment and adaptation of models at runtime,
based on system observations.
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3.1 Key Research Questions

This project addresses a range of fundamental modelling
and algorithmic questions related to ‘everyware’, with the
main focus on the theory to practice transfer for ‘everyware’
verification. The research is guided by the following key sci-
entific questions:

1. What are the appropriate models for ‘everyware’?
2. What are the appropriate interaction, cooperation and

competition mechanisms for ‘everyware’?
3. What are the appropriate correctness criteria for ‘every-

ware’?
4. What are the appropriate quantitative measures for ‘ev-

eryware’ adaptability, resource usage and dependability?
5. Is verified ‘everyware’ feasible in theory?
6. Is verified ‘everyware’ feasible in practice?

3.2 Project Objectives

The overall aim of this project is to achieve ‘verified every-
ware’ in the long term, to paraphrase the ‘verified software’
proposal [63] and the Verified Compiler challenge by Tony
Hoare. Building on the successful theory to practice trans-
fer for quantitative/probabilistic model checking, yet signifi-
cantly advancing it in new and previously unexplored direc-
tions, the specific objectives of the project are to:

1. Investigate the fundamental principles, semantic models
and frameworks necessary to support the effective future
use of verification for ‘everyware’, with emphasis on the
following aspects not covered by existing methods:
– Autonomous adaptation
– Resource constraints/guarantees
– Cooperative/competitive behaviour

2. Formulate efficient algorithms and develop prototype im-
plementations for:
– Model extraction, adaptation and synthesis
– Automated quantitative abstraction-refinement
– Runtime quantitative verification

3. Perform a selection of case studies to test the effective-
ness of the methods.

4 Preliminaries

We begin by giving a brief introduction to a selection of
models and properties used in automated quantitative/prob-
abilistic verification. The presentation is centred on proba-
bilistic models and the probabilistic model checker PRISM
[72] which forms the core of the project. All the models and
specification formalisms discussed below are supported by
PRISM, see [2].

4.1 Discrete Probabilistic Models

Probabilistic behaviour such as randomisation or occurrences
of failure upon taking an action can be modelled using Markov
chains. We use discrete discrete probability distributions to
model transitions, quantifying the likelihood of moving to a
given target state. Though simple, they are of fundamental
importance because they often arise via discretisation from
more complex models, such as those featuring continuous
time or continuous probability distributions.

A discrete-time Markov chain (DTMC) D is a set of states
S together with a transition probability matrix P : S×S →
[0, 1] such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S. We usu-

ally distinguish an initial state, s̄ ∈ S, and label states with
atomic propositions L(s) ⊆ AP . The behaviour of a DTMC
is represented by the set of its execution paths s0s1s2 . . .
such that s0 = s̄ and P(si, si+1) > 0 for all i ≥ 0. A prob-
ability space can be defined over paths of the DTMC [11],
where events correspond to measurable sets of paths, for ex-
ample those reaching an error state. Probabilistic reachabil-
ity then refers to the probability of reaching a given set of
states and is a key concept for quantitative verification on
which verification of more complex properties is based.

For systems that exhibit concurrency or underspecifica-
tion in addition to probabilistic choice, we use Markov de-
cision process (MDP) models M, which are given as a set
of states S, a set Act of actions, and a partial transition
probability function P : S × Act × S → [0, 1] such that∑
s′∈S P(s, a, s′) = 1 for all s ∈ S, a ∈ Act . As for

DTMCs, we distinguish the initial state s̄ ∈ S and allow
labelling with atomic propositions L(s) ⊆ AP . Execution
paths of MDPs are sequences s0a0s1a1s2a2 . . . such that
s0 = s̄ and P(si, ai, si+1) > 0 for all i ≥ 0. Nondetermin-
ism can be resolved by means of adversaries, which select
one of the available actions upon reaching a state. Once an
adversary is fixed, the behaviour of an MDP is fully prob-
abilistic and the probability space formulated for DTMCs
can be used to express the likelihood of events. In contrast
to DTMCs, MDPs allows us to reason about the best- or
worst-case system behaviour by quantifying over all possi-
ble adversaries. Probabilistic reachability for MDPs refers to
computing the minimum or maximum probability of reach-
ing a given set of states.

In order to reason about a broad range of quantitative
properties we augment probabilistic models with reward (or
cost) information. For the case of DTMCs (this is similar for
other models) we endow a DTMC D with a reward structure
(ρ, ι), which consists of a vector of state rewards ρ : S →
IR≥0, together with a matrix ι : S × S → IR≥0 of transition
rewards, incurred each time a transition is taken. We allow
both state and transition rewards for modelling convenience,
as e.g. supported by PRISM, but note that transition rewards
suffice. Given a reward structure, we can perform quanti-
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tative analysis by computing expectations of (instantaneous
or cumulative) rewards with respect to the probability space
on paths, such as expected power consumption in the initial
phase.

In quantitative verification, we use temporal logic PCTL
[56,12] to reason about path-based properties. We distin-
guish between state (Φ) and path (φ) formulas and allow
path operators XΦ (next state),Φ1 UΦ2 (until and its bounded
variant U≤k), as well as the usual derived operators FΦ ≡
true UΦ (eventually) and GΦ ≡ ¬F¬Φ (always).

We are interested in computing the probability of set of
paths from a given state satisfying a path formula, and like-
wise the expectation for some reward structure. Two oper-
ators are introduced for this purpose, the probabilistic op-
erator P=? [ · ] and the reward operator R=? [ · ]. P=? [φ ]

denotes the probability of a path formula φ satisfied in a
given state of a DTMC. For reward structure (ρ, ι), R=? [ψ ]

denotes the expected reward for ψ, where ψ is a reward for-
mula, for example FΦ, in which case the cumulated reward
is calculated until state satisfying Φ is reached. For MDPs,
we interpret these operators by universally quantifying over
all adversaries, and hence distinguish between the minimum
and maximum probability or expectation, e.g. Pmax=? [ · ].
We often use the bounded variants of the operators, e.g.
P./p [ · ] where p ∈ [0, 1] is a probability bound and ./ is
a comparison operator, and similarly for the reward opera-
tor. The following are example specifications:

– P=? [ G≤3600 ¬fail ] - “the probability of no sensor fail-
ure occurring in the first hour” (DTMC);

– Pmax≤0.01 [ F lost ] - “the maximum probability, across
all possible schedulers, of the sensor data being lost is
no greater than 0.01” (MDP);

– Rmin=? [ F reset ] - “the minimum expected number of
data packets sent until system reset” (MDP), with reward
1 assigned to each state that sends a packet.

Model checking for PCTL proceeds in the way similar
to CTL model checking, by induction on the syntax of the
formula. The probabilistic operator involves a solution of a
linear equation system for DTMCs and an iterative fixpoint
computation (known as value iteration) for MDPs; the re-
ward operator is similar, and is based on recursive equations
or solving linear equations or linear programming problems.
More expressive logics such as LTL can also be used, at
a higher complexity cost. LTL model checking (for DTM-
Cs/MDPs) is based on the automata-theoretic approach to
non-probabilistic LTL and an exploration of the product con-
struction in order to calculate the probability. For more de-
tails consult [45,11].

4.2 Continuous-time Probabilistic Models

The models introduced in the previous section mark progress
of time in discrete fashion, where each time step corresponds
to taking a transition. In this section we briefly discuss mod-
els with continuous time and continuous probability distri-
butions.

A widely used model that permits continuous time and
transition delays modelled by (continuous) exponential dis-
tributions is continuous-time Markov chains (CTMCs). It is
given by a set of (discrete) states S and the transition rate
matrix R : S × S → IR≥0. The rate R(s, s′) determines
the delay before the transition can occur, i.e. the probabil-
ity of this transition being triggered within t time-units is
1− e−R(s,s′)·t, with the choice between more than one such
transitions to be triggered in state s determined probabilisti-
cally. As for DTMCs, we distinguish an initial state s̄ ∈ S
and label states with atomic propositions L(s) ⊆ AP . Ex-
ecution paths through a CTMC alternate states with real-
valued time delays (residence time in a state). A probabil-
ity space over paths can be defined [10] similarly to that
for DTMCs, which allows us to reason about the probabil-
ity of certain events occurring. CSL, the temporal logic for
CTMCs, is similar to PCTL, except that it contains continu-
ous versions of the time-bounded operators, such as P=? [ F≤t Φ ],
where t is real-valued, and a steady state operator S=? [Φ ]

for computing long-run probability of residing in states sat-
isfying Φ. Examples of CSL properties are:

– P=? [ F≤2.5full ] - “the probability of sensor data buffer
becoming full within 2.5ms”;

– S=? [¬failA ∧ ¬failB ] - “the long-run probability that
wireless beacons A and B are operational”.

CSL model checking for the probabilistic operator re-
duces to transient probability calculation, and typically pro-
ceeds through discretisation via uniformisation (a numerical
transformation which optimises and numerically stabilises
the computation of the transient probabilities). Model che-
cking for the steady-state operator involves solving a linear
equation system. Reward structures and operators can also
be added; for more information, see [69].

CTMCs, like DTMCs, do not allow nondeterminism. In-
teractive Markov chains and continuous-time Markov deci-
sion processes feature exponentially distributed time delays
in conjunction with nondeterminism, but are not supported
by PRISM.

A model that is particularly appropriate in the context
of distributed and service-based systems is based on timed
automata [6], which allow real-time clocks and nondeter-
minism, and discrete probability distributions to represent
randomisation and occurrence of failure. Probabilistic timed
automata (PTAs) [76] can thus be viewed as MDPs extended
with a set of real-valued clocks. A probabilistic extension of
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the temporal logic TCTL can be used to express the proper-
ties of PTAs, which includes the probabilistic operator and
certain forms of the reward operator dependent on the veri-
fication approach. The usual restriction of TCTL that clocks
are compared to integer values also applies here.

Since PTAs allow dense real time, their semantics is an
infinite-state MDP. There are two main approaches to model
checking for PTAs. The first is a discretisation via digital
clocks [74], which, for a (slightly) restricted class of PTAs,
results in a finite-state MDP in which clocks can only take
integer values. The other approach makes use of the sym-
bolic representation of dense real-time in terms of zones,
and proceeds through an adaptation of (forwards or back-
wards) algorithms for exploring the zone graph, while ap-
propriately taking account of probabilities. The resulting ab-
straction is an MDP over zones, which can be verified using
standard MDP techniques described above. An alternative
approach is based on building stochastic game abstractions
from MDPs over zones, and applying quantitative abstrac-
tion refinement [66].

Thus, model checking for PTAs essentially proceeds us-
ing techniques developed for MDPs and timed automata.
More information can be found in [75].

We summarise by briefly mentioning types of models
that naturally arise when modelling control of continuous
processes. Such models contain continuous variables, gen-
eralising hybrid automata [58], as well as clocks, and in-
clude probabilistic hybrid automata [96] (which allow dis-
crete probability distributions only) and stochastic hybrid
automata [53] (which additionally contain continuous-time
distributions and clocks). Model checking algorithms for these
involve polyhedra methods and/or discretisation, and have
high computational complexity.

4.3 Tools and Applications

Compared to conventional model checking, quantitative prob-
abilistic model checking must judiciously combine graph-
theoretic algorithms with numerical methods for calculating
the probability or expectation. The main probabilistic model
checkers are MRMC [64] (for DTMCs/CTMCs), LIQUOR
[9] for MDPs and PRISM [72] (for DTMCs/CTMCs, MDPs
and PTAs, together with the corresponding logics and re-
ward extensions). Stochastic hybrid automata are supported
by the software tool ProHVer [53]. PRISM is a symbolic
model checker, and was implemented using a variant of Bi-
nary Decision Diagrams (BDDs), but it supports its own cus-
tom data structure and statistical model checking. The men-
tioned probabilistic model checkers have been applied to the
analysis of a number of case studies from the ubiquitous
computing domain, e.g. wireless communication protocols
Zigbee and Bluetooth. However, all these concerned mono-
lithic protocol descriptions and static configurations only.

5 Research highlights

In this section we present selected research highlights achieved
in the initial phase of the VERIWARE project, followed by
a brief summary of the remaining advances. They are all ex-
tensions to the formalisms and tools presented in Section 4.

5.1 Model Checking Cooperative Behaviour

The communities of ‘everyware’ – wirelessly connected and
Internet-enabled – can be modelled using self-interested agents.
It is well known that incentives such as positive or negative
rewards have to be introduced to achieve cooperation be-
tween such agents, so as to increase their motivation and
discourage selfishness. Traditionally, cooperative behaviour
has been analysed using game theory; here, we are seeking
a suitable framework in which we can represent cooperation
schemes, state their common, quantitative goals, and auto-
matically verify the cooperative behaviour. More concretely,
the aim of the verification is to check whether the goal can be
achieved, even in presence of selfish or cheating behaviour.

Probabilistic model checking with PRISM has already
been used to study game-theoretic concepts, and more re-
cently to analyse user-centric cooperative networks [5], but
these studies employed DTMC/MDP models. We propose
to use stochastic multi-player games as a model for coopera-
tion, possibly in the presence of conflicting goals, which ne-
cessitates extending existing repertoire of models and quan-
titative verification techniques within PRISM. We also for-
mulate a quantitative temporal logic which allows us to rea-
son about the collective ability of a set of agents to achieve a
goal expressed as a probability or expectation of some desir-
able event. The framework and implementation are reported
in [26].

Stochastic games are a natural model for cooperative be-
haviour: similarly to MDPs, they admit discrete probabilis-
tic distributions and nondeterministic choices, except that
the latter are player-controlled. We work with turn-based
games, rather than concurrent games [19]; we note that the
latter are important to model incomplete information that
is often encountered in distributed embedded settings. For-
mally, a (turn-based) stochastic multi-player game (SMG) G
is given as the set of states S partitioned among a finite set
Π of players, (Si)i∈Π , a finite nonempty set of actions Act
(we assume Act(s) 6= ∅), and a partial transition probability
function ∆ : S × Act → Dist(S) where Dist(S) denotes
the set of probability distributions on S. As usual, we allow
labelling of states with atomic propositions L(s) ⊆ AP .

We unfold the behaviour of a stochastic game G into
execution paths λ = s0a0s1a1 . . . that alternate states and
actions. In each state s ∈ S, the choice of action from
the available set Act(s) is under the control of one player,
namely, the player i ∈ Π for which s ∈ Si. Once action
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a ∈ Acts is selected, the successor state is chosen accord-
ing to the probability distribution ∆(s, a). Similarly to ad-
versaries for MDPs, we define a strategy for player i ∈ Π as
a function which selects one of the available actions in ev-
ery state s. A strategy profile σ = σ1, . . . , σ|Π| comprises a
strategy for all players in the game. Under a strategy profile
σ, the behaviour of G is fully probabilistic and we can de-
fine a probability space over the set of all paths similarly to
MDPs [21]. SMGs can also be endowed with (non-negative)
state and transition-based rewards.

In order to express quantitative goals of SMGs, we for-
mulate a probabilistic alternating time temporal logic with
rewards (rPATL), which combines the alternating temporal
logic ATL with the probabilistic logic PCTL. More con-
cretely, we adopt the coalition operator 〈〈C〉〉 of ATL [7], the
probabilistic operator P=? [ · ] from PCTL [12], and a gen-
eralised variant of the reward operator R=? [ · ] from [45].
Players that cooperate form a coalition 〈〈C〉〉, and we can
analyse the coalition’s behaviour under possibly adversarial
behaviour of players not in the coalition (Π \ C). This al-
lows us to reduce model checking of rPATL to an analysis of
two-player stochastic games. Reward-based properties can
be constructed using similar intuition; we omit the details of
the different variants of reward operators from [26].

The following are typical quantitative goals that can be
expressed in the logic rPATL:

– 〈〈{1, 2}〉〉P≤0.01[F fail ] - “players 1 and 2 have a strategy
to ensure that the probability of failure occurring is at
most 0.01, regardless of the strategies of other players”;

– 〈〈C〉〉Pmax=?[F¬fail ] - “the maximum probability of coali-
tion C having a strategy to ensure that failure is avoided,
regardless of the strategies of other players”;

– 〈〈C〉〉Rmin=?[F
∞ stable] - “the minimum expected en-

ergy that coalition C can conserve to ensure that a sta-
ble state is reached, regardless of the strategies of other
players”, for a reward structure that assigns energy to
transitions taken.

Optimal probability of stochastic two-player games can
be computed by algorithms similar to MDP value iteration
[34]. Model checking for rPATL has high complexity, de-
pending on the rewards operator used, but we nevertheless
develop and implement efficient algorithms for computing
probability and expectation to a desired precision based on
fixpoint computation. We also demonstrate their usefulness
in practice on a range of case studies, including collective
decision making for sensor networks in presence of failure
and team formation protocols, performing detailed quantita-
tive analyses [26].

We briefly summarise the outcome of an analysis of a
real-world demand-side management (MDSM) protocol. The
original protocol is a microgrid that distributes energy to a
number of households. The overall goal is to minimise en-
ergy usage. The distribution of tasks is probabilistic, and
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Fig. 1: Expected value per household for MDSM (original
version).
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Fig. 2: Expected value per household for MDSM (version
with punishment).

each household is rewarded for avoiding peak demand pe-
riods. The protocol has been validated through simulation
but without considering selfish behaviour. Our model allows
for selfish behaviour, and we have detected a flaw. This is
because a household can selfishly deviate from the proto-
col without incurring any additional cost, which results in
suboptimal performance. To correct the flaw, we introduce a
punishment scheme. The results are shown in Fig. 1 (orig-
inal, with flaw) and Fig. 2 (corrected). In the figures, the
bold line shows all households following the original al-
gorithm, while the dotted line shows the outcome without
demand-side management. Horizontal dashes show devia-
tions by collaborations of increasing size (shortest dash: in-
dividual deviation; longest dash: deviation of all households).

In future, we intend to develop further case studies, e.g.
user-centric cooperation of [5], implement strategy gener-
ation, and formulate model checking algorithms for more
complex, multi-objective goals.

5.2 Quantitative Verification for Implantable Devices

Embedded software is increasingly often used in medical de-
vices, which monitor and control physical processes such as
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electrical signal in the heart or dosage of insulin. Advances
in sensor technology have resulted in millions of such de-
vices in use today, working autonomously in closed loop
or implanted in human body. Implantable medical devices
must be designed to the highest levels of safety and reliabil-
ity, yet errors in embedded software have led to a substantial
increase in costly device recalls or even patient death. Auto-
mated verification is therefore called for to ensure depend-
ability [51].

Probabilistic modelling and verification constitute a use-
ful framework to enable quantitative analysis of risks and
the impact of component failures and communication de-
lays on implantable devices. A major challenge that must be
addressed before this approach can be employed, however,
is the need to incorporate continuous dynamics within quan-
titative, probabilistic models. The appropriate models in this
context are variants of stochastic hybrid automata, e.g. [53],
but they are highly complex and the existing analysis meth-
ods are limited.

Let us consider an implantable cardiac pacemaker de-
vice. A typical heart beats at 60-100 beats-per-minute (BPM).
The sensors are placed on the heart muscle and are con-
nected by wires to the processor that controls the heart. The
sensors receive the electrical signal that passes through the
heart, and the pacemaker is also able to generate such a
signal, in case of missed heart beats. The activity of the
heart can be monitored externally using an electrocardio-
gram (ECG) signal which can be described using non-linear
ordinary differential equations. For example, the artificial
ECG model introduced in [33] (see Fig. 3) generates an ECG
signal (we only show the x coordinate which is sufficient for
the work reported here):

θ̇ = ω, ẋ = −
∑
i

αxi ω

(bxi )
2∆θ

x
i exp

[
− (∆θxi )

2

2(bxi )
2

]
(1)

where we assume θ ∈ [−π, π] is the cardiac phase, ∆θxi =

(θ − θxi )mod 2π, ω = 2πh
60
√
hav

. In the above equation h is
the instantaneous (beat-to-beat) heart rate in BPM and hav
is the mean of the last n heart rates (typically with n = 6)
normalized by 60 BPM. The main advantages of this model
is that the parameters can be adapted by learning from pa-
tient data to obtain a physiologically realistic model, and it
also supports probabilistic modelling of switching between
abnormal and normal heart behaviour, where the probabili-
ties can also be adapted to individual patients. The drawback
of the model is its non-linearity and complexity.

Jiang et al [62] developed a model-based framework for
verifying real-time properties of cardiac pacemakers based
on descriptions by Boston Scientific, a leading manufac-
turer. [62] develop a detailed model of a basic dual chamber
pacemaker as a network of timed automata. They also model
heart behaviour in terms of timed automata, and the compo-
sition of the pacemaker and the heart models can be analysed

Fig. 3: Example electrocardiogram [84].

through simulation [61] and verification in UPPAAL [62].
They do not consider more general probabilistic, quantita-
tive properties.

We enhance their effort by developing a methodology
for quantitative, automated verification of pacemaker soft-
ware models composed with a physiologically-relevant mo-
del of the heart based on the ECG equations shown above
[24]. We convert the ECG signal to a sequence of action
potentials, which correspond to the signal read on the sen-
sors. We allow for both normal and abnormal heartbeats,
as well as probabilistic switching between different heart
conditions. We adopt, unchanged, the timed automata pace-
maker model of [62]. To compose the heart and pacemaker
models, we apply discretisation techniques: we use digital
clocks [74] for timed automata. We formulate algorithms
for quantitative, probabilistic analysis for properties such
as whether the pacemaker corrects Bradycardia (slow heart
beat) and does not induce Tachycardia (fast heart beat), and
analyse the effect of undersensing (due to noise on sensor
readings) and energy consumption based on a reward ex-
tension. We choose a discretisation step to ensure that the
properties of interest are preserved. The framework is im-
plemented using PRISM and MATLAB.

To illustrate the results, in Fig. 4 we show a graph ob-
tained from composing the pacemaker with a heart that ex-
hibits Bradycardia. The blue lines represent the behaviour of
the faulty heart without the pacemaker. The green lines in-
stead represent the behaviour of the faulty heart when equip-
ped with the pacemaker. The x-axis shows the time at which
events (beats) occur, whereas the y-axis shows the beat type.
Note that the normal beats of the heart (blue lines, type 1
on y-axis) are slow, approximately one every two seconds.
However, once the pacemaker is introduced, it induces an
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atrium beat (type 3) which, after a slight delay, generates
a normal ventricular beat (type 2), thus correcting the slow
heart.

Fig. 4: Pacemaker correcting a faulty heart with Bradycar-
dia.

More generally, the quantitative specifications that are
applicable to implantable devices such as pacemakers and
glucose monitors can be expressed in the logic MTL (Metric
Temporal Logic) and include the following:

– 2[0,180](H(t) ≥ 60) ∧ (H(t) ≤ 100) - “in any interval
of time up to time bound of 3 hours, there are between
60 and 100 heart beats per minute”;

– 2[120,400](G(t) ≥ 4)∧(G(t) ≤ 10) - “the blood glucose
level will settle to a normal range of 4 to 10 mmol/L 2
hours after a meal”.

MTL has been applied to study risks of infusion pumps by
modelling and analysing the insulin-glucose regulatory sys-
tem via statistical model checking [93]. In future we intend
to generalise the methods developed for model checking of
MTL [23] and durational properties [25] over CTMCs to the
case of cardiac pacemakers.

5.3 Quantitative Verification for Molecular Devices

Significant technological advances in programmable molec-
ular assembly [92] have opened up the possibility to design
and engineer sensor-enabled devices directly at the molecu-
lar level, to interface with biological systems. DNA molecules,
in particular, are the subject of active research aimed at de-
signing nanoscale logical circuits and robots, and numerous
emerging applications are envisaged [67], several of which
naturally extend the ‘everyware’ application domain. Un-
surprisingly, given the safety-criticality of potential appli-
cations, there is already growing interest from within the
software engineering community to establish a requirements
engineering framework for molecular programming devices
[81].

Programming of DNA circuits involves using short DNA
strands as inputs to form information-processing circuits that
proceed autonomously, binding and unbinding molecules,
and producing other short strands as outputs. An established
method to design such circuits is known as DNA strand dis-
placement (DSD) [104]. DSD was given a process-algebraic
semantics by Cardelli [16], which in turn formed the basis of
a programming language and stochastic simulation environ-
ment also called DSD [90]. DSD designs are naturally mod-
elled using biochemical reactions, and hence induce con-
tinuous time Markov chain models where stochastic rates
are obtained from the kinetic rates. We can thus employ
probabilistic verification against CSL properties. Molecu-
lar signalling pathways have been previously analysed using
PRISM [57], see also [71]. Here we adapt the technology de-
veloped for this purpose to perform, for the first time, fully
automatic quantitative verification of DSD designs [79], in
the same way that verification tools are being applied to dig-
ital circuits.

The DSD programming language provides a textual no-
tation for DNA circuit designs, which is mapped via its for-
mal semantics to a system of chemical reactions. This is
then exported (via SBML) to PRISM to perform verifica-
tion. We analyse a cascade of transducer gates which had
a known flaw. The flaw was discovered by manual inspec-
tion, but could not be found using stochastic simulation. It
manifests itself as interference (or ‘crosstalk’) between two
transducer designs, which means that the reactions proceed
in an unintended manner: an input strand from one gate can
react with the output strand of the downstream gate, pro-
ducing reactive gates and causing unwanted deadlocks that
cannot be reversed. We demonstrate that this flaw can be de-
tected automatically, and a counterexample (trace to error)
produced; we also show how to correct the design. In ad-
dition, we provide a range of quantitative property checks,
including:

– P=? [ F deadlock ∧ (reactiveGates = i) ] - “the prob-
ability of deadlock occurring while there are i reactive
gates in the cascade”);

– R=? [ F allDone ] - “the expected time to completion”
(with reward 1 assigned to each state in the model).

To illustrate the type of analysis performed, Fig. 5 shows
the plot of probability over time T obtained for three differ-
ent situations: (i) termination (P=? [ F[T,T ]deadlock ]), (ii)
termination in error (P=? [ F[T,T ]deadlock ∧ (¬allDone) ]),
and (iii) termination with success (P=? [ F[T,T ]deadlock ∧
allDone ]), where allDone denotes the situation with the
correct number of output strands and no reactive gates pro-
duced. Note that erroneous behaviour is more likely to arise
initially, which can be explained by the fact that both con-
flicting reactions are irreversible. Thus, the occurrence of
one determines the outcome, stabilising the probability plot.
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Fig. 5: Probabilistic analysis of a DNA transducer gate.

For more details about quantitative verification for molec-
ular networks see [71]. Future work will include improv-
ing scalability (the system is limited to 6 molecules) and
modelling more complex molecular self-assembly processes
such as DNA origami and molecular walkers.

5.4 Compositional Quantitative Verification

The complexity of ubiquitous computing software – just con-
sider the complexity of smartphone – means that achieving
scalability of ‘everyware’ verification is a foremost goal. A
promising approach to address the scalability of quantita-
tive model checking is that of compositional verification,
where the verification of a system composed from a number
of components proceeds by analysing these in isolation, and
inferring a global property without the need to construct the
full state space. More specifically, we employ the assume-
guarantee framework for verifying property G on a system
M1‖M2, which reduces to (i) checking that, under the as-
sumption that some property A holds, M2 is guaranteed to
satisfy G, denoted 〈A〉M2 〈G〉; and (ii) checking that M1

always satisfies the assumption A under any context. Com-
positional assume-guarantee frameworks have been imple-
mented for non-quantitative settings and successfully ap-
plied in practice [83].

A suggestion that compositional probabilistic verifica-
tion can be achieved via multi-objective model checking was
first presented in [41]. Given an MDP and a collection of,
possibly conflicting, quantitative LTL formulas (that is, LTL
formulas enclosed in a probabilistic or reward operator), multi-
objective model checking aims to establish whether there
exists an adversary satisfying all the properties. An exam-
ple property is the existence of an adversary such that the
probability of a sensor being operational is at least 0.9 and
expected time to send data is at most 2ms. Formally, we
work with quantitative multi-objective properties Ψ , which
are conjunctions of predicates, denoted [φ]≥p, each of which

imposes a bound on probability or expectation of an ω-regular
property φ being satisfied. Model checking for such proper-
ties can be reduced to solving an LP problem [73,46] or a
variant of value iteration [47] which is significantly more
efficient.

Based on the multi-objective probabilistic verification
techniques developed in [41], we have formulated a compo-
sitional assume-guarantee framework for Markov decision
processes [73] (more precisely, for a slight generalisation of
MDPs known as probabilistic automata [95]). The approach
is based on queries of the form 〈ΨA〉M 〈ΨG〉 interpreted as
“under any adversary of M for which assumption ΦA is sat-
isfied, ΨG is guaranteed to hold”. Both safety and liveness
properties are supported, and several sound proof rules are
developed, including asymmetric, circular and asynchronous.
Below we give examples of rules for safety properties (omit-
ting side conditions on synchronisation alphabets to simplify
the presentation).

The first, simple rule is asymmetric:

M1 |=Ψ safe
A

〈Ψ safe
A 〉M2 〈Ψ safe

G 〉

M1 ‖M2 |=Ψ safe
G

(ASYM-SAFETY)

The rule states that, given an appropriate assumption Ψ safe
A =

[φ1]≥p1 ∧ · · · ∧ [φn]≥pn , we can check the correctness of
a probabilistic safety property Ψ safe

G on a two-component
system, M1‖M2, by performing one instance of (standard)
model checking on M1 (to check the first premise of rule
(ASYM-SAFETY)) and one instance of multi-objective mo-
del checking on M2 (to check the assume-guarantee triple in
the second premise). Since we avoid the construction of the
full product state space, we can expect significant gains in
terms of the overall performance.

The next, circular rule, where Ψ safe
A1

, Ψ safe
A2

, Ψ safe
G are

quantitative multi-objective properties comprising only safety
properties:

M2 |=Ψ safe
A2

〈Ψ safe
A2
〉M1 〈Ψ safe

A1
〉

〈Ψ safe
A1
〉M2 〈Ψ safe

G 〉

M1 ‖M2 |=Ψ safe
G

(CIRC-SAFETY)

reduces the verification to one instance of standard model
checking on M2 and two instances of multi-objective model
checking on M1 and M2. More rules can be found in [26].
We have implemented the framework as an extension of
PRISM [26] and demonstrated that compositional proba-
bilistic verification can be superior to non-compositional ver-
ification on several benchmarks. Subsequently [42,43], we
have also developed a method for automatically generating
safety assumptions using learning, in conjunction with the
asymmetric rule.
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5.5 Quantitative Runtime Verification

The success of mobile devices such as smartphones and wear-
able ‘everyware’ heavily depends on services such as cloud
computing and databases being autonomously managed by
software. Since such software services must evolve and adapt,
we argued in [14] that quantitative runtime verification is
essential to achieve dependable software adaptation. When
used at runtime, quantitative verification is able to predict
and identify requirement violations, to plan the necessary
adaptation steps, and to steer the system execution to com-
ply with its (possibly changing) requirements.

The ability to provide continuous quantitative verifica-
tion of software services poses great challenges. In [15], we
proposed an extensive framework, called QoSMOS, for en-
suring Quality of Service properties of service-based sys-
tems modelled as DTMCs. QoSMOS is based on autonomic
computing and executes probabilistic verification tasks at
appropriate points during system’s execution, using the out-
comes to plan the optimal selection of services according to
the changing environment.

Recently [48], we tackled quantitative runtime verifica-
tion for distributed systems which exhibit probabilistic be-
haviour, for example due to randomisation or failure, mod-
elled as Markov decision processes. As an example consider
a wireless network that supports mobile ‘everyware’ devices
which can freely join and leave using the Zeroconf proto-
col. Upon joining, each device must determine a local IP
address, which is dependent on the number of hosts in the
network and the number of probes (query messages) that
are broadcast before claiming a given IP address. A quanti-
tative property of interest for this network is to minimise the
probability of nodes choosing conflicting IP addresses.

Our framework [48] supports incremental quantitative
runtime verification, which improves efficiency of verifica-
tion tasks executed at runtime by reusing results from previ-
ous verification runs. We represent models parametrically,
and allow for parameter changes during system execution.
We formulate efficient techniques for both incremental mo-
del construction as well as incremental quantitative verifica-
tion in presence of structural changes. This extends our ear-
lier incremental probabilistic verification for MDPs which
was limited to changes in probability values only [77].

The techniques have been implemented as an extension
of PRISM [48] and evaluated on a range of examples, in-
cluding JPL’s Mars Exploration Rover modelled with prob-
abilistic failure, on which we demonstrated a 10-fold im-
provement in efficiency. Currently, we work at the level of
PRISM modelling language, but intend to extend to real
software as, e.g., done in [65]. We will also employ tech-
niques developed for parametric Markovian models [54,44].

5.6 Summary of Further Advances

In addition to the results highlighted above, we have also
progressed the research in the following directions:

– quantitative abstraction-refinement: we have formulated
an abstraction-refinement framework for software with
real-time, probabilities and data [70], such as SystemC
programs, applied game-based abstraction to probabilis-
tic hybrid systems [55], and in future intend to explore
techniques developed for ProHVer [53];

– quantitative synthesis: we have solved the parameter syn-
thesis problem for MDPs [54], devised a synthesis pro-
cedure for timed components from global specifications
[28] based on the notion of quotient formulated for a
compositional specification theory for components [22]
inspired by interface automata [37], and in future intend
to address controller synthesis from assume-guarantee
specifications;

– software tools: we have developed and released various
extensions of PRISM, including for probabilistic timed
automata [72], approximate/statistical model checking
[72], stochastic multi-player games for cooperative be-
haviour [26], multi-objective probabilistic verification us-
ing Pareto curves [47], and DSD to PRISM connection
[79];

– case studies: we are developing a variety of case studies
relevant for ‘everyware’, including energy-aware mobile
protocols [50], smartgrid [26], collective decision mak-
ing [26], implantable pacemakers [24], and molecular
sensing devices at the nanoscale [79].

To complement these activities, the growing community of
PRISM users has contributed a wide variety of case stud-
ies, many of which are relevant to ‘everyware’, for exam-
ple analysing swarm robot behaviour, RFID protocols, cloud
computing, assisted living systems, vehicle control, avion-
ics, and many more; the interested reader is referred to the
publications list at [2].

6 Challenges and Research Directions

We conclude with the remark that, despite substantial progress
made in this project, due to the complexity of the ubiqui-
tous computing scenarios and the need to interface to con-
tinuous processes, as well as to consider cooperation and
mobility, the goals that we set ourselves – to achieve ver-
ified ‘everyware’ – are still highly challenging. We antic-
ipate that following topics will be particularly difficult: ef-
fective synthesis from quantitative specifications; scalability
and efficiency of abstraction-refinement schemes; efficiency
and accuracy of approximate analysis; and software verifi-
cation for wearable, implantable and mobile devices such as
smartphones. We will measure success of the project by the
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extent that the theoretical results obtained have influenced
the practice.

References

1. http://newmediamonitor.wordpress.com/2011/
06/08/a-fridge-that-tweets/.

2. PRISM website. www.prismmodelchecker.org.
3. U.S. Food and Drug Admin., List of Device Recalls.

http://www.fda.gov/MedicalDevices/Safety/
ListofRecalls/default.htm.

4. VERIWARE website. www.veriware.org.
5. A. Aldini and A. Bogliolo. Model checking of trust-based user-

centric cooperative networks. In AFIN 2012, The Fourth Inter-
national Conference on Advances in Future Internet, 2012. To
appear.

6. R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183 – 235, 1994.

7. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time tem-
poral logic. Journal of the ACM, 49(5):672–713, 2002.

8. T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio,
A. David, A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O.
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