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Abstract. Design of autonomous systems is facilitated by automatic
synthesis of correct-by-construction controllers from formal models and
specifications. We focus on stochastic games, which can model the inter-
action with an adverse environment, as well as probabilistic behaviour
arising from uncertainties. We propose a synchronising parallel composi-
tion for stochastic games that enables a compositional approach to con-
troller synthesis. We leverage rules for compositional assume-guarantee
verification of probabilistic automata to synthesise controllers for games
with multi-objective quantitative winning conditions. By composing win-
ning strategies synthesised for the individual components, we can thus
obtain a winning strategy for the composed game, achieving better scal-
ability and efficiency at a cost of restricting the class of controllers.

1 Introduction

With increasing pervasiveness of technology in civilian and industrial applica-
tions, it has become paramount to provide formal guarantees of safety and re-
liability for autonomous systems. We consider the development of correct-by-
construction controllers satisfying high-level specifications, based on formal sys-
tem models. Automated synthesis of controllers has been advocated, for example,
for autonomous driving [3] and distributed control systems [15].
Stochastic Games. When designing autonomous systems, often a critical el-
ement is the presence of an uncertain and adverse environment, which intro-
duces stochasticity and requires the modelling of the non-cooperative aspect in
a game-theoretical setting [7,14]. Hence, we model a system we wish to control
as a two-player turn-based stochastic game [18], and consider automated synthe-
sis of strategies that are winning against every environment (Player �), which
we can then interpret as controllers of the system (Player ♦). In addition to
probabilities, one can also annotate the model with rewards to evaluate various
quantities, for example, profit or energy usage, by means of expectations.
Compositionality. We model systems as a composition of several smaller com-
ponents. For controller synthesis for games, a compositional approach requires
that we can derive a strategy for the composed system by synthesising only for
the individual components. Probabilistic automata (PAs) are naturally suited
to modelling multi-component probabilistic systems, where synchronising com-
position is well-studied [17]; see also [19] for a taxonomic discussion. While PAs
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can be viewed as stochastic games with strategies already applied, it is not im-
mediately clear how to compose games in a natural way.
Our Composition. We formulate a composition of stochastic games where
component games synchronise on shared actions and interleave otherwise. The
composition is inspired by interface automata [9], which are well-suited to com-
positional assume-guarantee verification of component-based systems, where we
preserve the identity of Player ♦ and Player � in the composition by imposing
similar compatibility conditions. Our composition is commutative and associa-
tive, and reduces to PA composition when only Player � is present. The results
we prove are independent of specific winning conditions, and thus provide a
general framework for the development of compositional synthesis methods.
Compositional Synthesis. We show that any rule for compositional verifi-
cation of PAs carries over as a synthesis rule for games. First, after applying
winning strategies to a game, the resulting PAs still satisfy the winning condi-
tion for any environment. Then, compositional rules for PAs can be used, such
as the assume-guarantee rules in [13] developed for winning conditions involving
multi-objective total expected reward and probabilistic LTL queries. These first
two steps, described also as “schedule-and-compose” [8], are applicable when
strategies can only be implemented locally in practice, for instance, when want-
ing to control a set of physically separated electrical generators and loads in a
microgrid, where no centralised strategy can be implemented. One key property
of our game composition is that strategies applied to individual components
can be composed to a strategy for the composed game, while preserving the
probability measure over the traces. Hence, we obtain a winning strategy for
the composed game, which alleviates the difficulty of having to deal with the
product state space by trading off the expressiveness of the generated strategies.
Winning Conditions. Each player plays according to a winning condition,
specifying the desirable behaviour of the game, for example “the probability of
reaching a failure state is less than 0.01.” We are interested in synthesis for
zero-sum games for which several kinds of winning conditions are defined in
the literature, including ω-regular [4], expected total and average reward [10],
and multi-objective versions thereof [7]. Our game composition is independent
of such winning conditions, since they are definable on the trace distributions.
Work we Build Upon. In this paper we extend the work of [13] by lifting
the compositional verification rules for PAs to compositional synthesis rules for
games. Typically, such rules involve multi-objective queries, and we extend the
synthesis methods for such queries in [6,7] to compositional strategy synthesis.
Contributions. Several notions of (non-stochastic) game composition have re-
cently been proposed [11,12], but they do not preserve player identity, i.e. which
player controls which actions, and hence are not applicable to synthesising strate-
gies for a specific player. In this paper, we make the following contributions.

– We define a composition for stochastic games, which, to our knowledge, is
the first composition for competitive probabilistic systems that preserves the
control authority of Player ♦, enabling compositional strategy synthesis.
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– We show how to apply strategies synthesised for the individual components
to the composition, such that the trace distribution is preserved.

– We lift compositional rules for PAs to the game framework for synthesis.
– We apply our theory to demonstrate how to compositionally synthesise con-

trollers for games with respect to multi-objective total expected reward
queries, and demonstrate the benefits on a prototype implementation.

Structure. In Section 2 we introduce stochastic games, their normal form, and
their behaviour under strategies. In Section 3 we define our game composition,
and show that strategies for the individual components can be applied to the
composed game. We demonstrate in Section 4 how to use proof rules for PAs and
previously developed synthesis methods to compositionally synthesise strategies.

2 Stochastic games, induced PAs and DTMCs

We introduce notation and main definitions for stochastic games and their be-
haviour under strategies.
Distributions. A discrete probability distribution (or distribution) over a (count-
able) set Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1; its support

{q ∈ Q |µ(q) > 0} is the set of values where µ is nonzero. We denote by D(Q)
the set of all distributions over Q with finite support. A distribution µ ∈ D(Q) is
Dirac if µ(q) = 1 for some q ∈ Q, and if the context is clear we just write q to de-
note such a distribution µ. We denote by µ the product distribution of µi ∈ D(Qi)
for 1 ≤ i ≤ n, defined on Q1× · · ·×Qn by µ(q1, . . . , qn) def= µ1(q1) · · · · · µn(qn).
Stochastic Games. We consider turn-based action-labelled stochastic two-
player games (henceforth simply called games), which distinguish two types of
nondeterminism, each controlled by a separate player. Player ♦ represents the
controllable part for which we want to synthesise a strategy, while Player � repre-
sents the uncontrollable environment. Examples of games are shown in Figure 1.

Definition 1. A game is a tuple 〈S, (S♦, S�), ς,A,−→〉, where S is a countable
set of states partitioned into Player ♦ states S♦ and Player� states S�; ς ∈ D(S)
is an initial distribution; A is a countable set of actions; and −→⊆ S × (A ∪
{τ})×D(S) is a transition relation, such that, for all s, {(s, a, µ) ∈−→} is finite.

We adopt the infix notation by writing s a−→ µ for a transition (s, a, µ) ∈−→,
and if a = τ we speak of a τ -transition. The action labels A on transitions model
observable behaviours, whereas τ can be seen as internal: it cannot be used in
winning conditions and is not synchronised in the composition.

We denote the set of moves by S©
def= {(a, µ) | ∃s ∈ S . s a−→ µ}. A move (a, µ)

is incoming to a state s if µ(s) > 0, and is outgoing from a state s if s a−→ µ. Note
that, as for PAs [17], there could be several moved associated to each action. We
define the set of actions enabled in a state s by En(s) def= {a ∈ A | ∃µ . s a−→ µ}.

A finite (infinite) path λ = s0(a0, µ0)s1(a1, µ1)s2 . . . is a finite (infinite) se-
quence of alternating states and moves, such that ς(s0) > 0, and, for all i ≥ 0,
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Fig. 1: Three games: the game on the right is the composition of the normal
forms of the other two games. Dirac distributions are shown as filled circles.

si
ai−→ µi and µi(si+1) > 0. A finite path λ ends in a state, and we write last(λ)

for the last state of λ. We denote the set of finite (infinite) paths of a game
G by Ω+

G (ΩG), and by Ω+
G,# the set of paths ending in a Player # state, for

# ∈ {♦,�}. A finite (infinite) trace is a finite (infinite) sequence of actions.
Given a path, its trace is the sequence of actions along λ, with τ projected out.
Formally, trace(λ) def= proj{τ}(a0a1 . . .), where, for α ⊆ A ∪ {τ}, projα is the
morphism defined by projα(a) = a if a 6∈ α, and ε (the empty trace) otherwise.
Strategies. Nondeterminism for each player is resolved by a strategy. A strategy
for Player #, for # ∈ {♦,�}, is a function σ# : Ω+

G,# → D(S©) such that
σ#(λ)(a, µ) > 0 only if last(λ) a−→ µ. The set of Player # strategies in game G
is denoted by ΣG

#. A strategy is called memoryless if, for each path λ, the choice
σ#(λ) is uniquely determined by last(λ).
Normal Form of a Game. We can transform every game into its corresponding
normal form, which does not affect the winning conditions. Transforming a game
to normal form is the first step of our game composition.

Definition 2. A game is in normal form if the following hold:

– Every τ -transition s
τ−→ µ is from a Player � state s to a Player ♦ state s′

with a Dirac distribution µ = s′.
– Every Player ♦ state s can only be reached by an incoming move (τ, s). In

particular, every distribution µ of a non-τ -transition, as well as the initial
distribution, assigns probability zero to all Player ♦ states.

Given a game G without τ -transitions, one can construct its normal form N (G)
by splitting every state s ∈ S♦ into a Player � state s and a Player ♦ state s, s.t.

– the incoming (resp. outgoing) moves of s (resp. s) are precisely the incoming
(resp. outgoing) moves of s, with every Player ♦ state t ∈ S♦ replaced by t;

– and the only outgoing (resp. incoming) move of s (resp. s) is (τ, s).

Intuitively, at s the game is idle until Player � allows Player ♦ to choose a move
in s. Hence, any strategy for G carries over naturally to N (G), and we can oper-
ate w.l.o.g. with normal-form games. Also, τ can be considered as a scheduling
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choice. In the transformation to normal form, at most one such scheduling choice
is introduced for each Player � state, but in the composition more choices can
be added, so that Player � resolves nondeterminism arising from concurrency.
Game Unfolding. Strategy application is defined on the unfolded game. The
unfolding U(G) = 〈Ω+

G , (Ω
+
G,�, Ω

+
G,♦), ς,A,−→′〉 of the game G is such that

λ
a−→′µλ,a if and only if last(λ) a−→ µ and µλ,a(λ(a, µ)s) def= µ(s) for all s ∈ S.
An unfolded game is a set of trees (the roots are the support of the initial

distribution), with potentially infinite depth, but finite branching. The entire his-
tory is stored in the states, so memoryless strategies suffice for unfolded games;
formally, each strategy σ♦ ∈ ΣG

♦ straightforwardly maps to a memoryless strat-
egy U(σ♦) ∈ Σ

U(G)
♦ by letting U(σ♦)(λ)(a, µλ,a) = σ♦(λ)(a, µ). We denote by

U(G)© the set of moves of the unfolded form of a game G and by U(G)#© the set
of moves following a Player # state that is of the form (a, µλ,a) with λ ∈ Ω+

G,#.
We remark that the unfolding of a normal form game is also in normal form.

2.1 Induced PA

When only one type of nondeterminism is present in a game, it is a probabilistic
automaton (PA). PAs are well-suited for compositional modelling [17], and can
be used for verification, i.e. checking whether all behaviours satisfy a specifica-
tion (when only Player � is present), as well as strategy synthesis (when only
Player ♦ is present) [14]. A PA is a game where S♦ = ∅ and S� = S, which
we write here as 〈S, ς,A,−→〉. This definition corresponds to modelling non-
determinism as an adverse, uncontrollable, environment, and so, by applying a
Player ♦ strategy to a game to resolve the controllable nondeterminism, we are
left with a PA where only uncontrollable nondeterminism for Player � remains.

Definition 3. Given an unfolded game U(G) = 〈Ω+
G , (Ω

+
G,�, Ω

+
G,♦), ς,A,−→〉 in

normal form and a strategy σ♦ ∈ ΣG
♦ , the induced PA is Gσ♦ = 〈S′, ς,A,−→′〉,

where S′ ⊆ Ω+
G,� ∪ U(G)♦© is defined inductively as the reachable states, and

(I1) λ
τ−→′U(σ♦)(λ′) iff λ

τ−→ λ′ (Player ♦ strategy chooses a move);
(I2) (a, µλ,a) a−→′µλ,a for (a, µλ,a) ∈ U(G)♦© (the chosen move is performed);
(I3) λ

a−→′µλ,a iff λ
a−→ µλ,a and λ ∈ Ω+

G,� (external transitions from older
Player � state remain unchanged).

The unfolded form of the game in Figure 1(right) is shown in Figure 2(a),
and strategy application is illustrated in Figure 2(b).

2.2 Induced DTMC

A discrete-time Markov chain (DTMC) is a model for systems with probabilistic
behaviour only. When applying a Player � strategy to an induced PA, all non-
determinism is resolved, and a DTMC is obtained. A (labelled) DTMC D is a
PA such that, for each s ∈ S, there is at most one transition s

a−→ µ.
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Definition 4. Given an unfolded PA U(M) = 〈S, ς,A,−→〉 and a strategy σ� ∈
ΣM

� , the induced DTMC Mσ� = 〈S′, ς ′,A,−→′〉 is such that S′ ⊆ U(M)© is
defined inductively as the states reachable via ς ′ and −→′, where

– (a, µλ,a) a−→′µσ�
λ,a, such that, for all moves (b, νλ(a,µ)t,b), we let the distribu-

tion µ
σ�
λ,a(b, νλ(a,µ)t,b)

def= µ(t)σ�(λ(a, µ)t)(b, ν); and
– for all moves (b, νt,b), ς ′(b, νt,b)

def= ς(t)σ�(t)(b, ν).

Note that an induced PA is already unfolded, and does not need to be unfolded
again. We illustrate in Figure 2(c) the application of a Player � strategy.
Probability Measures. We define the probability measure PrD of a DTMC
D in the usual way. The cylinder set of a path λ ∈ Ω+

D (resp. trace w ∈ A∗)
is the set of infinite paths (resp. traces) with prefix λ (resp. w). For a finite
path λ = s0(a0, µ0)s1(a1, µ1) . . . sn we define PrD(λ), the measure of its cylinder
set, by: PrD(λ) def= ς(s0)

∏n−1
i=0 µi(si+1). We write Prσ♦,σ�

G (resp. Prσ�
M ) for the

measure PrGσ♦,σ� (resp. PrMσ� ). The measures uniquely extend to infinite paths
due to Carathéodory’s extension theorem.

Given a finite trace w, paths(w) denotes the set of minimal finite paths with
trace w, i.e. λ ∈ paths(w) if trace(λ) = w and there is no path λ′ 6= λ with
trace(λ′) = w and λ′ being a prefix of λ. The measure of the cylinder set of w is
PrD(w) def=

∑
λ∈paths(w) PrD(λ), and we call PrD the trace distribution of D.
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Winning Conditions. Providing strategies for both players resolves all nonde-
terminism in a game, resulting in a distribution over paths. A specification ϕ is
a predicate on trace distributions, and for a DTMC D we write D |= ϕ if ϕ(PD)
holds. A specification ϕ is defined on traces if ϕ(PD) = ϕ(PD′) for all DTMCs
D,D′ such that PD(w) = PD′(w) for all traces w.

3 Composing stochastic games

We now introduce composition operators for games and Player ♦ strategies, lead-
ing towards a framework for compositional synthesis in Section 4. Games can be
composed of several component games, and our composition is inspired by inter-
face automata [9], which have a natural interpretation as (concurrent) games.

3.1 Game Composition

We provide a synchronising composition of games so that controllability is pre-
served for Player ♦, that is, actions controlled by Player ♦ in the components are
controlled by Player ♦ in the composition. We endow each component game with
an alphabet of actions A, where synchronisation on shared actions in A1 ∩ A2

is viewed as a (blocking) communication over ports, as in interface automata,
though for simplicity we do not distinguish inputs and outputs. Synchronisation
is multi-way and we do not impose input-enabledness of IO automata [8].

Given n games Gi in normal form with respective state spaces Si, for i ∈ I
(let I = {1, . . . , n} be the index set of the composed game), the state space of
the composition is a subset of the Cartesian product S1× . . .×Sn, whose states
contain at most one Player ♦ component thanks to the normal form. We denote
by si the ith component of s ∈ S1 × . . . × Sn. Furthermore, every probability
distribution in the composition is a product distribution. We say that a transition
s

a−→ µ involves the ith component if si a−→ µi.

Definition 5. Given n games in normal form Gi = 〈Si, (Si♦, Si�), ςi,Ai,−→i〉,
i ∈ I, their composition is the game ‖i∈I Gi

def= 〈S, (S♦, S�), ς,A,−→〉, where

– S ⊆ S♦ ∪ S�, with S� ⊆ S1
� × · · · × Sn�, and S♦ ⊆ {s ∈ S1 × · · · × Sn |

∃!ι . sι ∈ Sι♦} inductively defined to contain the states reachable from the
initial distribution through the transition relation;

– ς = ς1×· · ·×ςn; (note that, due to the normal form, ς(s) > 0 only if s ∈ S�)
– A =

⋃n
i=1Ai;

– The transition relation −→ is defined such that
• s a−→ µ for a 6= τ if
(C1) at least one component is involved;
(C2) the components involved in the transition are exactly those having a

in their action alphabet;
(C3) for the uninvolved components j (equivalently, that do not have a in

their action alphabet), the state remains the same (µj = sj);
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(C4) if s is a Player ♦ state then its only Player ♦ component Gι is involved
in the transition; and

• s τ−→ t if only one component Gi is involved, s ∈ S�, and s.t. En(t) 6= ∅.
We take the view that identity of the players must be preserved through

composition to facilitate synthesis, and thus Player ♦ actions of the individual
components are controlled by a single Player ♦ in the composition. Player � in the
composition acts as a scheduler, controlling which component advances and, in
Player � states, selecting among available actions, whether synchronised or not.
Synchronisation in Player ♦ states means that Player ♦ in one component may
indirectly control some Player � actions in another component. In particular, we
can impose assume-guarantee contracts at the component level in the following
sense. Player ♦ of different components can cooperate to achieve a common goal:
in one component Player ♦ satisfies the goal B under an assumption A on its
environment behaviour (i.e. A → B), while Player ♦ in the other component
ensures that the assumption is satisfied, against all Player � strategies.

Our game composition is both associative and commutative, facilitating a
modular model development, and is closely related to PA composition [17], with
the condition (C4) added. As PAs are just games without Player ♦ states, the
game composition restricted to PAs is the same as classical PA composition.
The condition En(t) 6= ∅ for τ -transitions ensures that a Player ♦ state is never
entered if it were to result in deadlock introduced by the normal form transfor-
mation. Deadlocks that were present before the transformation are still present
in the normal form. In the composition of normal form games, τ -transitions are
only enabled in Player � states, and Player ♦ states are only reached by such
transitions; hence, composing normal form games yields a game in normal form.

In Figure 1, the game on the right is the composition of the normal forms
of the two games on the left. The actions “f” and “s” are synchronised and
controlled by Player ♦ in su. The “d” action is synchronised and controlled
by Player � in both components, and so it is controlled by Player � in the
composition, in tu. The action “t” is not synchronised, and thus available in tv
and tu; it is, however, not available in tv, as it is a Player ♦ state controlled by
v. The action “c” is also not synchronised, and is available in tv. The “r” action
is synchronised; it is available both in t and in v, and hence also in tv.

Constructing the composition of n components of size |S| clearly requires time
O(|S|n). In strategy synthesis, the limiting factor is that applying the method
on a large product game may be computationally infeasible. For example, the
synthesis methods for multi-objective queries of [6] that we build upon are expo-
nential in the number of objectives and polynomial in the size of the state space,
and the theoretical bounds can be impractical even for small systems (see [7]).
To alleviate such difficulties we focus on compositional strategy synthesis.

3.2 Strategy Composition

For compositional synthesis, we assume the following compatibility condition on
component games: we require that actions controlled by Player ♦ in one game
are enabled and fully controlled by Player ♦ in the composition.
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Definition 6. Games G1, . . . , Gn are compatible if, for every Player ♦ state
s ∈ S♦ in the composition with sι ∈ Sι♦, if sι a−→ιµι then there is exactly one
distribution ν, denoted by 〈µι〉s,a, such that s a−→ ν and νι = µι. (That is, for
i 6= ι such that a ∈ Ai, there exists exactly one a-transition enabled in si.)

Our compatibility condition is analogous to that for single-threaded interface
automata [9]. It remains to be seen if this condition can be relaxed without
affecting preservation properties of the winning conditions.
Composing Strategies. Given a path λ of a composed game G =‖i∈I Gi, for
each individual component Gi one can retrieve the corresponding path [λ]i that
contains precisely the transitions Gi is involved in. The projection [·]i : Ω+

G→Ω
+
Gi

is defined inductively so that, for all states t ∈ S and paths λ(a,µ)t ∈ Ω+
G (with

possibly a = τ), we have [s]i def= si; and inductively that [λ(a,µ)t]i def= [λ]i(a, µi)ti

if last(λ)i a−→iµi, and [λ]i otherwise.
Recall that a Player ♦ state s of the composed game has exactly one com-

ponent sι that is a Player ♦ state in Gι; we say that the ιth Player ♦ controls
s. Given a Player ♦ strategy for each component, the strategy for the composed
game plays the strategy of the Player ♦ controlling the respective states.

Definition 7. Let σi♦, i ∈ I, be Player ♦ strategies for compatible games. Their
composition, σ♦ =‖i∈I σi♦, is defined such that σ♦(λ)(a, 〈µι〉s,a) def= σι♦([λ]ι)(a, µι)
for all λ ∈ Ω+

G with s = last(λ) ∈ S♦.

From this definition, strategy composition is clearly associative. Note that,
for each choice, the composed strategy takes into account the history of only one
component, which is less general than using the history of the composed game.

3.3 Properties of the Composition

We now show that synthesising strategies for compatible individual components
is sufficient to obtain a composed strategy for the composed game.
Functional Simulations. We introduce functional simulations, which are a
special case of classical PA simulations [17], and show that they preserve winning
conditions over traces. Intuitively, a PA M ′ functionally simulates a PA M if all
behaviours of M are present in M ′, and if strategies translate from M to M ′.

Given a distribution µ, and a partial function f : S → S′ defined on the sup-
port of µ, we write f(µ) for the distribution defined by f(µ)(s′) def=

∑
f(s)=s′ µ(s).

A functional simulation from a PA M to a PA M ′ is a partial function f : S → S′

such that f(ς) = ς ′, and if s a−→ µ in M then f(s) a−→′f(µ) in M ′.

Lemma 1. Given a functional simulation from a PA M to a PA M ′ and a
specification ϕ defined on traces, for every strategy σ� ∈ ΣM

� there is a strategy
σ′� ∈ ΣM ′

� such that (M ′)σ
′
� |= ϕ⇔Mσ� |= ϕ.

Key Lemma. The PA ‖i∈I (Gi)σ
i
♦ is constructed by first unfolding each com-

ponent, applying the Player ♦ strategies, and then composing the resulting PAs,
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while the PA (‖i∈I Gi)‖i∈Iσ
i
♦ is constructed by first composing the individual

components, then unfolding, and applying the composed Player ♦ strategy. The
following lemma justifies, via the existence of a functional simulation, that com-
posing Player ♦ strategies preserves the trace distribution between such PAs,
and hence yields a fully compositional approach.

Lemma 2. Given compatible games Gi, i ∈ I, and respective Player ♦ strategies
σi♦, there is a functional simulation from (‖i∈I Gi)‖i∈Iσ

i
♦ to ‖i∈I (Gi)σ

i
♦ .

In general, there is no simulation in the other direction, as in the PA composition
one can no longer distinguish states in the induced PA that were originally
Player ♦ states, and so condition (C4) of the composition is never invoked.

4 Compositional Synthesis

Applying strategies synthesised for games to obtain induced PAs allows us to
reuse compositional rules for PAs. Using Lemma 2, we can then lift the result
back into the game domain. This process is justified in Theorem 1 below.

4.1 Composition Rules

We suppose the designer is supplying a game G =‖i∈I Gi composed of atomic
games Gi, together with specifications defined on traces ϕi, i ∈ I, and show how,
using our framework, strategies σi♦ synthesised for Gi and ϕi can be composed
to a strategy σ♦ =‖i∈I σi♦ for G, satisfying a specification ϕ defined on traces.

Theorem 1. Given a rule P for PAs Mi and specifications ϕij and ϕ defined
on traces, then the rule G holds for all Player ♦ strategies σi♦ of compatible games
Gi with the same action alphabets as the corresponding PAs, where

P ≡
Mi |= ϕij 1 ≤ j ≤ m i ∈ I

‖i∈I Mi |= ϕ,
and G ≡

(Gi)σ
i
♦ |=

∧m
j=1 ϕ

i
j i ∈ I

(‖i∈I Gi)‖i∈Iσ
i
♦ |= ϕ.

Theorem 1 enables the compositional synthesis of strategies in an automated
way. First, synthesis is performed for atomic components Gi, i ∈ I, by obtaining
for each i a Player ♦ strategy σi♦ for Gi |=

∧m
j=1 ϕ

i
j . We apply P with Mi

def=

(Gi)σ
i
♦ to deduce that ϕ holds in ‖ni=1 (Gi)σ

i
♦ and, using Lemma 1 and 2, that

‖i∈I σi♦ is a winning strategy for Player ♦ in ‖ni=1 G
i. The rules can be applied

recursively, making use of associativity of the game and strategy composition.

4.2 Multi-Objective Queries

In this section we leverage previous work on compositional verification for PAs
in order to compositionally synthesise strategies for games.
Reward and LTL Objectives. The expected value of a function ρ : A∗ →
R±∞ over traces in a DTMC D is ED[ρ] def= limn→∞

∑
w∈An PrD(w)ρ(w), if
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the limit exists in R±∞. We denote by Eσ♦,σ�
G (resp. Eσ�

M ) the expected value
in a game G (resp. PA M) under the respective strategies. A reward structure
of a game with actions A is a function r : Ar → Q, where Ar ⊆ A. Given
a reward structure r such that either r(a) ≤ 0 or r(a) ≥ 0 for all actions a
occurring infinitely often on a path, the total reward for a trace w = a0a1 . . .

is rew(r)(w) def= lim
t→∞

∑t
i=0 r(ai), which is measurable thanks to the restrictions

imposed on r. Given reward structures rj , j ∈ J , for all a ∈
⋃
j∈J Arj we let

(
∑
j∈J rj)(a) be the sum of the rj(a) that are defined for a.

To express LTL properties over traces, we use the standard LTL operators
(cf. [16]); in particular, the operators F and G stand for eventually and always,
respectively. For a DTMC D, and an LTL formula Ξ over actions AΞ , define
PrD(Ξ) def= PrD({λ ∈ ΩD |projA\AΞ (trace(λ)) |= Ξ}), that is, the measure of
infinite paths with traces satisfying Ξ, where actions not in AΞ are disregarded.

A reward (resp. LTL) objective is of the form r I v (resp. Ξ I v), where r
is a reward structure, Ξ is an LTL formula, v ∈ Q is a bound, and I∈ {≥, >}.
A reward objective r I v (resp. LTL objective Ξ I v) is true in a game G
under a pair of strategies (σ♦, σ�) if and only if Eσ♦,σ�

G [rew(r)] I v (resp.
Prσ♦,σ�

G (Ξ) I v), and similarly for PAs and DTMCs. Minimisation of rewards
can be expressed by reverting signs.

Multi-Objective Queries. A multi-objective query (MQ) ϕ is a Boolean com-
bination of reward and LTL objectives, and its truth value is defined inductively
on its syntax. An MQ ϕ is a conjunctive query (CQ) if it is a conjunction of
objectives. Given an MQ with bounds v1, v2, . . ., call v = (v1, v2, . . .) the tar-
get. Denote by ϕ[x] the MQ ϕ, where, for all i, ri I vi is replaced by ri I xi,
and Ξi I vi is replaced by Ξi I xi. Given a game G (resp. PA M) we write
Gσ♦,σ� |= ϕ (resp. Mσ� |= ϕ), if the query ϕ evaluates to true under the re-
spective strategies. We write M |= ϕ if Mσ� |= ϕ for all σ� ∈ ΣM

� . We say that
an MQ ϕ is achievable in a game G if there is a Player ♦ strategy σ♦ such that
Gσ♦ |= ϕ, that is, σ♦ is winning for ϕ against all possible Player � strategies. We
require that expected total rewards are bounded, that is, we ask for any reward
structure r in an MQ ϕ that Gσ♦,σ� |= r <∞∧ r > −∞ for all σ♦ and σ�.

Fairness. Since PA rules as used in Theorem 1 often include fairness conditions,
we recall here the concept of unconditional process fairness based on [1]. Given
a composed PAM =‖i∈I M i, a strategy σ� is unconditionally fair ifMσ� |= u,
where u

def=
∧
i∈I GFAi ≥ 1, that is, each component makes progress infinitely

often with probability 1. We writeM |=u ϕ if, for all unconditionally fair strate-
gies σ� ∈ Σ�,Mσ� |= ϕ; this is equivalent toM |= u→ ϕ (the arrow→ stands
for the standard logical implication), and so MQs can incorporate fairness.

Applying Theorem 1. In particular, for the premises in Theorem 1 we can
use the compositional rules for PAs developed in [13], which are stated for MQs.
Thus, the specification ϕ for the composed game can, for example, be a CQ,
or a summation of rewards, among others. Unconditional fairness corresponds
precisely to the fairness conditions used in the PA rules of [13]. When the PA rules



12 Basset, Kwiatkowska, Wiltsche

include fairness assumptions, note that, for a single component, unconditional
fairness is equivalent to only requiring deadlock-freedom.

4.3 Compositional Pareto Set Computation

We describe in this section how to pick the targets of the objectives ϕi in com-
positional rules, such as those in Theorem 1, so that ϕ is achievable.
Pareto Sets. Given an MQ ϕ with N objectives, vector v ∈ RN is a Pareto
vector if and only if ϕ[v − ε] is achievable for all ε > 0, and ϕ[v + ε] is not
achievable for any ε > 0. The downward closure of the set of all such vectors
is called a Pareto set, where the downward closure of a set X is defined as
dwc(X) def= {y ∈ RN | ∃x ∈ X .x ≥ y}. Given ε > 0, an ε-approximation of a
Pareto set P is a set of vectors Q satisfying that, for any w ∈ Q, there is a vector
v ∈ P such that ‖v−w‖ ≤ ε, and for every v ∈ P there is a vector w ∈ Q such
that ‖v −w‖ ≤ ε, where ‖ · ‖ is the Manhattan norm.
Under-approximating Pareto Sets. We can compositionally compute an
under-approximation of the Pareto set for ϕ, which we illustrate in Figure 3.

Consider N reward structures, r1, . . . , rN , and objectives ϕi, i ∈ I, over these
reward structures for respective games Gi, as well as an objective ϕ, over the
same reward structures, for the composed game G =‖i∈I Gi. Note that, for each
1 ≤ j ≤ N , the reward structure rj may be present in several objectives ϕi.
Let P i be the Pareto set for Gi |= ϕi, for i ∈ I, and so each point v(i) ∈ P i

represents a target vector for the MQ ϕi[v(i)] achievable in the game Gi.
For a Pareto set P i, define the lifting [P i] to all N reward structures by

[P i] def= {v ∈ RN±∞ | the coordinates of v appearing in ϕi are in P i}. The set
P ′

def= ∩i∈I [P i] is the set of target vectors for all M reward structures, which
are consistent with achievability of all objectives ϕi in the respective games.
The projection1 P ′′ of P ′ onto the space of reward structures appearing in ϕ
then yields an under-approximation of the Pareto set P for ϕ in the composed
game G, that is, P ′′ ⊆ P . A point v ∈ P ′′ can be achieved by instantiating the
objectives ϕi with any targets v(i) in P ′ that match v.

4.4 Compositional MQ Synthesis

We now describe our compositional strategy synthesis method.
MQ Synthesis for Component Games. A game is stopping if, under any
strategy pair, with probability 1 a part of the game is reached where the prop-
erties no longer change (see the technical report [2] for details.) A strategy is
ε-optimal for an MQ ϕ with target v if it achieves ϕ[v−ε] for all ε > 0. From [6]
we have that, for atomic stopping games with MQs, it is decidable whether
an ε-optimal strategy exists (optimal strategies may not exist), and, ε-optimal
strategies can be represented finitely using stochastic memory update [7].

1 More generally, if ϕ contains items such as ri+rj I vi+vj , as in the (Sum-Reward)
rule of [13], a new dimension is introduced combining the rewards as required.
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(a) MQs ϕ1 = r1≥v1 (left), ϕ2 = r2 ≥ v2 (center), and
ϕ = r1 ≥ v1 ∧ r2 ≥ v2 (right). Suppose the Pareto sets
P i for ϕi, i ∈ {1, 2}, consist of the thick lines, unbounded
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under-approximates the Pareto set P for ϕ.
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Fig. 3: Compositional Pareto set computation (a); weight vector selection (b).

We compute a strategy for an MQ in CNF
∧n
i=1

∨m
j=1 ri,j ≥ vi,j by imple-

menting value iteration based on [6]. First, set an initial accuracy, a ← 1
2 . For

each 0 ≤ i < n, select a corresponding 0 ≤ ji < m. Then uniformly iterate over
weights xi ∈ [0, 1− a/2]m by gridding with accuracy a, keeping the jith dimen-
sion constant at 1 − a/2. The pattern of selected vectors is shown for m = 2
dimensions in Figure 3(b). At each selection of xi, check, using the CQ algorithm
of [7], if

∧n
i=1(

∑m
j=1 x

j
i · ri,j ≥

∑m
j=1 x

j
i · vi,j) is realisable, and, if so, return the

winning strategy. Otherwise, if all options for selecting ji are exhausted, refine
the accuracy to a← a

2 and repeat.
Every point y ∈ Rn in a CQ Pareto set with weights x1, . . . ,xn ∈ Rm≥0

corresponds to intersection of half-spaces xi · z ≥ yi; the union over all choices
of weight vectors is the ε-approximation of the corresponding MQ Pareto set.
MQ Synthesis for Composed Games. Our method for compositional strat-
egy synthesis, based on synthesis for atomic games, is summarised as follows:

(S1) User Input: A composed game G =‖i∈I Gi, MQs ϕi, ϕ, and matching PA
rules for use in Theorem 1.

(S2) First Stage: Obtain ε-approximate Pareto sets P i for Gi |= ϕi, and com-
pute P ′′ as in Section 4.3.

(S3) User Feedback: Pick targets v for ϕ from P ′′ and matching targets v(i)

for ϕi from P i.
(S4) Second Stage: Synthesise strategies σi♦, for Gi |= ϕi[v(i)], and compose

them using Definition 7 (see the technical report [2] for composing strategies
in the stochastic memory update representation.)

(S5) Output: A composed strategy ‖i∈I σi♦, winning for G |= ϕ[v] by Theorem 1.

Steps (S1), (S4) and (S5) are sufficient if the targets are known, while (S2)
and (S3) are an additional feature enabled by the Pareto set computation.

4.5 Case Study

We illustrate our approach with an example, briefly outlined here; see the tech-
nical report [2] for more detail. We model an Internet-enabled fridge that au-
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Table 1: Run time comparison between compositional and monolithic strategy
synthesis. For the CQ value iteration (cf. [7]) we use 60, 400 and 200 iterations
for the fridge, trader and composed model, respectively. Computations were done
on a 2.8 GHz Intel R© Xeon R© CPU, with 32 GB RAM, under Fedora 14.

Traders (n) State Space Size Running Time [s]
F Ti C Composition Compositional Monolithic

Pareto Set Strategies Pareto Set Strategy

1 11 7 17 0.006 31.0 0.2 10.9 0.26
2 23 7 119 0.1 400.0 0.37 6570.0 161.0
3 39 7 698 2.0 407.0 2.4 > 3h –
4 59 7 3705 75.0 4870.0 1.4 > 5h –

tonomously selects between different digital agents selling milk whenever re-
stocking is needed. We compute the Pareto sets and strategies in a prototype
implementation as an extension of PRISM-games [5].

The fridge repeatedly invites offers from several traders, and decides whether
to accept or decline the offers, based on the quality of each offer. The objective
is for the traders to maximise the unit price, and for the fridge to maximise the
amount of milk it purchases. For n traders Ti, 1 ≤ i ≤ n, and a fridge F , denote
the composition C

def= (‖ni=1 Ti) ‖ F . We use the following reward objectives
Oi ≡ “offers made by Ti” ≥ voi , Ai ≡ “offers of Ti accepted” ≥ vai , Qi ≡
“quality of offers made by Ti” ≥ vqi , $i ≡ “unit price of Ti” ≥ v$i , and # ≡
“amount of milk obtained by F” ≥ v#, and synthesise strategies as explained
in Section 4.1 according to the rule:

F |=
∧n
j=1(Oj → Aj) ∧ (

∧n
j=1Qj → #) Ti |= Ai → (Qi ∧ $i) 1 ≤ i ≤ n

C |=
∧n
j=1(Oj → $j) ∧ (

∧n
j=1Oj → #).

The main advantages of compositional synthesis are a dramatic improvement
in efficiency and the compactness of strategies, as indicated in Table 1. In general,
the strategies are randomised and history dependent. For the case of two traders,
with the target that we selected, we generate a strategy where the traders make
an expensive offer in the first round with probability 0.91, but from then on
consistently make less expensive bulk offers.

5 Conclusion

We have defined a synchronising composition for stochastic games, and formu-
lated a compositional approach to controller synthesis by leveraging techniques
for compositional verification of PAs [13] and multi-objective strategy synthe-
sis of [6,7]. We have extended the implementation of [7] to synthesise ε-optimal
strategies for two-player stochastic games for total expected reward objectives
in conjunctive normal form. We intend to investigate relaxing the compatibility
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condition and consider notions of fairness weaker than unconditional fairness to
broaden the applicability of our methods.
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