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Abstract. We consider the problem of synthesising rate parameters for
stochastic biochemical networks so that a given CSL time-bounded prop-
erty is guaranteed to hold, or, in the case of quantitative properties, the
probability of satisfying the property is maximised/minimised. We de-
velop algorithms based on the computation of lower and upper bounds
of the probability, in conjunction with refinement and sampling, which
yield answers that are precise to within an arbitrarily small tolerance
value. Our methods are efficient and improve on existing approximate
techniques that employ discretisation and refinement. We evaluate the
usefulness of the methods by synthesising rates for two biologically mo-
tivated case studies, including the reliability analysis of a DNA walker.

1 Introduction

Biochemical reaction networks are a convenient formalism for modelling a mul-
titude of biological systems, including molecular signalling pathways, logic gates
built from DNA and DNA walker circuits. For low molecule counts, and under
the well-mixed and fixed volume assumption, the prevailing approach is to model
such networks using continuous-time Markov chains (CTMCs) [11]. Stochastic
model checking [17], e.g. using PRISM [18], can then be employed to analyse
the behaviour of the models against temporal logic properties expressed in CSL
(Continuous Stochastic Logic) [2]. For example, one can establish the reliability
and performance of DNA walker circuits by means of properties such as “what
is the probability that the walker reaches the correct final anchorage within 10
min?”. Since DNA circuits can implement biosensors and diagnostic systems,
ensuring appropriate levels of reliability is crucial to guarantee the safety of
deploying molecular devices in healthcare applications.

Stochastic model checking, however, assumes that the model is fully spec-
ified, including the kinetic rates. In view of experimental measurement error,
these are rarely given precisely, but rather as intervals of values. The parameter
synthesis problem, studied for CTMCs in [13], assumes a formula and a model
whose rates are given as functions of model parameters, and aims to compute
the parameter valuations that guarantee the satisfaction of the formula. This
allows one, for example, to determine the ranges of parameter values for a given
level of reliability and performance, which can provide important feedback to
the designers of biosensors and similar molecular devices, and thus significantly
extends the power of stochastic model checking.
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In [13], the parameter synthesis problem was solved for CTMCs approxi-
mately, and only for probabilistic time-bounded reachability. In this paper, we
address the parameter synthesis problem for stochastic biochemical reaction net-
works for the full time-bounded fragment of the (branching-time) logic CSL [2].
We formulate two variants: threshold synthesis, which inputs a CSL formula and
a probability threshold and identifies the parameter valuations which meet the
threshold, and max synthesis, where the maximum probability of satisfying the
property and the maximizing set of parameter valuations are returned.

We develop efficient synthesis algorithms that yield answers with arbitrary
precision. The algorithms exploit the recently published parameter exploration
technique that computes safe approximations to the lower and upper bounds for
the probability to satisfy a CSL property over a fixed parameter space [6]. In
contrast to the exploration technique, our algorithms automatically derive the
satisfying parameter regions through iterative decomposition of the parameter
space based on refining the preliminary answer with additional decompositions
up to a given problem-specific tolerance value. We also show that significant
computational speed-up is achieved by enhancing the max synthesis algorithm
by sampling the property at specific points in the parameter space. We demon-
strate the usefulness of the method through two case studies: the SIR epidemic
model [16], where we synthesize infection and recovery rates that maximize the
probability of disease extinction, and the DNA walker circuit [9], where we derive
the rates that ensure a predefined level of reliability.

Related work. Parameter synthesis has been studied for discrete-time Marko-
vian models in [12, 7]. The approach applies to unbounded temporal properties
and is based on constructing a rational function by performing state elimina-
tion [12]. For CTMCs and bounded reachability specifications, the problem can
be reduced to the analysis of the polynomial function describing the reachability
probability of a given target state [13]. The main limitation here is the high
degree of the polynomials, which is determined by the number of uniformiza-
tion steps. Therefore, in contrast to our method, only an approximate solution
is obtained using discretization of parameter ranges. When considering linear-
time specifications, specific restrictions can be placed on the rate function to
result in a smooth satisfaction function (i.e. having derivatives of all orders).
In that case, the function can be approximated using statistical methods which
leverage the smoothness [5]. A concept similar to smoothness, uniform continu-
ity, can be used to obtain an unbiased statistical estimator for the satisfaction
function [14]. Both methods approximate parameter synthesis using confidence
intervals. Inference of parameter values in probabilistic models from time-series
measurements is a well studied area of research [1, 4], but different from the
problem we consider. Interval CTMCs, where transition rates are given as inter-
vals, have been employed to obtain a three-valued abstraction for CTMCs [15].
In contrast to parametric models we work with, the transition rates in inter-
val CTMCs are chosen nondeterministically and schedulers are introduced to
compute lower and upper probability bounds.
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2 Background

We state preliminary definitions relevant to the study of Parametric Continuous
Time Markov Chains [13, 6] that permit formal analysis of probabilistic models
with uncertain parameters [20].

A Continuous Time Markov Chain (CTMC) is a tuple C = (S, π0,R) where
S is a finite set of states, π0 : S → R≥0 is the initial distribution and R : S×S →
R≥0 is the rate matrix. A transition between states s, s′ ∈ S can occur only if
R(s, s′) > 0 and in that case the probability of triggering the transition within
t time units equals 1− e−tR(s,s′). The time spent in s, before a reaction occurs,
is exponentially distributed with rate E(s) =

∑
s′∈SR(s, s′), and when the

transition occurs the probability of moving to state s′ is given by R(s,s′)
E(s) . Let E

be a S×S diagonal matrix such that E(si, si) = E(si), and define the generating
matrix by setting Q = R − E. Then a vector πt : S → R≥0 of the transient
probabilities at time t is given by dπt

dt = πtQ such that πt = π0e
Qt. Using

standard uniformisation the transient probability at time t is obtained as a sum
of state distributions after i discrete-stochastic steps, weighted by the probability
of observing i steps in a Poisson process. Let P = I + 1

qQ be the uniformised

matrix, where q ≥ max{E(s) − R(s, s) | s ∈ S} is called the uniformisation

rate. The transient probabilities πt are computed as πt = π0
∑kε
i=0 γi,qtP

i where

γi,qt = e−qt (qt)
i

i! denotes the i-th Poisson probability for a process with rate

qt, and kε satisfies the convergence bound
∑kε

0 γi,qt ≥ 1 − ε for some ε > 0.
The Poisson terms and summation bound can be efficiently computed using an
algorithm due to Fox and Glynn [10].

We assume a set K of model parameters. The domain of each parameter
k ∈ K is given by a closed real interval describing the range of possible values,
i.e, [k⊥, k>]. The parameter space P induced by K is defined as the Cartesian
product of the individual intervals: P =×k∈K [k⊥, k>]. A parameter point p ∈ P
is an evaluation of each parameter k. Subsets of the parameter space are also
referred to as parameter regions or subspaces. R[K] denotes the set of polynomials
over the reals R with variables k ∈ K.

Parametric Continuous Time Markov Chains (pCTMCs) [13] extend the no-
tion of CTMCs by allowing transition rates to depend on model parameters.
Formally, a pCTMC over a set K of parameters is a triple C = (S, π0,R) where
s and π0 are as above, and in this case R : S×S → R[K] is the parametric rate
matrix. Given a pCTMC C and a parameter space P, we denote with CP the
(possibly uncountable) set {Cp | p ∈ P} where Cp = (S, π,Rp) is the instantiated
CTMC obtained by replacing the parameters in R with their evaluation in p.

We consider the time-bounded fragment of CSL [2] to specify behavioural
properties, with the following syntax. A state formula Φ is given as Φ ::= true |
a | ¬Φ | Φ ∧ Φ | P∼r[φ] | P=?[φ], where φ is a path formula whose syntax is
φ ::= X Φ | Φ UI Φ, a is an atomic proposition, ∼ ∈ {<,≤,≥, >}, r ∈ [0, 1]
is a probability threshold and I is a bounded interval. Using P=?[φ] we specify
properties which evaluate to the probability that φ is satisfied. The synthesis
methods presented in this paper can be directly adapted to the time-bounded
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fragment of CSL with the reward operator [17], but, for the sake of simplicity,
here we present our methods only for the probabilistic operator P .

Let φ be a CSL path formula and CP be a pCTMC over a space P. We denote
with Λ : P −→ [0, 1] the satisfaction function such that Λ(p) = P=?[φ], that is,
Λ(p) is the probability of φ being satisfied over the CTMC Cp. Note that the
path formula φ may contain nested probabilistic operators, and therefore the
satisfaction function is, in general, not continuous.

Biochemical reaction networks provide a convenient formalism for describ-
ing various biological processes as a system of well-mixed reactive species in
a volume of fixed size. A CTMC semantics can be derived whose states hold
the number of molecules for each species, and transitions correspond to reac-
tions that consume and produce molecules. Bounds on species counts can be im-

posed to obtain a finite-state model. The rate matrix is defined as R(si, sj)
def
=∑

r∈reac(si,sj) fr(K, si) where reac(si, sj) denotes all the reactions changing state
si into sj and fr is the stochastic rate function of reaction r over parameters
k ∈ K. In this paper, we assume multivariate polynomial rate functions that
include, among others, mass-action kinetics where k ∈ K are kinetic rate pa-
rameters.

3 Problem Definition

We consider pCTMC models of biochemical reaction networks that can be para-
metric in the rate constants and in the initial state. We introduce two parameter
synthesis problems for this class of models: the threshold synthesis problem that,
given a threshold ∼ r and a CSL path formula φ, asks for the parameter region
where the probability of φ meets ∼ r; and the max synthesis problem that deter-
mines the parameter region where the probability of the input formula attains
its maximum, together with an estimation of that maximum. In the remainder
of the paper, we omit the min synthesis problem that is defined and solved in a
symmetric way to the max case.

In contrast to previous approaches that support only specific kinds of prop-
erties (e.g. reachability as in [13]), we consider the full time-bounded fragment of
CSL with rewards, thus enabling generic and more expressive synthesis require-
ments. Moreover, the variants of the synthesis problem that we define correspond
to qualitative and quantitative CSL formulas, which are of the form P≥r[φ] and
P=?[φ], respectively. Solutions to the threshold problem admit parameter points
left undecided, while, in the max synthesis problem, the set of maximizing pa-
rameters is contained in the synthesis region. Our approach supports arbitrarily
precise solutions through an input tolerance that limits the volume of the un-
decided region (in the threshold case) and of the synthesis region (in the max
case). To the best of our knowledge, no other synthesis methods for CTMCs
exist that provide guaranteed error bounds.

Problem 1 (Threshold Synthesis). Let CP be a pCTMC over a parameter space
P, Φ = P≥r[φ] with r ∈ [0, 1] be a CSL formula and ε > 0 a volume tolerance.
The threshold synthesis problem is finding a partition {T,U, F} of P, such that:
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1. ∀p ∈ T. Λ(p) ≥ r; and
2. ∀p ∈ F. Λ(p) < r; and
3. vol(U)/vol(P) ≤ ε

where Λ is the satisfaction function of φ on CP ; and vol(A) =
∫
A

1dµ is the
volume of A.

Problem 2 (Max Synthesis). Let CP be a pCTMC over a parameter space P,
Φ = P=?[φ] be a CSL formula and ε > 0 a probability tolerance. The max
synthesis problem is finding a partition {T, F} of P and probability bounds Λ⊥,
Λ> such that:

1. Λ⊥ − Λ> ≤ ε;
2. ∀p ∈ T. Λ⊥ ≤ Λ(p) ≤ Λ>; and
3. ∃p ∈ T. ∀p′ ∈ F. Λ(p) > Λ(p′).

where Λ is the satisfaction function of φ on CP .

Note that we need to consider a probability tolerance to control the inaccuracy
of the max probability, and in turn of region T . Indeed, constraining only the
volume of T gives no guarantees on the precision of the maximizing region.

4 Computing Lower and Upper Probability Bounds

This section presents a generalization of the parameter exploration procedure
originally introduced in [6]. The procedure takes a pCTMC CP and a CSL path
formula φ, and provides safe under- and over-approximations for the minimal
and maximal probability that CP satisfies φ, that is, lower and upper bounds
Λmin and Λmax satisfying Λmin ≤ minp∈P Λ(p) and Λmax ≥ maxp∈P Λ(p). The
accuracy of these approximations is improved by partitioning the parameter
space P into subspaces and re-computing the corresponding bounds, which forms
the basis of the synthesis algorithms that we discus in the next section. For now
we focus on obtaining approximations Λmin, Λmax for a fixed parameter space P.
The model-checking problem for any time-bounded CSL formula reduces to the
computation of transient probabilities [3], and a similar reduction is applicable
to the computation of lower and upper bounds. Following [6], to correctly handle
nested probabilistic operators, under- and over-approximations of the satisfying
sets of states in the nested formula are computed.

We now re-state the transient probabilities as given by standard uniformisa-
tion and include the dependency on the model parameters in our notation, so
that πt,p = π0

∑kε
i=0 γi,qtP

i
p =

∑kε
i=0 γi,qtτi,p where Pp is the uniformised rate

matrix obtained from the rate matrix Rp and τk,p = π0P
k
p is the probability

evolution in the discretized process. Observe that, if some functions πmin
i and

πmax
i can be obtained such that for any step i,

τmin
i ≤ min

p∈P
τi,p and τmax

i ≥ max
p∈P

τi,p (1)
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then robust approximations πmin
t =

∑kε
i=0 γi,qtτ

min
i and πmax

t =
∑kε
i=0 γi,qtτ

max
i

provide the bounds Λmin and Λmax that we seek. As usual, the vector ordering in
Equation 1 holds element-wise. If we assume that some functions fmin

k , fmax
k exist

such that fmin
k (τmin

i ) = τmin
i+k and fmax

k (τmax
i ) = τmax

i+k then recursively the terms

in Equation 1 for all i are obtained, given that the first k terms for τmin
i , τmax

i

are known. We now note that the functions

fmin
k (τmin

i ) = min
p∈P

τmin
i Pkp and fmax

k (τmax
i ) = max

p∈P
τmax
i Pkp (2)

can be under- and over-approximated using analytical methods when the para-
metric rate matrix Rp employs low-degree multivariate polynomial expressions.
Provided that Rp(si, sj) is a polynomial of at most degree d over the parameter
space, the degree of τk,p(s) = π0P

k
p(s) is at most kd.

An analytical treatment for the case k = 1 and d = 1 is given in [6]. Here, we
derive an effective method to obtain approximations using k = 1 for multivariate
polynomials where each variable has degree at most 1; full details are included
in [21]. More advanced methods can be used, provided that the under- and over-
approximations for Equation 2 are sound. Note that the solution πt,p(s) itself
can be expressed as a polynomial of degree at most kεd. A direct attempt to
bound the polynomial expression of πt,p(s) is difficult due to the large number of
uniformisation steps, kε, and previous approaches in parameter synthesis have
provided an approximate solution by sampling the value of πt,p over a grid
in P [13], rather than bounding the polynomial itself as in our approach. The
computational complexity depends on the chosen rate function and the bounding
method for the functions in Equation 2, but for our settings it has the same
asymptotic complexity as standard uniformisation. Two approximation errors
are introduced when we compute πmax

t (or πmin
t ).

Firstly, the probabilities τmax
i , τmax

i+k , τ
max
i+2k, . . . are locally maximized, so that

different parameter evaluations are allowed at each step and for each state. Sec-
ondly, the error of over-approximating fmax

k (τmax
i ) accumulates in τmax

i at every
iteration.

5 Refinement-based Parameter Synthesis

We present algorithms to solve Problems 1 and 2, based on the computation
of probability bounds introduced in Section 4 and iterative parameter space
refinement. In the max synthesis case we employ parameter sampling to enhance
the synthesis procedure.

Threshold Synthesis. Algorithm 1 describes the method to solve the threshold
synthesis problem with input formula Φ = P≥r[φ]. The idea, also illustrated in
Figure 1, is to iteratively refine the undecided parameter subspace U (line 3)
until the termination condition is met (line 14). At each step, we obtain a par-
tition R of U . For each subspace R ∈ R, the algorithm computes bounds ΛRmin

and ΛRmax on the maximal and minimal probability that CR satisfies φ (line 5).
We then evaluate if ΛRmin is above the threshold r, in which case the satisfaction
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Algorithm 1 Threshold Synthesis
Require: pCTMC CP over parameter space P, CSL formula

Φ = P≥r[φ] and volume tolerance ε > 0
Ensure: T , U and F as in Problem 1
1: T ← ∅, F ← ∅, U ← P
2: repeat
3: R← decompose(U), U ← ∅
4: for each R ∈ R do
5: (ΛRmin, Λ

R
max)← computeBounds(CR, φ)

6: if ΛRmin ≥ r then
7: T ← T ∪R
8: else if ΛRmax < r then
9: F ← F ∪R
10: else
11: U ← U ∪R
12: until vol(U)/vol(P) ≤ ε . where vol(A) =

∫
A

1dµ

F

U

T

Fig. 1. Refinement in threshold synthesis with ≥ r. Parameter values are on the x-
axis, probabilities on the y-axis. Each box describes a parameter region (width), and
its probability bounds (height). The refinement of R yields regions in T and in U .

of Φ is guaranteed for the whole region R and thus it is added to T . Otherwise,
the algorithm tests whether R can be added to the set F by checking if ΛRmax is
below the threshold r. If R is neither in T nor in F , it forms an undecided sub-
space that is added to the set U . The algorithm terminates when the volume of
the undecided subspace is negligible with respect to the volume of the entire pa-
rameter space, i.e. vol(U)/vol(P) ≤ ε, where ε is the input tolerance. Otherwise,
the algorithm continues to the next iteration where U is further refined.

Since, for a finite formula φ, only a finite number of refinement steps is
needed to meet the desired tolerance, the algorithm always terminates. The
initial decomposition of the parameter space is guided by a prior sampling of
probability values. For more details see [21].

Max Synthesis. Algorithm 2 is used to solve the max synthesis problem, which
returns the set T containing the parameter valuations that maximize Φ = P=?[φ]
and the set F not yielding the maximum value of Φ. Let R be a partition of T .
For each subspace R ∈ R, the algorithm computes bounds ΛRmin and ΛRmax on
the maximal and minimal probability that CR satisfies Φ (line 5). The algorithm
then rules out subspaces that are guaranteed to be included in F , by deriving an
under-approximation (MLB) to the maximum satisfaction probability (line 7). If
ΛRmax is below the under-approximation, the subspace R can be safely added to
the set F (line 9). Otherwise, it is added to the set T . The bound MLB is derived
as follows. In the naive approach, the algorithm uses the maximum over the least
bounds in the partition of T , that is, MLB = max{ΛRmin | R ∈ R}. Let R be
the region with highest lower bound. The sampling-based approach improves on
this by sampling a set of parameters {p1, p2, . . .} ⊆ R and taking the highest
value of Λ(p), that is, MLB = max {Λ(pi) | pi ∈ {p1, p2, . . .}}. Although regular
CSL model checking is nearly as expensive as the computation of the bounds for
a pCTMC, the bound obtained by the sampling method excludes more boxes
(see Fig. 2), which in turn leads to fewer refinements in the next iteration. In
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Algorithm 2 Max Synthesis
Require: pCTMC CP over parameter space P, CSL

formula Φ = P=?[φ] and probability tolerance ε > 0

Ensure: Λ⊥, Λ>, T and F as in Problem 2
1: F ← ∅, T ← P
2: repeat
3: R← decompose(T ), T ← ∅
4: for each R ∈ R do
5: (ΛRmin, Λ

R
max)← computeBounds(CR, φ)

6: MLB← getMaximalLowerBound(R)
7: for each R ∈ R do
8: if ΛRmax < MLB then
9: F ← F ∪R
10: else
11: T ← T ∪R
12: Λ⊥ ← min{ΛRmin | R ∈ T}
13: Λ> ← max{ΛRmax | R ∈ T}
14: until Λ> − Λ⊥ < ε

F

T

Fig. 2. Refinement in max synthesis. The two outermost regions (in red) cannot contain
the maximum, as their upper bound is below the maximum lower bound (MLB) found
at region R. The maximum lower bound is improved by sampling few points p ∈ R
and taking the highest value (MLB) of the satisfaction function Λ(p). The yellow area
highlights the improvement.

this case we perform additional checks, not discussed here, for detecting and
discarding regions containing points of jump discontinuity that might prevent
the algorithm from reaching the target accuracy and thus from terminating.

The overall time complexity of the synthesis algorithms is directly determined
by the number of subspaces that need to be analysed to obtain the desired
precision. This number depends on the number of unknown parameters, the
shape of the satisfaction function and the type of synthesis. In practice, the
algorithms scale exponentially in the number of parameters and linearly in the
volume of the parameter space.

6 Results

We demonstrate the applicability and efficiency of the developed algorithms on
two case studies.

6.1 Epidemic model

The SIR model [16] describes the epidemic dynamics in a closed population of
susceptible (S), infected (I) and recovered (R) individuals. In the model, a sus-
ceptible individual is infected after a contact with an infected individual with
rate ki. Infected individuals recover with rate kr, after which they are immune
to the infection. We can describe this process with the following biochemical

reaction model with mass action kinetics: i : S + I
ki−→ I + I, r : I

kr−→ R. We
represent the model as a pCTMC with ki and kr as parameters, and initial pop-
ulations S = 95, I = 5, R = 0. We consider the time-bounded CSL formula
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Fig. 3. Solution to max (a,c) and min (b,d) synthesis using sampling-based refinement
for P=?[(I > 0)U [100,120](I = 0)]. Probability tolerance ε = 1% (a,c) and ε = 0.1% (b,d).

Problem ki kr Runtime Subspaces Λ∗[%] T

1. Max [0.005, 0.3] 0.05 16.5 s 9 33.94 [0.267, 0.3]
2. Min [0.005, 0.3] 0.05 49.5 s 21 2.91 [0.005, 0.0054]
3. Max 0.12 [0.005, 0.2] 99.7 s 57 19.94 [0.071, 0.076]
4. Min 0.12 [0.005, 0.2] 10.4 s 5 0.005 [0.005, 0.026]
5. Max [0.005, 0.3] [0.005, 0.2] 3.6 h 5817 35.01 [0.217, 0.272]×[0.053, 0.059]
6. Max [0.005, 0.3] [0.005, 0.2] 6.2 h 10249 34.77 [0.209, 0.29]×[0.051, 0.061]

Table 1. The computation of the synthesis problems for P=?[(I > 0)U [100,120](I = 0)]
using probability tolerance ε = 1% (problems 1,3,5,6) and ε = 0.1% (problems 2,4).
The sampling-based refinement is used apart from problem 5. The minimal bounding
box of T is reported in problems 5 and 6. Λ∗ denotes Λ⊥ (problems 1,3,5,6) and Λ>

(problems 2,4).

Φ = P=?[(I > 0)U [100,120](I = 0)], which asks for the probability that the infec-
tion lasts for at least 100 time units, and dies out before 120 time units. Model
parameters and the property are taken from [5], where the authors estimate the
satisfaction function for Φ following a Bayesian approach3.

Figure 3 and Table 1 (problems 1-4) illustrate the solutions using sampling-
based refinement for max and min synthesis problems over one-dimensional pa-
rameter spaces. We report that, in order to meet the desired probability toler-
ance, problems 2 (Fig. 3b) and 3 (Fig. 3c) require a high number of refinement
steps due to two local extrema close to the minimizing region and due to a bell-
shaped Λ with the maximizing region at the top, respectively. Our precise results
for problem 1 (Fig. 3a) improve on the estimation in [5], where in the equivalent
experiment the max probability is imprecisely registered at smaller ki values.

We also compare the solutions to the max synthesis problem over the two-
dimensional parameter space obtained by applying Alg. 2 with sampling-based
(Fig. 4a, problem 5 in Table 1) and naive (Fig. 4b, problem 6 in Table 1) refine-
ment. In the former case, a more precise T region is obtained (with a volume 2.04
smaller than in the naive approach), thus giving a more accurate approximation
of the max probability. Sampling also allows ruling out earlier those parameter
regions that are outside the final solution, thus avoiding unnecessary decompo-

3 In [5], a linear-time specification equivalent to Φ is given.
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Fig. 4. Solutions to max synthesis with sampling-based refinement (a) and without
sampling (b) for P=?[(I > 0)U [100,120](I = 0)] using probability tolerance ε = 1%.

sitions and improving the runtime (1.72 times slower without sampling). This is
visible by the coarser approximations of probabilities in the F region.

6.2 DNA walkers

We revisit models of a DNA walker, a man-made molecular motor that traverses
a track of anchorages and can take directions at junctions in the track [22], which
can be used to create circuits that evaluate Boolean functions. PRISM models
of the walker stepping behaviour were developed previously [9] based on rate
estimates in the experimental work. The walker model is modified here to allow
uncertainty in the stepping rate, and we consider its behaviour over a single-
junction circuit. Given a distance d between the walker-anchorage complex and
an uncut anchorage, and da being the distance between consecutive anchorages,
the stepping rate k is defined as: k = ks when d ≤ 1.5da, k = c · ks/50 when
1.5da < d ≤ 2.5da, k = c · ks/100 when 2.5da < d ≤ 24nm and k = 0, otherwise.

The base stepping rate ks ∈ [0.005, 0.020] is now defined as an interval, as
opposed to the original value of 0.009. We have also added factor c for steps
between anchorages that are not directly adjacent, but we will assume c = 1 for
now. The base stepping rate may depend on buffer conditions and temperature,
and we want to verify the robustness of the walker with respect to the uncertainty
in the value of ks.

We compute the minimal probability of the walker making it onto the cor-
rect final anchorage (min synthesis for the property P=?[F

[T,T ] finish-correct])
and the maximum probability of the walker making it onto the incorrect an-
chorage (max synthesis for the property P=?[F

[T,T ] finish-incorrect). We list the
probabilities at T = 15, 30, 45, 200 minutes in Table 2. For time T = 30, 45, 200,
we note that the walker is robust, as the minimal guaranteed probability for
correct outcome is greater than the maximum possible probability for incorrect
outcome. For time T = 15 this is not the case. We also consider a property
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Runtime Subspaces
Time bound Min. correct Max. incorrect ∅ Sampling ∅ Sampling

T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

Table 2. The computation of min-synthesis for P=?[F [T,T ] finish-correct] and max-
synthesis for P=?[F [T,T ] finish-incorrect] using ks ∈ [0.005, 0.020], c = 1 and probability
tolerance ε = 1%. The runtime and subspaces are listed for the first property.

that provides bounds on the ratio between the walker finishing on the cor-
rect versus the incorrect anchorage. The rates c · ks/50 and c · ks/100 cor-
respond to the walker stepping onto anchorages that are not directly adja-
cent, which affects the probability for the walker to end up on the unintended
final anchorage. For higher values of c, we expect the walker to end up in
the unintended final anchorage more often. Now we add uncertainty on the
value of c, so that c ∈ [0.25, 4], and define the performance related property
P≥0.4[F [30,30] finish-correct] ∧ P≤0.08[F [30,30] finish-incorrect], that is, the prob-
ability of the walker to make it onto the correct anchorage is at least 40% by
time T = 30 min, while the probability for it to make it onto the incorrect an-
chorage is no greater than 8%. In other words, we require a correct signal of at
least 40% and a correct-to-incorrect ratio of at least 5 by time T = 30 min. We
define a similar property at time T = 200 min, this time requiring a signal of at
least 80%: P≥0.8[F [200,200] finish-correct]∧P≤0.16[F [200,200] finish-incorrect]. The
synthesized ranges of ks and c where the properties hold are shown in Fig. 5.
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Fig. 5. The computation and results of the threshold synthesis for different formulae,
using volume tolerance ε = 10%. a) Φ1 = P≥0.4[F [30,30] finish-correct], runtime 443.5
s, 2692 subspaces. b) Φ2 = P≤0.08[F [30,30] finish-incorrect], runtime 132.3 s, 807 sub-
spaces. c) Φ1∧Φ2. d) P≥0.8[F [200,200] finish-correct]∧P≤0.16[F [200,200] finish-incorrect],
runtime 12,3 h, 47229 subspaces.
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7 Conclusion

We have developed efficient algorithms for synthesising rate parameters for bio-
chemical networks so that a given reliability or performance requirement, ex-
pressed as a time-bounded CSL formula, is guaranteed to be satisfied. The tech-
niques are based on the computation of lower and upper probability bounds
of [6] in conjunction with region refinement and sampling. The high computa-
tional costs observed in our case studies can be reduced by parallel processing of
individual subspaces, or by utilizing advanced uniformisation techniques [19, 8].
We plan to include the synthesis algorithms in the param module of the PRISM

model checker [7, 18].
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